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 2 

Abstract 36 

With the looming threat of abrupt ecological disruption due to a changing climate, predicting which 37 

species are most vulnerable to environmental change is critical. The life-history of a species is an 38 

evolved response to its environmental context, and therefore a promising candidate for explaining 39 

differences in climate-change responses. However, we urgently need broad empirical assessments from 40 

across the worlds ecosystems to explore these predictions. Here, we use long-term abundance records 41 

from 157 species of terrestrial mammal and a two-step Bayesian meta-regression framework to 42 

investigate the link between annual weather anomalies, population growth rates, and species-level life-43 

history. Overall, we found no consistent effect of temperature or precipitation anomalies on annual 44 

population growth rates. Furthermore, population responses to weather anomalies were not predicted 45 

by phylogenetic covariance, and instead there was variability in weather responses for populations 46 

within a species. Crucially, however, long-lived mammals with smaller litter sizes had responses with 47 

a reduced absolute magnitude compared to their shorter-living counterparts with larger litters. These 48 

results highlight the role of species-level life-history in driving responses to the environment. 49 

 50 

Introduction 51 

Climate change is one of the greatest challenges we face in the twenty first century (Díaz et al., 2019). 52 

Although habitat loss and direct exploitation are currently the greatest drivers of extinction in the natural 53 

world (Daskalova, Myers-Smith, Bjorkman, et al., 2020; Díaz et al., 2019), changes to the climate are 54 

predicted to cause widespread declines to global biodiversity in the coming decades (Almond et al., 55 

2020; Soroye et al., 2020; Thomas et al., 2004). For mammals and birds, temperature increases are 56 

already associated with declining population trends (Spooner et al., 2018) and many endangered species 57 

have already been negatively impacted by climate change in at least part of their range (Pacifici et al., 58 

2017). Perhaps more worryingly, abrupt ecological disruption due to runaway climate change has been 59 

predicted to have large negative impacts on biodiversity, with tropical ecosystems being affected as 60 

early as 2030 (Trisos et al., 2020). Furthermore, these future impacts will likely be exacerbated by 61 

synergism between the climate and other drivers of extinction such as habitat loss (Brook et al., 2008; 62 

Williams et al., 2020). Research highlighting the species and ecosystems that are most vulnerable to 63 

climate change impacts will therefore provide crucial knowledge to prevent future losses to global 64 

biodiversity. 65 

 Not all species are equally vulnerable to climate change. Species vary in their climatic niches 66 

and in their behavioural, physiological, and demographic responses to environmental change and we 67 

therefore expect there to be both climate ‘winners’ and ‘losers’ (Antão et al., 2020; Bellard et al., 2012; 68 

Moritz & Agudo, 2013). At a macro-scale, species occupancy data highlight that geographic range shifts 69 

are the key response associated with climate change across taxa, resulting in changes to community 70 

composition, but not necessarily population decline (Chen et al., 2011; Dornelas et al., 2019). Recent 71 

broad assessments of biodiversity change metrics from species assemblage and abundance records 72 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.04.22.440896doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

mirror this paradigm with both occupancy and abundance trend patterns suggesting a balanced 73 

frequency of winners and losers (Dornelas et al., 2019; Leung et al., 2020). In the Marine realm, species 74 

richness increases were associated with warming temperatures, consistent with the expectation that 75 

warming marine ecosystems will receive an influx of species tracking suitable temperatures (Antão et 76 

al., 2020). However, there was no consistent temperature-related biodiversity change effect on land 77 

(Antão et al., 2020). Changes in species richness and other biodiversity metrics however do not 78 

necessarily equate to population declines. There was evidence that weather covariates improved the 79 

prediction accuracy of time-series abundance models for 492 animal time-series, but there was a high 80 

risk of overfitting in short time-series (Knape & de Valpine, 2011). For birds and mammals average 81 

abundance trends were negatively associated with rates of climate warming (Spooner et al., 2018). 82 

Studies unpicking how changes in weather patterns cause population change are therefore vital 83 

(Coulson et al., 2001), and a growing body of literature is exploring the relationship between the climate 84 

and the demographic processes driving population decline (Cordes et al., 2020; Layton-Matthews et al., 85 

2020; Paniw et al., 2019, 2021; Woodroffe et al., 2017). Applying these concepts at a comparative scale 86 

and assessing finer-scale population changes with respect to changes in the weather, and their 87 

relationship to species traits, will aid in illuminating consistent or disparate climate change responses 88 

across the tree of life (Compagnoni et al., 2021; Paniw et al., 2021). 89 

Variation in the demographic responses of organisms climate change suggests that life-history is 90 

a promising target for explaining responses to environmental change. The timing of demographic events 91 

relating to the key demographic rates of survival and recruitment are evolved responses to the 92 

environment, and characteristics relating to both ‘slow’ and ‘fast’ life-histories are therefore adaptive 93 

in different environmental contexts (Stearns, 1992). Indeed, Pacifici et al.(2017) concluded that intrinsic 94 

traits, including habitat specialisation and aspects of life-history, were associated with negative climate-95 

mediated population effects reported in mammals and birds. Life-history differences between three 96 

amphibian species in Western Europe drove differences in survival and reproduction in response to the 97 

North Atlantic Oscillation (Cayuela et al., 2017). Generally, we expect that organisms with slower life-98 

histories are better-adapted to cope with fluctuations in the environment. Longer-lived organisms have 99 

a reduced relative effect of variability in vital rates, variability which is expected during environmental 100 

change, on population growth rates (Morris et al., 2008) and long-lived plants have weaker absolute 101 

demographic responses to weather (Compagnoni et al., 2021). However, while generally buffered, long-102 

lived, slow reproducing animals are often more at risk of extinction (Cardillo et al., 2000), and slower 103 

to recover when perturbed (Gamelon et al., 2014; Jackson et al., 2019; Turkalo et al., 2016). 104 

Furthermore, the recently developed concept of demographic resilience uses demographic rates 105 

characterising the life cycle of an organism to quantify their resilience to perturbations (Capdevila et 106 

al., 2020). Comparative approaches linking life-history traits to climate change responses may therefore 107 

provide a crucial predictive link to improve our understanding of climate vulnerability. 108 
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In this study, we investigated annual population responses to temperature and precipitation in 109 

populations of terrestrial mammals across the world’s ecosystems. Importantly, we tested whether life-110 

history predicts population responses to the weather, and therefore its utility in assessing vulnerability 111 

to climate change. We addressed these questions using 486 long-term (≥10 years) abundance records 112 

from 157 species of terrestrial mammal obtained from the Living Planet Database (Almond et al., 2020), 113 

by implementing a two-step meta-regression framework. First, for each abundance record, we assessed 114 

how observed annual population growth rates were influenced by weather anomalies (annual deviation 115 

from long-term average weather patterns) using autoregressive additive models that accounted for 116 

temporal autocorrelation in abundance records and overall abundance trends. Then, we used a 117 

phylogenetically controlled Bayesian meta-regression with weather effect coefficients as the response 118 

variable to address three key questions: 1) Are there consistent temperature and precipitation effects on 119 

abundance change across the terrestrial mammals? 2) How are these patterns influenced by covariance 120 

both within and between species, and are there vulnerable biomes? 3) Can species-level life-history 121 

traits predict the magnitude of population responses to the weather? The terrestrial mammals are an 122 

ideal study system to explore the predictors of population responses to climate change because they are 123 

a well-studied group with a combination of intensive abundance monitoring across the globe (Almond 124 

et al., 2020), detailed life-history information for hundreds of species (Conde et al., 2019; Myhrvold et 125 

al., 2015) and a highly resolved phylogeny to facilitate phylogenetic comparative analyses (Upham et 126 

al., 2019). Furthermore, there is growing evidence from the mammals of the mechanistic links between 127 

the climate, demography, and population dynamics (Coulson et al., 2001; Paniw et al., 2019, 2021; 128 

Woodroffe et al., 2017).  129 

 130 

Results 131 

We assessed population responses to weather in 486 long-term abundance time-series records of 157 132 

species of terrestrial mammals from across the world’s ecosystems (Fig. 1). The time-series records 133 

ranged in duration from 10 years to 35 years, with mean and median record lengths across records of 134 

15.7 and 14 years, respectively (Fig. 1). The records were distributed across 13 terrestrial biomes, 135 

including both tropical and temperate regions, but were generally biased towards north western Europe 136 

and North America. We had records from 12 of 27 mammalian orders recognised by the IUCN Red 137 

List for threatened species (IUCN, 2016), but most densely in the Artiodactyla (n = 172), Carnivora (n 138 

= 127) and Rodentia (n = 82) (Fig. 1). The number of records for each species ranged from 1-17, with 139 

a mean of 3.1 and median of 2 records per species. 140 
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Figure 1. 486 long-term abundance records for the terrestrial mammals. Map gives the coordinate locations for each record analysed in the current study. 162 

The size of the point gives the record duration in years. The histogram in the bottom left gives the distribution of record lengths across the whole dataset. The 163 

bar graph in the bottom right is a frequency distribution of each of the mammal orders analysed in the current study. 164 
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No consistent population response to weather  165 

Overall, we found no consistent effect of either temperature or precipitation anomalies on annual 166 

population growth rates in the terrestrial mammals (Fig.2). The raw weather effects on population 167 

growth rates, 𝜔, varied across species and records but were centred close to 0, with a mean temperature 168 

coefficient of -0.32 (±1.76 SD) and mean precipitation coefficient of 0.07 (±0.81 SD). Furthermore, 169 

95% of records had temperature and precipitation coefficients between -4.29-3.17 and -1.41-1.88, 170 

respectively. Nevertheless, approximately 8% (n = 42) of temperature effects and 1% of precipitation 171 

were greater than 3 or less than -3, indicating that small clusters of populations experienced more 172 

extreme annual responses to the weather (Fig.2). Our Bayesian meta-regression, controlling for both 173 

within species variance, phylogenetic covariance and differences in sample size (number of years) 174 

between records, mirrored the lack of consistent weather effects on population growth. The posterior 175 

mean global intercept, �̅�, for temperature effects was 0.02 [-0.21-0.25] (95% credible intervals) and for 176 

precipitation effects was -0.07 [-0.31-0.15] (Fig.2a and Fig.2b). There was, however, a positive effect 177 

of the number of years of population data for a record and the response to temperature, with a linear 178 

slope, 𝛽𝑁 of 0.12 [0.03-0.21]. Together with the results of the global intercept �̅�, this suggests that 179 

shorter records were associated with more negative temperature effects. Overall, these results highlight 180 

the paradigm of the existence of both winners and losers in weather responses, but no clear effect across 181 

the Mammalia. 182 

 183 

Spatial effects and variation between species 184 

We tested whether there were differences in weather responses among ecological biomes because biome 185 

effects may be indicative of more extreme responses to weather in some habitats. Using leave-one-out 186 

cross-validation, we compared the predictive performance of the model including the effect of biome 187 

relative to the base model, and we found no evidence for an influence of biome on either temperature 188 

(Δelpd = -0.67 relative to base model) or precipitation (Δelpd = -0.73) effects (see Fig. S16-17 for more 189 

information). Furthermore, we explored the role of spatial autocorrelation at driving differences in 190 

weather coefficients across records using Morans I tests and spatially explicit meta-regressions but did 191 

not find evidence for spatial autocorrelation in weather effects (Figs. S19-S21). We also incorporated 192 

both phylogenetic covariance (𝜎𝑃𝐻𝑌𝐿𝑂
2 ) and species-level variance (𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆) to capture both among- 193 

and within-species variation. Interestingly, we found far greater levels of within-species variation in 194 

temperature responses compared to among-species variance (Fig. 2c). The posterior mean for species-195 

level variance in temperature effects was 0.2 [0.01-0.4] which was 20 times greater than the posterior 196 

estimate of 0.01 [0.0-0.03] for phylogenetic covariance (Fig. 2c). Similarly, for precipitation the 197 

posterior mean for species-level variance was five times greater than for phylogenetic covariance, with 198 

a value 0.05 [0.0-0.15] compared to 0.01 [0.0-0.02] (Fig. 2c). These patterns are reflected in the 199 

temperature and precipitation coefficients, for which large variation can be seen among records of the 200 
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same species. For example, Myodes glareolus (bank vole) in the Rodentia had 9 population records, 201 

and a range of temperature/precipitation effects of -3.33-3.86 and -2.72-2.41 respectively, compared to 202 

-11.60-9.22 and -3.47-3.22 across Rodentia as a whole (Fig.2). This result highlights the potential 203 

importance of within-species variability in population responses to environmental change. 204 

 205 

Life-history predicts population responses to weather 206 

Across the terrestrial mammals, we found that both maximum longevity and mean litter size at the 207 

species-level predicted the magnitude of population responses to weather. We tested a set of Gamma 208 

models incorporating univariate, multivariate and 2-way interaction effects of maximum longevity, 209 

litter size, and adult body mass and their influence on the absolute magnitude of 210 

temperature/precipitation effects using model selection and leave-one-out cross-validation (Table S1 & 211 

S2). As with our Gaussian models of overall weather effects, we found that the sample size of a record 212 

had strong negative impact on the absolute temperature and precipitation responses, with posterior 213 

estimates on the linear predictor scale of 𝛽𝑁 = -0.30 [-0.38- -0.21] and 𝛽𝑁 = -0.37 [-0.47- -0.26], 214 

respectively (Fig. S18). Namely, shorter records were associated with temperature and precipitation 215 

responses of a larger magnitude. We found no association between adult body mass and either 216 

temperature (𝛽𝐵𝑂𝐷𝑌𝑀𝐴𝑆𝑆 = -0.02 [-0.15-0.10]) or precipitation responses (𝛽𝐵𝑂𝐷𝑌𝑀𝐴𝑆𝑆 = -0.00 [-0.17-217 

0.17]). Furthermore, we found no strong evidence for any two-way interactions between life-history 218 

variables (Table S1 & S2). For both temperature and precipitation effects, the most competitive model 219 

was the univariate model including maximum longevity (Δelpd = 5.44 and Δelpd = 1.03, compared to 220 

the base model for temperature and precipitation, respectively; Table S1 & S1). However, univariate 221 

models including litter size also had a higher predictive performance than the base model (Δelpd = 3.98 222 

and Δelpd = 0.8 for temperature and precipitation, respectively). For temperature, the second-best 223 

predictive model was the one that included univariate effects for longevity, bodymass and litter size 224 

(Δelpd = 4.54; Table S1), and this model was also competitive for precipitation (Δelpd = 0.69; Table 225 

S2). Therefore, in both cases we selected the models including all univariate life-history effects. 226 

 For both temperature and precipitation, our results highlight that shorter-living mammals with 227 

greater litter sizes experienced weather effects of a greater magnitude than longer-living, slowly 228 

reproducing mammals (Fig. 3). The magnitude of weather responses was negatively associated with 229 

longevity, with posterior means on the linear predictor scale of 𝛽𝐿𝑂𝑁𝐺𝐸𝑉𝐼𝑇𝑌 = -0.20 [-0.41-0.02] and 230 

𝛽𝐿𝑂𝑁𝐺𝐸𝑉𝐼𝑇𝑌 = -0.17 [-0.42-0.09] for temperature and precipitation, respectively (Fig. 3a & 3c). Thus, a 231 

maximum longevity change from 10 months (Akodon azarae) to 80 years (Loxodonta africana) was 232 

associated with a 2.36-fold and 2.05-fold decrease in the predicted magnitude of responses to 233 

temperature and precipitation. So, for every additional 5 years of life, there was a 16.8% decrease in the 234 

magnitude of responses to temperature and 14.6% decrease in the magnitude of responses to 235 

precipitation. An organism’s longevity is strongly correlated to their body mass, but the effect of 236 
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longevity held irrespective of whether adult body mass was also included in the model. In contrast, but 237 

also following key predictions from life-history theory, the magnitude of weather responses had a 238 

positive association with litter size, with posterior means of 𝛽𝐿𝐼𝑇𝑇𝐸𝑅 = 0.16 [0.02-0.32] and 𝛽𝐿𝐼𝑇𝑇𝐸𝑅 = 239 

0.11 [-0.08-0.30] for temperature and precipitation, respectively (Fig. 3b & 3d). In other words, 240 

mammals bearing more offspring in a single litter had greater responses to temperature and 241 

precipitation. A change in litter size from 1 (monotocous species, various) to 17 (Thylamys elegans) 242 

was associated with a 1.99-fold and 1.60-fold increase in the predicted magnitude of temperature and 243 

precipitation responses. For every additional offspring invested into at the litter stage, there is a 12.4% 244 

increase in the magnitude of temperature responses and 10% increase in the magnitude of precipitation 245 

responses.  246 

 247 
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 10 

Figure 2. Global population responses to weather in the terrestrial mammals. Heatmaps for 274 

population responses to temperature (a) and precipitation (b) for 157 species of terrestrial mammal. 275 

Each row of the heatmap is a species, and coloured rectangles are the population records. The colour 276 

denotes the coefficient of temperature/precipitation effects derived from autoregressive additive 277 

models. Here, positive numbers indicate that positive temperature/precipitation anomalies 278 

(hotter/wetter than average in a given year) were associated with increases in population size, and vice 279 

versa. The distribution half-eye plots in (a) and (b) (top) are summaries of the posterior distribution for 280 

the global intercept (�̅�) of temperature and precipitation responses across records, fit with a Gaussian 281 

Bayesian meta-regression. The points give the approximate posterior mean and the error bar is 282 

calculated using a cumulative distribution function. Bayesian models were fit incorporating 283 

phylogenetic covariance using the maximum clade credibility tree from Upham et al.(2019), which is 284 

plotted on the right with annotations indicating the mammal order. The distribution half-eye plots in (c) 285 

are the posterior distribution summaries for phylogenetic covariance and within-species variance from 286 

the Gaussian Bayesian meta-regression. 287 
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 311 

Figure 3. Life-history predicts population responses to weather in the terrestrial mammals. Each 312 

panel presents the mean absolute effect of temperature (a & b) and precipitation on population growth 313 

rates, |𝜔|, for standardised maximum longevity (a & c) and standardised mean litter size (b &d). 314 

Standardisation was performed using a z-transformation of natural-log of the raw life-history trait. The 315 

values on each x-axis are split into equal bins of 0.2 from the minimum to the maximum life-history 316 

value. Points are coefficient means, with standard error bars. The black lines are the mean posterior 317 

predictions from the best predictive model, where predictions were calculated averaging over all other 318 

covariates and varying effects in the model. The shaded intervals are the 80% quantile prediction 319 

intervals. Panel insets give posterior distribution summaries for the slope terms presented in each panel. 320 

Two points are omitted from the plotting panel due to large mean coefficient values and high standard 321 

errors, which are visible on the plot.322 
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Discussion 

Our results provide an important empirical link between a species’ life-history and its population 

responses to environmental change. While we found no consistent patterns of responses to temperature 

and precipitation anomalies across the mammals, life-history traits relating to the pace of life were 

associated with responses to weather. Namely, shorter-living species with increased litters sizes, or 

species characterised with ‘fast’ life-history traits, responded with a greater magnitude compared to 

those with ‘slow’ life-history traits. While it has long been theorised that an organism’s life-history 

traits evolve in response to, and as an adaptation to, environmental conditions (Stearns, 1992), rarely 

has this theory been tested at a global scale. We find strong support for the hypothesis that longevity, 

and ‘slow’ life-history characteristics more generally, buffer organisms against short-term variability in 

the environment (Morris et al., 2008) and add to a small number of studies linking population 

demography and the climate (Compagnoni et al., 2021; Paniw et al., 2021). We predict that in the short 

term abrupt ecological disruption from climate change will have a disproportionate impact the 

abundance of shorter-lived species with higher reproductive output. We do not argue that long-lived 

species are less vulnerable to climate change. Over longer time-scales, species with slow life-history 

are also slower to recover from perturbations (Gamelon et al., 2014). However, critically our results 

highlight the potential utility of life-history traits for predicting species vulnerability to climate change.  

 Demography has a vital role to play in predicting population declines in the Anthropocene and 

in highlighting targets for conservation management (Conde et al., 2019; Richards et al., 2021). Our 

study emphasises this role, demonstrating the predictive power of life-history traits when investigating 

responses to environmental change. However, there are limitations and barriers to the utility of 

demography in conservation. Only 1.3% of tetrapods globally have sufficient demographic information 

with which to estimate population dynamics (Conde et al., 2019). Here, we used summary traits that 

are available for many species (maximum longevity and mean litter size), but in particular maximum 

recorded longevity, while sufficient as a broad indicator, is strongly influenced by sampling variance 

and a flawed measure of longevity differences between taxa (Moorad et al., 2012). Ideally, lifetables 

with mortality and reproduction trajectories across the lifecycle can be combined with data on external 

drivers to investigate detailed patterns in population dynamics, rather than relying on abundance trends 

(Desforges et al., 2018; Jackson et al., 2019). The recent development of the demographic resilience 

framework, which uses demographic data across the lifecycle to simulate how a population may respond 

to perturbations (Capdevila et al., 2020), has excellent potential in extending these findings to explore 

demographic relationships with climate responses in detail. Unfortunately, however, detailed (st)age-

specific demographic information is not currently available for a majority of species, but growing in 

availability rapidly (Salguero-Gómez et al., 2016). Therefore, there is a need to continue to increase the 

collection of demographic data (and other traits) for many more species than are currently available 

(Conde et al., 2019), so that we may predict population changes with respect to environmental change. 

Achieving this target may revolutionise the way we quantify species vulnerability to climate change 
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(Antão et al., 2020; Dornelas et al., 2019; Leung et al., 2020; Paniw et al., 2021), helping to prevent 

extinctions before they occur. 

 In line with recent global assessments of biodiversity in the face of climatic change (Paniw et 

al., 2021), we did not find an overall consistent effect of weather anomalies on population growth rates. 

This may in part reflect the fact that abundance changes are a higher-order process determined by 

complex interactions between demographic processes that counteract each other (Leung et al., 2020; 

Paniw et al., 2021). However, our results contrast with findings of linear associations between mammal 

abundance and temperature change (Spooner et al., 2018). These differences may reflect our approach 

to investigate annual changes, rather than long-term trends. Significant population trends from long 

time-series are detectable from smaller component time-series even when sampling is incomplete 

(Wauchope et al., 2019), and thus responses detected in trends may reflect broader changes in response 

to the climate that are not detected in models of annual change. Furthermore, we estimated linear, annual 

effects of weather on population growth rates, where population responses may actually be more 

complex non-linear patterns or lagged effects. However, the detection of climate effects on average 

trends may also be confounded by effects of other (sometimes more dominant) drivers (e.g. habitat 

loss)(Daskalova, Myers-Smith, Bjorkman, et al., 2020). Nevertheless, our findings can be explained in 

light of recent studies from the Living Planet Database that have found that the large majority of records 

do not exhibit population declines (Leung et al., 2020).  

Interestingly, we did not find evidence for phylogenetic covariance in weather responses 

between species. Recent evidence from birds indicated strong phylogenetic covariance in vital rates, 

particularly in adult survival, and the incorporation of phylogenetic information greatly improved 

predictive performance when imputing vital rates (James et al., 2020). Therefore, as with overall 

patterns, our findings may reflect the trade-offs between vital rates, which cancel one another out when 

scaling up to population-level processes such as population growth rates in response to the weather 

(Paniw et al., 2021). Furthermore, for long-term time-series, there may also be temporal trade-offs in 

vital rates, where for example investing heavily into survival in one year (in response to climate) may 

impact subsequent reproduction for several years, decreasing the magnitude of population growth rates. 

The extent of phylogenetic covariance in vital rate responses and trade-offs remains unknown, 

understanding how the climate impacts demographic rates across species may provide a useful tool for 

imputing population responses to the climate across the tree of life (James et al., 2020). 

We highlight the importance of variation in population responses to climate within a species 

range. Sampling heterogeneity has recently been shown to have broad implications for metrics of 

population dynamics, where demographic rates are poorly correlated among sampling sites for the same 

species (Engbo et al., 2020; Römer et al., 2021). Therefore, inferences obtained from monitoring single 

populations or studies may not accurately portray species-level variability. This has broad implications 

for macroecology, particularly for population viability assessments (PVA) and species-distribution 

modelling. First, as well as suffering from data quality issues in their parameterisation (Chaudhary & 
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Oli, 2020), our findings suggest that PVAs based on data from a single population may not accurately 

reflect population viability across a species’ geographic range. Therefore, incorporating detailed 

demographic data, and investigating differences in population responses across a range, could greatly 

improve our perspective on population viability (Desforges et al., 2018). Second, presence-only models 

of species distributions that do not account for the fact that responses to the environment within a species 

range do not accurately represent species distributions (Benito Garzón et al., 2019). Moving towards 

trait-based monitoring and explicitly including demographic processes with mechanistic links to 

appropriate drivers into species distribution models could greatly improve predictions of climate change 

impacts on the biosphere (Trisos et al., 2020). 

 Ultimately, improving our predictions of how humans are influencing the natural world is 

paramount to prevent rapid declines to global biodiversity (Kissling et al., 2018). This however requires 

a large shift towards both broad and detailed monitoring of global biodiversity. We show that linking 

species traits such as life-history to changes in the environment may equip us with tools to predict and 

prevent future losses.  

 

Materials and Methods 

To assess the effects of weather on population growth rates we collated information on global weather 

and the abundance, life-history and phylogeny of the terrestrial mammals. All analyses were carried out 

using R version 4.0.5 (R Core Team, 2021). For all data on the terrestrial mammals, taxonomies were 

resolved using the taxize package version 0.9.98 (Chamberlain et al., 2020) and matched using the 

Global Biodiversity Information Facility database (https://www.gbif.org/). All code used in the current 

study and full descriptions of the analyses are archived in the Zenodo repository 

(doi:10.5281/zenodo.4707232), which was created from the following GitHub repository 

https://github.com/jjackson-eco/mammal_weather_lifehistory. 

 

Data selection 

For full descriptions of the data selection process please refer to S1. Long-term annual time-series 

abundance data from across the terrestrial mammals were obtained from the Living Planet Database 

found at https://livingplanetindex.org/data_portal. Abundance is measured in several ways (e.g. 

population counts and density, which does not impact population responses, see Fig. S19), and so we 

natural-log-transformed population growth rates to ensure that weather effects were comparable across 

records. Our final dataset contained 486 geo-referenced records from 157 terrestrial mammal species, 

which was used in all subsequent analyses (Fig. 1).  

 Global weather data was obtained from version 1.2.1 of the CHELSA monthly gridded 

temperature and precipitation dataset at a spatial resolution of 30 arc seconds (~ 1km2) for all months 

between 1979-2013 across the globe’s land surface (Karger et al., 2017). Generally, we expect that 

organisms will respond to deviations in the weather compared to the average values, as opposed to raw 
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weather variables. Furthermore, across the globes surface the variance in weather variables changes 

substantially, which may influence population responses. Thus, we explored population responses for 

the key weather variable of standardised annual anomalies, and then validated our approach using 

annual weather variance. These weather anomalies are the average deviation of the temperature and 

precipitation from expected values in a given year. 

 We used three key species-level life-history traits that are available for a large number of species: 

maximum longevity, mean litter size and mean adult body mass. Life-history data were collected from 

Conde et al. (2019), Myhrvold et al. (2015) Jones et al. (2009) and Tacutu et al. (2013). For analyses 

we z-transformed the natural-logarithm of raw life-history trait data. The mammal phylogeny used was 

the maximum clade credibility tree from Upham et al. (2019). 

 

Weather effects on annual population growth rates 

To assess comparative population responses to weather in the terrestrial mammals we used a two-step 

meta-regression approach. First, for each record we estimated the effect of annual weather anomalies 

(and weather variance) on population growth rates. We calculated the standardised proportional 

population growth rate 𝑟 in year 𝑡 as 

𝑟𝑡 =  ln
𝑋𝑡+1

𝑋𝑡
,       (1) 

where 𝑋 is the abundance in year 𝑡, transformed to prevent observations of 0.  

 Then, with 𝑟𝑡 as the response variable, we estimated the effect of temperature and precipitation 

anomalies on population growth using generalised additive mixed models (GAMMs) fit using the gamm 

function of the mgcv package (Wood, 2017). We opted to use a general linear-modelling framework as 

opposed to a state-space approach, which is often employed for time-series to account for measurement 

error and estimate trends (see Daskalova, Myers-Smith, & Godlee, 2020). The primary reason for this 

choice was that we aimed to assess broad comparative patterns in population change, and did not expect 

systematic errors in model parameters due to measurement error. Furthermore, Daskalova, Myers-

Smith, & Godlee (2020) found that abundance trend terms were highly correlated between linear and 

state-space approaches across the LPD, which would be expected if there are not systematic errors in 

measurement across the database. We did however test the implication of this choice by employing a 

state-space approach (see S2).  

Changes in abundance are influenced by several drivers of population dynamics including 

habitat loss (Daskalova, Myers-Smith, Bjorkman, et al., 2020) and population processes such as density 

dependence (Brook & Bradshaw, 2006), which may confound any influence of the weather on 

abundance. Therefore, because we aimed to assess the isolated impact of weather anomalies, accounting 

for these trends in abundance and temporal autocorrelation was crucial. We initially explored the extent 

of autocorrelation in abundance patterns using timeseries analysis and found evidence for lag 1 

autocorrelation in abundance, but not for greater lags (Fig. S3&S4). Furthermore, we tested the potential 
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impact of density dependence on estimating environmental effects using an autoregressive timeseries 

simulation and found that environmental effects were robust to density dependence even for short 

timeseries (Fig. S5). Thus, for each record, we model population growth rate in each year as 

𝑟𝑡 =  𝛽0 +  𝜔𝑊𝑡 + 𝑓(𝑦𝑡),       (2) 

where 𝛽0 is the intercept and 𝜔𝑊𝑡 is a linear parametric term with coefficient 𝜔 for the weather 𝑊 

(temperature or precipitation anomaly) in year 𝑡. Here, positive coefficients indicate that positive 

weather anomalies i.e. hotter/wetter years, were associated with population increases, and vice versa. 

Identical additive regression models were run using weather variances as the weather variable 𝑊. The 

term 𝑓(𝑦𝑡) captures the effect of year 𝑦𝑡 as a non-linear trend, where the function 𝑓 is a thin plate 

regression spline with a basis dimension of five (Wood, 2003). The function 𝑓 was also fitted with an 

order 1 autoregressive (AR(1)) correlation structure, as specified in the nlme package (Pinheiro et al., 

2014). Thus, the term 𝑓(𝑦𝑡) incorporates both the non-linear trend in abundance and temporal 

autocorrelation.  

 Finally, we validated our additive model approach by testing other models to calculate weather 

effects, including linear regressions both including and excluding temporal trends or density 

dependence, state-space models, and a temporally autocorrelated model fit using the glmmTMB package 

(Brooks et al., 2017) (S2; Fig. S7-S11). Weather coefficients 𝜔 generated using linear year effects were 

positively correlated to those from additive models (Fig. S9), and additive model coefficients were 

highly correlated with those from state-space models (Fig. S10 & S11). 

 

Bayesian meta-regression 

Second, with the weather effects 𝜔 from each record as the response variable, we explored comparative 

patterns in population responses to weather using a Bayesian meta-regression framework implemented 

in the brms package (Bürkner, 2017). Separate models were fit for temperature and precipitation. 

Bayesian meta-regression was used to address three key questions: 1) Were there consistent population 

responses to weather across the terrestrial mammals? 2) How did population responses vary within and 

between species and were there spatial patterns across biomes? 3) Does life-history predict the 

magnitude of population responses? To address questions 1 and 2, we used Gaussian models controlling 

for both phylogenetic and species-level covariance. The full model for record 𝑖 and species 𝑗 is given 

by equation 3 below 
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where the weather effect 𝜔 (z-transformed for analyses), is given by a multivariate normal distribution 

with mean 𝜇 and phylogenetic covariance matrix 𝑺. The global intercept is given by �̅�, which estimates 

overall patterns in weather effects across records, addressing question 1. We incorporated phylogenetic 

covariance using a Brownian motion model, with the correlation matrix given by 𝑽 (calculated from 

the maximum clade-credibility tree) and variance factor 𝜎𝑃𝐻𝑌𝐿𝑂
2 , from which between-species variance 

was estimated. We incorporated an intercept-only varying effect for species with the term 𝛼𝑆𝑃𝐸𝐶𝐼𝐸𝑆[𝑗], 

from which within-species variance was estimated with 𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆. The term 𝛽𝐵𝐼𝑂𝑀𝐸 gives the spatial 

effect of biome on weather responses. Thus, estimating within (𝜎𝑆𝑃𝐸𝐶𝐼𝐸𝑆) species variance, between 

(𝜎𝑃𝐻𝑌𝐿𝑂
2 ) species variance and the spatial effect of biome (𝛽𝐵𝐼𝑂𝑀𝐸), we explored question 2. All meta-

regression models also included the linear effect of record length 𝑁 (scaled number of years in the 

record) on weather effects, which was estimated using 𝛽𝑁. For all meta-regression models, we used 

regularising priors obtained from prior predictive simulations of the slope, intercept and exponential 

variance terms (McElreath, 2020a, 2020b), to reflect the constraints in the raw data across species (see 

S3 and Fig. S12-S15 for details). Gaussian meta-regression models were also fit for weather effects 

calculated using the annual weather variance, and the results obtained were largely identical to those 

obtained for weather anomalies (Fig. S22).  

 

 For question 3, although on average we expect that species life-history influences the magnitude 

of responses to the environment, we have little evidence to suggest that life-history per se influences 

the directionality of responses (Morris et al., 2008). Thus, to address this question we explored how 

maximum longevity, litter size and adult body mass influenced the absolute magnitude of weather 

responses, |𝜔|, using Gamma regression models with a log link. The full model for record 𝑖 and species 

𝑗 is given by equation 4 below 
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where 𝜂 is a shape parameter that was fit with a Gamma prior, and 𝐿𝐻 refers to a set of linear life-

history terms (𝛽1𝑥1 + ⋯ 𝛽𝑘𝑥𝑘) that were explored using model selection. Specifically, for the three life-

history traits, we explored a set of models incorporating univariate, multivariate and 2-way interaction 

terms, as well as a base model excluding all life-history effects. For the full set of ten candidate models 

please refer to the supplementary information (table S1 & S2). All life-history effects were fit with the 

same Normal prior, with mean 0 and standard deviation 0.3 (S2; Fig. S14). We assessed the predictive 

performance of candidate models using leave-one-out cross-validation implemented in the loo package 

(Vehtari et al., 2017). Models were compared using the Bayesian LOO estimate of out-of-sample 

predictive performance, or the expected log pointwise predictive density (elpd)(Vehtari et al., 2017). 

All final meta-regression models were run over 3 Markov chains, with 4000 total iterations and 2000 

warmup iterations per chain. Model convergence was assessed by inspecting Markov chains, and the 

degree of mixing between chains using �̂�. 
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