
1 

The Great Deceiver: miR-2392’s Hidden Role in Driving SARS-CoV-2 Infection 1 

J. Tyson McDonald1,2, Francisco Javier Enguita1,3, Deanne Taylor1,4,5, Richard A. Bowen6, 2 

Robert J. Griffin1,7, Waldemar Priebe1,8, Mark R. Emmett1,9, Marisa McGrath10, Mohammad M. 3 

Sajadi10, Anthony D. Harris11, Jean Clement10, Joseph M. Dybas1,4, Nukhet Aykin-Burns12, 4 

Joseph W. Guarnieri1,13, Larry N. Singh1,13, Peter Grabham1,14, Stephen B. Baylin1,15, Aliza 5 

Yousey1,16, Andrea N. Pearson16, Peter M. Corry1,7, Amanda Saravia-Butler1,17,18, Thomas R. 6 

Aunins19, Prashant Nagpal19,20,21,22, Cem Meydan23,24, Jonathan Foox22,24, Christopher 7 

Mozsary22,24, Bianca Cerqueira1,25,26, Viktorija Zaksas1,27, Urminder Singh1,28, Eve Syrkin 8 

Wurtele1,28, Sylvain V. Costes18, Diego Galeano1,29,30, Alberto Paccanaro1,29,31, Suzanne L. 9 

Meinig32, Robert S. Hagan32,33, Natalie M Bowman34, UNC COVID-19 Pathobiology 10 

Consortium35,36+, Matthew C. Wolfgang32,36, Selin Altinok37, Nicolae Sapoval1,38, Todd J. 11 

Treangen1,38, Matthew Frieman1,10, Charles Vanderburg39, Douglas C. Wallace1,13, Jonathan 12 

Schisler1,37, Christopher E. Mason1,23,24,40,41, Anushree Chatterjee1,20,21, Robert Meller1,16, Afshin 13 

Beheshti1,39,42,43,44* 
14 

 15 

1COVID-19 International Research Team 16 

2Department of Radiation Medicine, Georgetown University School of Medicine, Washington 17 

D.C. 20007, USA 
18 

3Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de 19 

Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal 
20 

4Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, 21 

Philadelphia, PA 19104 USA 22 

5Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 23 

Philadelphia, PA 19104 USA 24 

6Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA. 25 
7Radiation Biology Division, Dept of Radiation Oncology, University of Arkansas for Medical 26 

Sciences, Little Rock, AK, 72211 USA 27 

8Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 28 

Houston, TX, 77030, USA 
29 

9Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 30 

Galveston, TX 77555, USA 
31 

10Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 32 

21201, USA 
33 

11Department of Epidemiology and Public Health, University of Maryland School of Medicine, 34 

Baltimore, MD, 21201, USA 35 

12Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas 36 

for Medical Sciences, Little Rock, AK, 72211 USA 37 

13Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, 38 

Philadelphia, PA 19104, USA 39 
14Center for Radiological Research, Columbia University, New York, NY 10032, USA 40 
15Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins 41 

School of Medicine, Baltimore, MD 21287, USA 
42 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.23.441024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441024


2 

16Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 43 

30310, USA 44 
17Logyx, LLC, Mountain View, CA 94043, USA 45 

18Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA 46 

19Department of Chemical and Biological Engineering, University of Colorado Boulder, 47 

Boulder, CO, 80303, USA 
48 

20Sachi Bioworks Inc, Boulder, CO, 80301, USA 49 
21Antimicrobial Regeneration Consortium, Boulder, CO, 80301, USA 50 
22Quantum Biology Inc, Boulder, CO, 80301, USA 51 
23Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, NY, 52 

10065, USA 53 

24The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational 54 

Biomedicine, Weill Cornell Medicine, NY, 10065, USA 55 

25KBR Space & Science, San Antonio, TX, 78235, USA 56 

26Aeromedical Neurology & Neuroimaging Research Group, United States Air Force School of 57 

Aerospace Medicine, Lackland AFB, TX, 78236, USA 58 
27Center for Translational Data Science, University of Chicago, Chicago, IL, 60615, USA 

59 

28Bioinformatics and Computational Biology Program, Center for Metabolic Biology, 60 

Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 61 

50011, USA 62 
29School of Applied Mathematics, Fundação Getulio Vargas, Rio de Janeiro, Brazil 

63 

30Faculty of Engineering, National University of Asuncion, Central, Paraguay 64 

31Department of Computer Science, Centre for Systems and Synthetic Biology, Royal Holloway, 65 

University of London, Egham Hill, Egham, UK 66 

32Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, 67 

USA 68 

33Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, 69 

University of North Carolina, Chapel Hill, NC 27599, USA 70 

34Division of Infectious Disease, School of Medicine, University of North Carolina, Chapel Hill, 71 

NC, 27599, USA 72 

35Department of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, 73 

University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA 74 

36Department of Microbiology & Immunology, University of North Carolina School of 75 

Medicine, Chapel Hill, NC, 27599, USA 76 
37McAllister Heart Institute, Department of Pharmacology, and Department of Pathology and 77 

Lab Medicine, The University of North Carolina at Chapel Hill, NC 27599, USA 78 

38Department of Computer Science, Rice University, Houston, TX 77005, USA 79 

39Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 80 

02142, USA 81 
40New York Genome Center, NY, USA 82 

41The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, 10065, USA 83 
42KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, 84 

USA 
85 

43Senior author 86 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.23.441024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441024


3 

44Lead Contact 87 

+The full list of authors associated with the UNC COVID-19 Pathobiology Consortium is 88 

available in the supplemental information.  89 

*Correspondence: afshin.beheshti@nasa.gov  90 

 91 

Summary (150 words) 92 

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene 93 

regulation that have a major impact on many diseases and provides an exciting avenue towards 94 

antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating 95 

miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. 96 

Specifically, we found that miR-2392 was key in driving downstream suppression of 97 

mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as 98 

promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is 99 

present in the blood and urine of COVID-19 patients tested, but not detected in COVID-19 100 

negative patients. These findings indicate the potential for developing a novel, minimally 101 

invasive, COVID-19 detection method. Lastly, using both in vitro human and in vivo hamster 102 

models, we have developed a novel miRNA-based antiviral therapeutic targeting miR-2392 that 103 

significantly reduces SARS-CoV-2 viability and may potentially inhibit a COVID-19 disease 104 

state in the host. 105 
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 110 

Introduction 111 

In Fall of 2019, the zoonotic spillover event led to the first know human infection with the 112 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent human-to-113 

human transmission triggered a pandemic leading to a worldwide health crisis from the resulting 114 

disease, referred to as coronavirus disease 2019 (COVID-19) (Huang et al., 2020; Zhu et al., 115 

2020). COVID-19 causes substantial pulmonary disease but can also cause systemic health risks 116 

from extrapulmonary manifestations. Its effects entangle the entire body including but not 117 

limited to the cardiovascular, gastrointestinal, and hematological systems that may lead to long 118 

lasting effects after the virus has left the body, known as PASC (post-acute sequela of COVID-119 

19) (Carfi et al., 2020; Feng et al., 2020; Gupta et al., 2020; Jacobs et al., 2020). SARS-CoV-2 is 120 

classified as a member of the Coronaviridae family, a group of viruses with a enveloped positive-121 

stranded RNA that has the ability to infect cross-species (V'Kovski et al., 2021). Currently, three 122 

novel vaccines have completed efficacy trials and have been approved for emergency use by the 123 

Food and Drug Administration (Baden et al., 2021; Polack et al., 2020; Sadoff et al., 2021). 124 

While these vaccines represent a favorable milestone, additional data is required to demonstrate 125 

the long-term effectiveness against SARS-CoV-2 and protection against new strains. To prevent 126 

an endemic, the complete global eradication of COVID-19 will require a wide majority of the 127 

world’s population to be vaccinated to achieve herd immunity. Unfortunately, there will always 128 

be a portion of the population that will not get vaccinated. Therefore, additional strategies for 129 
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antiviral therapeutic options against COVID-19 are particularly relevant and important to explore 130 

in order to treat severe illnesses and overcome this global pandemic. Currently the majority of 131 

antivirals are repurposed drugs utilized for other disease and have shown limited clinical 132 

efficacy, such as remdesivir (Abdelrahman et al., 2021). This brings a needed urgency to develop 133 

antivirals specifically designed against SARS-CoV-2. 134 

One potential avenue for an alternative antiviral agent is treatment against specific 135 

microRNAs (miRNAs) associated with SARS-CoV-2 infection and subsequent manifestation of 136 

COVID-19. MicroRNAs (miRNAs) are non-coding RNAs that are involved with regulation of 137 

post-transcriptional gene expression and can impact entire pathways related to viruses and 138 

diseases (Jiang et al., 2009; Trobaugh and Klimstra, 2017). Each miRNA can target multiple 139 

messenger RNAs (mRNAs) and taken together, miRNAs are predicted to regulate over half of 140 

the human transcriptome (Friedman et al., 2009). Recent evidence has shown different diseases, 141 

including COVID-19, leads to distinct complements of miRNAs in the blood (Mishra et al., 142 

2020; Nersisyan et al., 2020; Portincasa et al., 2020; Sacar Demirci and Adan, 2020; Sardar et 143 

al., 2020; Teodori et al., 2020; Widiasta et al., 2020; Zhang et al., 2021). These circulating 144 

miRNAs are highly stable and have the potential to be used for minimally invasive novel 145 

detection, potential biomarkers, and therapeutic targets (Tribolet et al., 2020). Research on the 146 

interactions between miRNAs and viruses have revealed a multifaceted relationship. 147 

Specifically, viruses have been shown to avoid the immune response by leveraging cellular 148 

miRNAs to complete their replication cycle (Trobaugh and Klimstra, 2017). The following 149 

mechanisms are central to the interaction of viruses and miRNAs: 1) miRNA processing 150 

pathways can be blocked or inhibited by viruses interacting with key proteins such as Dicer and 151 

associated proteins, 2) viruses can sequester miRNAs resulting in dysregulation of specific target 152 

mRNAs, 3) viruses can utilize miRNAs to redirect regulatory pathways of other miRNA targets 153 

to provide survival advantages, and 4) viruses can directly encode miRNA precursors that are 154 

processed by the canonical miRNA cellular pathway and have well-defined functions to 155 

specifically target and regulate the viral replicative cycle (Schult et al., 2018; Trobaugh and 156 

Klimstra, 2017).  157 

Here, we report on a miRNA, miR-2392, that may directly regulate and drive a COVID-19 158 

response. This miRNA was initially predicted from COVID-19 patient data that consisted of 159 

multiple miRNAs being suppressed/inhibited (miR-10, miR-10a-5p, miR-1-3p, miR-34a-5, miR-160 

30c-5p, miR-29b-3p, miR-155-5p, and miR-124-3p) and one miRNA being upregulated (miR-161 

2392). With further examination, we discovered miR-2392 to be a key miRNA involved with 162 

COVID-19 progression. Specifically, miR-2392 drives downstream suppression of mitochondria 163 

activity while increasing inflammation, glycolysis, and hypoxia.  MiR-2392 upregulation was 164 

concomitant with symptoms associated with COVID-19 infection in the host. We found that 165 

miR-2392 was circulating in COVID-19 infected patients and increased as a function of viral 166 

load. Our results demonstrate that miR-2392 may be utilized as an effective biomarker of 167 

COVID-19. Furthermore, we have developed a miR-2392 inhibitor and provide evidence that its 168 

use reduces SARS-COV-2 viability in targeted viral screens with A549 cells and reduces the 169 

impact of infection in COVID-19 animal models. With further development this miR-2392 170 

inhibitor may represent an effective antiviral therapeutic towards inhibiting the virus and limiting 171 

a negative host response from COVID-19. 172 
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 173 

Results 174 

 175 

Identification of key miRNAs associated with COVID-19 infection 176 

Currently, the majority of the published literature associated with miRNAs and SARS-CoV-2 177 

is based on in silico predictions. To identify miRNAs that may be involved in driving COVID-19 178 

severity in the host, we first examined publicly available Bronchial Alveolar Lavage Fluid 179 

(BALF) RNA-sequencing (RNA-seq) data from 13 individuals. Differential gene expression was 180 

assessed using a 1.2-fold change in gene expression for p-values less than 0.01 revealing 42 181 

increased genes and 347 decreased genes, compared to controls. Using the upstream regulator 182 

analysis from the Ingenuity Pathway Analysis (IPA) knowledge database, the miRNAs from 183 

differentially expressed genes (FDR < 0.05) from COVID-19-positive patients were inferred. 184 

Eight miRNAs were predicted to drive significant changes in COVID-19 positive patients with 185 

the downregulation of seven miRNAs (miR-10, miR-1, miR-34a-5p, miR-30c-5p, miR-29b-3p, 186 

miR-124-3p, and miR-155-5p) and upregulation of a single miRNA, miR-2392 (Fig. 1A). Using 187 

IPA’s downstream effects analysis to predict biological processes from the combined 188 

suppression of the seven miRNAs and the upregulation of miR-2392 resulted in increased 189 

inflammation, immune suppression, and suppression of mitochondrial activity in the BALF 190 

dataset (Fig. 1B and 1C).   191 

In support of these findings, previous studies have shown alterations in specific miRNAs 192 

may directly impact viral infections. For example, upregulation of miR-10, miR-124, or miR-1 193 

have been shown to have antiviral roles during infection (Hu et al., 2020; Sardar et al., 2020; 194 

Yang et al., 2016). Interestingly, upregulation of miR-30 and miR-155 have been shown 195 

independently to provide suppression in other types of coronaviruses (Dickey et al., 2016; Ma et 196 

al., 2018). The one miRNA predicted to be upregulated in COVID-19 patients from the BALF 197 

data was miR-2392. Though limited, the existing literature on miR-2392 demonstrates it is 198 

related to mitochondrial suppression and increased glycolysis (Fan et al., 2019) and circulating 199 

factors related to negative health risks (Chen et al., 2013; Fan et al., 2019; Hou et al., 2019; Li et 200 

al., 2017; Park et al., 2014; Yang et al., 2019).  201 

Pathway analysis was performed with targets and pathways for miR-2392 to determine its 202 

impact on the host when upregulated. We observed that the upregulation of miR-2392 in the 203 

RNA-seq dataset impacted many downstream targets and pathways related to negative health 204 

outcomes (Fig. 1C). In addition to mitochondrial suppression, we also predicted activation of 205 

factors related to reactive oxygen species (ROS). Alternatively, since it is known that miR-2392 206 

directly interacts with the mitochondrial DNA (mtDNA) to inhibit the levels of many of the 207 

mtDNA coded oxidative phosphorylation transcripts, this could be a compensatory response to 208 

the inhibition of mitochondrial bioenergetics. 209 

Glycolytic pathways (Fig. 1C) are also upregulated in association with increased miR-2392. 210 

MiR-2392 drives both hexokinase 2 (HK2) and pyruvate kinase (PKM) which are both positive 211 

regulators of glycolysis. HK2 phosphorylates glucose to produce glucose-6-phosphate and is a 212 

primary regulator of glycolysis.  HK2 further enhances GDP-glucose biosynthesis. GDP-glucose 213 

is a nucleotide sugar which an essential substrate for all glycosylation reactions (i.e. 214 

glycosylation of viral spike proteins). Pyruvate kinase is essential for the production of ATP in 215 
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glycolysis as this enzyme catalyzes the transfer of the phosphate group from 216 

phosphoenolpyruvate to ADP to make ATP. The mechanism of how miR-2392 is driving these 217 

pathways is not clearly understood, but one possibility could be due to the stabilization of 218 

glycolytic transcripts.    219 

Overall, the miR-2392 observed upregulation of glycolysis and antiviral effects related to 220 

miR-2392 suppression are consistent with the recently documented role of glucose metabolism in 221 

the progression of viral infection and poor outcome of COVID-19 (Ardestani and Azizi, 2021). It 222 

is also consistent with the reported effects of suppression of glycolysis by inhibitors like the 223 

glucose analog, 2-deoxy-D-glucose (2-DG), that was shown to suppress SARS-CoV-2 224 

replication in in vitro models (Ardestani and Azizi, 2021; Bojkova et al., 2020; Codo et al., 225 

2020). Interestingly, 2-DG is also 2-deoxy-D-mannose and as such can interfere with processes 226 

utilizing mannose, a monosaccharide that is in vivo produced from glucose. Mannose plays 227 

important roles in the glycosylation of specific proteins. Replacement of a mannose molecule by 228 

2-DG in the respective SARS-CoV-2 N-glycans or O-glycans might lead to their truncation and 229 

subsequently to the suppression of virus infectivity and proliferation. These and miR-2392 data 230 

clearly indicate that selective targeting of glucose metabolism might have significant impact on 231 

current and future SARS-CoV-2 pandemics. 232 

Targets related to the goals of antioxidant N-acetyl cysteine (NAC) therapy are also observed 233 

to be upregulated.  These include activated endothelial cell increasing their expression of 234 

numerous adhesion molecules, including intercellular adhesion molecule 1 (ICAM1), vascular 235 

cell adhesion molecule 1 (VCAM1), and E-selectin, which allow attachment of hematopoietic 236 

immune and non-immune cells to the endothelial surface, and thus, contribute to inflammation 237 

and activation of the coagulation cascade. Powerful antioxidants such as NAC counteract 238 

COVID19 infections by potentially suppressing viral replication via improving intracellular thiol 239 

redox ratio as a precursor for major thiol antioxidant glutathione (Ho and Douglas, 1992) and 240 

inhibiting the NF-kB pathway (Poppe et al., 2017).  Inhibition of the NF-κB pathway has been 241 

shown to reduce inflammatory damage by altering the glutathione and glutathione disulfide ratio 242 

(Aykin-Burns et al., 2005; Griffin et al., 2003; Jia et al., 2010). Because NAC can also modulate 243 

oxidative burst and reduce cytokine storm without weakening the phagocytizing function of 244 

neutrophils (Allegra et al., 2002; Kharazmi et al., 1988; Sadowska et al., 2006), its use in 245 

COVID-19 patients as a single agent or in combination with other antioxidants are being 246 

conducted in clinical trials (Alamdari et al., 2020).  A recent study has shown noteworthy 247 

benefits of NAC in patients with severe COVID-19 infection (Ibrahim et al., 2020). Major 248 

mechanisms proposed for these favorable patient outcomes were NAC’s ability to reduce IL-6 249 

induced mitochondrial oxidative stress via Complex I inhibition as well as to prevent increased 250 

inflammation due to uncontrolled activation of mTORC1. These results were in line with the role 251 

of miR-2392 in reducing the activities of electron transport chain complexes and enhancing 252 

glycolysis, which is known to be induced by mTORC1 activation.  The same study also 253 

speculated that NAC could inhibit SARS-CoV-2 binding to ACE2 by reducing disulfide bonds in 254 

its receptor-binding domain. Inflammatory pathways and others that are observed with COVID-255 

19 infection were also seen to be activated downstream of miR-2392. 256 

 257 
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Conservation of miR-2392 between species and its predicted interactions with the SARS-CoV-2 258 

genome 259 

Viral miRNAs can play a role in interspecies transmission due to the high conservation of 260 

miRNAs among species and the ability of viruses to integrate miRNAs into its own genome 261 

(Sacar Demirci and Adan, 2020; Schult et al., 2018). In addition, such integration of miRNAs 262 

within the virus has been shown to assist viruses to replicate and evade the immune system 263 

(Islam and Islam, 2021). To determine if miR-2392 might be capable of driving the observed 264 

COVID-19 health risks and symptoms in the host, we analyzed the conservation of human miR-265 

2392 across species and the integration of miR-2392 into the SARS-CoV-2 genome (Fig. 2).  266 

The UCSC Genome Browser was utilized to determine the conservation of miR-2392 across 267 

different species (Kent et al., 2002). The mature 20 base-pair miR-2392 is derived from an 84 268 

base-pair region of the 3´-UTR in the long non-coding RNA (lncRNA) gene, maternally 269 

expressed 3 (MEG3) and located in an imprinted region DLK1-DIO3 that also contains three 270 

clusters for the expression of 51 additional miRNAs (Fig. 2A and 2B). A base wise evolutionary 271 

conservation comparison demonstrated that miR-2392 is highly conserved among non-human 272 

primates. In addition, conservation of miR-2392 is evident in dogs, cats, and ferrets, species 273 

known to be infected with SARS-CoV-2 while mice and rats, species not impacted by COVID-274 

19 (Johansen et al., 2020), have poor conservation with miR-2392. 275 

To determine the impact of miR-2392 on normal tissues, we studied the impact of miR-276 

2392’s host gene, MEG3, on normal tissues utilizing GTEx data (Consortium, 2020). For the 277 

majority of healthy tissues, MEG3 was either not detected or being expressed at low levels (Fig. 278 

2B). This can imply that miR-2392 does not seem to significantly affect normal tissues. 279 

To explore potential binding sites for miR-2392, we used the miRanda software (Enright et 280 

al., 2003) to identify all potential binding sites with respect to the SARS-CoV-2 reference 281 

genome (Wuhan-Hu-1; NC045512.2) and representative genomes from lineages of concern. We 282 

found that the miR-2392 seeding region is heavily integrated within SARS-CoV-2 and conserved 283 

in different viral strains (Fig. 2C). The three best hits from the miRanda scores are located in the 284 

NSP2, NSP3, and E-genes. Notably, these regions were conserved among 6 variants and lineages 285 

of concern each represented by 14 recent genomes from the respective lineage available from the 286 

Global Initiative on Sharing All Influenza Data (GISAID, (Shu and McCauley, 2017)).  287 

 288 

MiR-2392 targets mitochondrial and inflammatory pathways associated with SARS-CoV-2  289 

To determine in more detail the specific impact of miR-2392 gene targets and pathways in 290 

COVID-19 patients, miR-2392 gene targets were retrieved from the miRmap database as 291 

predicted by base pairing with its seed-region (Vejnar and Zdobnov, 2012). This list was further 292 

refined by overlap found in several other miRNA databases including miRmap (Vejnar and 293 

Zdobnov, 2012), miRwalk (Dweep and Gretz, 2015), miRDB (Chen and Wang, 2020), miRnet 294 

(Chang et al., 2020b), and ClueGo (Bindea et al., 2009). We also included RNA-seq analysis of 295 

39 autopsy tissue samples from the heart, lung, kidney, liver, and lymph node of COVID-19-296 

positive patients with high or low viral loads (Park et al., 2021). The refined list of miR-2392 297 

gene targets (consisting of 375 genes) was examined using volcano plots in all samples (Fig. 3A-298 

F).  299 
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To better determine the systemic impact on miR-2392 gene targets in COVID-19, we 300 

performed pathway analysis from the nasopharyngeal swab samples in living donors with and 301 

without COVID-19 using the SARS-CoV-2 viral load as the independent variable (high, 302 

medium, low, other virus). The miR-2392 gene targets are differentially expressed (FDR<0.05) 303 

in at least one comparison of COVID-19-positive patients or other detected virus and were found 304 

to separate into six distinct hierarchical clusters that were identified and annotated utilizing 305 

ShinyGO (Ge et al., 2020) to determine the major pathways altered (Fig. 3G). The majority of 306 

these upregulated miR-2392 targets are involved in immune and inflammatory pathways. The 307 

downregulated miR-2392 targets were involved in mitochondrial function, oxidative stress, cell 308 

cycle, developmental biology, and ubiquitin binding which are pathways recently associated with 309 

the SARS-CoV-2 infection process (Hemmat et al., 2021). This data demonstrates miR-2392 310 

may target several gene pathways related to perpetuating SARS-CoV-2 infection. For the 311 

majority of the tissues (excluding the lymph nodes), higher viral loads are associated with greater 312 

miR-2392 gene targets being regulated. Interestingly, the lymph nodes show an inverse 313 

relationship with viral loads compared to other tissues.  314 

Because miR-2392 was recently shown to directly target the transcription of mitochondrial 315 

DNA genes (Fan et al., 2019), we evaluated the impact on expression of the mitochondrial miR-316 

2392 targets in our datasets. Differentially expressed miR-2392 target mitochondrial genes were 317 

identified using the MitoCarta database (Rath et al., 2021) (Fig. 3H). This revealed 14 genes 318 

harboring miR-2392 seed sequences that were significantly dysregulated in the nasal and heart 319 

samples. In nasal samples, SLC25A28, mitoferrin which mediates mitochondrial iron transport, 320 

was strongly upregulated along with IBA57, which is involved in iron sulfur assembly. The 321 

mitochondrial outer membrane protein import complex subunit TOMM20, cytochrome c oxidase 322 

(complex IV) subunit COX6B1, and mitochondrial transcription factor COT-2 (NR2F2) were 323 

strongly down regulated. In the heart, the folate enzyme MTHFD2L (methylenetetrahydrofolate 324 

dehydrogenase) was up-regulated while all of the other nuclear-coded mitochondrial genes 325 

identified were down regulated. Downregulated heart mitochondrial genes included NDUFS5 326 

(complex I subunit), COX6B1 and COX10 (complex IV structural and assembly subunits), 327 

CKMT1A (mitochondrial creatine kinase), MRPL34 (subunit of the large subunit of the 328 

mitochondrial ribosome), COT-2 (NR2F2), AK4 and MSRB3 (adenylate kinase 4 and 329 

methionine-R-sulfoxide reductase which mitigate oxidative stress), MRS2 (magnesium 330 

transporter) and CLIC4 (chloride channel). The kidney showed mild upregulation of complex I 331 

and single methyl group metabolism, but down regulation of complex IV (COX10), regulatory 332 

factor (COT-2), and iron sulfur center protein (IBA57). Hence, SARS-CoV-2 seems to 333 

downregulate nuclear mitochondrial gene transcription in the more oxidative heart and kidney, as 334 

well as in nasal tissues.  335 

Since inflammation is a key component of COVID-19 infection, we also overlaid the 336 

standard known inflammatory genes determined from Loza et al. (Loza et al., 2007) to the miR-337 

2392 targets (Fig. 3I). The analysis reveals that, at the mRNA level, most of the complement 338 

pathway genes are upregulated in the tissue samples analyzed. These changes could be 339 

compensatory, as proteins encoded by the genes could be downregulated as a function of 340 

traditional miRNA effects. The responses reflect the importance of degrees of inflammation for 341 
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mediation of disease severity in COVID-19 patients and a key modulatory role of miR-2392 in 342 

this context. 343 

Proteomic and transcriptomic analysis on miR-2392 targets on blood from COVID patients 344 

utilizing COVIDome (Sullivan et al., 2021) revealed interesting patterns between RNA and 345 

protein levels for miR-2392 targets (Fig. 3J and 3K). We utilized the miR-2392 gene targets 346 

only determined through miRmap to determine a broader relationship between the proteins and 347 

genes. Several miR-2392 targets in the tissue show a significant transcription increase in 348 

COVID-19-positive samples with small to no changes on the proteomics level: PLK1, CD38, 349 

PYCR1, RNASE1, BIRC5, RRM2, SIGLEC1 (Fig. 3J). Interestingly, all these genes were also 350 

positively regulated for the majority of tissues when considering only miR-2392 gene targets 351 

with miRmap (Figs. S1 and S2). In the blood, the miR-2392 targets CXCL10, STAT1, IFIT3, 352 

and C1QC were positively regulated at both the protein and gene levels. This upregulation was 353 

also observed in all other tissues (Figs. S1 and S2). We explored the correlation between RNA 354 

expression and protein abundance for miR-2392 targets in COVID-19 positive and negative 355 

samples (Fig. 3K). Pearson correlation in both sample types is very close, with a slightly 356 

stronger value in COVID-19 negative samples (negative samples cor=0.2089863, p-value=4e-10, 357 

positive samples cor=0.2053345, p-value=8e-10). Further investigation is needed to understand 358 

if increased levels of miR-2392 could potentially bind genes' mRNAs at a higher rate and 359 

therefore prevent translation to protein or if there are other mechanisms preventing mRNA 360 

translation to protein. 361 

 362 

Overexpression of miR-2392 simulates a phenotype similar to COVID-19 infection 363 

To determine if the upregulation of miR-2392 alone would elicit effects similar to a COVID-364 

19 infection, cells were treated with a miR-2392 mimic. Using RNA-seq data, there were 649 365 

genes with a fold-change greater than ±1.2 and a p-value less than 0.05 (Fig. 4A). A number of 366 

these differentially expressed genes were predicted targets of miR-2392 (Fig. 4B). Of particular 367 

interest are differentially expressed genes in this model that are also dysregulated in SARS-CoV-368 

2 infected cells. We analyzed whole cell proteome data from a human-derived cell culture model 369 

for a SARS-CoV-2 infection profile (Stukalov et al., 2021), and found 10 proteins that were 370 

significantly changed in abundance and were also altered with miR-2392 overexpression: KIF22, 371 

FKBP14, RAD51, AFAP1, ZCCHC17, ZWINT, MAGED1, CENPF, TMEM70, and NFKB2 372 

(Fig. 4C). Viral infection is associated with alterations in protein posttranslational modifications 373 

of cellular proteins, including ubiquitination. This phenomenon can occur by viral or host 374 

directed modifications. We analyzed the ubiquitinome of the human-derived cell culture model 375 

of SARS-CoV-2 infection and observed a number of proteins that were increased or decreased in 376 

normalized ubiquitin abundance and were also dysregulated genes by miR-2392 overexpression. 377 

Furthermore, we found miR-2392 overexpression impacted genes involved with mitochondria, 378 

and inflammation (Fig. 4D-4F).  379 

To determine if there was a direct correlation between miR-2392 overexpression and SARS-380 

CoV-2 infection, comparisons were made using gene expression fold-change values or overlap in 381 

statically significant curated gene sets from canonical pathways determined by our fGSEA 382 

analysis. Using previously published data from Blanco-Melo et al. (Blanco-Melo et al., 2020), 383 

showed there was a statistically significant and positive correlation of the miR-2392 treatment 384 
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compared to both the A549 and Calu-3 cell culture models infected with SARS-CoV-2 (Fig. 4G 385 

and 4H) as well as in lung biopsies post-mortem from two COVID-19 positive patients (Fig. 386 

4H). Using nasal swab samples, a significant and positive correlation was determined between 387 

patients with medium- and low-viral loads compared to non-infected patients (Fig. 4I and 4J). 388 

Further identification of miR-2392 correlation to SARS-CoV-2 infections was made using RNA-389 

seq from multiple tissues (heart, kidney, liver, lymph node, and lung) obtained during autopsies 390 

of COVID-19 patients with high or low viral loads (Fig. 4I-J). There was a positive correlation 391 

to lung and lymph node tissues with miR-2392 expression. Interestingly, there was a significant 392 

and positive correlation to liver tissue when comparing gene fold-change values (Fig. 4I) but not 393 

fGSEA curated biological genesets (Fig. 4J). In contrast, a negative correlation to heart tissue 394 

was observed. 395 

Statistically significant pathways that were enriched due to miR-2392 treatment were 396 

examined using fGSEA (Fig. 4K-O). It was observed that the miR-2392 treatment induced 397 

pathway response that was significantly related to SARS-CoV-2 pathways. One obvious 398 

relationship shows that the Reactome SARS-CoV-2 pathways were significantly activated for the 399 

miR-2392 treated cells compared to the controls (Fig. 4K and 4L). Significant Hallmark 400 

pathways (Fig. 4N) show distinct pathways that have been reported to be associated with 401 

COVID-19 in patients, such as upregulation of hypoxia (Herrmann et al., 2020), glycolysis 402 

(Ardestani and Azizi, 2021), and cell cycle pathways (Su et al., 2020). Interestingly, the KEGG 403 

pathway analysis (Fig. 4M) indicates the overexpression of miR-2392 treated highly upregulated 404 

systemic lupus erythematosus which has been reported to occur in COVID-19 patients and have 405 

shown similar pathologies due to the increase of inflammation (Zamani et al., 2021). 406 

Lastly, we determined the impact of miR-2392 specific targets being downregulated in the 407 

cell lines after miR-2392 overexpression. A regulatory network was built by including the 408 

predicted miR-2392 targets in the microRNA Data Integration Portal (MIRDIP) that were also 409 

downregulated in the overexpression cell model as well as from the recently described consensus 410 

transcriptional regulatory networks in coronavirus infected cells (Ochsner et al., 2020) (Fig. 4P). 411 

The gene enrichment analysis of these putative miR-2392 targets showed the presence of GO-412 

terms related with the RNA metabolism, transcription, ribosome activity and Golgi complex 413 

(Fig. 4Q). 414 

 415 

Circulating miR-2392 and the suppression of other miRNAs in COVID-19 infected patients 416 

To demonstrate the presence of circulating miR-2392 in COVID-19 infected patients, we 417 

quantified the amount of miR-2392 by droplet digital PCR (ddPCR) in the serum, urine and 418 

nasopharyngeal swab samples (Fig. 5). For the serum there were ten COVID-19 positive 419 

intubated patients, ten COVID-19 positive patients (not intubated), and ten negative patients. For 420 

the urine samples there were 15 inpatient COVID-19 positive samples, 15 outpatient COVID-19 421 

positive samples, 10 inpatient COVID-19 negative samples, and 11 COVID-19 negative healthy 422 

donors. Lastly, we quantified nasopharyngeal swab samples from 10 COVID-19 positive patient 423 

samples, 6 common cold coronavirus positive patient samples (229E, HKU1, and OC43), and 6 424 

Respiratory Illness/Coronavirus NL63 positive patient samples. In addition, we also quantified 425 

three other miRNAs which we predicted to be inhibited by COVID-19 infection (Fig. 1A) which 426 

were: miR-1-3p (Fig. S3), miR-155-5p (Fig. S4), and miR-124-3p (Fig. S5).  427 
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We observed a statistically significant increase of miR-2392 in COVID-19 positive patients 428 

from both the serum and urine samples (Fig. 5A). In addition, Receiver Operating Characteristic 429 

(ROC) curve analysis revealed that miR-2392 is significantly associated with SARS-CoV-2 430 

infection in patients (Fig. 5B) in all tissues. Lastly, when dissecting the amounts of miR-2392 431 

with specific conditions associated with infection, we observe that more severely affected 432 

patients (i.e. intubated patients or patients in ICU), had higher presence of miR-2392 (Fig. 5C). 433 

Interestingly, low levels miR-2392 appeared in the nasopharyngeal location with no significant 434 

differences occurring between seasonal coronavirus samples. Since we hypothesize that miR-435 

2392 is a primary initiator for systemic impact of the infection, this might indicate that miR-2392 436 

does not strongly appear until the virus has established its presence in the body.  437 

As mentioned above we also measured the quantity of miR-1-3p (Fig. S3), miR-155-5p (Fig. 438 

S4), and miR-124-3p (Fig. S5) and performed the same analysis. For miR-1-3p we observed 439 

significant suppression in the serum while no significant differences in the urine or 440 

nasopharyngeal samples (Fig. S3). MiR-1-3p is known to be beneficial for cardiovascular 441 

functions, with the inhibition of miR-1-3p leading to heart failure and heart disease (Condorelli 442 

et al., 2010). Similar response was observed for miR-155-5p with significant suppression in the 443 

serum while no significant differences in the urine or nasopharyngeal samples (Fig. S4). For 444 

miR-124-3p, we observed very low amounts (on average < 2 copies/5 ng RNA), for all 445 

conditions, which indicates that miR-124-3p is not circulating for any of the patients for any the 446 

conditions observed (Fig. S5). MiR-124-3p provides as an ideal miRNA negative control 447 

candidate for SARS-COV-2. 448 

 449 

Inhibiting miR-2392: a novel antiviral COVID-19 therapeutic 450 

The link that we found between miR-2392 and COVID-19 infection prompted us to ask 451 

whether we could develop effective antivirals for COVID-19 by inhibiting miR-2392. We used 452 

the Facile Accelerated Specific Therapeutic (FAST) platform to develop an effective antisense-453 

based therapeutic against human miR-2392 (Aunins et al., 2020; Eller et al., 2021), termed 454 

SBCov207, for the treatment of COVID-19 (Fig. 6A). The FAST platform combines the four 455 

essential modules of drug development cycle (design, build, test, and learn) to optimize 456 

therapeutics against any gene and species of interest in less than a week. The anti-miR-2392 457 

FASTmer was evaluated for efficacy and toxicity against a SARS-CoV-2 infection of the human 458 

lung cell line A549 (Fig. 6B-D). Treatment of uninfected A549 cells showed no cytotoxicity up 459 

to 20 µM. The control nonsense FASTmer (SBCoV208) showed no toxicity even up to 40 µM. 460 

Treatment of A549 cells infected with SARS-CoV2 showed drastic improvement in cell viability 461 

with an average of 85% viral inhibition at 10 µM (IC50 of 1.15 ± 0.33 µM). In contrast, the 462 

control nonsense FASTmer showed significantly lower viral suppression (Fig. 6E-G). Human 463 

cell line-based infection models reaffirm that the anti-miR-2392 (SBCov207) is effective in 464 

inhibiting SARS-CoV2, while not exhibiting toxicity at the concentrations tested.  465 

In a separate in vivo model, the anti-miR-2392 FASTmer was evaluated in a Syrian hamster 466 

infection model (Fig. 6H-6J). Initially six hamsters were treated with FASTmers for 72 hours 467 

without infection to observe any changes in animal behavior indicating toxicity. There were no 468 

observed changes in animal behavior indicating a lack of obvious toxicity. Following this study, 469 

30 male hamsters were divided into 5 treatment groups. The infected hamsters were given 105 470 
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plaque forming units (pfu) of WA01/2020 strain of SARS-CoV-2 passaged twice in Vero E6 471 

cells from the original isolate obtained from BEI Resources. The anti-miR-2392 FASTmer 472 

treatment was given by intraperitoneal (IP) injection or intranasal (IN) instillation 24 hours 473 

before viral inoculation or both 24 hours before and 24 hours after viral inoculation. Each 474 

FASTmer dose was at a concentration of 10 µM in a 100 µL volume (approximately 0.13 475 

mg/kg). Half of the hamsters in each group (n = 3) were euthanized and necropsied on day 3 and 476 

7 post-infection respectively. 477 

Loss of body weight of hamsters over the course of the experiment were <10% in all groups 478 

and significantly different for the IN treatment one day before viral inoculation (compared to the 479 

control) and while statistical differences between other groups were not present (Fig. 6H). Virus 480 

titers from oropharyngeal swabs of hamsters receiving IN treatment were significantly lower (p = 481 

0.018) than those from hamsters receiving FASTmers IP or PBS on day 1 post-challenge, but 482 

there were no differences among groups in magnitude of shedding on days 2 and 3 post-483 

challenge (Fig. 6I). Although not statistically different than the control treatment, the data 484 

indicates a downward trend with FASTmer treatment (Fig. 6J). In addition, the total 485 

histopathological score for the IN was lower than the controls although not significant. 486 

 487 

The impact of miR-2392 on diseases, relationship to COVID-19 symptoms, and predicted FDA 488 

drugs to target miR-2392 489 

To predict whether miR-2392 might have a direct relationship to COVID-19 symptoms in the 490 

host, we determined the pathway and disease relevance of miR-2392 using miRnet (Chang et al., 491 

2020b).  Among the diseases predicted to be associated with miR-2392 were a surprising number 492 

of clinical observations present in individuals with COVID-19 infection (Fig. 7A). These include 493 

heart or cardiovascular disease and failure, both known to heavily contribute to morbidity and 494 

mortality in patients with COVID-19 (Nishiga et al., 2020), hyperesthesia (Krajewski et al., 495 

2021), as well as less common COVID-19 symptoms, such as lymphadenopathy and pharyngitis 496 

related to sore throat (Edmonds et al., 2021; Walsh-Messinger et al., 2020), liver dysfunction 497 

(Portincasa et al., 2020), splenomegaly (Malik et al., 2020), CNS (Mahajan and Mason, 2021; 498 

Rodriguez et al., 2020) and kidney failure (Hultstrom et al., 2021).   499 

It is interesting to note that miR-2392 was also predicted to affect diseases that appeared not 500 

to be associated with COVID-19 infection, but literature searches reveal these pathologies do 501 

occur in some COVID-19 patients. For example, azoospermia, which is linked to male infertility, 502 

has been shown to occur in some male patients (Younis et al., 2020). The menstrual cycle in 503 

females have been reported to be deregulated for months after COVID-19 infection (Li et al., 504 

2021). Association with dental damage has also been observed in COVID-19 patients (Sirin and 505 

Ozcelik, 2021), also deafness or hearing loss (Koumpa et al., 2020). We used the tool Kaplan-506 

Meier Plotter (Nagy et al., 2018) to associate miR-2392 expression with pan-cancer patient 507 

survival (Fig. S7). We observed that the high expression of miR-2392 is generally related to poor 508 

prognosis with the majority of cancer types (p-value < 0.05). If miR-2392 is associated with 509 

COVID-19, as we are hypothesizing, and is persistent after the virus clears the host, then the 510 

implications for the potential long-term impact on the millions of people infected with COVID-511 

19 could be devastating. Intriguingly, one of the miR-2392 predicted consequences in the 512 
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immune category is decreased antibody levels in the blood; this might account for the reported 513 

loss of the antibodies overtime (Gudbjartsson et al., 2020; Self et al., 2020). 514 

Using computational prediction models, we also predicted small molecules, including FDA-515 

approved drugs that could inhibit miR-2392 from two different approaches. The first approach 516 

employed a state-of-the-art machine learning method that we recently developed for predicting 517 

missing drug targets (Galeano et al., 2021). We applied this algorithm on an association dataset 518 

between 213 small molecules and 1,519 miRNAs from the SM2miR database (Liu et al., 2013) 519 

(see statistics in Fig. S8). Our model also integrated chemical similarity between small 520 

molecules and sequence similarity between miRNAs. In ten-fold cross-validation experiments, 521 

we achieved an average area under the receiver operating curve of 0.877 when predicting 522 

missing small molecule-miRNA associations (Fig. S9). A list of the top-20 predicted small 523 

molecules for miR-2392 (Fig. 7B) includes Dexamethasone, the first drug known to save lives in 524 

critically ill COVID-19 patients (Ledford, 2020), and Atorvastatin, that has shown similar 525 

protective role in COVID-19 patients (Rossi et al., 2020). The second approach follows ideas 526 

first presented in Sirota et al. (Sirota et al., 2011)and consists on analyzing the genomic signature 527 

of miR-2392 (i.e. significant up and down-regulated genes) and predicting small molecules that 528 

can reverse it. We screened the genomic signature of miR-2392 against the genomic signature of 529 

30,000 small molecules contained in the connectivity map (CMAP) (Lamb et al., 2006). The top-530 

20 small molecules predicted by our approach (Sirota et al., 2011) includes the androgen receptor 531 

antagonist Enzalutamide and the insulin sensitizer Pioglitazone (Carboni et al., 2020) both of 532 

which are in clinical trials for COVID-19 (Fig. 7C; Clinical Trial #NCT04475601 and 533 

NCT04604223). We also found literature evidence for the leukotriene inhibitor ubenimex (Asai 534 

et al., 2020), and the bacterial DNA inhibitor metronidazole (Gharebaghi et al., 2020).  535 

 536 

Discussion 537 

While the potential eradication of the novel coronavirus through worldwide vaccination is 538 

underway, there remains a major need to develop effective interventional strategies to minimize 539 

the damage caused by coronavirus infections. Host-mediated lung inflammation is a driver of 540 

mortality in COVID-19 critically ill patients. Thus, it is logical to focus on therapeutics that may 541 

have immunomodulating properties or disrupt viral replication. Our research uncovers a novel 542 

eight miRNA signature in patients with COVID-19 viral loads compared to those without disease 543 

as predicted from RNA-seq data. The expression of seven miRNAs was decreased (miR-10, 544 

miR-1, miR-34a-5p, miR-30c-5p, miR-29b-3p, miR-124-3p, and miR-155-5p) while a single 545 

miRNA, miR-2392, was significantly increased (Fig. 1). This key miRNA signature was 546 

involved in major cellular and molecular mechanisms that drives the viral-host response.  547 

From previous research, the upregulation of miR-10a-5p, from the miR-10 precursor 548 

miRNA, provides antiviral benefits through the suppression of SDC1 that can act as a defense 549 

mechanism for Porcine hemagglutinating encephalomyelitis viruses (Hu et al., 2020). The 550 

upregulation of miR-124 is shown to inhibit the Japanese encephalitis virus replication (Yang et 551 

al., 2016). Notably, the upregulation of mir-30c-5p and miR-155-5p have been independently 552 

shown to be involved with antiviral functions through immune and inflammatory pathways with 553 

other type of coronaviruses (Dickey et al., 2016; Ma et al., 2018). It was also indicated that 554 

inhibition of miR-34a-5p in the host by SARS-CoV-2 suppresses beneficial antiviral pathways 555 
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that this miRNA regulates. (Bartoszewski et al., 2020; Sacar Demirci and Adan, 2020). miR-1-3p 556 

has previously been identified as an antiviral agent for viral related respiratory diseases and the 557 

downregulation by SARS-CoV-2 is predicted to follow similar pathways for survival in the host 558 

(Sardar et al., 2020). Examination of patients with COVID-19 showed increased levels of miR-559 

2392 circulating blood (Fig. 5). Interestingly, we show that for both miR-1-3p and miR-155-5p 560 

from serum patient samples were significantly inhibited (Figs. S3 and S4), which is in 561 

agreement with the current viral literature as discussed above. MiR-124-3p was shown to have 562 

no significant changes and barely present for SARS-CoV-2 patients (Fig. S5), indicating the 563 

responses discussed above is potentially specific for Japanese encephalitis virus. 564 

Several studies have measured differential expression of miRNAs in COVID-19 patients and 565 

proposed their use as biomarkers or therapeutics. A post-mortem examination from lung biopsies 566 

in nine COVID-19 patients compared to controls found miR-26a, miR-29b, and miR-34a were 567 

correlated to endothelial dysfunction and inflammatory biomarkers (Centa et al., 2020). In a 568 

separate study performing multi-transcriptome sequencing in red blood cell depleted whole 569 

blood from moderate or server COVID-19 patients four additional miRNAs, miR-146a, miR-21, 570 

miR-142, and miR-15b, were identified as potential biomarkers as well as contributors to disease 571 

pathogenesis (Tang et al., 2020). It has also been suggested to use miRNAs to target the 572 

angiotensin-converting enzyme 2 (ACE2) receptor that facilities endocytosis of viral particles 573 

into the cells to limit virus-induced glomerular injury, cell infection, kidney damage (Mishra et 574 

al., 2020; Nersisyan et al., 2020; Pontecorvi et al., 2020; Sacar Demirci and Adan, 2020; Sardar 575 

et al., 2020; Teodori et al., 2020; Widiasta et al., 2020). While these studies are limited to a 576 

specific tissue, our data that correlates miRNA signatures from multiple tissues (Fig. 3) suggests 577 

miR-2392 is a unique target that is ubiquitously involved in COVID-19 symptoms.  578 

In 2010, miR-2392 was found in a small-RNA deep-sequencing of normal and malignant 579 

human B-cells where it was altered among hundreds of other microRNAs (Jima et al., 2010). 580 

Since then, the majority of publications with miR-2392 are focused on cancer tissues and have 581 

found a potential role for miR-2392 in driving cellular invasion and metastasis through an 582 

epithelial-mesenchymal transition. In 2013, miR-2392 was one of 6 circulating microRNAs 583 

altered in the serum and tissue of patients with cervical squamous cell carcinoma that was used 584 

to predict the occurrence of lymph node metastasis with the potential to assist in clinical staging 585 

(Chen et al., 2013). Higher levels of miR-2392 in gastric cancer was found to be associated with 586 

lower clinical staging and increased patient survival (Li et al., 2017). It was shown that miR-587 

2392 inhibited gastric cell invasion and metastasis by targeting MAML3 and WHSC1 for 588 

degradation that subsequently decreased an epithelial-mesenchymal transition through the loss of 589 

Snail1, Slug, and Twist1 expression. Similarly, miR-2392 and miR-1587 were found to target the 590 

ZEB2 protein, a promoter of the epithelial-mesenchymal transition. A lower expression of these 591 

two miRNAs were found in human keloid tissues that resulted in a loss of inhibition of ZEB2 592 

and subsequent promotion of cellular proliferation and invasion in keloids (Hou et al., 2019). 593 

Inhibition of miR-2392 by the long-non-coding RNA CACNA1G‐AS1 was found to promote 594 

hepatocellular carcinoma through disrupting the degradation of C1orf61, a tumor activator 595 

associated with metastasis and tumor progression (Hu et al., 2013; Yang et al., 2019). Recently, 596 

Fan et al. demonstrated a novel role for miR-2392 in the regulation of chemoresistance in tongue 597 

squamous cell carcinoma by partial inhibition of mitochondrial DNA (mtDNA) transcription 598 
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through direct miRNA-mtDNA base pairing which resulted in reprogramming tumor cell 599 

metabolism (Fan et al., 2019). These reports for miR-2392 establish the significant impact this 600 

single miRNA may have in on cellular activity. Particularly relevant to this study was the altered 601 

expression of miR-2392 found in Hepatitis B viral infections. Its expression was found to be 602 

increased by more than 2-fold in extracellular vesicles secreted from human hepatocytes infected 603 

with the Hepatitis B virus (Enomoto et al., 2017). While miR-2392 has a reported impact on 604 

tumor cell biology, our study expands the valuable therapeutic potential of targeting miR-2392 to 605 

subsequently decrease SARS-CoV-2 viral infections (Fig. 6). These results warrant further 606 

exploration of the mechanistic underpinnings for the role of miR-2392 in driving viral infection. 607 

One therapeutic insight deduced from miR-2392 interactions is the importance of the 608 

mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic pathways in COVID-19, 609 

dramatically highlighted in BALF samples reported in Fig. 1C.  In a study of tongue squamous 610 

cell carcinoma (Fan et al., 2019) it was reported that miR-2392 enters the mitochondrion where it 611 

binds to Ago2 and then binds to nucleotides 4379 to 4401 in the mtDNA heavy (H) strand. This 612 

binding site is within the MT-TQ (tRNA glutamine) gene, which encompasses nucleotides 613 

m.4329-4400. MT-TQ is part of a large polycistronic transcript transcribed from the H-strand 614 

promoter.  This transcript encompasses 12 of the mtDNA H strand polypeptide genes punctuated 615 

by tRNAs. Cleavage of the tRNAs releases the mRNAs.  Up-stream of TM-TQ are the 12S and 616 

16S rRNAs and the complex I gene MT-ND1 gene.  Downstream of MT-TQ is MT-ND2, MT-617 

CO1, MT-CO2, MT-ATP6/8, MT-ND3, MT-ND4L, MT-ND4, MT-ND5, and MT-CYB (Lott et 618 

al., 2013; Wallace, 2018). Strikingly, the down-regulated mtDNA genes from the BALFS are the 619 

complex IV (cytochrome c oxidase) genes MT-CO1 and MT-CO2, the complex III (the bc1 620 

complex) gene (MT-CYB), and the complex I genes (MT-ND2, MT-ND4, and MT-ND5) (Fig. 621 

1C right side arc). Since the miR-2392 inhibition of mtDNA OXPHOS genes shown for the 622 

BALF samples (Fig. 1C) is also reflected in the miR-2392 down-regulation of the nuclear DNA 623 

coded mitochondrial transcripts of the complex I and IV genes and the iron-sulfur and heme iron 624 

complexes in the nasal, heart, and kidney autopsy samples (Fig. 3D), mitochondrial inhibition by 625 

miR-2392 appears to be the only physiological function that is common across all tissues in 626 

infected individuals.  This suggests that mitochondrial modulation is a central feature of SARS-627 

CoV-2 pathophysiology.  628 

The inhibition of mitochondrial genes by miR-2392 would impair OXPHOS, which would 629 

have the most adverse effects on the high mitochondrial energetic tissues (brain, heart, kidney), 630 

the tissues central to the most severe COVID-19 cases. Inhibition of mitochondrial OXPHOS 631 

genes would increase mitochondrial reactive oxygen species (mROS) production, and induce 632 

glycolysis to compensate for the energy deficit (see top of Fig 1C). Mitochondrial function is 633 

regulated by the Sirtuins (Carrico et al., 2018), mitochondrial decline is associated with 634 

senescence, and mROS oxidation of mtDNA is linked to activation of the inflammasome and 635 

thus NFκB (West et al., 2015; West and Shadel, 2017; Zhong et al., 2018), all of which are 636 

modulated around miR-2392 (Fig. 1C). Thus, SARS-CoV-2 induction of miR-2392 (Fig. 5) and 637 

its associated inhibition of mtDNA and nuclear DNA OXPHOS genes (Fig. 3 and S1) could 638 

explain many of the metabolic disturbances of COVID-19. Conversely, antagonism of miR-2392 639 

function should ameliorate the inhibition of OXPHOS and may explain the therapeutic benefit of 640 

the anti-miR-2392 FASTmers.  641 
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Using miRNAs from serum as a biomarker was first established in patients for the 642 

examination of diffuse large B-cell lymphoma (Lawrie et al., 2008). The use of miRNAs as a 643 

diagnostic biomarker has several advantages. Circulating miRNAs are readily obtained through a 644 

minimally invasive blood draw and are remarkably resistant to degradation in the plasma and 645 

serum (Mitchell et al., 2008). Measuring differentially expressed miRNAs may also provide a 646 

means to detect asymptomatic individuals as previously demonstrated in another viral infection 647 

(Hou et al., 2017). However, potential confounding diseases that may influence the expression of 648 

multiple miRNAs requires the further evaluation of the targets found in this study (Fig. 5).  649 

Recent advances in RNA chemistry and delivery systems enabled the first miRNA-based 650 

agents to enter into clinical trials several years ago (Rupaimoole and Slack, 2017). It was 651 

discovered that miR-122 increased the stability and replication of the Hepatitis C virus (HCV) 652 

through binding to the 5’ end of the non-coding region that prevented degradation by the Xrn1 653 

exoribonuclease (Jopling et al., 2005; Thibault et al., 2015). In a phase I clinical trial, a 15-654 

nucleotide phosphorothioate DNA–locked nucleic acid anti-miRNA that is designed to inhibit 655 

miR-122 was first used and demonstrated no adverse reactions. In a subsequent phase IIa trial of 656 

36 patients, there was a significant dose-dependent decrease in HCV load, one patient reported a 657 

grade 3 adverse event (thrombocytopenia), and only a small set of patients experienced viral 658 

rebound that may be linked to mutations of the HCV viral RNA (Janssen et al., 2013; Ottosen et 659 

al., 2015). A separate clinical trial with a N-acetyl-Dgalactosamine (GalNAc)-conjugated anti-660 

miRNA targeting miR‐122 and antiviral agents (ledipasvir and sofosbuvir) was successful in 661 

reducing viral loads in all treated patients within 4 weeks of treatment as well as sustained viral 662 

response in three patients after 76 weeks of follow-up (van der Ree et al., 2017), however 663 

subsequent treatments have been suspended due to two cases of severe jaundice. These clinical 664 

trials have demonstrated the promising potential of using anti-miRNAs to significantly reduce 665 

viral infection with limited adverse effects and the similarities with miR-2392 with SARS-CoV-2 666 

warrant further investigations to push to clinical trials.   667 

Presently, there remains no specific treatment option for patients presenting with severe 668 

COVID-19 disease. While vaccines provide a promising avenue towards preventing the 669 

development of these symptoms as well as curbing the infection rate, there remains an urgency to 670 

successfully develop and implement therapeutic agents to reduce severe consequences from 671 

infection and subsequent patient mortality. As the testing of antibody-based or drug targeted 672 

therapies are currently underway, the added utility of miRNAs represents a novel category of 673 

therapeutic agents that have previously shown endogenous activity to alter viral infection.  674 
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Figure Legends 711 

 712 

Figure 1. Key miRNA signature as predicted from Bronchial Alveolar Lavage Fluid 713 

(BALF) RNA-seq data in patients with COVID-19. A) Predicted upstream regulators 714 

determined through Ingenuity Pathway Analysis (IPA) consistent with the transcriptional 715 

response from differentially expressed genes (FDR<0.05; outer ring). Eight miRNAs were 716 

among the key regulators in response to COVID-19 (inner ring). B) Major biological responses 717 

resulting from dysregulation of this eight miRNA signature drive immune- and inflammatory-718 

related pathways as well as mitochondrial dysfunction determined through IPA. C) Pathway 719 

regulation by miR-2392 from BALF RNA-seq data determined through IPA.  720 

 721 

Figure 2. Cross-species and viral integration of miR-2392.  A) The conservation of miR-2392 722 

across species determined by UCSC Genome Browser. The boxes (■) represent aligning and 723 

conserved sequence regions. Double horizontal line (=) represents both the genome and query 724 

have unalignable sequence between regions of aligned sequence, a double-sided insertion. Single 725 

lines (-) indicate gaps that are largely due to a deletion in the genome of the first species or an 726 

insertion in the genome of the second species. B) The expression of MEG3, the miR-2392 host 727 

gene, in different tissues from healthy patients. C) Potential binding sites of miR-2392 visualized 728 

across 300 windows of 100bp length in SARS-CoV-2 genomes (NC045512.2 reference, and 729 

representative genomes for variants and lineages of concern from GISAID). The score in each 730 
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window is the average of miRanda scores for hits within that 100bp window. Three top hits are 731 

shown explicitly at the bottom of the plot. 732 

 733 

Figure 3. Gene targets of miR-2392 in COVID-19 patients as well as mitochondrial and 734 

inflammatory genes. Volcano plots showing the differential gene expression analysis from A) 735 

nasopharyngeal swab and autopsy COVID-19 patient tissues from the B) heart, C) kidney, D) 736 

liver, E) lung, and F) lymph node from RNA-seq datasets separated by viral load. G) Differential 737 

gene expression analysis for all miR-2392 gene targets significantly expressed in nasopharyngeal 738 

swab and autopsy COVID-19 patient tissues. The heatmaps display the t-score statistics for 739 

comparing viral load vs negative patient sample for all samples. Main gene clusters were 740 

determined through k-mean clustering. Six main gene clusters were determined and ShinyGO 741 

(Ge et al., 2020) was utilized to determine the pathways for each cluster which are displayed on 742 

the top panel of the heatmap. miR-2392 gene targets in for H) mitochondrial specific genes or I) 743 

inflammatory genes are displayed. Differentially expressed genes are shown with at least one 744 

comparison demonstrating a significant adjusted p-value (FDR<0.05) when comparing COVID-745 

19 patients (high, medium or low viral loads) to non-infected control patients (none). A heatmap 746 

for the miR-2392 mitochondrial gene targets from the full list of targets determined only from 747 

miRmap is available in Fig. S1. A heatmap for the miR-2392 inflammatory gene targets from the 748 

full list of targets determined only from miRmap is available in Fig. S2. J) Scatter plot of log2-749 

transformed Fold Changes in RNAs and proteins for miR-2392 targets. The chart shows a set of 750 

genes differentially expressed at the RNA level. Student's t-test, RNA p-value<= 0.05, no 751 

limitation on protein p-value. K) Scatter plot of log2 transformed medians in RNAs and proteins. 752 

The orange color represents COVID-19 positive samples, grey - COVID-19 negative samples. 753 

Student's t-test is used in Fold Change calculations. The size and the opacity of the point 754 

represent log2-transformed Fold Change at the RNA level. The shape of the point represents 755 

Fold Change direction: circle - positive, triangle - negative. Pearson correlation for COVID-19 756 

positive samples displayed in orange, for COVID-19 negative samples - in grey. 757 

 758 

Figure 4. Increased miR-2392 expression in vitro mimics a COVID-19 disease phenotype.  759 

A-F) Volcano plots for RNA-seq results in cells overexpressing miR-2392. G-J) Correlation plot 760 

of RNA-seq between miR-2392 overexpression and related SARS-CoV-2 datasets. The circle 761 

size is proportional to the correlation coefficient. Statistical significance was determined using a 762 

two-tailed Student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001. K-O) Dot plots for statistically 763 

significant gene sets determined by fGSEA. NES, nominal enrichment score. P)  and Q) 764 

Predicted miR-2392 targets by the MIRDIP algorithm that are downregulated in the 765 

overexpression experiments. The putative miR-2392 mRNA targets belonging to the consensus 766 

transcriptomic networks observed in SARS-CoV-2, MERS and Influenza infections of different 767 

human cells are represented in a Venn diagram in the upper part of the panel P. 768 

 769 

Figure 5. Circulating miR-2392 with COVID-19 patients compared to COVID-19 negative 770 

patients. Droplet digital PCR (ddPCR) with specific primer for miR-2392 was performed on 771 

serum, urine, and nasopharyngeal swab samples (including other seasonal coronavirus samples) 772 

from COVID-19 positive and negative patients. The miRNA concentration is reported as 773 
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copies/5ng RNA. A) The levels of miRNA-2392 in all tissues from patients grouped as SARS-774 

CoV-2 positive (SARS-nCoV-2) or negative (neg). Unadjusted t-tests comparing the SARS-775 

CoV-2 positive to neg for each tissue are provided and also adjusted statistics comparing the 776 

groups with a mixed model corrected for age and sex is provided.  B) Receiver Operating 777 

Characteristic (ROC) curve is provided for miR-2392 for each tissue comparing SARS-CoV-2 778 

positive to negative patients. C) Comparing specific categories within each tissue type between 779 

COVID-19 positive and negative patients. N = COVID-19 Negative, P = COVID-19 positive, 780 

Pint = intubated patients, outp = outpatient, ICU = Intensive care unit/inpatient, Cold = 781 

Coronaviruses related to the common cold, NL63 = NL63 coronavirus, and CoV-2 = SARS-782 

CoV-2. For all plots * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. We also quantified three 783 

other miRNAs with same patient samples as comparison which were miR-1-3p (Fig. S3), miR-784 

155-5p (Fig. S4), and miR-124-3p (Fig. S5). 785 

 786 

Figure 6. Anti-miR-2393 therapeutic mitigation of SARS-CoV-2 infection with in vitro and 787 

in vivo models. A) Schematic of the design for the miR-2392 inhibitor with the FASTmer 788 

platform, the synthesis and formulation of the inhibitor, and the experimental models utilized for 789 

testing the inhibitor. B) – D) Anti-miR-2392 FASTmer inhibitor applied to A549 human cells 790 

infected with SARS-CoV-2 and tested for viral viability and cytotoxicity. Viral viability is 791 

inhibited by 100% with near 0% cytotoxicity. E) – G) Nonsense FASTmer inhibitor applied to 792 

A549 human cells infected with SARS-CoV-2 and tested for viral viability and cytotoxicity. 793 

Viral viability is inhibited by 50% with near 0% cytotoxicity. H) – J) Toxicity and efficacy of 794 

anti-miR-2392 FASTmer inhibitor in an in vivo infection hamster model. There were six 795 

treatments groups:  SBCov207 by IP injection 24 hours prior to viral inoculation (IP Day -1), 796 

SBCov207 by IP injection 24 hours prior to viral inoculation and 24 hours post-viral challenge 797 

(IP Day -1, +1), SBCov207 by IN injection 24 hours prior viral inoculation (IN Day -1), 798 

SBCov207 by IN injection 24 hours prior viral inoculation and 24 hours post-viral challenge (IN 799 

Day -1, +1), and 100ul of PBS as a control treatment 24 hours prior and post-viral challenge 800 

through IN instillation (PBS IN Day -1, +1). H) Weights per day for each of the 5 groups pooled 801 

(n = 6 for days 1 – 3 and n = 3 for days 4 -7), and the maximum percent weight loss, observing 802 

for the two different endpoints. I) SARS-CoV-2 assayed by plaque assay on Vero E6 cells from 803 

oropharyngeal swabs collected on days 1, 2 and 3.  N=6 for each treatment group. J) 804 

Histopathological total score for lung tissues at day 3; anti-miR-2392 treatments have lower 805 

scores than the PBS control. Intranasal (IN), intraperitoneal (IP). 806 

 807 

Figure 7. Predicted impact of miR-2392 on human disease and the top-20 drug compounds 808 

predicted to affect miR-2392 expression through machine learning approach. A) Dot plot of 809 

diseases associated with miR-2392, as predicted from miR-2392 gene targets by miRnet. The 810 

diseases were manually curated to emphasize specific diseases and tissues. The values are plotted 811 

according to p-value, and the size of each dot represents the number of downstream gene targets 812 

for miR-2392 associated with each disease prediction. The specific cancer relationship to miR-813 

2392 is highlighted in Fig. S7, relating miR-2392 expression with patient survival in a pan-814 

cancer analysis. B) Barplot of scores using our matrix completion model to predict small 815 

molecules that affect miRNA expression. Higher scores indicate more predicted associations. C) 816 
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Barplot of the normalized connectivity map (CMAP) scores. We used transcripts induced by 817 

miR-2392 overrepresented genes to query CMAP. Higher negative scores reflect a greater 818 

reversal of the miR-2392 transcriptomic signature. Further details on model statistics and 819 

performance are found in Figs. S8 – S10. 820 

 821 

Supplemental Figures and Material 822 

 823 

The UNC COVID-19 Pathobiology Consortium is comprised of: 824 
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Lovell1, Colleen Rice5, Olivia Mitchem1, Dominique Burgess1, Jessica Suggs1, Jordan Jacobs3 827 

 828 
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2Department of Microbiology & Immunology, University of North Carolina School of Medicine, 831 
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3Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, 833 
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4Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, 835 
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5Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, 837 

University of North Carolina, Chapel Hill, NC 27599, USA 838 

6Division of Infectious Disease, School of Medicine, University of North Carolina, Chapel Hill, 839 

NC, 27599, USA 840 

 841 

Figure S1. Mitochondrial gene targets of miR-2392 and regulated pathways. Related to 842 

Figure 3. Differential gene expression analysis for all miR-2392 mitochondrial gene targets 843 

significantly expressed in nasopharyngeal swab and autopsy COVID-19 patient tissues. The 844 

heatmaps display the t-score statistics for comparing viral load vs negative patient sample for all 845 

samples. Main gene clusters were determined through k-mean clustering. Nine main gene 846 

clusters were determined and ShinyGO (Ge et al., 2020) was utilized to determine the pathways 847 

for each cluster which are displayed on the top panel of the heatmap. Differentially expressed 848 

genes are shown with at least one comparison demonstrating a significant adjusted p-value 849 

(FDR<0.05) when comparing COVID-19 patients (high, medium or low viral loads) to non-850 

infected control patients (none). Mir-2392 gene targets only determined from miRmap. 851 

 852 

Figure S2. Inflammatory gene targets of miR-2392 and regulated pathways. Related to 853 

Figure 3. Differential gene expression analysis for all miR-2392 inflammatory gene targets 854 

significantly expressed in nasopharyngeal swab and autopsy COVID-19 patient tissues. The 855 

heatmaps display the t-score statistics for comparing viral load vs negative patient sample for all 856 

samples. Main gene clusters were determined through k-mean clustering. Eight main gene 857 

clusters were determined and ShinyGO (Ge et al., 2020) was utilized to determine the pathways 858 

for each cluster which are displayed on the top panel of the heatmap. Differentially expressed 859 
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genes are shown with at least one comparison demonstrating a significant adjusted p-value 860 

(FDR<0.05) when comparing COVID-19 patients (high, medium or low viral loads) to non-861 

infected control patients (none). Mir-2392 gene targets only determined from miRmap. 862 

 863 

Figure S3. Circulating miR-1-3p with COVID-19 patients compared to COVID-19 negative 864 

patients. Related to Figure 5. Droplet digital PCR (ddPCR) with specific primer for miR-1-3p 865 

was performed on serum, urine, and nasopharyngeal swab samples (including other seasonal 866 

coronavirus samples) from COVID-19 positive and negative patients. The miRNA concentration 867 

are reported as copies/5ng RNA. A) The levels of miRNA-2392 in all tissues from patients 868 

grouped as SARS-CoV-2 positive (SARS-nCoV-2) or negative (neg). Unadjusted t-tests 869 

comparing the SARS-CoV-2 positive to neg for each tissue are provided and also adjusted 870 

statistics comparing the groups with a mixed model corrected for age and sex is provided.  B) 871 

Receiver Operating Characteristic (ROC) curve is provided for miR-1-3p for each tissue 872 

comparing SARS-CoV-2 positive to negative patients. C) Comparing specific categories within 873 

each tissue type between COVID-19 positive and negative patients. N = COVID-19 Negative, P 874 

= COVID-19 positive, Pint = intubated patients, outp = outpatient, ICU = Intensive care 875 

unit/inpatient, Cold = Coronaviruses related to the common cold, NL63 = NL63 coronavirus, and 876 

CoV-2 = SARS-CoV-2. For all plots * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.  877 

 878 

Figure S4. Circulating miR-155-5p with COVID-19 patients compared to COVID-19 879 

negative patients. Related to Figure 5. Droplet digital PCR (ddPCR) with specific primer for 880 

miR-155-5p was performed on serum, urine, and nasopharyngeal swab samples (including other 881 

seasonal coronavirus samples) from COVID-19 positive and negative patients. The miRNA 882 

concentration are reported as copies/5ng RNA. A) The levels of miRNA-2392 in all tissues from 883 

patients grouped as SARS-CoV-2 positive (SARS-nCoV-2) or negative (neg). Unadjusted t-tests 884 

comparing the SARS-CoV-2 positive to neg for each tissue are provided and also adjusted 885 

statistics comparing the groups with a mixed model corrected for age and sex is provided.  B) 886 

Receiver Operating Characteristic (ROC) curve is provided for miR-155-5p for each tissue 887 

comparing SARS-CoV-2 positive to negative patients. C) Comparing specific categories within 888 

each tissue type between COVID-19 positive and negative patients. N = COVID-19 Negative, P 889 

= COVID-19 positive, Pint = intubated patients, outp = outpatient, ICU = Intensive care 890 

unit/inpatient, Cold = Coronaviruses related to the common cold, NL63 = NL63 coronavirus, and 891 

CoV-2 = SARS-CoV-2. For all plots * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.  892 

 893 

Figure S5. Circulating miR-124-3p with COVID-19 patients compared to COVID-19 894 

negative patients. Related to Figure 5. Droplet digital PCR (ddPCR) with specific primer for 895 

miR-124-3p was performed on serum, urine, and nasopharyngeal swab samples (including other 896 

seasonal coronavirus samples) from COVID-19 positive and negative patients. The miRNA 897 

concentration are reported as copies/5ng RNA. For miR-124-3p, the copies/5ng were either equal 898 

to 0 or at extremely low levels close to 0 copies/5ng. To try to determine any statistical 899 

differences we categorized the groups as ND = Not Determined which are all 0 values or D = 900 

Determined which are values > 0 for both N = negative (open symbols) and P = COVID-19 901 

positive patients samples (closed symbols). The number of patients for each column is shown 902 
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above the points. No significant differences were observed for any of the sample for miR-124-903 

3p. 904 

 905 

Figure S6. miR-2392 expression pan-cancer survival analysis. Related to Figure 7. Kaplan 906 

Meier patient survival plots for miR-2392 expression in a pan-cancer analysis was determined 907 

utilizing The Kaplan Meier plotter (Nagy et al., 2021). The plots were separated with the top row 908 

being cancers which patients had significantly poor survival with high expression of miR-2392, 909 

the middle row being cancers which patients had poor survival (but not significant) with high 910 

expression of miR-2392, and the bottom row being cancers which patients had significantly 911 

better survival with high expression of miR-2392. 912 

 913 

Figure S7. Small molecules-miRNA dataset statistics Related to Figure 7. (Left) Number of 914 

small molecules associated to miRNAs. (Right) Number of miRNAs associated to small 915 

molecules.  916 

 917 

Figure S8. Performance of our method at predicting missing small molecule-miRNA 918 

interactions. Related to Figure 7. (Top) The mean value of the Receiver Operating Curve 919 

(ROC) is shown for a ten-fold cross-validation experiment (dark blue). 95% confidence interval 920 

is also shown (light blue). (Bottom) The mean value of the Precision-Recall Curve (PRC) is 921 

shown for a ten-fold cross-validation experiment (dark salmon). 95% confidence interval is also 922 

shown (light salmon). 923 

 924 

Figure S9. Performance of our method at predicting missing small molecule-miRNA 925 

interactions when controlling for data imbalance. Related to Figure 7. (Top) Area Under the 926 

Receiver Operating Curve (AUROC) was obtained in a ten-fold cross-validation experiment for 927 

varying values of the negative to positive label ratio in the test set. (Bottom) Area Under the 928 

Precision-Recall Curve (AUROC) was obtained in a ten-fold cross-validation experiment for 929 

varying values of the negative to positive label ratio in the test set. 930 

 931 

Table S1. Annealing temperatures for miRNA primers, related to methods and Figure 5.  932 

Temperatures used for droplet digital PCR to quantify each miRNA target. 933 

 934 

STAR�Methods 935 

 936 

RESOURCE AVAILABILITY 937 

Lead Contact 938 

Further information and requests for resources and reagents should be directed to and will be 939 

fulfilled by the Lead Contact, Afshin Beheshti (afshin.beheshti@nasa.gov). 940 

 941 

Materials Availability 942 

This study did not generate new unique reagents.  943 

 944 

Data and Code Availability 945 
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The published article includes all datasets generated and analyzed during this study. 946 

Processed bulk RNA-seq data is available online (https://covidgenes.weill.cornell.edu/). RNA-947 

Seq alignment script for BALF samples and SHSY-5Y cells studies are attached. Limma script 948 

for SHSY5Y studies is attached.   949 

 950 

 951 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 952 

 953 

Human serum and nasopharyngeal swab sample collection for ddPCR 954 

All plasma and nasal swab samples from those with COVID-19 infection, seasonal 955 

coronavirus infection, and controls were collected from inpatients at the University of Maryland 956 

Medical Center, in Baltimore, USA, between March and May of 2020. Sample collection 957 

obtained through informed consent waiver, which was approved by the University of Maryland, 958 

Baltimore IRB. 959 

For serum samples, N=10 samples from COVID-19 intubated patients, COVID-19 960 

outpatients, and COVID-19 negative patients were obtained. An equal distribution of N=5 males 961 

and females were used for each group. Also, an equal age distribution of patients from 27 to 85 962 

years old was utilized for each group.  963 

For the nasopharyngeal samples the following patient samples were obtained: N=10 SARS-964 

CoV-2 positive patients, N=6 common cold coronavirus samples, and N=6 Coronavirus NL63 965 

samples. For the common cold coronavirus samples the breakdown was the following for the 966 

specific viruses: N=2 Coronavirus 229E, Coronavirus HKU1, and N=2 Coronavirus OC43. 967 

 968 

Human nasopharyngeal swab sample collection for RNA-seq analysis 969 

Patient specimens were processed as described in Butler et al., 2020 (Butler et al., 2021). 970 

Briefly, nasopharyngeal swabs were collected using the BD Universal Viral Transport Media 971 

system (Becton, Dickinson and Company, Franklin Lakes, NJ) from symptomatic patients. Total 972 

Nucleic Acid (TNA) was extracted from using automated nucleic acid extraction on the 973 

QIAsymphony and the DSP Virus/Pathogen Mini Kit (Qiagen). 974 

 975 

Human autopsy tissue collection for RNA-seq analysis 976 

The full methods of the patient sample collection from the autopsy patients are currently 977 

available in the Park et al. (Park et al., 2021). All autopsies are performed with consent of next of 978 

kin and permission for retention and research use of tissue. Autopsies were performed in a 979 

negative pressure room with protective equipment including N-95 masks; brain and bone were 980 

not obtained for safety reasons. All fresh tissues were procured prior to fixation and directly into 981 

Trizol for downstream RNA extraction. Tissues were collected from lung, liver, lymph nodes, 982 

kidney, and the heart as consent permitted. For GeoMx, RNAscope, trichrome and histology 983 

tissue sections were fixed in 10% neutral buffered formalin for 48 hours before processing and 984 

sectioning. These cases had a post-mortem interval of less than 48 hours. For bulk RNA-seq 985 

tissues, post-mortem intervals ranged from less than 24 hours to 72 hours (with 2 exceptions - 986 

one at 4 and one at 7 days - but passing RNA quality metrics) with an average of 2.5 days. All 987 

deceased patient remains were refrigerated at 4ºC prior to autopsy performance. 988 
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 989 

Human urine sample collection 990 

Urine was collected from patients and volunteers at the University of North Carolina at 991 

Chapel Hill. All patients provided informed consent prior to participation in IRB-approved re-992 

search protocols (UNC IRB: 20-0822 [RHS] and 20-0792 [NMB]). Mid-stream urine of outpa-993 

tients and non-critically ill patients was collected by the clean catch method. Urine of intubated 994 

critically ill patients was collected from a port on the Foley catheter. Urine was aliquoted into 5 995 

ml aliquots and stored at -80°C.  996 

Urine aliquots were thawed, and microRNA was extracted from 1 ml per sample using 997 

Norgen Urine microRNA Purification Kit (Cat. 29000). Microalbumin and creatinine levels were 998 

assessed using Microalbumin 2-1 Combo strips (CLIAwaived Inc, cat# URS-2M). 999 

 1000 

Cell lines used for miR-2392 mimic experiments 1001 

Human SH-SY5Y cells were obtained from the ATCC and grown in Minimum Essential 1002 

Medium (Gibco) / 10% FBS (Invitrogen) /1% MEM Non Essential Amino Acids (Gibco) / 1003 

1%GlutaMAX -l (Gibco). Cells were plated in 3.5 cm dishes and incubated with miR-2392 or 1004 

control lentivirus particles (MOI 1) for 48h.  Cells were harvested and lysed in Trizol reagent and 1005 

RNA was extracted following manufacturers protocol (Invitrogen).  1006 

 1007 

COVID-19 hamster model 1008 

Male Syrian hamsters 6-8 weeks old were utilized for efficacy studies with anti-miR-2392 1009 

FASTmer treatment. Three hamsters were used for each experimental group for a total of 30 1010 

hamsters with 10 treatment groups. Hamsters were infected with 105 pfu of SARS-CoV-2. There 1011 

were 5 major treatment groups (N=6 per group) with two endpoints at day 3 or 7 post-viral 1012 

challenge (N=3 per endpoint). Groups 1 and 3 were given the FASTmer treatment by IP injection 1013 

while groups 2 and 4 were given by IN instillation under ketamine-xylazine anesthesia. Groups 1 1014 

and 2 were given single FASTmer treatment 24 hours before viral challenge. Groups 3 and 4 1015 

were given two doses of FASTmers at 24 hours before and 24 hours after viral challenge. The 1016 

control group 5 was treated with PBS 24 hours prior to and 24 hours following viral challenge by 1017 

IN instillation.  1018 

Treatment efficacy was assessed in multiple ways: 1) Change in daily body weight, 2) 1019 

oropharyngeal shedding of virus on days 1-3 from all groups post-challenge assayed by plaque 1020 

assay on Vero E6 cells (PFU/swab), 3) tissue burden of the virus at necropsy on day 3 from 2 1021 

lung tubes and turbinates assayed by plaque assay (PFU/100mg), and 4) histopathologic scoring 1022 

on lungs and turbinates from all hamsters; the histopathological score for individual tissues, 1023 

inflammation score from the interstitial lung inflammation, and total histopathological 1024 

scores/assessment was made.  1025 

The dose of anti-miR-2392 that was used was calculated to raise blood levels to 10 μM if it 1026 

were given intravenously. The molecular weight of anti-miR-2392 is 15,804. Assuming that 1027 

hamsters weigh 120 grams and have 8% of body weight as blood, blood volume was 1028 

approximately 0.01 liters.  The dose per hamster was 1.58 mg in a 100 μl volume from an anti-1029 

miR-2392 solution.   1030 

 1031 
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In vitro viral screening model 1032 

A549-ACE2 cells, gifted by Dr. Brad Rosenberg (MSSM), were maintained in DMEM 1033 

(Quality Biological, Gaithersburg, MD; #112-014-101) + 10% Fetal Bovine Serum (Gibco; 1034 

#26140079) + 1% Penicillin-Streptomycin (Gemini Bio; #400-109). The day prior to treatment, 1035 

5,000 A549-ACE2 cells were plated per well in 96-well plates. MiR-2932 was diluted in 1036 

duplicate in A549-ACE2 media to a starting concentration of 20μM (Run 1) or 22μM (Runs 2 1037 

and 3), and then an 8-point 1:2 dilution series was prepared. Media was removed from cells and 1038 

90μL of each dilution was transferred to the cells. The plates were incubated for 2 hours at 37°C 1039 

before being infected with an M.O.I. of 0.1 SARS-CoV-2 WA-1 (provided by Dr. Natalie 1040 

Thornburg at the Centers for Disease Control and Prevention). Parallel plates were also run and 1041 

left uninfected to monitor toxicity. Since Runs 2 and 3 were run simultaneously, a single toxicity 1042 

plate was run for both. All plates were incubated at 37°C for 72 hours before being analyzed via 1043 

Cell Titer Glo (Promega, Madison, WI; #G7573). Cell viability was compared to uninfected, 1044 

untreated cells and infected, untreated cells. 1045 

 1046 

METHOD DETAILS 1047 

 1048 

miRNA extraction for Droplet Digital PCR (ddPCR) 1049 

MiRNA extractions from serum were carried out using the Qiagen miRNeasy serum/plasma 1050 

kit (#217184). MiRNA extractions from urine samples were carried out using Norgen urine 1051 

microRNA Purification Kit (Cat. 29000, Norgen Bioteck Corp. Thorold, ON, Canada). 1052 

Quantitation of miRNA samples was done using a NanoDrop 2000 Spectrophotometer 1053 

(ThermoFisher Scientific).  1054 

 1055 

cDNA generation and ddPCR 1056 

First, cDNA was synthesized from miRNA samples using the Qiagen miRCURY LNA RT 1057 

Kit (Cat. 339340) using a concentration of 5ng/μl for the miRNA per sample. Next, samples 1058 

were mixed with a 1:20 dilution of the generated cDNA with the BioRad QX200 ddPCR 1059 

Evagreen Supermix (Cat. 1864034) and the appropriate miRNA primers from miRCURY LNA 1060 

miRNA PCR Assays (Qiagen). BioRad QX200 Automated Droplet Generator (Cat. 1864101) 1061 

was used to create emulsion droplets. With the C1000 Touch™ Thermal Cycler with 96–Deep 1062 

Well Reaction Module (Bio-Rad) the following PCR reaction was used for all the primers: 1 1063 

cycle 95°C for 5 min, 40 cycles of 95°C for 30 sec and 58°C for 1 min (the annealing 1064 

temperature can change depending on the primer), 1 cycle of 4°C for 5 min, and 1 cycle of 90°C 1065 

for 5 min. Not all miRNA primers sets for ddPCR will have the same annealing temperature, so 1066 

optimizing the annealing temperature is required for each primer set. Their respective annealing 1067 

temperatures are found in Table S1. Finally, the QX200™ Droplet Digital™ PCR System (Bio-1068 

Rad) quantified the amount of miRNA for each primer set per sample. QuantaSoft software (Bio-1069 

Rad) generated the data for each primer set and sample. The same threshold setting was used for 1070 

all samples per primer set. The concentration (miRNA copies/μl) value generated by QuantaSoft 1071 

was converted to miRNA copies/ng of serum. These values were used for all miRNA analysis. 1072 

For all analysis the miRNA concentrations were log2(x+1) transformed to allow for easy 1073 

comparison between miRNAs and samples. 1074 
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 1075 

Publicly available Bronchial Alveolar Lavage Fluid (BALF) COVID-19 RNA-sequencing data  1076 

Fastq files were downloaded from SRA (NCBI BioProject PRJNA605907 (Shen et al., 2020) 1077 

and NCBI BioProject PRJNA390194 (Ren et al., 2018)). Fastq data files were trimmed using 1078 

TrimGalore v (0.6.4) with a quality cutoff of 30.  Data were then aligned using STAR (v2.7.3) 1079 

two pass mode to the Human reference genome (GRCh38 v99 downloaded 04-27-2020). 1080 

Unaligned data were written to a fastq file, and then realigned to the GRCh38 reference genome 1081 

using Bowtie 2 (v2.3.4.1), and output sam file converted to a bam file using samtools (v1.7). The 1082 

resultant Bam files were merged, sorted, and read groups added using picard tools (v2.21.3) 1083 

(script in supplemental data). 1084 

 1085 

Publicly available RNA-seq data: A549, Calu-3, NHBE, and COVID-19 lung biopsy  1086 

Raw RNA-seq read counts from the publication by Blanco-Melo et al. for the A549, Calu-3, 1087 

and NHBE cell lines as well as post-mortem lung biopsies from two COVID-19 patients were 1088 

downloaded from the Gene Expression Omnibus (series accession GSE147507) (Blanco-Melo et 1089 

al., 2020). 1090 

  1091 

RNA-seq of Nasopharyngeal Swab COVID-19 patient samples 1092 

RNA isolation and library preparation is fully described in Butler, et al. (Butler et al., 2021). 1093 

Briefly, library preparation on the all nasopharyngeal swab samples’ total nucleic acid (TNA) 1094 

were treated with DNAse 1 (Zymo Research, Catalog # E1010). Post-DNAse digested samples 1095 

were then put into the NEBNext rRNA depletion v2 (Human/Mouse/Rat), Ultra II Directional 1096 

RNA (10�ng), and Unique Dual Index Primer Pairs were used following the vendor protocols 1097 

from New England Biolabs. Kits were supplied from a single manufacturer lot. Completed 1098 

libraries were quantified by Qubit or equivalent and run on a Bioanalyzer or equivalent for size 1099 

determination. Libraries were pooled and sent to the WCM Genomics Core or HudsonAlpha for 1100 

final quantification by Qubit fluorometer (ThermoFisher Scientific), TapeStation 2200 (Agilent), 1101 

and qRT-PCR using the Kapa Biosystems Illumina library quantification kit.  1102 

 1103 

RNA-seq of COVID-19 autopsy tissue samples 1104 

RNA isolation and library preparation is fully described in Park, et al. (Park et al., 2021). 1105 

Briefly, autopsy tissues were collected from lung, liver, lymph nodes, kidney, and the heart and 1106 

were placed directly into Trizol, homogenized and then snap frozen in liquid nitrogen. At least 1107 

after 24 hours these tissue samples were then processed via standard protocols to isolate RNA. 1108 

New York Genome Center RNA sequencing libraries were prepared using the KAPA Hyper 1109 

Library Preparation Kit + RiboErase, HMR (Roche) in accordance with manufacturer's 1110 

recommendations. Briefly, 50-200ng of Total RNA were used for ribosomal depletion and 1111 

fragmentation. Depleted RNA underwent first and second strand cDNA synthesis followed by 1112 

adenylation, and ligation of unique dual indexed adapters. Libraries were amplified using 12 1113 

cycles of PCR and cleaned-up by magnetic bead purification. Final libraries were quantified 1114 

using fluorescent-based assays including PicoGreen (Life  Technologies) or Qubit  Fluorometer  1115 

(Invitrogen) and Fragment Analyzer (Advanced Analytics) and sequenced on a NovaSeq 6000 1116 

sequencer (v1 chemistry) with 2x150bp targeting 60M reads per sample. 1117 
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 1118 

miR-2392 mimic experiments in SH-SY5Y cells and RNA-seq 1119 

RNA was dissolved in nuclease free water and concentration determined spectrometrically at 1120 

260nm using a Biotek plate reader (Biotek). 500ng RNA was used as input for a whole 1121 

transcriptome library preparation (ThermoFisher Total RNA).  Libraries were quantified using a 1122 

bioanalyzer chip reader (nanoDNA chips: Aglient Technologies) and diluted to 100 pM final 1123 

concentration.  Barcoded libraries were combined and use to seed a OneTouch bead templating 1124 

reaction (OneTouch2).  Cloned libraries were enriched and loaded on 540 Ion Torrent chips.  1125 

Data were sequenced using the Ion Torrent RNA-seq workflow.  Unaligned Bam files were 1126 

converted to fatsq and aligned to the Grch 38 reference genome using STAR Two pass approach 1127 

(Dobin paper) to create gene count tables as described in Overbery et al. (Overbey et al., 2021) 1128 

(script in supplementary).  1129 

 1130 

Anti-miR-2392 FASTmer inhibitor design and construction 1131 

The FAST (Facile Accelerated Specific Therapeutics) platform was used to design FASTmer 1132 

inhibitors, which are composed of a nanobiohydrd molecule based on antisense peptide nucleic 1133 

acid (PNA) moiety conjugated to nanoparticle for improved delivery and membrane transport. 1134 

The PNA moiety was chosen to be 15 bases long (in order to maximize both solubility and 1135 

specificity), which yielded six potential target sequences within the 20-nucleotide mature human 1136 

miR-2392. These potential targets were screened using FAST for solubility, self-complementing 1137 

sequences, and off-targeting within the human genome (GCF_000001405.26) and SARS-CoV-2 1138 

viral genome (NC_045512). The antisense sequence complementing miR-2392 nucleotides 2 to 1139 

16 (TCTCACCCCCATCCT) was chosen in order to minimize off-targeting while maximizing 1140 

coverage of the miR-2392 seed region. The FASTmer was synthesized (with an N-terminal 1141 

histidine tag and a 2-(2-(2-aminoethoxy)ethoxy)acetic acid linker) on an Apex 396 peptide 1142 

synthesizer (AAPPTec, LLC) with solid-phase Fmoc chemistry. Fmoc-PNA monomers were 1143 

obtained from PolyOrg Inc., with A, C, and G monomers protected with Bhoc groups. Following 1144 

synthesis, the peptides were conjugated with nanoparticles and purified via size-exclusion 1145 

filtration. Conjugation and concentration of the purified solution was monitored through 1146 

measurement of absorbance at 260 nm (for detection of PNA) and 400 nm (for quantification of 1147 

gold nanoparticles). 1148 

 1149 

QUANTIFICATION AND STATISTICAL ANALYSIS 1150 

 1151 

Analysis of BALF RNA-seq data 1152 

Bam files were imported into Partek Genome Studio v7.0, and gene expression values 1153 

quantified vs the Grch38 reference annotation guide (Ensembl v99). Samples with fewer than 2 1154 

million aligned reads were excluded from further analysis.  Genes with fewer than 10 reads in 1155 

25% of samples were excluded, and differential gene expression determined using ANOVA with 1156 

infection status as contrast. Differentially expressed gene files were used in GSEA and IPA to 1157 

determine biological significance and pathways being regulated.  1158 

 1159 

Analysis of Nasopharyngeal Swab RNA-seq data 1160 
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The nasopharyngeal swab samples were analyzed comparing COVID-19 viral infection to 1161 

the negative patients and was as previously described in Butler et al. (Butler et al., 2021) and the 1162 

DESeq2 (Love et al., 2014) was utilized to generate the differential expression data. Heatmaps 1163 

were displayed using pheatmap (Kolde, 2015). Volcano plots were made use R program 1164 

EnhancedVolcano (Blighe et al., 2018). 1165 

 1166 

Analysis of Autopsy RNA-seq data 1167 

The full methods of the analysis from the autopsy patients is currently available in the Park et 1168 

al. (Park et al., 2021). Briefly, RNA-seq data was processed through the nf-core/rnaseq pipeline 1169 

(Ewels et al., 2020). This workflow involved adapter trimming using Trim Galore! 1170 

(https://github.com/FelixKrueger/TrimGalore), read alignment with STAR (Dobin et al., 2013), 1171 

gene quantification with Salmon (Patro et al., 2017), duplicate read marking with Picard 1172 

MarkDuplicates (https://github.com/broadinstitute/picard), and transcript quantification with 1173 

StringTie (Kovaka et al., 2019). Other quality control measures included RSeQC, Qualimap, and 1174 

dupRadar. Alignment was performed using the GRCh38 build native to nf-core and annotation 1175 

was performed using Gencode Human Release 33 (GRCH38.p13). FeatureCounts reads were 1176 

normalized using variance-stabilizing transform (vst) in DESeq2 package in R for visualization 1177 

purposes in log-scale (Love et al., 2014). Differential expression of genes were calculated by 1178 

DESeq2.  Differential expression comparisons were done as either COVID+ cases versus 1179 

COVID- controls for each tissue specifically, correcting for sequencing batches with a covariate 1180 

where applicable, or pairwise comparison of viral levels from the lung as determined by 1181 

nCounter data. Volcano plots were made use R program EnhancedVolcano (Blighe et al., 2018). 1182 

 1183 

Analysis Combining Autopsy and Nasopharyngeal Swab RNA-seq data 1184 

To combine the results from the autopsy and nasopharyngeal swab RNA-seq data, we utilized 1185 

the t-score values from the DESeq2 analysis.  Heatmaps were displayed using pheatmap (Kolde, 1186 

2015). 1187 

 1188 

Gene Set Enrichment Analysis (GSEA) 1189 

For pathway analysis on the miR-2392 targets (Fig. 3) we utilized ShinyGO (Ge et al., 2020) 1190 

to determine the significantly regulated pathways for each main cluster in the heatmap. The 1191 

clustering was determined through k-mean statistics.  1192 

For pathway analysis on the miR-2392 mimic RNA-seq data, we utilized fast Gene Set 1193 

Enrichment Analysis (fGSEA) (Korotkevich et al., 2021). Pathway analysis was done comparing 1194 

miR-2392 mimics to all controls and the ranked list of genes were defined by the t-score 1195 

statistics. The statistical significance was determined by 1000 permutations of the genesets 1196 

(Subramanian et al., 2005).  1197 

 1198 

Analysis of proteomic and transcriptomic blood datasets from COVID-19 patients 1199 

For the analysis of the miR-2392 targets in the blood tissue, we downloaded whole blood 1200 

transcriptome data and plasma proteome data from The COVIDome Explorer Researcher Portal 1201 

(Sullivan et al., 2021). For Transcriptome data we used the following filters: Category "Effect of 1202 

COVID-19 status", Platform "Blood", Statistical test "Student's t-test", Adjustment method 1203 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.23.441024doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441024


29 

"none", Sex "male" and "female", Age Group "All". For Proteome data we used the following 1204 

filters: Category "Effect of COVID-19 status", Platform "SOMAscan", Statistical test "Student's 1205 

t-test", Adjustment method "none", Sex "male" and "female", Age Group "All". We created the 1206 

list of the intersecting genes from both datasets. We analyzed the list using RStudio Desktop 1207 

1.3.1093 (RStudio Team (2020). RStudio: Integrated Development Environment for R. RStudio, 1208 

PBC, Boston, MA URL http://www.rstudio.com/), and visualized data using ggplot2 version 1209 

3.3.2 (Wickham, 2016) and ggrepel version 0.8.2 (https://ggrepel.slowkow.com/). 1210 

 1211 

Analysis of Monocyte RNA-seq data 1212 

The monocyte COVID-19 RNA-Seq data, published under the accession GSE159678 1213 

(Rother et al., 2020), was downloaded from SRA and gene expression was quantified using 1214 

Salmon’s selective alignment approach (Srivastava et al., 2020). The RNA-Seq processing 1215 

pipeline was implemented using pyrpipe (Singh et al., 2021) (https://github.com/urmi-1216 

21/pyrpipe/tree/master/case_studies/Covid_RNA-Seq). Exploratory data analysis and differential 1217 

expression analysis were performed using MetaOmGraph (Singh et al., 2020). 1218 

 1219 

Analysis of A549, Calu-3, NHBE, and COVID lung biopsy data 1220 

Each data series was normalized and filtered for low-expressed genes (counts<1). Cell 1221 

culture samples treated with SARS-CoV-2 were compared to untreated controls and COVID-19-1222 

positive patient samples were compared to healthy lung biopsies. Differentially expressed genes 1223 

were determined from the R-program Limma-Voom (Ritchie et al., 2015) using a linear model 1224 

with weighted least squares for each gene and the false discovery rate adjusted p-values were 1225 

calculated.  1226 

 1227 

Analysis of miR-2392 mimic RNA-seq data 1228 

Differential gene expression was determined using LIMMA-voom (Ritchie et al., 2015).  1229 

Data were filtered to ensure data contained at least 5 million aligned reads, and average gene 1230 

counts of > 10.  Cell treatments we used as contrasts for differentially expressed gene 1231 

calculations. These results were then uploaded to GSEA for further analysis. (R script in 1232 

supplementary section) 1233 

 1234 

Conservation of miR-2392 between species 1235 

To determined conservation of miR-2392 among different species we utilized UCSC 1236 

Genome Browser (Kent et al., 2002). Hsa-miR-2392 was entered as an input and a select of 1237 

species was used to compare which included common species that are currently used in SARS-1238 

CoV-2 in vivo studies (i.e. mice, ferrets, and hamsters). We also chose primates and other 1239 

animals to provide a wide spectrum of species to observe conservation of miR-2392. Lastly, the 1240 

USCS Genome Browser provides the host gene for miR-2392 (i.e. MEG3) and redirects to GTEx 1241 

(Consortium, 2020) to provide a plot of MEG3 levels based on RNA-seq data on normal tissues. 1242 

 1243 

Mapping miR-2392 sequence to SARS-CoV-2 sequences 1244 

To explore potential binding sites for miR-2392 we used miRanda software (Enright et al., 1245 

2003) to identify all potential binding sites with respect to the SARS-CoV-2 reference genome 1246 
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(Wuhan-Hu-1; NC045512.2) and representative genomes from lineages of concern. The lineages 1247 

of concern were selected from Global Initiative on Sharing All Influenza Data (GISAID) with 1248 

each lineage being represented by 14 recent genomes. 1249 

 1250 

In silico predictions of genes from miRNAs 1251 

Through the use of a Cytoscape (Shannon et al., 2003) plug-in called ClueGo/CluePedia 1252 

(Bindea et al., 2013), we were able to predict genes targeted by the miRNAs determined. This 1253 

involved entering all miRNAs in ClueGo and allowing the software to determine the top 50 1254 

genes that were significantly regulated and connected to the miRNAs. The predictions only 1255 

reflect the functions that will be regulated by the miRNAs and do not show whether the function 1256 

will be activated or inhibited. Lastly, miRNet 2.0 was utilized to predict the diseases and 1257 

pathways that are associated with the miRNAs (Chang et al., 2020a). This was plotted as a dot 1258 

utilizing the R-program ggplot2 (v3.2.1) (Wickham, 2016). 1259 

 1260 

ddPCR analysis of miRNA levels in patient samples 1261 

First, we normalized the amount of each miRNA measured per body location (nasal, serum, 1262 

and urine) using the general logarithm transformation. We compared miRNA levels in samples 1263 

from patients either positive or negative for SARS-nCoV-2 using the student’s t-test (unadjusted) 1264 

as well as controlling for sex and age using least squares adjustment. Next, we generated receiver 1265 

operating characteristic curves from each body location to show the performance of a 1266 

classification model (SARS-nCoV-2 positive versus negative) at all classification thresholds 1267 

using the absolute, non-transformed levels (miRNA copies per 5 ng RNA). Finally, we 1268 

performed a subanalysis on each location to compare the variance of each miRNA in SARS-1269 

nCoV-2 negative patients compared to other patient groups. For serum and nasal samples, 1-way 1270 

ANOVA was used to identify variation associated with the patient classification. For urine 1271 

samples, 2-way ANOVA was used with location (outpatient versus inpatient) and SARS-nCoV-2 1272 

positivity as the main factors. If the ANOVA yielded a P < 0.05, Dunnett’s post-test was used to 1273 

compare subgroup means to the negative patient sample mean. 1274 

 1275 

Computational drug repositioning model  1276 

Using the SM2miR database (Liu et al., 2013), we assembled an n × m binary matrix (X) 1277 

containing 3,593 associations between small molecules (n = 213, rows) and miRNAs (m = 1278 

1,519, columns). Each matrix entry (Xij) was assigned a value of 1 where a small molecule is 1279 

known to be associated to miRNA, and was 0 otherwise. The chemical notation as a simplified 1280 

molecular input line entry system (SMILES) was obtained for each small molecule from 1281 

PubChem. We then calculated the 2D Tanimoto chemical similarity between pairs of small 1282 

molecules using the MACCS key binary fingerprints with RDKit (RDKit: Open-source 1283 

cheminformatics; http://www.rdkit.org). Similarly, for each miRNA, we obtained its sequence 1284 

from miRbase (Kozomara et al., 2019) and computed sequence similarity between miRNAs as 1285 

the score of their Needleman-Wunsch alignment. We used the binary matrix, together with the 1286 

chemical and sequence similarities, as input to our state-of-the-art drug target prediction model 1287 

to predict missing associations in X (Galeano et al., 2021). The model parameters where: p = ½ , 1288 
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βChem = 1, and αseq = 0. To assess the prediction performance of the model, we performed ten-1289 

fold cross-validation simulations.  1290 

 1291 
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