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Abstract
Protein structure, function, and evolution depend on local and collective epistatic interactions between amino acids.
A powerful approach to defining these interactions is to construct models of couplings between amino acids that
reproduce the empirical statistics (frequencies and correlations) observed in sequences comprising a protein family. The
top couplings are then interpreted. Here, we show that as currently implemented, this inference is always biased, a
problem that fundamentally arises from the distinct scales at which epistasis occurs in proteins in the context of limited
sampling. We show that these issues explain the ability of current approaches to predict tertiary contacts between
amino acids and the inability to obviously expose larger networks of functionally-relevant, collectively evolving residues
called sectors. This work provides a necessary foundation for more deeply understanding and improving evolution-based
models of proteins.
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Introduction
The basic characteristics of natural proteins are the abil-
ity to fold into compact three-dimensional structures,
to carry out chemical reactions, and to adapt as condi-
tions of selection fluctuate. To understand how these
properties are encoded in the amino acid sequence, a
powerful approach is statistical inference from datasets
of homologous sequences – the study of evolutionary
constraints on and between amino acids. In different
implementations, this approach has led to the success-
ful prediction of protein tertiary structure contacts1–4,
protein-protein interactions5–7, mutational effects8–11,
and even the design of synthetic proteins that fold and
function in a manner indistinguishable from their natu-
ral counterparts12–14. A major result from these studies
is the sufficiency of pairwise correlations in multiple
sequence alignments to specify many key aspects of pro-
teins. This result motivates the search for statistical mod-
els of protein sequences that capture these correlations
as a route to understanding and designing proteins.

What characteristics underlie a “good” statistical
model of protein sequences? The native state of a pro-
tein represents a fine balance of large opposing forces
between atoms that operate with strong distance depen-
dence to produce marginally stable structures. Thus,
many complex and non-intuitive patterns of interde-
pendence between amino acids (epistasis) are possible,
all consistent with the compact, well-packed charac-

ter of tertiary structures. Indeed, many studies show
that amino acids act heterogeneously and cooperatively
within proteins, producing epistasis between amino
acids on vastly different scales. At one level, there are
local, pairwise epistatic interactions that define direct
contacts in the tertiary structure, which likely contribute
to native-state stability. But, at another level, there are
collectively acting networks of amino acids that mediate
central aspects of protein function – binding15, cataly-
sis16, and allosteric communication17. Past work shows
that both scales of couplings are represented in the pat-
tern of empirical correlations in multiple sequence align-
ments (MSAs)18, 19, providing different sequence-based
methods for understanding protein structure20 and func-
tion21. Thus, a basic requirement for statistical models
of protein sequences is to account for both local and
collective amino acid epistasis.

A fundamental problem in making such models is
the lack of a ground truth for validating all features
of the inference process. For example, the local epis-
tasis can can be verified by direct contacts in atomic
structures of members of a protein family1–4, but a sim-
ilar benchmark for global collective actions of amino
acids is not broadly available. Indeed the inspiration
for building statistical models from evolutionary data is,
in part, to provide hypotheses for the collective behav-
iors of amino acids as a route to understanding protein
function. How then can we better understand the infer-
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Figure 1. Inference from a toy model of proteins. The model assumes a sequence of length L = 20 with q = 10 possible amino acids at each
position. A, the pattern of input couplings between sequence positions. There are three types of features: three isolated pairwise couplings
(“contacts”, 2-5, 4-7, and 6-9), a small collective group (“small sector”, all possible couplings within positions 10-13), and a large collective unit
(“large sector”, all possible couplings within positions 14-20). All non-zero couplings have same magnitude, see text. B, the strategy used in this
work, in which we make the input model (step 1), sample M sequences from a Boltzmann distribution defined by the input Jinp

ij (a, b) and
compute the empirical first and second order statistics fi(a) and fij(a, b) (step 2), and use the DCA approach to infer back the input couplings
from the sampled sequences (step 3). C, Frobenius norm ‖Cij‖ of the empirical correlation matrix Cij(a, b) = fij(a, b)− fi(a) f j(b) computed
from the sampled sequences, showing that the collective groups are most strongly correlated. D, the inferred couplings with usual settings in
DCA (regularization λJ = 10−3). As described in the text, panels A and D show normalized couplings | Ĵij‖/J0.

ence process itself? In this work, we take the approach
of using “toy models”22–24 in which we (1) specify a
pattern of amino acid couplings for a hypothetical pro-
tein, (2) generate synthetic sequences that satisfy those
constraints, and (3) examine the ability of statistical in-
ference methods to learn these patterns (Fig. 1A-B). This
analysis shows that in any practical context, model in-
ference is biased by the limited sampling of sequences.
The consequence is that features of different size and
strength are unevenly inferred with current methods.
These findings are confirmed in a real protein model
system in which experimental data allow us to verify
both structural contacts and functional amino acid net-
works. This work clarifies apparent inconsistencies in
the current interpretation of coevolution in proteins and
opens a path towards new methods for more completely
inferring the information content of protein sequences.

Results
Inference from toy models
A generative statistical model of protein sequences is
provided by the Direct Coupling Analysis (DCA)3, 20, or
more generally a Markov random field. This method
starts with a multiple sequence alignment (MSA) of a

protein family comprised of M sequences by L posi-
tions, and makes the assumption that each sequence
s = (s1, . . . , sL) is a sample from a Boltzmann distribu-
tion of a Potts model,

P(s) ∝ exp

[
∑

i
hi(si) + ∑

i<j
Jij(si, sj)

]
(1)

where hi(a) represents the intrinsic propensity of each
amino acid a to occur at each position i (the ”fields”),
Jij(a, b) represents the constraints between amino acids
a, b at pairs of positions i, j (the ”couplings”), and P(s)
is the probability of sequence s.

The parameters (h, J) are inferred by maximum like-
lihood and are related to the frequencies fi(a) and joint
frequencies fij(a, b) of amino acids at positions i, j by the
consistency equations

fi(a) = ∑
s

P(s)δ(si, a)

fij(a, b) = ∑
s

P(s)δ(si, a)δ(sj, b) (2)

where δ(x, y) = 1 when x = y and zero otherwise. The
probability distribution P(s) can also be viewed as the
maximum entropy model that reproduces the empiri-
cal frequencies fi(a) and fij(a, b) of the protein family3.
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In practice, exact inference of the parameters (h, J) is
computationally intractable because of the number of
terms in Eq. (2) is excessively large, but effective approx-
imations exist. In this work, we use pseudo-likelihood
maximization (plmDCA)25, but the results are consis-
tent with other approximations, including Boltzmann
machine learning (bmDCA)26. When possible, we make
use of exact calculations (Fig. S1).

A critical fact is that in any practical situation, the in-
ference is carried out in the limit of extremely poor sam-
pling. Typically, MSAs contain on the order of 103-104

effective sequences while the number of parameters
(h, J) to be estimated is on the order of 105-107. This
undersampling necessitates the use of statistical regular-
ization during the inference process to avoid overfitting.
A standard approach is the so-called L2 regularization,
meaning that the log-likelihood function is penalized by
a term proportional to the L2 norm of the parameters.
The larger the regularization, the more constrained the
parameters. If the fields hi(a) and the couplings Jij(a, b)
are regularized separately, this changes the consistency
equations to

fi(a) = ∑
s

P(s)δ(si, a) + λhhi(a)

fij(a, b) = ∑
s

P(s)δ(si, a)δ(sj, b) + λJ Jij(a, b) (3)

where λh and λJ are the regularization parameters. How
does one choose these parameters? Since the inference
is unsupervised and cross-validation strategies cannot
be applied, the standard approach is to empirically set
them by predictive power for various protein properties
of interest9, 25.

To more formally study the influence of sample size
and regularization on the inference process, we made
a toy model of a hypothetical protein obeying Eq. (1)
with input parameters (hinp, Jinp), and asked whether
these parameters can in fact be inferred from sequences
sampled from the model (Fig. 1B). The model comprises
L = 20 positions and q = 10 possible amino acids and
has the following characteristics: all fields are set to
zero (hinp

i (a) = 0), and couplings Jinp
ij (a, b) have the

pattern shown in Fig. 1A. There are three isolated pair-
wise couplings at pairs of positions (2, 5), (4, 7), and
(6, 9), a medium-sized interconnected group containing
all possible couplings between positions (10-13), and
a larger-sized interconnected group containing all pos-
sible couplings within positions (14-20). The isolated
pairwise couplings mirror the concept of coevolving
contacts in protein structures while the interconnected
groups of couplings represent the concept of a coopera-
tively evolving group of positions (sectors). All non-zero
couplings have the same strength Jinp = 2. Note that
Jij(a, b) is a four-dimensional L× L× q× q array, but for
presentation, Fig. 1A (and all such panels below) shows

the L× L Frobenius norm ‖Jij‖ = (∑a,b Jij(a, b)2)1/2 (see
methods). We also normalize inferred parameters by
the input value, so that perfect inference corresponds to
‖ Ĵij‖/J0 = 1 for all non-zero couplings.

We used a Markov Chain Monte Carlo sampling
procedure to draw an MSA of N = 300 independent
sequences from the model (Fig. 1B, step 2), a number
that mirrors the undersampling observed in natural pro-
tein families. Fig. 1C shows the position by position
magnitudes of correlations between amino acids in the
sampled sequences. The pattern is heterogeneous, with
stronger correlations within the larger interconnected
groups of positions. This is because the larger the group,
the less likely a position within it is to change over the
sampled sequences. In this context, how does DCA
work to infer the input couplings Jij(a, b) from the em-
pirical statistics? With standard settings for regulariza-
tion (λJ = 10−3), DCA emphasizes the isolated pairwise
couplings while the collective features are hardly dis-
cernable relative to noise (Fig. 1D).

Inference as a function of sample size
Why does DCA selectively emphasize the isolated cou-
plings and under-represent those that make up larger
collective features? The answer lies in examining the de-
pendence of the inferred couplings Ĵij(a, b) on the degree
of sampling in the MSA (Fig. 2A). The data indicate that
inferred couplings show three properties as a function of
MSA size: (1) they exhibit a “resonance” property where
the value of ‖ Ĵij‖ sharply peaks at a characteristic MSA
size, (2) they resonate at different characteristic MSA
sizes depending on the size of the group they belong
to (isolated pairs, small collective, and large collective
units), and (3) they only approach their correct values
(‖ Ĵij‖/J0 = 1) at the limit of very large sampling. At the
MSA size chosen in our example (N = 300), the isolated
couplings dominate the inference, with all collective fea-
tures many-fold lower in magnitude. However, Fig. 2A
also shows that if the MSA contained increasingly more
sequences, the outcome would be different; we would
suppress the isolated pairwise couplings and instead
emphasize the collective features (see Fig. S2 for more
details).

What is the mechanism of the resonance of inferred
couplings as a function of MSA size? To study this,
we made an even simpler model of just two positions,
each with q possible amino acids and with no fields or
couplings; that is, with no constraints at all. With infi-
nite sampling, all correlations between amino acids at
the two positions must be zero and the inference will
return the correct result that all fields and couplings
are zero. With finite number of sequences, however,
the inferred parameters (ĥ, Ĵ) are generally non-zero.
For example, consider the situation in which we deter-
ministically draw amino acid pairs uniquely and with-
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Figure 2. Resonance in inference of sequence features. A, normalized magnitude of inferred couplings ‖ Ĵij‖/J0 as a function of MSA size,
averaged for positions comprising the diffrent sized features in the input model (Fig. 1A). The inference is carried out with weak regularization
(λJ = 10−6). The data show that features in the amino acid sequence display a resonance at characteristic levels of sampling in order of their
effective size. Interactions of any size only reach their true values (‖ Ĵij‖/J0 = 1) at the limit of infinite sampling. B, Inferred couplings for an
even simpler model of just L = 2 positions and q = 10 amino acids either without (black, Jinp = 0) or with Jinp ' 2.2 (red) input interactions.
The traces show cases of deterministic (solid) or random (dashed) sampling of sequences. As described in the text, this model provides a simple
mechanistic understanding of the origin of the resonance property.

out repetition to form an MSA of size N while keeping
amino acid frequencies at both sites uniform. If N < q2,
some amino acid pairs will be observed and the rest
(q2 − N) will be absent, requiring inferred couplings in
the Potts model to be infinite to account for the absences.
The point of regularization is to prevent such an out-
come, constraining the difference between the largest
and smallest couplings (∆J) to satisfy

∆J + log ∆J = log
q2 − N
N2λJ

, (4)

where λJ is the regularization parameter. It is then easy
to show that the magnitude of couplings over all amino
acid pairs will be unimodal, with a maximum at the
point where the sampling produces the same number
of observed and missing pairs (that is, when N = q2/2)
(Fig. 2B, solid black curve, and see SI for derivation).
The true value of the interaction (J = 0) is only reached
with complete sampling (N � q2). This shows the basic
mechanism of resonance – a sampling-dependent maxi-
mization of inferred couplings with a magnitude that is
simply set by the strength of regularization (Eq. (4)).

Generalizing to include a non-zero input coupling
(red curve in Fig. 2B) has the effect of displacing the
resonance curve to the right and shifting the inferred
coupling at large sampling to the correct input value
(Fig. 2B, compare black and red curves). This makes
sense; with stronger coupling, more sampling is gen-
erally necessary to draw all possible amino acid states.
Thus, as shown in Fig. 2A, the position of a resonance
peak is a function of the effective size and magnitude of
the input interaction. Pure sampling noise in uncoupled
positions resonates at the lowest MSA size, followed in
sequence by isolated pairwise couplings and collective

features of increasing size. Relaxing the model to use
random, rather than deterministic sampling of amino
acid pairs just further increases the sampling required
for inferring couplings, either without (Fig. 2B, black
dashed curve) or with (Fig. 2B, red dashed curve) true
interactions.

The implications for sequence-based DCA models of
real proteins are clear. Inference for any protein family
always occurs at the limit of extreme poor sampling, be-
low the resonance peak for isolated pairwise couplings.
In this regime, with usual small regularization to sup-
press sampling noise, couplings inferred are dominated
by the smallest scale features of the information stored in
amino acid sequences. Thus the inferred couplings em-
phasize isolated pairwise couplings between positions
that correspond to structural contacts, with couplings
within collective groups at or even below the level of
pure sampling noise.

The toy model provides another insight into the con-
tact prediction process. A common practice in DCA is
to apply an Average Product Correction (APC), which
removes a background value from inferred couplings27.
This approach has been justified by its role in mitigat-
ing the effects of phylogenetic bias. However, APC
also improves the inference of isolated contacts in our
toy model, which includes no notion of phylogeny (Fig.
S3). The work here suggests a more general explana-
tion for APC: it works by suppressing the spurious cou-
plings between non-interacting positions that arise due
to extreme undersampling. Since in this limit, the non-
interacting couplings are comparable in magnitude to
the smallest scale of true couplings between positions
(Fig. 2), APC helps to separate signal from noise and
improve contact prediction in protein structures (Fig.
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Figure 3. Inference of couplings as a function of the regularization parameter λJ . A, the normalized magnitude of inferred couplings ‖ Ĵij‖/J0
averaged over position pairs comprising isolated pairwise couplings (black), for the small sized collective group (blue), and for the large-sized
collective group (red). Inferred couplings for position pairs with zero input couplings are pure undersampling noise and are shown in green.
Values of λJ corresponding to panels B-E are marked, and the true value for non-zero couplings is indicated. B-E, for comparison with Fig. 1A,
the Ĵij matrix inferred at increasing levels of regularization λJ . The data show how features of different effective size dominate the inference as
regularization is adjusted from small to large values. Note that DCA is traditionally carried out at small regularization strengths λJ < 10−2.

S3).

Inference as a function of regularization strength
As explained above, the magnitude of inferred cou-
plings in the undersampled regime is basically set by the
strength of the regularization parameter λJ (Eq. (4)). For
example, with typical small λJ , ∆J ∼ − log λJ . But how
do features of different sizes respond to regularization?
To understand this, we carried out model inference for
a fixed size MSA (N = 300) drawn from the toy model
while varying the regularization strength λJ (Fig. 3A).
The data show that for small regularization, the isolated
pairwise couplings dominate (black), and collective fea-
tures (blue and red) are inferred at or below the level
of non-interacting pairs (green). As regularization is
increased, different features take prominence, until ul-
timately features are inferred with magnitudes that are
in order of their effective size – large collective > small
collective > isolated pairs (Fig. 3A). In this strong regu-
larization regime, all inferred couplings decay like 1/λJ
and resemble the empirical correlations Cij(a, b) (see SI
for details). Remembering that the true input couplings
are equal for all features and have normalized value
‖Jinp

ij ‖/J0 = 1, we can conclude that there is no single
choice of a regularization parameter that can correctly
infer the true pattern of couplings whenever sampling
of sequences is limited (compare Fig. 3B-E with Fig. 1A).

An even simpler model with just two features and
two parameters provides an intuitive geometrical illus-
tration of the problem (Fig. 4). This model comprises
sequences with L = 6 positions and q = 2 amino acids

Figure 4. A geometrical explanation of regularized inference. A, the
input coupling matrix Jinp for a toy model with L = 6 positions and
q = 2 amino acids and with no fields h. The model has two
parameters, one representing the isolated pairwise coupling (JI ,
positions 1-2) and the other the couplings in the collective set (JS,
positions 3-6). The input values are Jinp

I = Jinp
C = 4. B, Inferred values

of JI and JC from an N = 4 undersampled set of sequences for the toy
model as a function of regularization λJ . The solid contours show the
landscape of the log-likelihood function being optimized, and the
dashed contours show values of ( ĴI , ĴC) that are consistent with
different strengths of regularization.

with a pattern of input interactions Jinp shown in Fig. 4A.
There is one isolated pairwise coupling between po-
sitions 1 and 2 (JI), and one collective group of cou-
plings between positions 3-6 (JC) (Fig. 4A), all with the
same magnitude Jinp

I = Jinp
C = 4. The value of the cou-

pling is chosen simply to be significantly above random
fluctuations. This makes the number of parameters to
be inferred just two - (JI , JC) - enabling us to visual-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.441025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.441025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Undersampling and the inference of coevolution in proteins — 6/12

Figure 5. Inference of positional couplings for the AroQ family of chorismate mutase (CM) enzymes. A, positional conservation (by
Kullback-Leibler relative entropy21, bar graph) and the matrix of positional correlations for an MSA of 1258 CM homologs. The positions are
ordered by ”susceptibility to regularization” (see text and Supplementary Information). B-C, the coupling Ĵij matrix for the CM family inferred
with standard small regularization (λJ = 0.001, panel B) or strong regularization (λJ = 10, panel C), both ordered as in panel A. D, AroQ CMs
are dimers with two symmetric active sites formed by elements from both protomers (blue and silver); active site residues are highlighted in
yellow stick bonds and a bound substrate analog in magenta. Shown is the structure of the E. coli CM domain (EcCM, PDB 1ECM). E, spatial
organization of positions comprising the top 20 couplings inferred with weak (λJ = 0.001, blue spheres) or strong (λJ = 10, orange spheres)
regularization.

ize the inference results on a 2D plane (Fig. 4B). For
an undersampled case (here, N = 4), the contours of
the log-likelihood function being optimized (solid blue
contours) show that the inference process has no finite
maximum; without regularization, inferred values of
couplings JI , JC will diverge to infinity. This is consis-
tent with the intuition that couplings must be infinity to
account for unobserved amino acid configurations.

How does regularization correct this problem? The
dashed line contours in Fig. 4B show the curves along
which the magnitude of Jij (that is, J2

I + 6J2
C ) is a con-

stant for various regularization strengths. This defines
the solutions to inference with regularization - the points
(black filled circles, Fig. 4B) where the solid contours are
tangent to the dashed contours. Thus, the inferred so-
lution is set by the regularization used, and there is no
regularization at which the inferred solution matches
the true solution (JI = JC = 4). Also, note that at this
level of undersampling, JI is always larger than JC. An
analytical solution relating the regularization parameter
λJ and inferred values of ( ĴI , ĴC) shows how the ratio of
these parameters depends on the relative size of the pair-
wise and collective units, and on the level of sampling
(see Supplementary Information).

The bottom line is that with undersampling of data,
uniform regularization will always produce solutions

that unequally represent the contribution of different
sized features and more importantly, that will deviate
from the ground truth.

Application to real problems
These findings have significant impact for model infer-
ence in real proteins. The pattern of empirical corre-
lations between pairs of positions in MSAs of protein
families reveals a hierarchy of correlation scales, both
in terms of magnitude and size of the correlated unit.
For example, in an MSA of 1258 members of the AroQ
family of chorismate mutase enzymes, a subset of more
conserved positions display a pattern of strong inter-
connected correlations and the remainder of less con-
served positions show weaker and more dispersed corre-
lations14 (Fig. 5A). This pattern is reminiscent of Fig. 1C,
the correlation matrix resulting from a toy model with
features of different effective size. Positions in Fig. 5A
are ordered by their susceptibility to regularization (see
methods), suggesting that with the extreme undersam-
pling that characterizes all practical MSAs, the inference
of couplings in Potts models will inevitably treat these
groups unequally. Indeed, just like for the toy model,
Ĵij for the AroQ family inferred with standard weak
regularization (λJ = 0.001, Fig. 5B) highlights interac-
tions between the weakly conserved positions while
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Figure 6. Functional analysis of positions in the E. coli CM domain. A, A deep mutational scan (DMS), showing the effect of every single
mutation on the catalytic power relative to wild-type (see Methods). Blue shades indicate loss-of-function, red indicates gain-of-function, and
white is neutral. The cartoon above indicates the secondary structure. B-C, the distribution of mutational effects displayed for all amino acid
substitutions (B) or for the average effect of mutations at each position (C). The data are fit to a Gaussian mixture model with two components
(red curve). D, the average effect of mutations is shown as a heatmap and circles below mark the positions comprising the deleterious mode in
panel C (black), positions comprising the top 20 couplings inferred with weak (λJ = 10−3, blue) or strong (λJ = 10, yellow) regularization, and
positions comprising the sector as defined by the SCA method (red). E, the sector forms a physically contiguous network within the core of the
CM enzyme linking the two active sites across the dimer interface.

inference with strong regularization (λJ = 10, Fig. 5C)
highlights interactions between the conserved, more col-
lectively evolving positions (Fig. S4). Thus, inference in
the context of undersampling selectively represents the
information content of protein sequences, with the mag-
nitude of inferred couplings set by the regularization
used (see color scale, Fig. 5B-C).

How do these findings influence our understanding
of protein structure and function? AroQ CMs occur in
bacteria, archaea, plants, and fungi and catalyze the con-
version of the intermediary metabolite chorismate to
prephenate, a reaction essential for biosynthesis of the
aromatic amino acids tyrosine and phenylalanine. Struc-
turally, these enzymes form a compact domain-swapped
dimer of relatively small protomers with two active sites
(Fig. 5D). The top terms in Ĵij inferred with weak reg-
ularization (λJ = 0.001) correspond to direct contacts
between amino acids in the three-dimensional struc-
ture (Fig.S5), but are exclusively located within surface-
exposed residues (Fig. 5E, blue spheres). In contrast, top
couplings inferred with strong regularization (λJ = 10)
switch to represent interactions between buried posi-
tions built around the enzyme active site (Fig. 5E, orange
spheres). The couplings inferred with strong regulariza-
tion include direct tertiary structure contacts, but also
comprise indirect, longer-range or substrate-mediated
interactions (Fig.S6). The key result is that regulariza-

tion gradually shifts the pattern of inferred couplings
from direct contacts at surface sites to a mixture of direct
and indirect interactions within the protein core.

What is the functional meaning of these findings? To
comprehensively evaluate this, we carried out a satura-
tion single mutation screen (a ”deep mutational scan”)
of the AroQ CM domain from E. coli (EcCM), follow-
ing the effect on catalytic activity. This work is enabled
by a quantitative select-seq assay for CM activity, re-
ported recently14. Briefly, a library comprising all single
mutations was made by oligonucleotide-directed NNS-
codon mutagenesis, expressed in a CM-deficient E. coli
host strain (KA12/ pKIMP-UAUC, see Methods), and
grown together as a single population under selective
conditions. Deep sequencing of the populations before
and after selection provides a log relative enrichment
score for each mutant relative to wild-type which quan-
titatively reports the effect on catalytic power14. This
information is displayed as a heatmap in Fig. 6A - a
global survey of mutational effects in EcCM.

The distribution of mutational effects is bimodal
(Fig. 6B-C), with one mode representing neutral varia-
tion and the other representing deleterious effects (black
circles, Fig. 6D). The comparison with positions inferred
in the top couplings of Ĵij is clear - the top couplings in-
ferred with standard weak regularization occur almost
exclusively at mutationally tolerant positions, while
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Figure 7. Inferred couplings as a function of regularization λJ in the
CM protein family. The graph shows the magnitude of inferred
couplings Ĵij(a, b) averaged over significant couplings in functional
positions as defined in Fig. 6 (red), direct contacts (black), and all
other position pairs (light blue). Positions comprising three groups
are given in the Suppleentary Information. In analogy with inference
for toy models (Fig. 3A), these data show that features of different
effective size (here, isolated pairwise contacts and interactions in a
collective network) differentially dominate the inference as
regularization is adjusted from small to large values.

those inferred with strong regularization occur at func-
tionally important positions (Fig. 6D, p = 3 × 10−8,
Fisher Exact Test) (Fig. S7-S8). Consistent with this,
the top couplings inferred with strong regularization
significantly overlap with the network of conserved,
epistatically-coupled, functionally-relevant positions (the
sector) defined by the statistical coupling analysis (SCA)
method21 (p = 1.9× 10−7, Fisher Exact Test) (Fig. 6D-E).

A systematic analysis of the effect of regularization
on inference of positional couplings is shown in Fig. 7.
The data show that contacts and functional positions
are differentially emphasized, with contacts acting like
isolated pairwise couplings and functional sites acting
like a more epistatic collective unit.

Conclusion
The inference of coevolution between amino acids has
been valuable, providing new hypotheses for protein
mechanisms and global rules for design. One approach
is based on Potts models, in which empirical frequencies
and correlations of amino acids in a multiple sequence
alignment are used to define a probability distribution
for the protein family over all sequences20. The Potts
model has been demonstrated to reveal pairwise tertiary
contacts between amino acids3, 20, opening the path to
sequence-based structure prediction1, 4. In this regard,
the apparent inability of Potts models to obviously de-
scribe collective interactions of amino acids has been
puzzling28. The collective interactions have been shown

to specify native-state foldability13, biochemical activi-
ties10, 12, 15, 16, 29, 30, allosteric communication17, 31, 32, and
evolvability33, defining features of proteins that are es-
sential for their biological function.

The work presented here explains the nature of this
problem. With limited sampling of sequences in practi-
cally available MSAs, features of different effective size
and conservation will be differentially emphasized as
a function of MSA size and regularization. With weak
regularization, the inference will focus on small-scale,
relatively unconserved, functionally-less important lo-
cal structural interactions, and with strong regulariza-
tion, inference will emphasize larger-scale, conserved,
functionally-essential features. A key point is that there
is no single setting of regularization at which all features
will be correctly represented. We illustrate this concept
using Potts models and one form of regularization (L2),
but the principle of heterogeneous inference of features
of different scale is a general one, and depends only on
working in the undersampled regime.

The consequence of biased inference is clearly seen
in the use of Potts models for protein design. Recent
work shows that sequences drawn from a Potts models
of chorismate mutate enzymes are indeed true synthetic
homologs of the protein family, displaying function both
in vitro and in vivo that recapitulates the activity of the
natural counterparts14. However, this result required
sampling from the model at computational tempera-
tures less than unity, a process that is meant to shift
the energy scale to correct for regularization and to en-
force under-estimated but functionally essential cou-
plings. This procedure nicely recovers protein function,
but does so at the expense of dramatic reduction in
sequence diversity of designed proteins compared to
natural ones14. In light of the work presented here, we
can now understand this problem as a non-optimal solu-
tion to compensating the unequal inference of features
by globally depressing the energy scale.

Can we then ”correct” the inference process to more
uniformly and accurately represent the biologically rel-
evant patterns of amino acid interactions? Given that
practical MSAs will always be grossly undersampled,
the main parameter we can control is regularization.
But since no single regularization parameter can pro-
vide a proper inference of all scales of interactions, it
seems clear that what is needed is a strategy for inhomo-
geneous regularization, where parameters in the Potts
model are inferred according to the level of sampling
noise that acts on them. If done correctly, such a process
should lead to a model that unifies the inference of both
local and collective features and enables design of arti-
ficial proteins that recapitulate the sequence diversity
of natural members of a protein family. The computa-
tional toy models introduced here, and the availability
of powerful experimental systems such as the choris-
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mate mutases may provide the foundation for this next
advancement in sequence based models for proteins.

Methods
Toy models and simulated data
Simulated data are generated from input Potts models,
with couplings and fields {Jinp, hinp}. The inferred cou-
plings and fields are denoted { Ĵ, ĥ}. The input model
described in Figs. 1-3 involves zero fields (hinp

i (a) = 0)
and couplings with non-zero interactions set to equal
strength (Jinp

ij (a, a) = 2). This choice makes the pat-
tern of couplings favorable for i and j to have identical
amino acids, excluding frustration. Sequences are gener-
ated from input models through a Markov-Chain Monte
Carlo process using the Metropolis-Hastings algorithm.
Each sample is obtained after 2 · 105 Monte Carlo iter-
ations starting from independent random sequences.
All codes were written in house using MATLAB (Math-
works Inc.) and are available upon request.

Inference and Gauge
Exact calculations were used for model inference in the
small systems described in Figs. 2B and 4. The process
involves numerical minimization of the negative log
likelihood function, with a regularization term

L = log Z−∑
i,a

hi(a) fi(a)− ∑
i<j,a,b

Jij(a, b) fij(a, b)+

λJ ∑
i<j,a,b

|Jij(a, b)|2 + λh ∑
i,a
|hi(a)|2

where Z = ∑s exp
[
∑i hi(si) + ∑i<j Jij(si, sj)

]
is the par-

tition function, with s running over the entire space of
sequences.

For all other cases involving larger systems, we used
the pseudo-likelihood maximization method plmDCA25, 34

for approximate inference, with L2 regularization on
both fields (λh), and on couplings (λJ). The value of λh
is set consistent with past work to be λh = 0.01 and the
values of λJ as indicated in the main text.

For sequences of length L and number of amino acids
q, the couplings and correlations comprise four dimen-
sional L× L× q× q arrays, and to represent them in as
two-dimensional matrices, we take the Frobenius norm
over amino acids, defined by

‖Xij‖ =
(

∑
a,b

Xij(a, b)2

)1/2

(5)

For couplings, this projection is gauge dependent and
we implement it in the the zero-sum (or Ising) gauge,

such that

∑
a

Jij(a, b) = ∑
b

Jij(a, b) = 0, ∑
a

hi(a) = 0. (6)

This gauge minimizes the Frobenius norm over all gauges.
Note however that the inferred model P̂(s) is indepen-
dent of the choice of the gauge. For comparison with
input values Jinp, the inferred values Ĵ are represented as
‖ Ĵij‖/‖Jinp

ij ‖ which is by definition 1 when the inference
is correct.

Multiple sequence alignment
Sequences of the AroQ family were acquired by three
rounds of PSI-BLAST35 using residues 1-95 of EcCM
(the chorismate mutase (CM) domain of the E.coli CM-
prephenate dehrdratase) as the intial query (e-score cut-
off 10−4). For alignment, we created a position-specific
amino acid profile from 3D alignment of four CM atomic
structures (PDB IDs 1ECM, 2D8E, 3NVT, and 1YBZ) and
iteratively aligned nearest neighbor sequences from the
PSI-BLAST using MUSCLE36, each time updating the
profile. The resulting multiple alignment was subject
to minor hand adjustment using standard rules and
trimmed sequentially (1) to retain positions present in
EcCM, (2) to remove sequences with less than 82 posi-
tions, (3) to remove sequences with more than 30% gaps,
and to remove excess sequences with more than 90%
identity to each other. The final alignment contains 1259
sequences and 96 positions.

Deep mutation library
A saturation single site mutational library for EcCM was
constructed using oligonucleotide-directed NNS codon
mutagenesis. To mutate each position, two mutageneic
oliognucleotides (one sense, one antisense) were synthe-
sized (IDT) that contain sequences complementary to
∼ 15 base pairs (bp) on either side of the target position
and an NNS codon at the target site (N is a mixture
of A,T,C,G bases and S is a mixture of G and C). One
round of PCR was carried out with either the sense or
antisense oligonucleotide and a flanking antisense or
sense primer. A second round amplification with first
round products and both flanking primers produced the
full-length double-stranded product, which was purifed
on agarose gel and quantitated using Picogreen (Invitro-
gen). All first round products were pooled in equimolar
ratios, purified, digested with NdeI and XhoI, and lig-
ated into correspondingly digested plasmid pKTCTET-
037. For selection, the library was transformed into elec-
trocompetent NEB 10-beta cells (NEB) to yield ¿1000x
transformants per gene, cultured overnight in 500 ml
LB supplemented with 100 µg/ml ampicillin (Amp),
and subject to plasmid purification. The library was
diluted to 1 ng/ml to minimize multiple transforma-
tion and transformed into the CM-deficient strain KA12
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containing the auxilliary plasmid pKIMP-UAUC38 to
yield ¿1000x transformants per gene. The mixture was
then recultured in 500 ml LB containing 100 µg/ml Amp
and 30 µg/ml chloramphenicol (Cam) overnight, sup-
plemented with 16% glycerol, and frozen at −80◦C.

Chorismate mutase selection assay
The selection assay followed a recently reported proto-
col37. Briefly, glycerol stocks of KA12/pKIMP-UAUC
carrying the saturation mutation library in pKTCTET-0
were cultured overnight at 30◦C in LB supplemented
with 100 µg/ml Amp and 30 µg/ml Cam. The culture
was diluted to OD600 of 0.045 in M9c minimal medium37

supplemented with 100 µg/ml Amp, 30 µg/ml Cam,
and 20 µg/ml each of L-phenylalanine (F) and L-tyrosine
(Y) (M9cFY, non-selective conditions), grown at 30◦C to
OD600 ∼ 0.2, and washed in M9c (no FY). An aliquot of
the washed culture was used to innoculate 2 ml LB with
100 µg/ml Amp, and grown overnight at 37◦C and har-
vested for plasmid purification (the pre-seleted, or input
sample). For selection, another aliquot of the washed
culture was diluted to a calculated starting OD600 =
10−4 into 500 ml M9c supplemented with 100 µg/ml
Amp, 30 µg/ml Cam, 3 ng/ml doxycycline (to induce
CM gene expression from the Ptet promoter) and grown
at 30◦C for 24h to a final OD600 < 0.1. Fifty ml of the
culture was harvested, resuspended in 2 ml LB with 100
µg/ml Amp, grown overnight at 37◦C, and harvested
for plasmid purification (the seelcted sample).

Input and selected samples were amplified using
two rounds of PCR with KOD polymerase (EMD Mill-
pore) to add adapters and indicies for Illumina sequenc-
ing. Amplification in the first round included 6-9 ran-
dom bases to aid initial focusing and part of the i5 or
i7 Illumina adapters. The remaining adapter sequenes
and TruSeq indicies were addred in the second round.
PCR was limited to 16 cycles and included high initial
tempate concentration to minimize amplification bias.
Final products were gel purified (Zymo Research), quan-
tified by Qubit (ThermoFisher), and sequenced on an
Illumina MiSeq system with a paired-end 250 cycle kit.
Paired-end reads were joined using FLASH, trimmed
to the NdeI and XhoI cloning sites and translated. Only
exact matches to library variants were counted. Rela-
tive enrichments (r.e.) were calculated according to the
equation r.e. = log( f x

s / f x
i )− log( f r

s / f r
i ) where f x

s and
f x
i represent the frequencies of each allele x in either se-

lected (s) or input i pools and f r
s and f r

i represent those
values for EcCM, the wild-type reference.
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