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Abstract 17 

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing 18 

reconstruction artefacts from genes and proteins present in situ. Here, we evaluate short-read-19 

only, long-read-only, and hybrid assembly approaches on four different metagenomic samples of 20 

varying complexity and demonstrate how they affect gene and protein inference which is 21 

particularly relevant for downstream functional analyses. For a human gut microbiome sample, 22 

we use complementary metatranscriptomic, and metaproteomic data to evaluate the 23 

metagenomic data-based protein predictions. Our findings pave the way for critical assessments 24 

of metagenomic reconstructions and we propose a reference-independent solution based on the 25 

synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-26 

read sequencing data. 27 
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 32 

Background 33 

 Third-generation, single-molecule, long-read (LR) sequencing is considered to be the next 34 

frontier of genomics [1], especially in the context of studying microbial populations [2,3]. Given 35 

the ability to attain read lengths in excess of 10 Kbp [4] and sequence accuracy improvements 36 

[5], LR sequencing has been recommended for its ability to resolve GC-rich regions, complex and 37 

repetitive loci, and segmental duplications in genomes [4]. However, LR applications to study 38 

microbiomes have focused on genome assemblies [6,7], closing a select few bacterial genomes 39 

[8], haplotype and strain resolution [9] as well as mock (low diversity) communities [3]. Stewart et 40 

al., recently were among the first to demonstrate the utility of using LRs for improving upon 41 

existing protein databases owing to a large collection of novel proteins and enzymes identified 42 

[10], thereby hinting at the benefits of LR also for functional microbiome studies. 43 

 Single base-accuracy of raw LRs remains lower - for now - compared to short-read (SR) 44 

methodologies [11]. Several approaches including assembly-based and/or including polishing 45 

steps have been developed [11–13] to increase the accuracy. The impact of remnant errors in LR 46 

assemblies on gene calling and thereby protein prediction was recently highlighted by Watson et 47 

al. [14]. Hybrid (HY) assembly methods [15,16] using both SRs and LRs have been proposed to 48 

further reduce the error rates compared to LR-only assemblies.  While Watson et al. [14] showed 49 

that insertions/deletions (indels) play a critical role in microbial protein identification, the overall 50 

impact of assembly methods on understanding the functional potential of microbial communities 51 

is lacking. 52 

Here, we demonstrate that metagenomic assembly methods (SR, LR and HY) not only 53 

differ markedly in their overall assembly performance, but also in the inferred functional potential. 54 

We reveal the effects of the assembly method on predicted genes and proteins in samples with a 55 

low to high diversity, from mock communities to human fecal and rumen metagenomes. We found 56 

proteins which are exclusive to respective assemblers and additionally demonstrate using 57 

metatranscriptomic and metaproteomic data available for the human fecal sample the synergistic 58 

effect on protein verification. Our results indicate that irrespective of sample diversity, the 59 
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sequencing and assembly strategies impact downstream analyses and that complementary 60 

omics are a key dimension for functional analyses of microbiomes. 61 

 62 

Results and Discussion 63 

To understand how sample diversity, assembly quality, and assembly approach are linked, 64 

we assembled published metagenomic (metaG) data from a mock community (Zymo), a natural 65 

whey starter culture (NWC), a cow rumen sample (Rumen), and a novel metagenomic dataset 66 

from a human fecal sample (GDB) which was complemented with metatranscriptomic (metaT) 67 

and metaproteomic (metaP) data. The samples’ diversity ranged from low (Zymo and NWC) to 68 

high (GDB and Rumen). As expected [10], the assembly approach affected strongly the quality of 69 

the resulting assembly (Supp. Fig. 1). LR and HY approaches generated fewer contigs with a 70 

larger N50 value. However, other assembly metrics, e.g., the total assembly length, varied 71 

between the samples and assembly types. The metaG read mapping rate (including multi-72 

mapped reads), as a proxy of data usage, was unaffected by the assembler choice when 73 

considering all contigs, though the values for the LR assemblies were a bit lower than for SR or 74 

HY assemblies of the high-diversity samples (GDB and Rumen). However, the mapping rates 75 

dropped markedly in SR assemblies, especially in NWC and Rumen, when filtering out contigs 76 

below 5000bps (Supp. Fig. 2). In GDB, we observed higher metaT read mapping rates in SR and 77 

HY assemblies than in LR assemblies. This indicates the complementarity of SR and LR data. 78 

The mapping rates decreased considerably in SR assemblies when removing short contigs 79 

(Supp. Fig. 3) suggesting the presence of expressed genes located on these contigs. This 80 

demonstrates the loss of information when contigs below a certain threshold are removed, which 81 

is frequently done in metagenomic studies. 82 

Comparing assemblies pairwise, we observed higher dissimilarities between the LR and 83 

SR/HY assemblies than within the latter groups. Additionally, OPERA-MS-based HY assemblies 84 

clustered together with the SR assemblies on which they were based (Supp. Fig. 4).  To assess 85 

functional potential overlap between the different assembly approaches, we studied the proteins 86 

found in the individual metagenomes. The overall number and quality of predicted proteins was 87 

highly influenced by the assembly approach. In highly diverse metagenomes (GDB and Rumen), 88 

the total number of proteins in SR and HY assemblies was higher (by a factor of up to 3.67) than 89 

in LR assemblies (Fig 1i).  However, throughout all samples, the SR and HY approaches produced 90 

more partial proteins (incomplete CDS). We clustered the predicted protein sequences and found 91 

a considerable number of proteins exclusive to individual assembly. We also found proteins that 92 
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were shared within a subset of the assemblies only. Furthermore, we observed that increased 93 

sample diversity resulted in an overall increase in the number of exclusive proteins (Fig 1ii). 94 

As reported previously by Watson et al. [14], errors in LR assemblies can have an impact 95 

on the predicted proteins. To evaluate how the sample diversity might affect this, we mapped the 96 

predicted proteins against the UniProtKB/TrEMBL non-redundant (nr) protein database and 97 

computed the query/subject length ratio. In all cases, the density distribution of the ratio values 98 

had two peaks (below 0.5 and around 1) though the differences between the assembly methods 99 

varied across the samples (Supp. Fig. 5). Considering the above findings and despite multiple 100 

rounds of polishing, we cannot disregard the impact of errors in long reads affecting the results. 101 

Furthermore, we are aware that the results may also be affected by the sequencing depth and 102 

gene prediction methods. One also has to account for the microbial composition per sample, given 103 

that a large proportion of proteins from the Rumen sample might not have homologs within the 104 

used database. 105 

Due to the differences in annotations, which we found to be exclusive to individual 106 

assembly approaches, we subsequently studied the effect of assembler choice on two well 107 

defined, functionally relevant classes of genes: ribosomal RNA (rRNA) and antimicrobial 108 

resistance (AMR) genes. Overall, the total number of rRNA genes recovered by LR and HY 109 

approaches was higher across all samples. Within the archaeal and bacterial domains, LR and 110 

HY assemblies led to the prediction of more complete genes compared to SR (Supp. Fig. 6). 111 

When analysing AMR proteins and focusing only on “strict” hits (i.e. excluding loose hits flagged 112 

as “nudged” by the RGI tool, see Methods), HY assemblers were more adept at identifying these 113 

proteins compared to either SR or LR. Moreover, LR assemblies contained more “nudged” hits 114 

than SR or HY assemblies, suggesting that error rates or other factors might have affected the 115 

reconstruction of some AMR genes (Fig 2i). Interestingly, we did not identify any AMR hits in the 116 

NWC metagenome, possibly due to it being a food-grade additive [17]. When comparing the 117 

overlap of the Antibiotic Resistance Ontology (ARO) terms covered by “strict” hits, we found that 118 

some AROs were only identified in SR and HY assemblies, but not in LR, whereas no AROs were 119 

found in LR assemblies only (Fig 2ii). 120 

To validate the exclusive AROs found in SR and HY assemblies, we assessed metaT and 121 

metaP coverage of the corresponding genes and proteins in the GDB sample. The genes 122 

mapping to the exclusive AROs had an average metaT coverage above 14x in the SR and HY 123 

assemblies suggesting that these genes are expressed in situ; the few “nudged” hits were below 124 

6x (Supp. Tab. 1). However, we did not identify these genes in the metaP data potentially due to 125 

low expression levels, variation in extraction protocols, and/or post-translational modifications 126 
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affecting the peptide/proteomic recovery. Though no “strict” hits were found in LR assemblies, 127 

some of their “nudged” hits had an average metaT coverage above 10x. To understand why these 128 

seemingly expressed genes obtained only a partial hit, we focused on two “nudged” hits assigned 129 

to ARO 3004454 (a chloramphenicol acetyltransferase) in the LR assembly constructed with Flye. 130 

We found that the corresponding coding sequences (CDSs) were located on the same contig and 131 

had an overlap of 29 bps. The sequence alignments showed that the respective genes represent 132 

two fragments of the true CDS (corresponding to ARO 3004454) most likely created by an indel 133 

which introduced a frameshift and also a premature stop codon. This finding was also supported 134 

by the metaT coverage extending beyond the stop codon of the first CDS until the end of the 135 

second CDS with a single drop in coverage before the putative indel (Fig 2iii). 136 

To identify high-confidence proteins without the need for a reference, we first considered 137 

proteins and protein clusters found in all assemblies which represented 22.97% of the proteins 138 

and 8.54% of the protein clusters. These included genes reconstructed by the different and 139 

independent assembly approaches, thus lending mutual support. We then used the 140 

complementary metaT data and included all additional proteins with an average metaT coverage 141 

>= 10x and the corresponding protein clusters. This doubled the number of high-confidence 142 

protein clusters (17.63%) and increased the percentage of high-confidence proteins to 30.32%. 143 

 144 

Conclusions 145 

We reveal that sample diversity, along with assembly-mediated effects influence 146 

prediction of genes and proteins. This causes discrepancies between the assemblies, thereby 147 

requiring complementary means to validate these predictions. The observed discrepancies 148 

included conserved and also functionally relevant genes (rRNA and antimicrobial resistance 149 

genes, respectively), potentially impacting phylogenetic as well as functional studies. To 150 

overcome this, we propose a reference-independent approach to identify high-confidence 151 

genomic reconstructions by combining metagenomic and metatranscriptomic data. Overall, we 152 

show that the sequencing approach and assembly strategy can have a significant impact on the 153 

characterization of the microbiome’s functional potential and demonstrate the added value of 154 

multi-omic strategies for reconstruction quality evaluation, i.e. going beyond their original purpose, 155 

to resolve the functional microbiome. 156 

 157 
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Methods 158 

Freshly collected human fecal samples from a healthy volunteer (GDB) were immediately flash-159 

frozen in liquid nitrogen and stored at −80 °C; high-molecular weight (HMW) DNA was obtained 160 

following the protocol proposed recently [8], with minor modifications; samples were sequenced 161 

on Illumina and Oxford Nanopore MinION respectively. Metagenomic sequencing data of three 162 

publicly available samples was included: the Zymo mock community (Zymo) [3], a natural whey 163 

starter culture (NWC) [17] and a cow rumen (Rumen) [10] dataset. Assemblies were built from 164 

short reads (SR), long reads (LR), and short and long reads (HY). The LR and HY assemblies 165 

were polished. All assemblies were annotated by predicting rRNA genes and proteins, and 166 

matching the latter to the CARD database [18]. For each sample, assemblies were compared, 167 

and proteins were clustered. For the GDB sample, metatranscriptomic (metaT) and 168 

metaproteomic (metaP) data were additionally used in the downstream analysis. Detailed 169 

information on extraction, sequencing and analysis can be found in the Supplementary 170 

Information. 171 

 172 

Abbreviations 173 

● SR: short reads 174 

● LR: long reads 175 

● HY: hybrid (approach/assembly) 176 

● metaG: metagenomic (data) 177 

● metaT: metatranscriptomic (data) 178 

● metaP: metaproteomic (data) 179 

● AMR: antimicrobial resistance 180 

● rRNA: ribosomal RNA 181 
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Supplementary Information: Methods 214 

Sample origin & collection 215 

Human fecal samples were freshly collected from a healthy volunteer (GDB) and 216 

immediately flash-frozen in liquid nitrogen. The samples were stored at −80 °C until they were 217 

processed for biomolecular extraction. 218 

Biomolecular extraction 219 

To obtain high-molecular weight (HMW) DNA, we followed the protocol proposed recently 220 

[8], with minor modifications. Frozen stool sample was weighed out in triplicates, to 0.7g and 221 

aliquoted into phase-lock gel tubes (Fisher Scientific, Waltham, MA), along with a 4mm stainless 222 

steel grinding ball (RETSCH 22.455.0003). The sample was subsequently suspended in 500μL 223 

PBS (Fisher Scientific, Waltham, MA) with brief gentle vortexing at 10 second intervals repeated 224 

5 times. Thereafter, 5uL of lytic enzyme solution (Qiagen, Hilden, Germany) was added and the 225 

samples were mixed by gentle inversion six times, then incubated for one hour at 37˚C. 12μL 20% 226 

(w/v) SDS (Fisher Scientific, Waltham, MA) was added followed by 500μL 227 

phenol:chloroform:isoamyl alcohol at pH 8 (Fisher Scientific, Waltham, MA). The samples were 228 

gently vortexed for five seconds, then centrifuged at 10,000g for five minutes. The aqueous phase 229 

was decanted into a new 2mL tube. Next, the DNA was precipitated with 90μL 3M sodium acetate 230 

(Fisher Scientific) and 500uL isopropanol (Fisher Scientific). After slowly inverting three times, 231 

samples were incubated at room temperature for 10 minutes, followed by centrifugation for 10 232 

minutes at 10,000g. The supernatant was removed, and the pellet was washed twice with freshly 233 

prepared 80% (v/v) ethanol (Fisher Scientific). Washing was done by adding 1 ml of 80% EtOH, 234 

followed by centrifugation for 10 minutes at 10,000g. The pellet was then air dried with heating 235 

for ten minutes at 37˚C or until the pellet was matte in appearance, and then resuspended in 236 

100μL nuclease-free water (Ambion, ThermoFisher Scientific, Waltham, MA). To the pellet, 1mL 237 

Qiagen buffer G2, 4μL Qiagen RNase A at 100mg/mL, and 25μL Qiagen Proteinase K were 238 

added. The samples were then gently inverted three times and incubated for 90 minutes at 56˚C. 239 

After the first 30 minutes, pellets were dislodged by a single gentle inversion. During the 90-240 

minutes incubation, one Qiagen Genomic-tip 20/G column per triplicate sample was equilibrated 241 

with 1mL Qiagen buffer QBT and allowed to empty by gravity flow. Samples were gently inverted 242 

twice, applied to columns and allowed to flow through. Three stool extractions (triplicates for each 243 
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sample) were combined per column. Columns were then washed with 3mL Qiagen buffer QC, 244 

where 1 ml of QC buffer was added each time and allowed to drain the column. Next, the column 245 

was placed in a new, sterile 1.5 mL Eppendorf tube and the DNA was then eluted with 1mL of 246 

Qiagen buffer QF prewarmed to 56˚C. The eluted DNA was then precipitated by addition of 700μL 247 

isopropanol and incubated at room temperature for 10 minutes, followed by inversion and 248 

centrifugation for 15 minutes at 10,000g. The supernatant was carefully removed by pipette, and 249 

pellets were washed with 1mL 80% (v/v) ethanol. (Washing = add 1 ml EtOH, centrifuge for 10 250 

minutes at 10,000g). Residual ethanol was removed by air drying ten minutes at 37˚C, followed 251 

by resuspension of the pellet in 100μL water overnight at 4˚C without agitation of any kind. The 252 

pooled sample was quantified using the Qubit Broad-Range DNA concentration kit, and was 253 

estimated at 323.35 ng/μL with an OD260/280 = 1.85. The extracted HMW DNA was used for both 254 

short- and long-read sequencing. RNA was extracted from an aliquot of the same fecal sample 255 

using PowerMicrobiome RNA isolation kit (cat. no. 26000-50, MoBio) as suggested by the 256 

manufacturer. For the protein extractions, a modified protocol based on previously established 257 

sequential extraction method [20] was used. Briefly, proteins were precipitated by adding one 258 

volume of APP Buffer to the flow-through from an independent RNA purification, followed by 259 

mixing and incubation for 10 minutes at room temperature. After incubation, the mixture was 260 

centrifuged for 10 minutes at 12000 g and the pellet was washed twice in 70% ethanol, with 1 261 

minute centrifuge cycles at 12000 g, and dried at room temperature for 7 minutes after removing 262 

excess ethanol. The pellet was then dissolved in 100μL ALO buffer and incubated for 5 minutes 263 

at 95 °C. After complete dissolution and denaturation of the protein, the sample was cooled to 264 

room temperature and centrifuged for 1 minute at 12000 g, from which the supernatant was 265 

collected for downstream protein analysis.  266 

Sequencing 267 

Short-read sequencing: All DNA samples were subjected to random shotgun sequencing. 268 

The sequencing libraries were prepared using Kapa hyperplus Kit (cat. no. 07962401001, Roche) 269 

for the fecal sample using the protocol provided with the kit. Enzymatic fragmentation time was 270 

15 minutes to aim for 350bp average size. There was no additional PCR amplification of prepared 271 

libraries. 272 

RNA samples for metaT analysis were subjected to rRNA depletion using the QIAseq 273 

FastSelect 5S/16S/23S kit (cat. no. 335921, Qiagen) for the fecal sample. Library preparation of 274 

rRNA-depleted RNA was done using TruSeq Stranded mRNA library preparation kit (cat. no. 275 
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20020594, Illumina) according to the protocol provided by the manufacturer with the exception of 276 

omitting the initial steps for mRNA pull down. 277 

Both metaG and metaT libraries were quantified using Qubit HS assay (Invitrogen) and 278 

their quality was assessed on a Bioanalyzer HS chip (Agilient). We used the NextSeq500 279 

(Illumina) instrument to perform the sequencing using 2x150bp read length at the LCSB 280 

Sequencing Platform. 281 

Long-read sequencing: DNA library for the fecal sample was size selected using AMpure 282 

beads for longer fragments. The DNA was sheared using a G-tube (cat. no. 520079, Covaris) 283 

aiming for 8kb average size according to the protocol provided by the manufacturer. Library 284 

preparation for long read sequencing was done using genomic DNA ligation kit (SQK-LSK109) 285 

according to the protocol provided. Once all the library loaded on the flowcell was finished, the 286 

library was reloaded after either flowcell wash or nuclease flush. In total, the library was loaded 4 287 

times to achieve 16Gbp of sequencing data for this fecal sample. 288 

Data analysis 289 

Snakemake (v. 5.18.1) [21] was used to implement the analysis workflow. We provide a 290 

brief description of the most important steps in the following. 291 

Sequence data preprocessing 292 

Short-reads: The raw short reads were trimmed and preprocessed with fastp (v. 0.20.0) 293 

[22] with a minimum length of 40 bp. FastQC (v. 0.11.9) [23] reports were generated from the 294 

processed FASTQ files. MetaT short reads from the GDB sample were filtered by discarding reads 295 

mapping to rRNA gene references included in the repository of SortMeRNA [24] (v4.2.0-10-296 

g1358b9b, https://github.com/biocore/sortmerna) using BBDuk from the BBMap toolkit (v.38.86, 297 

kmer length set to 31 bp) [25]. Additionally, for the GDB sample, reads mapping to the human 298 

genome (GCF_000001405.38_GRCh38.p12) were removed using BBDuk (kmer length set to 31 299 

bp, input and output quality encoding offset set to 33). 300 

Long reads: For each sample except NWC, single-FAST5 files were converted to multi-301 

FAST5 files using single_to_multi_fast5 from ont-fast5-api (v. 3.1.5), the resulting files were 302 

basecalled using guppy on a GPU node (v. 3.6.0+98ff765, configuration file 303 

dna_r9.4.1_450bps_modbases_dam-dcm-cpg_hac.cfg, disabled transmission of telemetry pings, 304 

chunk size of 1000, 8000 records per FASTQ file) and concatenated into a single FASTQ file. For 305 

NWC, no FAST5 were available and, thus, only the provided FASTQ file was used for the analysis. 306 
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Nanostat (v. 1.1.2) [26] reports were created from the FASTQ files using default parameters. As 307 

for the short reads, long reads of the GDB sample were filtered to remove reads mapping to the 308 

human genome (GCF_000001405.38_GRCh38.p12) using the same parameters. 309 

Metagenomic assembly 310 

Short-reads: Short-read assemblies were done using preprocessed reads, and MEGAHIT 311 

and metaSPAdes. MEGAHIT (v. 1.2.9) [27] was run using default parameters; metaSPAdes (v. 312 

3.14.1) [28] was run using kmer lengths 21, 33, 55 and 77 bp. 313 

Long-reads:  Long-read assemblies were done using Flye and Raven. Flye (v. 2.8.1) [29] 314 

was run by providing the (processed) long reads in a FASTQ file (input parameter “--nano-raw”) 315 

and with the flag “--meta”. Raven (v. 1.2.2) [30] was run with default parameters. Assemblies were 316 

polished using long and short reads: one round of Racon (v. 1.4.13) [31]  with long reads using 317 

the flag “--include-unpolished” where reads were mapped to contigs using BWA MEM (v. 0.7.17) 318 

[32] with the option “-x ont2d” and processed using samtools (v. 1.9); four rounds of Racon with 319 

short reads using the flag “--include-unpolished” where reads were mapped to contigs using BWA 320 

MEM and processed using samtools; one round of Medaka (v. 0.8.1) [33] with long reads using 321 

the model “r941_min_high”. 322 

Hybrid: Hybrid assemblies, i.e. using short and long reads together, were done using 323 

metaSPAdes and OPERA-MS. SPAdes was run with the flag “--meta” and the same k-mer lengths 324 

as the SR assemblies by additionally providing the long reads using the input parameter flag “--325 

nanopore”. OPERA-MS (v. v0.8.2-63-gc18b4f3) [15] was run using paired short reads, long reads 326 

and the SR assemblies created by MEGAHIT and metaSPAdes, respectively, using minimap2 327 

[34] as the long read mapper. The assemblies were polished by running five rounds of Racon with 328 

short reads as described for the LR assemblies. If not stated otherwise, only polished contigs 329 

were used for the LR and HY assemblies in the following analysis steps. 330 

Mapping rate and assembly coverage 331 

For the mapping rate, the used reads were mapped back to the contigs and processed 332 

using BWA MEM and samtools in the same fashion as described above when polishing the LR 333 

and HY assemblies using Racon. For hybrid assemblies, both long and short reads were mapped 334 

to the polished contigs and the BAM files were merged using samtools. For the sample GDB, 335 

metatranscriptomic (metaT) short reads were also separately mapped to the (polished) contigs. 336 

Mapping statistics were computed from the BAM files using samtools’ options “flagstat”, to 337 
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determine the number of reads mapping back to the assemblies, and “idxstats” for per-contig 338 

mapping information. For GDB, metaT per-base coverage was computed for each assembly from 339 

the BAM files using bedtools (v. 2.29.2)[35] (utility “genomecov” with the parameter “-d”). 340 

Assembly annotation 341 

For each sample and assembly, protein prediction was done using Prodigal (v. 2.6.3) [36] 342 

using the option “-p meta”; the keyword “partial” in the headers of the obtained protein FASTA 343 

files was used to distinguish complete and partial proteins. Known antibiotic resistance factors 344 

were searched in the predicted proteins (after discarding the stop codon symbol “*” from the 345 

FASTA files) by running RGI (v. 5.1.1) [37] together with the CARD database (v. 3.1.0) [18] and 346 

DIAMOND (v. 0.8.36) [38] for protein alignments. Loose hits flagged as “nudged” by the tool were 347 

highlighted as such (i.e. as “nudged”) in the downstream analysis. 348 

The tool barrnap (v. 0.9) [39] was run to predict rRNA genes on assembly contigs using 349 

the four provided databases of bacterial, archaeal, metazoan mitochondrial and eukaryotic rRNA 350 

genes, respectively. Predictions containing the word “partial” in their product annotation in the 351 

obtained GFF files were considered as partial hits. 352 

Analysis 353 

Assembly statistics were computed by running metaQUAST (v. 5.0.2) [40] without using 354 

any genome references, setting the minimum contig length to 0 bps and retrieving the statistics 355 

for the contig length thresholds of 0, 1000, 2000 and 5000 bps subsequently. Per sample, 356 

assemblies were compared using Mash (v. 2.2.2) [41]: sketches were computed per assembly 357 

using a k-mer length of 31 bps and a sketch size of 100000, and pairwise distances were then 358 

estimated. Per sample, proteins from all assemblies were clustered using MMseqs2 (v. 12.113e3) 359 

[42]. First, a database was created from a concatenated FASTA file of protein sequences (“--360 

dbtype 1”). Then, option “linclust” with default parameters was used to perform the clustering and 361 

the obtained files were converted to tables using option “createtsv“. DIAMOND (v. 0.9.25) [38][43] 362 

with the option “blastp” and default parameters was used to align the predicted proteins against 363 

the UniProtKB/TrEMBL database (downloaded and created on August 24 2019 from 364 

http://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/, archive 365 

uniprot_trembl.fasta.gz) [44]. The created DAA files were converted to tables using option “view” 366 

and the parameter “--max-target-seqs 1”. When processing the hits, these were sorted per query 367 

and e-value in an ascending order and only the first hit was used. For GDB and metaT, using the 368 
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per-base coverage information computed for each assembly, average coverage was computed 369 

for the corresponding gene sequences of each predicted protein. 370 

MS/MS acquisition and metaproteomic analysis 371 

1μg of extracted proteins was denatured and briefly loaded on a SDS gel to produce one gel 372 

band. The reduction, alkylation and tryptic digestion of the proteins into peptides were performed 373 

in-gel. The tryptic peptides were extracted from the gel and desalted prior to mass spectrometry 374 

analysis. Peptides were analyzed using a nanoLC-MS/MS system (120 minutes gradient) 375 

connected to a Q-Exactive HF orbitrap mass spectrometer (Thermo Scientific, Germany) 376 

equipped with a nano-electrospray ion source. The Q-Exactive mass spectrometer was operated 377 

in data-dependent mode and the 10 most intense peptide precursor ions were selected for 378 

fragmentation and MS/MS acquisition. 379 

For each assembly separately and for all assemblies together, the FASTA file of predicted 380 

proteins was concatenated with a cRAP database of contaminants [45] and with the human 381 

UniProtKB Reference Proteome prior metaproteomic search. In addition, reversed sequences of 382 

all protein entries were concatenated to the databases for the estimation of false discovery rates. 383 

The search was performed using SearchGUI-3.3.20 [46] with the X!Tandem [47], MS-GF+ [48] 384 

and Comet [49] search engines and the following parameters: Trypsin was used as the digestion 385 

enzyme, and a maximum of two missed cleavages was allowed. The tolerance levels for matching 386 

to the database was 10 ppm for MS1 and 0.2 Da for MS2. Carbamidomethylation of cysteine 387 

residues was set as a fixed modification and protein N-terminal acetylation and oxidation of 388 

methionines was allowed as variable modification. Peptides with length between 7 and 60 amino 389 

acids, and with a charge state composed between +2 and +4 were considered for identification. 390 

The results from SearchGUI were merged using PeptideShaker-1.16.45 [50] and all identifications 391 

were filtered in order to achieve a protein false discovery rate (FDR) of 1%. 392 

Plots 393 

Figures were generated in R (v. 4.0.2, https://www.r-project.org/) using, inter alia, Pheatmap (v. 394 

1.0.12, https://github.com/raivokolde/pheatmap) for heatmap plots, UpSetR (v. 1.4.0) [51] for 395 

intersection plots, ggplot2 (v 3.3.2) [52] and its various extensions for other plot types, color 396 

palettes from the viridis (v. 0.5.1, developed by Stéfan van der Walt and Nathaniel Smith, 397 

https://github.com/sjmgarnier/viridis) and ggsci (v. 2.9, https://github.com/road2stat/ggsci) 398 
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packages and the patchwork package (v. 1.1.1, https://github.com/thomasp85/patchwork) for 399 

combining plots. 400 
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Figures and Tables 519 

Figures 520 

Fig. 1: Discrepancy and uniqueness of predicted proteins in assemblies. i Number of 521 

proteins (total and partial) predicted by Prodigal in each assembly and sample. The color 522 

corresponds to the tool used for metagenomic assembly. ii Number of shared assembly proteins 523 

which were clustered using MMSesq2 per sample. Each protein cluster was labeled by the 524 

combination of assembly tools represented by the clustered proteins (i.e., the assembly where 525 

these proteins originated from). The depicted number of shared proteins per assembly tool 526 

combination is the total protein count over all associated clusters. Top 20 combinations are 527 

shown. The number of proteins found in clusters representing all assembly tools is highlighted in 528 

red; the number of proteins exclusive to an assembly is highlighted in orange. 529 

i) 530 

 531 
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Fig. 2: Assembly affects antimicrobial resistance gene identification. i Number of hits (total, 536 

“strict” and “nudged”) for each assembly and sample when searching the assembly proteins in 537 

the CARD database using RGI. Sample NWC was excluded because no hits were found in any 538 

of its assemblies. “Nudged” hits are loose hits flagged as “nudged” by RGI; the remaining hits are 539 

“strict” hits. ii Number of AROs which were covered by “strict” RGI hits by different assemblies 540 

per sample. The bar plot shows the number of shared AROs per assembly tools combination. iii 541 

Metatranscriptomic (metaT) coverage of the two coding sequences (CDSs) from the long-read 542 

(LR) assembly constructed with Flye and having a “nudged” RGI hit to ARO 3004454 (a 543 

chloramphenicol acetyltransferase) in sample GDB. The x-axis represents the contig coordinates 544 

and the y-axis the metaT coverage. The amino acid sequence of the two CDSs and the ARO is 545 

included in the plot. 546 

i) 547 

 548 
ii) 549 

 550 
iii)551 

 552 
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Supplementary figures 554 

Supp. Fig. 1: Assembly statistics. Assembly statistics for each assembly and sample including 555 

the total number of contigs, number of N bases per 100kbp, L50 value (number of contigs), N50 556 

value (in bps), the length of the largest contig (in bps), and the total assembly length (in bps). The 557 

color corresponds to the tool used for metagenomic assembly. 558 

 559 
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Supp. Fig. 2: Mapping rate of metagenomic reads. Mapping rate of metagenomic reads to 561 

each assembly for each sample considering all contigs and contigs being at least 1000, 2000 and 562 

5000bps long. The color corresponds to the tool used for metagenomic assembly. 563 

 564 
Supp. Fig. 3: Mapping rate of metatranscriptomic reads. Mapping rate of metatranscriptomic 565 

reads to each assembly in GDB considering all contigs and contigs being at least 1000, 2000 and 566 

5000bps long. The color corresponds to the tool used for metagenomic assembly. 567 

 568 
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Supp. Fig. 4: Assembly similarity. Heatmap of assembly dissimilarity of each sample. The cell 570 

color corresponds to the estimated dissimilarity value and the rounded value is shown in each 571 

cell: higher values (yellow) indicate higher dissimilarity, lower values (dark purple) indicate high 572 

similarity. Assemblies were grouped using hierarchical clustering (linkage method “complete”): 573 

the resulting trees are shown in the heatmaps. 574 

 575 
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Supp. Fig. 5: Protein sequence search in the UniProtKB/TrEMBL nr database. Density 577 

distribution of the query/subject length ratios of the best hit obtained in the protein sequence 578 

search in the UniProtKB/TrEMBL nr database for each assembly and sample. The color 579 

corresponds to the tool used for metagenomic assembly. 580 
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Supp. Fig. 6: Prediction of rRNA genes. Number of rRNA genes (complete, partial and total) 583 

found by barrnap in assembly contigs using different rRNA gene databases (Archaea, Bacteria, 584 

Eukaryota and Metazoan mitochondria) for each assembly and sample. The color corresponds to 585 

the tool used for metagenomic assembly. 586 

 587 
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Supplementary tables 589 

Supp. Tab. 1: Proteins assigned to exclusive AROs in GDB. Information on proteins from GDB 590 

assemblies assigned to AROs found exclusively in SR and HY assemblies when considering only 591 

“strict” RGI hits, i.e., AROs 3000194, 3002999 and 3004454. The table includes the protein ID, 592 

the RGI hit information (RGI Detection Paradigm, ARO term of top hit in CARD, percent identity 593 

of match to top hit in CARD, ARO ID, CARD detection model type, ARO’s drug class and 594 

mechanism, flag whether the hit was “nudged” from “loose” to “strict”), the assembly tool, 595 

additional protein information (contig ID, protein number on the source contig, start and end 596 

coordinates on the contig, Prodigal’s annotation information) and average metaT coverage. 597 
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Supp. Tab. 1

ORF_ID Cut_Off Best_Hit_ARO Best_Identities ARO Model_type Drug.Class Resistance.Mechanism Nudged tool contig_id prot_num start end strand info ave_cov
k141_88921_2 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection SR MEGAHIT k141_88921 2 808 2727 -1 ID=5257_2;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 14.81666667
k141_44684_172 Perfect CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation SR MEGAHIT k141_44684 172 210664 211554 -1 ID=6454_172;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.485 18.57687991
k141_37405_1 Strict Campylobacter coli chloramphenicol acetyltransferase 96.14 3004454 protein homolog model phenicol antibiotic antibiotic inactivation SR MEGAHIT k141_37405 1 46 669 -1 ID=42126_1;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.370 18.33974359
k141_59580_1 Strict tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True SR MEGAHIT k141_59580 1 1 1071 -1 ID=46787_1;partial=10;start_type=ATG;rbs_motif=AGGAGG;rbs_spacer=5-10bp;gc_cont=0.430 5.194211018
k141_105836_1 Strict tetW 97.83 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True SR MEGAHIT k141_105836 1 500 640 1 ID=67436_1;partial=01;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.511 0
NODE_12_length_289084_cov_116.206895_175 Perfect CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation SR metaSPAdes NODE_12_length_289084_cov_116.206895 175 215250 216140 -1 ID=12_175;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.485 18.57687991
NODE_3961_length_5598_cov_17.248325_7 Strict Campylobacter coli chloramphenicol acetyltransferase 96.02 3004454 protein homolog model phenicol antibiotic antibiotic inactivation SR metaSPAdes NODE_3961_length_5598_cov_17.248325 7 4994 5596 1 ID=3961_7;partial=01;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.371 17.85406302
NODE_8958_length_2718_cov_51.879591_1 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection SR metaSPAdes NODE_8958_length_2718_cov_51.879591 1 352 2271 1 ID=8958_1;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 14.76770833
contig_210:1.0-492442.0_427 Strict CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation True LR Flye contig_210:1.0-492442.0 427 345531 346178 1 ID=1098_427;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.475 21.51388889
contig_210:1.0-492442.0_428 Strict CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation True LR Flye contig_210:1.0-492442.0 428 346165 346422 1 ID=1098_428;partial=00;start_type=ATG;rbs_motif=None;rbs_spacer=None;gc_cont=0.504 10.89147287
contig_2107:1.0-6493.0_10 Strict tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Flye contig_2107:1.0-6493.0 10 6589 6672 -1 ID=1107_10;partial=01;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.488 1.94047619
contig_5026:14.0-10236.0_8 Strict Campylobacter coli chloramphenicol acetyltransferase 96.1 3004454 protein homolog model phenicol antibiotic antibiotic inactivation True LR Flye contig_5026:14.0-10236.0 8 5547 5816 1 ID=4198_8;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=3-4bp;gc_cont=0.356 19.90740741
contig_5026:14.0-10236.0_9 Strict Campylobacter coli chloramphenicol acetyltransferase 96.09 3004454 protein homolog model phenicol antibiotic antibiotic inactivation True LR Flye contig_5026:14.0-10236.0 9 5788 6174 1 ID=4198_9;partial=00;start_type=ATG;rbs_motif=3Base/5BMM;rbs_spacer=13-15bp;gc_cont=0.377 16.88113695
contig_720:1.0-180574.0_143 Strict tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Flye contig_720:1.0-180574.0 143 113111 113386 1 ID=4795_143;partial=00;start_type=ATG;rbs_motif=AGGAGG;rbs_spacer=5-10bp;gc_cont=0.504 2.347826087
contig_720:1.0-180574.0_145 Strict tetW 99.58 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Flye contig_720:1.0-180574.0 145 114312 115028 1 ID=4795_145;partial=00;start_type=TTG;rbs_motif=AGGAG/GGAGG;rbs_spacer=11-12bp;gc_cont=0.531 6.154811715
Utg192512:1.0-55330.0_65 Strict tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg192512:1.0-55330.0 65 53663 53938 1 ID=184_65;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.507 0.753623188
Utg192512:1.0-55330.0_66 Strict tetW 99.38 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg192512:1.0-55330.0 66 53926 54432 1 ID=184_66;partial=00;start_type=TTG;rbs_motif=AGGAG/GGAGG;rbs_spacer=11-12bp;gc_cont=0.525 2.362919132
Utg193156:1.0-36767.0_53 Strict tetW 95.28 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg193156:1.0-36767.0 53 36661 37176 -1 ID=450_53;partial=00;start_type=ATG;rbs_motif=None;rbs_spacer=None;gc_cont=0.535 0.426356589
Utg193258:12.0-497832.0_131 Strict CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation True LR Raven Utg193258:12.0-497832.0 131 112535 113116 -1 ID=489_131;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.479 22.70618557
Utg194422:1.0-41914.0_3 Strict tetW 97.96 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg194422:1.0-41914.0 3 2784 3251 1 ID=908_3;partial=00;start_type=TTG;rbs_motif=AGGAG/GGAGG;rbs_spacer=11-12bp;gc_cont=0.528 1.386752137
Utg196264:1.0-22987.0_38 Strict tetW 95.74 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg196264:1.0-22987.0 38 22691 23314 1 ID=1406_38;partial=00;start_type=GTG;rbs_motif=None;rbs_spacer=None;gc_cont=0.535 4.288461538
Utg197488:1.0-10247.0_3 Strict tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True LR Raven Utg197488:1.0-10247.0 3 1339 1545 -1 ID=1693_3;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.522 3.579710145
NODE_1_length_1822148_cov_145.496205_549 Perfect CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation HY metaSPAdes NODE_1_length_1822148_cov_145.496205 549 611846 612736 -1 ID=1_549;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.485 18.57687991
NODE_230_length_104252_cov_9.790458_35 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection HY metaSPAdes NODE_230_length_104252_cov_9.790458 35 38586 40505 1 ID=230_35;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 7.6453125
NODE_348_length_69013_cov_11.179239_18 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection HY metaSPAdes NODE_348_length_69013_cov_11.179239 18 10767 12686 1 ID=348_18;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 7.191145833
NODE_5177_length_5598_cov_17.248325_7 Strict Campylobacter coli chloramphenicol acetyltransferase 96.02 3004454 protein homolog model phenicol antibiotic antibiotic inactivation HY metaSPAdes NODE_5177_length_5598_cov_17.248325 7 4994 5596 1 ID=5177_7;partial=01;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.371 17.85406302
opera_contig_1206_6 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection HY OPERA-MS (MH) opera_contig_1206 6 3769 5688 1 ID=1206_6;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 14.81666667
opera_contig_1626_1 Strict Campylobacter coli chloramphenicol acetyltransferase 96.14 3004454 protein homolog model phenicol antibiotic antibiotic inactivation HY OPERA-MS (MH) opera_contig_1626 1 46 669 -1 ID=1626_1;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.370 18.33974359
opera_contig_17222_1 Strict tetW 97.83 3000194 protein homolog model tetracycline antibiotic antibiotic target protection True HY OPERA-MS (MH) opera_contig_17222 1 500 640 1 ID=17222_1;partial=01;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.511 0
opera_contig_76911_177 Perfect CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation HY OPERA-MS (MH) opera_contig_76911 177 215801 216691 -1 ID=76911_177;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.485 18.57687991
opera_contig_1579_7 Strict Campylobacter coli chloramphenicol acetyltransferase 96.02 3004454 protein homolog model phenicol antibiotic antibiotic inactivation HY OPERA-MS (mSPA) opera_contig_1579 7 4994 5596 1 ID=1579_7;partial=01;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.371 17.85406302
opera_contig_2773_1 Perfect tetW 100 3000194 protein homolog model tetracycline antibiotic antibiotic target protection HY OPERA-MS (mSPA) opera_contig_2773 1 352 2271 1 ID=2773_1;partial=00;start_type=ATG;rbs_motif=GGAGG;rbs_spacer=5-10bp;gc_cont=0.531 14.76770833
opera_contig_190552_176 Perfect CblA-1 100 3002999 protein homolog model cephalosporin antibiotic inactivation HY OPERA-MS (mSPA) opera_contig_190552 176 215253 216143 -1 ID=190552_176;partial=00;start_type=ATG;rbs_motif=TAAA;rbs_spacer=12bp;gc_cont=0.485 18.57687991
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