bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441129; this version posted January 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 High nucleotide substitution rates associated with retrotransposon proliferation drive

2 dynamic secretome evolution in smut pathogens

- 3
- 4 Depotter JRL^a, Ökmen B^a, Ebert MK^a, Beckers J^a, Kruse J^{bc}, Thines M^{bc}, Doehlemann G^a*
- 5
- ⁶ ^aUniversity of Cologne, CEPLAS, Institute for Plant Sciences, Cologne, Germany
- ⁷ ^bSenckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany.
- 8 ^cInstitute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M.,
- 9 Germany.
- 10
- 11 *Corresponding author
- 12 E-mail: <u>g.doehlemann@uni-koeln.de</u> (GD)
- 13

14 Abstract

15 Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. 16 The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome 17 expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister 18 species, to study this genome expansion. We found that larger genome sizes can mainly be 19 attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In 20 the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively 21 correlated to the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, 22 LTR-RTs were found to be associated with higher nucleotide substitution levels, as these 23 higher levels occur more clustered in smut species with a recent LTR-RT proliferation. 24 Moreover, genes in genome regions with higher nucleotide substitution levels generally 25 reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide 26 substitutions encountered an especially high fraction of CG substitutions, which is not 27 observed for LTR-RT sequences. The high nucleotide substitution levels particularly 28 accelerate the evolution of secretome genes, as their more flexible nature results that 29 substitutions often lead to amino acid alterations.

30 Importance

31 Genomic alteration can be generated through various means, in which transposable elements 32 (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the 33 function of the sequences they insert into. Indirectly, they also impact genome evolution as 34 their repetitive nature facilitates non-homologous recombination. Furthermore, TEs have 35 been linked to specific epigenetic genome organizations. We report a recent TE proliferation 36 in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is 37 associated with a distinct nucleotide substitution regime that has a higher rate and a higher 38 fraction of CG substitutions. This different regime shapes the evolution of genes in subjected 39 genome regions. Our findings highlight that TEs may influence the error-rate of DNA 40 polymerase in a hitherto unknown fashion.

41

42 Key words: Ustilago, transposable element, genome expansion, DNA polymerase, mating-

43 type

locus

44 INTRODUCTION

45 Transposable elements (TEs) play a pivotal role in the genome evolution of eukaryotic 46 organisms, including fungi (1). Fungal genomes can vary considerably in size, which is often 47 determined by the extent and recency of TE proliferations (2, 3). On one side of the spectrum, 48 Microsporidia, a diverse group of obligate intracellular parasitic fungi, contain members with 49 extremely small genomes down to 2.3Mb that lack TEs (4, 5). In contrast, rust plant 50 pathogens from the order Pucciniales contain members with genome sizes that are among the 51 largest in the fungal kingdom (6, 7). For instance, the wheat stripe rust pathogen *Puccinia* 52 striiformis f.sp. tritici has an estimated genome size of 135 Mb, which more than half consists 53 of TE sequences (8). Mutations caused by TE transposition predominantly have a neutral or 54 negative impact, but in particular cases they can also improve fungal fitness (3, 9). For plant 55 pathogenic fungi, TE transposition can be a source of mutagenesis to evade host immunity 56 and/or lead to an optimized host interaction (10). TEs can also passively contribute to 57 mutagenesis, as their transpositions increase homologous genome sequences that are prone to 58 ectopic recombination (11, 12). Pathogens evolve by host jumps, radiation and subsequent 59 arms races with their hosts (13), in which the latter attempts to detect pathogen ingress 60 through the recognition of so-called invasion patterns (14). One invasion pattern that is 61 typically detected are effectors, i.e. secreted proteins that facilitate host colonization (15). To 62 quickly adapt to effector-triggered immunity and yet continue host symbiosis, effector genes 63 often reside in genome regions that facilitate mutagenesis (13, 16), such as those rich in TEs 64 (17). TE-rich genome regions may not only encounter higher mutation rates, but may also 65 have a higher chance to fix mutations due to their functionally more accessory nature (18).

TEs are a diverse group of mobile nucleotide sequences that are categorized into two classes (1). Class I comprises retrotransposons that transpose through the reverse transcription of their messenger RNA (mRNA). Class II are DNA transposons that transpose without mRNA intermediate. TEs are then further classified based on their sequence structure (19). Retrotransposons with direct repeats at each end of their sequence are long terminal repeat retrotransposons (LTR-RTs) (20). LTR-RTs can encode the structural and enzymatic machinery for autonomous transposition. However, they may lose this ability through mutagenesis, but still be able to transpose using proteins of other TEs (21). LTR-RTs can then be further classified into superfamilies including *Copia* and *Gypsy*, which differ in the order of their reverse transcriptase and their integrase domain (19).

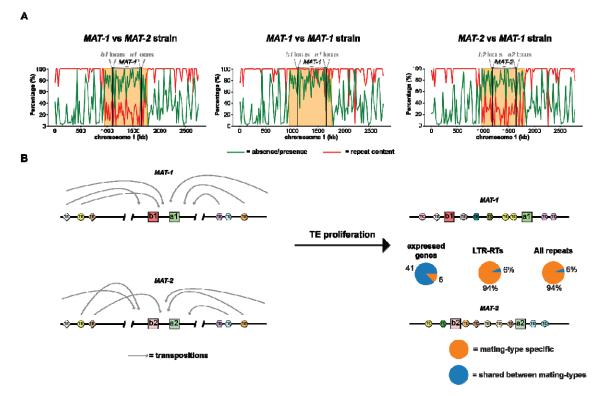
76 Smut fungi are a diverse group of plant pathogenic, hemibiotrophic basidiomycetes of 77 which many infect monocot plants, in particular grasses. They live saprophytically as yeasts 78 and mate in order to switch to the diploid, filamentous stage that enables them to infect their 79 host (22). Smut pathogens are very host-specific and generally have small genomes in 80 comparison to other plant pathogens (23, 24). The corn smut species Ustilago maydis and 81 Sporisorium reilianum are closely related and have genome sizes of 19.8 Mb and 18.4 Mb, 82 respectively (25, 26). This is partly due to their low level of repetitive sequences, including 83 TEs. In total, only 2.1 and 0.5% of the genome consists of TEs for the U. maydis and S. 84 reilianum, respectively (27). The covered smut pathogen of barley, Ustilago hordei, and the 85 Brachipodieae grass smut, U. brachipodii-distachyi, are two related smut fungi and have 86 genome assemblies of 21.15 Mb and 20.5 Mb, respectively (27, 28). These larger genome 87 assembly sizes correlate to their higher TE content, which is 11.8% and 14.3% for U. hordei 88 and U. brachipodii-distachyi, respectively (27). The assembled genome of U. brachipodii-89 distachyi is originally published under the species name U. bromivora (27). U. brachipodii-90 distachyi infects members from the tribe Brachipodieae, whereas U. bromivora affects 91 bromes from the supertribe Triticodae (29, 30). Considering the host specific nature of smut 92 pathogens, we prefer to refer to this assembly as U. brachipodii-distachyi instead of U. 93 bromivora, as the assembled strain infects Brachypodium species (27, 29).

94 Mating in grass-parasitic smut fungi is tetrapolar in U. maydis and S. reilianum, 95 whereas U. hordei and U. brachipodii-distachyi have a bipolar mating system. In the bipolar 96 system, there is one mating-type locus where recombination is suppressed (27, 31, 32). This 97 locus is flanked by the *a* locus, which contains pheromone/receptor genes, and the *b* locus, 98 which encodes the two homeodomain proteins bEast and bWest (33, 34). In the bipolar 99 mating-type system, there are two mating-type alleles, MAT-1 and MAT-2, which are in U. 100 hordei ~500kb and ~430kb in size, respectively (32). A large fraction of the mating-type loci 101 consists of repetitive sequences, i.e. ~45% repeats for U. hordei (28, 35). In contrast, the 102 tetrapolar smuts, U. maydis and S. reilianum, have their a and b loci on different 103 chromosomes causing them to segregate independently during meiosis (26, 31).

104 Recently, the complete genome of the reference *U. hordei* strain Uh364 was re-105 sequenced using the long-read PacBio technology and, instead of the previous 21.15 Mb 106 assembly (28), a 27.1 Mb assembly was obtained (36). Thus, the *U. hordei* genome 107 underwent a genome expansion as it is significantly larger than other sequenced smut species 108 (27). This finding triggered us to study the *U. hordei* genome more in depth and use recently 109 developed long-read sequencing technologies to unravel how its genome recently expanded.

110 **Results**

111 LTR-RTs is an important determinant for U. hordei genome size

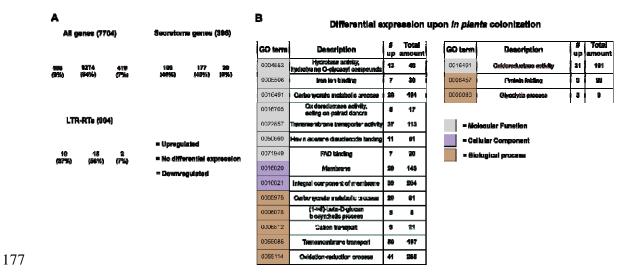

112 To study the expansion in genome size of U. hordei, we sequenced and assembled 6 U. 113 hordei strains of different geographic origins (Figure S1). Five contained a MAT-1 locus and 114 one (Uh1278) a MAT-2. The assemblies were composed of 23-46 contigs and ranged from 115 25.8-27.2 Mb in size (Table 1). Strain Uh805 was assembled into 23 contigs that are 116 homologous to the 23 chromosomes of U. brachipodii-distachyi indicating that inter-117 chromosomal rearrangements did not occur during the divergence of these two species (27). 118 *MAT-1* loci, regions between and including the a and b loci, ranged from 536 to 564 kb in 119 size, whereas the MAT-2 locus was 472 kb (Table S1). In the U. hordei genome assemblies, 120 class I TE sequences are over 6 times more abundant than class II TE sequences (Table 1, 121 S2). More than 90% of the class I TEs consist of LTR-RTs, which is a total sequence amount 122 ranging between 4,326 and 5,272 kb (Table 1). The number of LTR-RT sequences is 123 positively correlated to the assembly sizes (r = 0.94, p-value = 0.0051). Moreover, using 124 strain Uh805 as a reference, 56-79% of the differences in assembly size with other strains can 125 be attributed to differences in LTR-RT content. Thus, the variation in genome size between 126 U. hordei strains can largely be attributed to intraspecific differences in LTR-RT proliferation 127 and/or retention. More than 75% of the mating-type loci consist of repetitive sequences and 128 over 29% are classified as LTR-RTs. The MAT-1 and MAT-2 loci and their flanking regions 129 only have 27% one-to-one best homology to each other (Figure 1A), which is mainly due to 130 mating-type specific repeats as only 6% of the repeats are shared between the two mating 131 types. In contrast, 41 of the 47 expressed mating-type locus genes are shared between the two 132 alleles (Figure 1B). Homologous recombination is suppressed in the mating-type region, 133 which makes that TE transpositions within these regions are by definition mating-type 134 specific (Figure 1B) (32).

Species			l	IJ. hordei			U. nuda	U. brachipodii-	U. tritici	U. loliicola	U. maydis(25)	S. reilianum(37,
								distachyi(27)				38)
Strain	Uh359	Uh805	Uh811	Uh818	Uh1273	Uh1278	DE_29490	UB2112	Ut_3	Us_530	521	SRS1_H2-8
Assembly size (Mb)	27.0	25.8	26.2	26.2	27.2	26.6	21.4	20.4	20.4	20.8	19.7	18.5
Contigs	46	23	26	25	37	27	31	23	32	41	27	23
BUSCOs (%)	98.9	98.9	98.9	98.9	98.6	99.0	98.9	99.1	98.9	98.8	98.8	98.5
Telomers*	14	22	19	20	23	23	45	37	47	43	1	0
Total repeats (%)	38.2	35.3	36.4	36.5	38.9	36.0	22.6	17.0	16.4	8.9	4.6	3.6
Class I TEs (kb)§	5,625	4,611	4,985	4,897	5,663	4,940	1,786	672	739	102	199	5
LTR (kb)	5,272	4,326	4,615	4,549	5,208	4,607	1,537	463	462	9	185	5
Gypsy (kb)	2,066	1,688	1,679	1,653	2,225	1,873	484	144	127	3	4	3
Copia (kb)	2,732	2,331	2,561	2,554	2,587	2,531	1,1019	292	289	6	182	1
Class II TEs (kb) [§]	781	746	708	791	731	692	395	473	285	482	5	103

135 Table 1. Genome statistics of various smut genome assemblies.

136 Sonly repetitive sequences that were larger than 500 bp were classified.

137 * "TAACCC" or "GGGTTA" repeats at the end of a contig

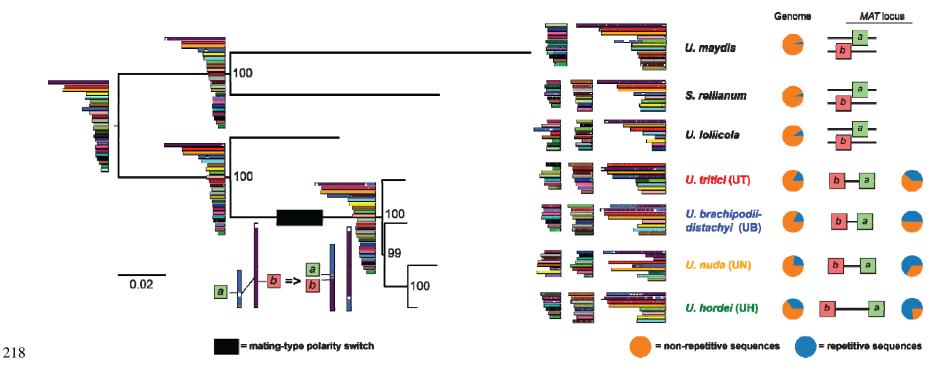

139 Figure 1: The mating-type specificity of MAT-1 and MAT-2 loci sequences. (A) As references, the MAT-1 140 strain Uh805 and the MAT-2 strain Uh1278 were used. Repeat content and presence/absence polymorphisms 141 were calculated for 20 kb windows. Presence-absence polymorphisms were determined between the MAT-1 and 142 MAT-2 reference strains, in addition to the MAT-1 strains Uh805 and Uh811. The orange squares encompass the 143 mating-type loci and indicate genome regions where the repeat contents are high and sequences are generally 144 mating-type specific. (B) Model that explains the mating-type specificity of sequences within and flanking the 145 mating-type loci. The absence of recombination within the mating-type loci and their flanking regions makes 146 that transpositions within these regions become mating-type specific.

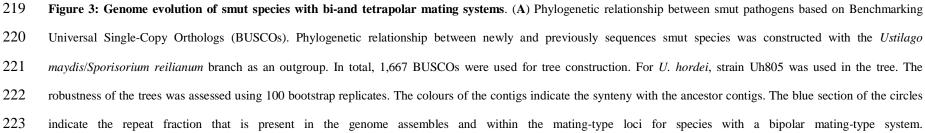
147

The U. hordei secretome is activated upon plant colonization, whereas LTR-RTs are generally inactive

To study gene and LTR-RT expression, RNA-seq was done from from *U. hordei* grown in liquid medium, and in barley leaves at 3 days post infection. In total, 6229 of the 7704 (81%) predicted gene loci in Uh803 were expressed in either of the two *U. hordei* growth conditions, whereas only 27 of the 904 (3%) LTR-RTs displayed expression (Figure 2B).

154 Moreover, only 7 of the expressed LTR-RTs displayed expression in more than half of their 155 sequence. Of these 7, there was one *Copia* and one *Gypsy* LTR-RT that can be autonomous, 156 as functional domains for aspartyl protease, reverse transcriptase and integrase could be 157 identified. In conclusion, almost all LTR-RT sequences were inactive in the two tested 158 environmental conditions. For the genes, 558 (9%) were upregulated in planta, whereas 419 159 (7%) were downregulated (Figure 2). Up- and downregulated genes were screened for Gene 160 Ontology (GO) term enrichments, to see which biological processes are affected by plant 161 colonization. In total, 14 and 3 GO terms were enriched in *in planta* up- and down-regulated 162 genes, respectively (Figure 2). Generally, processes associated with the fungal membrane, 163 including transmembrane transport were upregulated in planta. In correspondence with these 164 results, 165 of the 558 genes upregulated in planta encode secreted proteins. Thus, 45% 165 (165/369) of the expressed genes that encode secreted proteins were upregulated in planta, 166 which is a significant enrichment (Fisher exact test, p-value = 1.87e-83) (Figure 2). In 167 contrast, only 6% of the genes encoding a secreted protein were downregulated. Of these 168 downregulated genes, 35% (7/20) was predicted to have a carbohydrate-active (CAZyme) 169 function, whereas this was 18% (29/165) for *in planta* upregulated secretome genes. Thus, 170 the U. hordei transmembrane transport system and secretome genes are strongly activated 171 upon plant colonization, whereas hardly any LTR-RTs display expression. In total, 24% 172 (median) of the 20kb flanking regions secretome genes consist of repeats, which is the same 173 for non-secretome genes (t-test, p-value = 0.51) (Figure S2). Secretome genes upregulated in 174 *planta* have a median of 21%, which is not significantly lower than non-secretome genes (t-175 test, p-value > 0.01). Thus, in contrast to some other filamentous plant pathogens (17), 176 secretome genes are not especially associated with repeat-rich genome regions in U. hordei.


178 Figure 2. Differential expression of U. hordei loci upon plant colonization. (A) Comparison of U. hordei 179 locus expression between growth in liquid culture medium and in planta. The numbers between brackets 180 indicate how many genes and LTR-RTs have been annotated in the genome. The significance of differential 181 expression was calculated using a threshold of log2-fold-change. (B) Gene Ontology (GO) term enrichments in 182 differently regulated Ustilago hordei genes. In green and red are GO terms that are enriched in in plant up- and 183 down-regulated genes, respectively. p-values were calculated with the Fisher's exact test. For the whole figure 184 significance was determined with a p-value < 0.01 and corrected for multiple-testing with the Benjamini-185 Hochberg method.


186

187 Higher LTR-RT contents in genomes of smuts with a bipolar mating-type system

188 As LTR-RTs played a predominant role in the genome expansion of U. hordei, we also 189 studied the impact of TE dynamics on the genome evolution of *U. hordei* sister species. We 190 sequenced genomes of Ustilago nuda, Ustilago tritici and Ustilago loliicola, which are smut 191 species that are close relatives of U. hordei and U. brachipodii-distachyi (29, 39). Assemblies 192 of 21.4, 20.8 and 20.4 Mb were obtained in 31, 41 and 32 contigs for U. nuda, U. loliicola 193 and U. tritici, respectively (Table 1). A phylogenetic tree was constructed, which included the 194 newly sequenced species as well as U. brachipodii-distachyi, U. maydis and S. reilianum 195 (Figure 3) (25, 27, 37, 38). U. hordei, U. nuda, U. brachipodii-distachyi and U. tritici cluster 196 together with U. loliicola being the closest outgroup species. Within the cluster, U. hordei

197 diverged the most recently from U. nuda, which also infects Hordeum species (Figure 3). 198 Synteny between the different contigs was also investigated and the ancestral gene order 199 reconstructed. S. reilianum and U. loliicola do not have inter-chromosomal rearrangement in 200 comparison to their reconstructed last common ancestor (Figure 3). The U. maydis genome 201 has one inter-chromosomal rearrangement with respect to its last common ancestor with S. 202 reilianum. U. hordei, U. nuda, U. brachipodii-distachyi and U. tritici share one inter-203 chromosomal rearrangement that occurred after their divergence from U. loliicola (Figure 3). 204 As previously reported, this rearrangement resulted in the mating-type polarity switch from 205 tetrapolar to bipolar due to the linkage of the a and b mating-type loci (31). This inter-206 chromosomal rearrangement is the only one observed in the assemblies of U. brachipodii-207 distachyi, U. nuda and U. hordei, whereas the U. tritici assembly has one additional inter-208 chromosomal rearrangement. The smut species with a bipolar mating-type generally have a 209 higher repeat content (16.4-38.9%), than the tetrapolar ones (3.6-8.9%) (Table 1). This 210 increase in repeat content can largely be attributed to LTR-RT sequences, which comprise 211 4,326 kb in U. hordei (Uh805) in contrast to only 5 kb for S. reilianum (Table 1). Thus, 212 repeats have increased after the polarity switch, mainly due to higher LTR-RT contents. 213 Furthermore, repeat and the LTR-RT contents of smut genomes with a bipolar mating type 214 positively correlate to mating-type loci sizes (r = 0.98, p-value = 0.02, using strain Uh805 for 215 U. hordei), which ranges from 190 kb for U. brachipodii-distachyi to 560 kb for U. hordei 216 (Figure 3, Table S1). In conclusion, the proliferation and/or retention of TEs seems to be an 217 important determinant of the eventual size of mating-type loci.

224 The timepoint of most recent LTR-RT proliferation differs between smut species

225 Although species with a bipolar mating system collectively encountered an increase in LTR-226 RT content, there are large interspecific differences as U. hordei has more than 9 times the 227 amount of LTR-RT sequences than U. tritici (Table 1). To study the relative timepoint of the 228 most recent LTR-RT proliferation, the nucleotide sequence identity distributions of the best 229 reciprocal paralogous and orthologous LTR-RT sequences were calculated (Figure 4A). This 230 was on the one hand done for the species with the highest LTR-RT contents, U. hordei and U. 231 nuda, and on the other hand for U. brachipodii-distachyi and U. tritici. The distribution of the 232 paralogous LTR-RTs in U. brachipodii-distachyi and U. tritici displayed two maxima, i.e. at 233 82-83% and at 88-90% (Figure 4A). The maximum of the orthologous LTR-RTs between U. 234 brachipodii-distachyi and U. tritici was at 93%. Thus, orthologous LTR-RTs generally have a 235 higher identity than paralogous ones, which indicates that LTR-RTs mainly proliferated 236 before the last common ancestor of U. brachipodii-distachyi and U. tritici (Figure 4A). 237 Orthologous LTR-RTs between U. hordei and U. nuda displayed a maximum at 89%, 238 whereas for paralogous LTR-RTs a maximum at 93% was present for U. nuda and two 239 maxima at 94 and 97% for U. hordei (Figure 4A). Thus, in contrast to U. brachipodii-240 distachyi and U. tritici, paralogous LTR-RTs generally have a higher identity than 241 orthologous ones, which means that LTR-RTs continued to proliferated after the last common 242 ancestor of U. nuda and U. hordei.

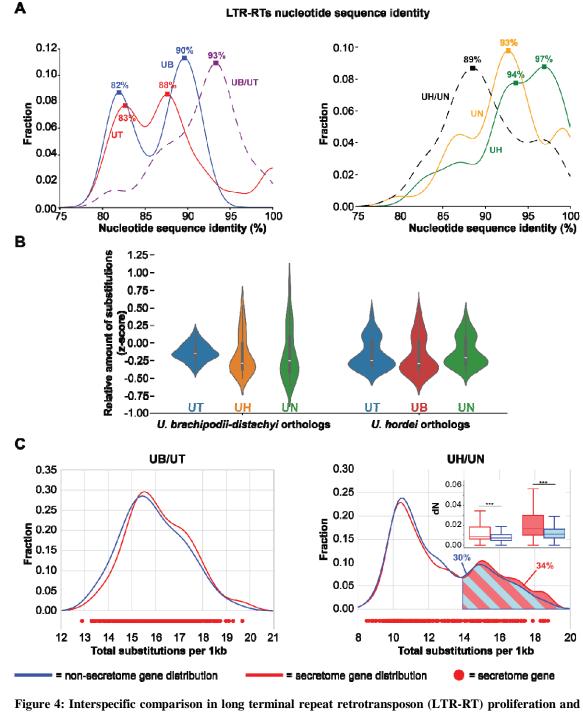


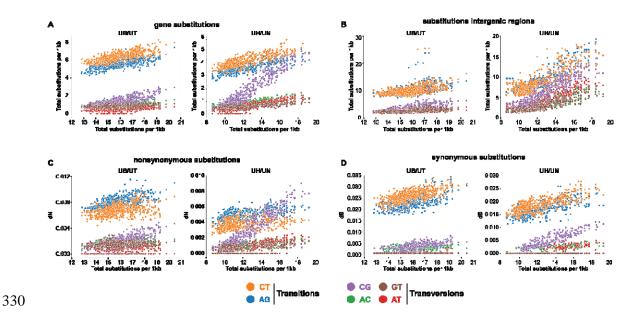
Figure 4: Interspecific comparison in long terminal repeat retrotransposon (LTR-RT) proliferation and local gene nucleotide substitution levels (A) Nucleotide sequence identity distribution of best reciprocal paralogous (full lines) and orthologous (striped lines) LTR-RT sequences. Squares on the lines display maxima with the corresponding sequence identity value. (B) The normalized sequence identity (z-score) was calculated for *U. brachipodii-distachyi* and *U. hordei* genes with orthologs of other bipolar mating-type species. The sequence identity was determined for non-overlapping sliding windows of 75 genes. (C) The distribution of the

sequence divergence between *U. brachipodii-distachyi/U. tritici* and *U. hordei/U. nuda* ortholog windows (75 genes) are depicted for secretome and non-secretome genes in red and blue, respectively. The *U. hordei/U. nuda* distribution displays two peaks. The number of nonsynonymous substitutions per nonsynonymous site (dN) was compared between secretome and non-secretome genes for genes in the first and second distribution peak. Significance was determined with an unequal variance t-test. ***: *p*-value < 0.001.</p>

255

256 High nucleotide substitution levels affect secretome proteins

257 As TE-active genome regions have been associated with distinct nucleotide substitution 258 regimes (11, 40, 41), we studied if different extents of LTR-RT fractions are associated with 259 different nucleotide substitution regimes. We calculated the median number of substitutions 260 between orthologs in windows of 75 genes. To ensure that genes are transcriptionally active, 261 we only analysed *U. hordei* genes that displayed expression from here onwards. The variation 262 in the normalized number of nucleotide substitutions (z-score) between U. brachipodii-263 distachyi and U. tritici ortholog windows is around 5.3 and 8.8 times less than U. 264 brachipodii-distachyi ortholog windows with U. hordei and U. nuda, respectively (Figure 265 4B). In contrast, nucleotide substitutions of U. hordei ortholog windows with the other 266 bipolar mating-type species display a more constant variation as the most varying ortholog 267 windows (with *U. brachipodii-distachyi*) have only a 0.5 times higher variation than the least 268 varying (with U. nuda) (Figure 4B). Thus, since their last common ancestor, gene nucleotide 269 sequence divergence occurred more evenly across the genomes of U. brachipodii-distachyi 270 and U. tritici than in U. hordei and U. nuda, where the divergence is more clustered. 271 Correspondingly, substitutions between U. brachipodii-distachyi and U. tritici ortholog 272 windows have a unimodal distribution, whereas the distribution between U. hordei and U. 273 nuda have two distinct peaks (Figure 4C). For both comparisons, the distributions of 274 secretome genes generally corresponds to that of non-secretome genes (Figure 4C). For U. 275 hordei/U. nuda ortholog windows, the second peak in the distribution contains 30% of the 276 non-secretome and 34% of the secretome genes, which is not significantly different (Fisher 277 exact test, p-value = 0.10). Thus, high nucleotide substitution levels are not especially 278 associated with secretome genes. Also for the second distribution peak, no GO terms 279 enrichments could be found (p-value < 0.01). Furthermore, nucleotide substitution levels are 280 negligibly positively correlated (Pearson's r = 0.14 and p-value = 0.0026) with the fraction of 281 species-specific genes (U. hordei genes without U. maydis ortholog) (Figure S3). In 282 conclusion, genes in genome regions with high nucleotide substitution levels could not be 283 associated with a particular function or more clear accessory nature. However, higher 284 nucleotide substitution levels have a different impact on genes depending on their function. 285 Substitutions that lead to amino acid alterations are more frequently fixed in secretome genes 286 than in non-secretome genes (Figure 4C). The median number of nonsynonymous 287 substitutions per nonsynonymous site (dN) for secretome genes is 18% higher than for non-288 secretome genes in the first peak of the U. hordei and U. nuda secretome distribution, 289 whereas this is 55% for the second peak. Thus, the more flexible nature of secretome proteins 290 makes that a higher nucleotide substitution rate speeds up their evolution.

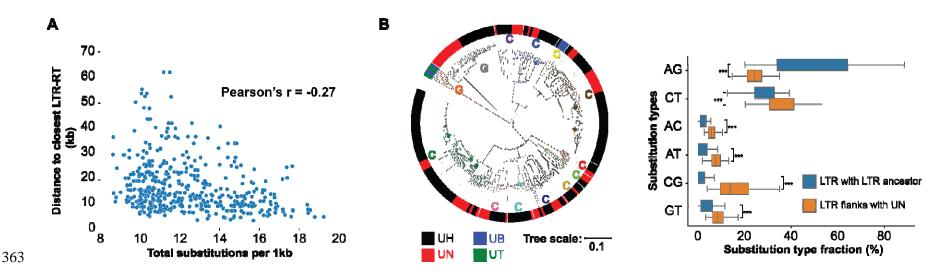

291

292 High substitution levels are association with high fractions of CG substitutions

293 We then analysed which type of substitutions (AC, AG, AT, CG, CT, GT) occur across the 294 different substitution levels. The number of all substitution types are positively correlated 295 with the number of total substitutions. Transitions (AG and CT substitutions) are responsible 296 for 56% of the different substitution levels between U. brachipodii-distachyi/U. tritici 297 ortholog windows (Figure 5A). In total, 27% of the variance can be attributed to CG 298 substitutions, whereas the other transversions ranged from 4 to 7%. Similarly, for U. 299 hordei/U. nuda ortholog windows, the number of all substitutions types display a positive 300 correlation with the number of total substitutions. Here, CG substitutions are responsible for 301 47% of the variation in nucleotide substitution levels, whereas the contributions of other 302 substitution types range from 5% (GT) to 16% (CT) (Figure 5A). The fraction of CG 303 substitutions varies from 4% to 27% across the ortholog windows, whereas this is 3% to 16% 304 for U. brachipodii-distachyi/U. tritici ortholog windows (Figure S4A). Correspondingly, the 305 number of all substitution types in intergenetic regions are positively correlated with the total 306 number of gene substitutions (Figure 5B). Similar to the coding regions, transitions 307 contributed 52% to the intergenic substitution variation, whereas this was 23% for CG 308 substitutions and 8-9% for the other transversion in U. brachipodii-distachyi/U. tritici 309 ortholog windows. In contrast, U. hordei/U. nuda ortholog windows, transitions only 310 contributed 40% to the variation of intergenic substitution levels (Figure 5B, S4B). All 311 substitution types considered, CG displayed the highest variation and was responsible for 312 24% of the total nucleotide substitution variation. Although CG has, with 24%, the highest 313 variation, this contrast with the 47% of coding regions. This discrepancy may be due to the 314 difference in selection regime between coding and non-coding genome regions. The dN for 315 every individual substitution type is positively correlated with the total substitution level. The 316 correlation slope is the highest for CG substitutions, which is 3.5 times higher than for the 317 second highest slope (AT). Similarly, the number of synonymous substitutions per 318 synonymous site (dS) also has the steepest correlation slope for CG. However, this slope is 319 only 1.5 times greater than the second highest slope (CT). In conclusion, U. hordei and U. 320 nuda encountered more variation in their local nucleotide regimes than U. brachipodii-321 distachyi and U. tritici. For U. hordei and U. nuda, genome regions with higher nucleotide 322 substitution levels encountered a relatively higher fraction of CG substitutions, which, after 323 selection, is especially apparent in coding regions. Conceivably, different contributions of 324 substitutions types impact codon frequencies and consequently amino acid compositions of 325 proteins. Encoded proteins of genes that reside in genome regions with higher substitution 326 levels are Cys, Gln, His, Leu richer and Asp, Gly, Phe, Val poorer than regions with lower

327 substitution levels (Figure S5). Moreover, these specific amino acid tendencies have become

- 328 more aggravated since the *U. hordei* divergence from *U. brachipodii-distachyi* (Figure S5).
- 329



331 Figure 5: Comparison of nucleotide substitution regimes for U. brachipodii-distachyi/U. tritici and U. 332 hordei/U. nuda ortholog windows. The nucleotide substitutions were calculated for windows of 75 genes with 333 a sliding step of 10. The x-axis consistently displays the total substitutions per 1 kb for these windows. (A) The 334 y-axis depicts the median number of every substation type (CT, AG, CG, AC, GT, AT) of ortholog windows. 335 (B) The y-axis depicts the median number of every substation type for the intergenetic regions of ortholog 336 windows. (C) The y-axis depicts the median fraction of nonsynonymous substitutions per nonsynonymous site 337 (dN) for every substitution type in ortholog windows. (D) The y-axis depicts the median fraction of synonymous 338 substitutions per synonymous site (dS) for every substitution type in ortholog windows.

339 High local nucleotide substitution levels are associated with LTR-RT proliferation

340 As higher nucleotide substitution levels with distinct substitution patterns occur in U. hordei 341 and U. nuda, which are species with more recent LTR-RT proliferations than U. brachipodii-342 distachyi and U. tritici, we looked for a direct association with LTR-RTs. The median 343 distance of U. hordei genes to their closest LTR-RT is significantly, negatively correlated to 344 the median substitution level (with U. nuda orthologs) of ortholog windows (Pearson's r = -345 0.27, p-value = 4.74e-9) (Figure 6A). A correlation coefficient of -0.27 points towards a weak 346 correlation. In conclusion, genes in genome regions with higher nucleotide substitution levels 347 generally reside closer to LTR-RTs.

348 To study the LTR-RT nucleotide substitution regime, we constructed ancestor LTR-349 RT sequences of LTR-RT families, using the convention that TE family members share at 350 least 80% sequence identity in at least 80% of their sequence with one other family member 351 (19). To facilitate the sequence alignment and ancestor sequence construction, we only took a 352 subset of the LTR-RTs and excluded the terminal repetitive sequences (more details in 353 Material and Methods). In total, ancestors of 13 LTR-RT families were reconstructed using 354 252 LTR-RT sequences (Figure 6B). We then determined clades in the phylogenetic tree that 355 solely consists of very similar U. hordei LTR-RTs and, thus, recently proliferated in U. 356 hordei. In relation to their ancestor sequences, LTR-RTs substitutions consisted 91% 357 (median) of transitions (Figure S6). In contrast, nucleotide substitutions of their 20kb 358 flanking regions (excluding repetitive sequences) consisted 62% of transitions (compared to 359 U. nuda). Here, CG comprised the highest fraction of transversions with a median of 14% of 360 the total substitutions (Figure 6). In contrast, only 1% of the substitutions between LTR-RTs 361 and their ancestors were CG. In conclusion, LTR-RTs are not subjected to the nucleotide 362 substitution regime with a high fraction of CG substitutions.

364 Figure 6: High local nucleotide substitution levels are associated with long terminal repeat retrotransposons (LTR-RTs). (A) The relation between the median number 365 of nucleotide substitutions and the median distance between U. hordei genes and the closest LTR-RT for ortholog windows of 75 genes with a sliding step of 10. (B) In total, 366 252 LTR-RTs are included in the phylogenetic tree and their species of origin is indicated by the outer band colour (UH = U. hordei, UN = U. nuda, UB = U. brachipodii-367 distachyi, UT = U. tritici). LTR-RTs families are indicated by the circle segments in different colour. Families indicated with "G" are gypsy-type families and "C" are copia-368 type families. For recently proliferated U. hordei LTR-RTs, the fractions of the different substitution types were determined with their LTR-RT ancestor that is indicated with 369 a circle on the phylogenetic tree. Substitution fractions of the 20 kb flanking regions (40 kb in total) of the LTR-RT with U. nuda, excluding repetitive sequences, were also 370 determined. Significant differences between LTR and flanking regions were determined for every substitution type individually with an unequal variance t-test. ***: p-value 371 < 0.001.

372 **Discussion**

373 Nucleotide substitution rates are unevenly distributed across genomes and can be influenced 374 by numerous factors, including neighbouring nucleotides, recombination frequencies and TE 375 activity (41-43). Nucleotide divergence in U. hordei and U. nuda occurred more clustered in 376 their genomes compared to U. brachipodii-distachyi and U. tritici (Figure 4B-C). These 377 differences in regional substitution rates can be directly or indirectly caused by distinct LTR-378 RT dynamics, as U. hordei and U. nuda encountered a more recent LTR-RT proliferation 379 than U. brachipodii-distachyi and U. tritici (Figure 4A, Table 1). Moreover, another 380 association between LTR-RTs and nucleotide substitution rates was found, as gene nucleotide 381 substitution levels are weakly, negatively correlated to the distance of the closest LTR-RT in 382 U. hordei (Figure 6A). Conceivably, the purge of LTR-RTs from the genome impacts this 383 correlation considerably, as purged LTR-RTs cannot be detected, but may have had an 384 impact on the local nucleotide substitution regime. High nucleotide substitution levels are 385 accompanied with a high fraction of CG substitutions (Figure 5,S4). A relatively high 386 fraction of CG substitutions is found in the flanking regions of recently proliferated LTR-387 RTs, but not for LTR-RTs themselves (Figure 6B). A mechanism to how LTR-RTs may 388 impact local nucleotide substitution regimes remains elusive. The relation might be 389 indirectly, and caused by different epigenetic regimes in the genome (44). Distinct 390 methylation and/or histon modification patterns may occur in LTR-RT-rich genome regions, 391 which leads to a more erroneous DNA polymerase with high CG substitutions. However, 392 LTR-RTs themselves are not subjected to a high fraction of CG substitutions. Possibly, DNA 393 methylation may specifically target LTR-RT sequences, which cause a distinct nucleotide 394 substitution regime that is different from the LTR-RT flanking regions. Alternatively, the 395 distinct nucleotide substitution regime may not have an epigenetic origin and originates from 396 a more erroneous DNA polymerisation of the single stranded LTR-RT flanking regions 397 during LTR-RT insertion. This mechanism has been previously suggested in rice, where 398 higher nucleotide substitutions levels occur close to TE insertion sites (41). TE insertion 399 causes cuts in the host DNA, which are then ligated by the host (45, 46). However, the cut 400 host DNA might become a target for 3'->5' exonuclease resulting in a segment of single-401 stranded DNA (41). The complementary strand of this stretch of DNA would then be 402 synthesized by a replication complex with lower DNA polymerase fidelity and mismatch 403 repair. This hypothesis could explain why the nucleotide substitution regime with high CG 404 fractions affect LTR-RT neighbouring regions, but not LTR-RTs themselves.

405 Higher levels of nucleotide substitutions impact the evolution of the genes that reside 406 in the affected genome regions. Particularly the occurrence of nonsynonymous CG 407 substitutions strongly increases with higher substitution levels (Figure 5C). These shifts in 408 nucleotide substitution regime change the amino acid composition of proteins (Figure S5). 409 High nucleotide substitution levels especially lead to amino acid alteration in secretome 410 genes, as they are more flexible to amino acid changes than other genes (Figure 4C). 411 Although the effect of nucleotide substitutions affected secretome genes more, enrichments 412 of particular gene functions could not be found for genome regions with high nucleotide 413 substitution levels. Thus, the high substitution levels are not in line with the two-speed 414 genome model (18, 24), as they do not specifically affect genome regions that are rich in 415 secretome genes, which include effector gene candidates. More generally, repeat content 416 were not more frequently found in the proximity of secretome genes compared to other genes 417 (Figure S2). The specificity and the universality of the two-speed genome model for 418 filamentous plant pathogens has recently been contested (47, 48). More plant pathogens have 419 been reported where effector candidates do not especially reside in gene-poor/repeat-rich 420 regions, such as the leaf spot pathogen Ramularia collo-cygni on barley, the earlier 421 mentioned *P. striiformis* f. sp. *tritici* and the barley powdery mildew pathogen *Blumeria*422 graminis f. sp. hordei (49–51).

423 LTR-RTs are mainly responsible for the U. hordei genome expansion (Table 1). The 424 expansion occurred especially in the mating-type locus that increased almost three times in 425 size in comparison to U. brachipodii-distachyi (Table S1). The lack of the purifying 426 recombination ability in this genome region can be the reason why LTR-RTs especially 427 accumulated in the mating-type and flanking genome regions (28, 32). Conceivably, this 428 process is reinforced by the increasing presence of repetitive sequences as the transposition 429 into a repeat-rich genome region is less likely to have a severe fitness cost than a 430 transposition into repeat-poor regions. Furthermore, the co-occurrence of high LTR-RTs 431 genome contents and the switch in mating-type organization from tetra- to bipolar may 432 indicate that mating-type polarity impacts LTR-RT proliferation and/or retention (52). In case 433 of biallelic a and b loci, the switch from a tetra-to bipolarity results in a basidiospore 434 compatibility change from 25 to 50%. Consequently, it takes a tetrapolar smut on average 435 longer to find a mating type than a bipolar smut. This longer time might increase the 436 opportunity to mate with spores from a different offspring and, thus, increase outcrossing. 437 The higher outcrossing rate for tetra- compared to bipolar smuts is even more pronounced 438 when multiallelism exists for the a and b loci (53). Multiallelism increases the compatibility 439 on population level, whereas compatibility within the same offspring remains 25 and 50% for 440 tetra- and bipolar smuts, respectively. Lower levels of outcrossing reduce the purifying 441 recombination ability of smuts, which may be the reason why LTRs could be retained for 442 longer and proliferate to a further extent in bipolar smuts (28, 52).

443 TEs are import drivers of genome evolution as they directly cause mutagenesis 444 through their transpositions and indirectly increase the change of non-homologous 445 recombination due to their repetitive nature (12). LTR-RT proliferation in *U. hordei* indicates

that TE activity may also influence local nucleotide substitution regimes and increase the substitution levels in the genome regions where they insert. Consequently, genes in the proximity of these insertion sites encounter more nonsynonymous substitutions and thus evolve faster (Figure 5C). Fast gene evolution may be advantageous under stressful condition, when TEs are typically more active or change their activity (54, 55).

451 Material and Methods

452 Genome sequencing and assembly

453 Genomic DNA from all smut species was isolated using a MasterPure[™] Complete 454 DNA&RNA Purification Kit (Epicentre®, Illumina®, Madison, Wisconsin, USA) according 455 to the manufacturer's instructions. Long U. hordei reads were obtained with the Oxford 456 Nanopore MinION device. The genomes of six U. hordei strains were sequenced: Uh359, 457 Uh805, Uh811, Uh818, Uh121 and Uh122 (10). The library was prepared according the 458 Oxford Nanopore Technology (ONT) protocol for native barcoding genomic DNA (EXP-459 NBD104 and SQK-LSK109). Three U. hordei strains were multiplexed for every run. The 460 prepared library was loaded on an R9.4.1 Flow Cell. ONT reads were base-called, filtered 461 (default value) and barcodes were trimmed with the Guppy Basecalling Software v3.5.1 of 462 ONT. Paired-end U. hordei 150 bp reads were obtained with the Illumina HiSeq 4000 device. 463 Library preparation (500bp insert size) and sequencing were performed by the BGI Group 464 (Beijing, China). Paired-end U. hordei reads were filtered using Trimmomatic v0.39 with the 465 settings "LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:100", only reads 466 that remained paired after filtering were used in the assembly (56). In total, 3.2-4.5 Gb of 467 filtered paired-end reads and 1.5-6.5 Gb of filtered Nanopore reads were used for assembly. 468 An initial assembly was obtained by using the "ONT assembly and Illumina polishing 469 pipeline" (https://github.com/nanoporetech/ont-assembly-polish). The assembly was further 470 upgraded using the FinisherSC script (57) Mitochondrial contigs were removed from the 471 assembly and were not used for any analysis. Additionally, small contigs were removed that 472 contained a paired-end read coverage lower than 50% of the genome-wide average.

473 Long *U. nuda*, *U. loliicola* and *U. tritici* reads were obtained through Single
474 Molecular Real-Time (SMRT) Sequencing using the PacBio Sequel system. A total of 6.3475 9.7 Gb of raw long reads were obtained for the different species. The initial assembly was

476 obtained using the Canu assembler and was further upgraded with the FinisherSC script (57,

477 58). Mitochondrial contigs were remove from the assembly and were not used for further478 analysis.

The quality of genome assemblies was assessed by screening the presences of BUSCOs using the BUSCO software version 5.0.0 with the database "basidiomycota_odb10" 481 (59).

482

483 Transposable element annotation and classification

484 The smut genome assemblies were scavenged for repetitive sequences in order to construct a 485 repeat library for repeat annotation. Helitron TEs were identified using the EAHelitron script 486 (60). LTR-RTs were identified using LTRharvest (61). Miniature inverted-repeat TEs were 487 identified with MITE Tracker (62). Short interspersed nuclear elements were identified with 488 the SINE-scan tool (63). Finally, RepeatModeler (v1.0.11) was also used for *de novo* repeat 489 identification. These repeats were than combined with the repeat library from RepBase 490 (release20170127) (64). The CD-HIT-EST tool under default settings was used to remove 491 redundancy in the constructed library (65). RepeatMasker (v4.0.9) was then used to annotate 492 the repeats to specific genome locations. The annotated repeat sequences were filtered on size 493 and only sequences larger than 500bp were retained. Furthermore, repeats that were nested or 494 had more than 50% overlap with other repeats were removed from the library. In case two 495 repeats had reciprocally 50% overlap was the longest repeat retained. Repeats were classified 496 into different TE orders using the PASTEC tool using PiRATE-Galaxy (66, 67).

497

498 U. hordei RNA sequencing and expression analysis

Total RNA from *U. hordei* strain 4857-4 strain grown axenically and *in planta* was extracted
for three biological replicates. For the axenic samples, *U. hordei* was grown in YEPS light

501 (0.4% yeast extract, 0.4% peptone, and 2% saccharose) liquid medium at 22°C with 200 rpm 502 shaking till OD:1.0. For the *in planta* samples, Golden Promise barley cultivar was grown in 503 a greenhouse at 70% relative humidity, at 22°C during the day and the night; with a light/dark regime of 15/9 hrs and 100 Watt/m² supplemental light when the sunlight influx intensity was 504 less than 150 Watt/m². Barley plants were infected with *U. hordei* through needle injection as 505 506 previously described (68) and samples were harvested 3dpi. Here, the third leaves of the U. 507 hordei infected barley plants were collected by cutting 1 cm below the injection needle sites. 508 Leaf samples were then frozen in liquid nitrogen and grinded using a mortar and pestle under 509 constant liquid nitrogen. The total RNA was isolated by using the TRIzol® extraction method 510 (Invitrogen; Karlsruhe, Germany) according to the manufacturer's instructions. Subsequently, 511 total RNA samples were treated with Turbo DNA-Free[™] Kit (Ambion/Applied Biosystems; 512 Darmstadt, Germany) to remove any DNA contamination according to the manufacturer's 513 instructions. Total RNA was then sent to for library preparation and sequencing to Novogene 514 (Beijing, China). Libraries (250-300 bp insert size) were loaded on Illumina NovaSeq6000 515 System for 150bp paired-end sequencing using a S4 flowcell.

516 In total, 5.1-8.4 and 36.0-45.2 Gb of raw reads were obtained for the samples grown 517 in liquid medium and *in planta*, respectively. The reads were filtered using the Trinity 518 software (v2.9.1) option trimmomatic under the standard settings (69). The reads were then 519 mapped to the reference genome using Bowtie 2 (v2.3.5.1) with the first 15 nucleotides on 520 the 5'-end of the reads being trimmed due to inferior quality (70). The reads were mapped 521 onto a combined file of the U. hordei strain Uh114 genome assembly and the Hordeum 522 vulgare (IBSC v2) (71) genome assembly. Reads were counted to the U. hordei loci using 523 the R package Rsubread (v1.34.7) (72). Here the default minimum mapping quality score of 0 524 was used, to include reads that would have multiple best mapping locations. For the gene 525 loci, reads were counted that were mapped to the predicted coding regions. For the LTR-RT loci, reads were only counted that mapped within LTR-RT loci, excluding the reads that mapped onto the 10% of either edge of the locus. Loci were considered expressed if they had more than one count per million in at least two of the six samples (three replicates of two treatments). Significant differential expression of a locus was calculated using the R package edgeR (v3.26.8), using the function "decideTestsDGE" (73). Here, a threshold of log2 fold change of 1 was used and differential expression was determent using a p-value < 0.01 with Benjamini-Hochberg correction

533

534 Gene annotation

535 U. hordei genomes were annotated using the BRAKER v2.1.4 pipeline with RNA-Seq and 536 protein supported training with the options "--softmasking" and "--fungus" enabled (74). 537 RNA-seq reads from U. hordei grown in axenic culture and in planta (all replicates) were 538 mapped to the assemblies using TopHat v2.1.1 (75). Protein predictions from numerous 539 Ustilaginales species were used to guide the annotation, i.e. Anthracocystis flocculosa, 540 Melanopsichium pennsylvanicum, Moesziomyces antarcticus, S. reilianum, U. brachipodii-541 distachyi, U. hordei, U. maydis (25–28, 76–78). U. nuda and U. tritici genomes were also 542 annotated with the BRAKER v2.1.4 pipeline, but no RNA-seq data was used to guide the 543 annotation. The option "--fungus" was enabled and the previously published protein files of 544 the following species were used for protein supported training: M. pennsylvanicum, S. 545 reilianum, U. brachipodii-distachyi and U. maydis (25–27, 76). Our annotation of U. hordei 546 Uh805 was also included to train the annotation software. The U. brachipodii-distachyi and 547 U. maydis genomes were previously annotated and this annotation was used for analysis (25, 548 27). Predicted genes that included an internal stop codon or did not start with a methionine 549 were removed.

550 Secreted proteins are proteins with a predicted signal peptide using SignalP version 551 5.0 (79) and the absence of a transmembrane domain predicted with TMHMM2.0c in the 552 protein sequence excluding the signal peptide (80). Gene Ontology (GO) terms were 553 annotated to the *U. hordei* strain Uh114 protein prediction using InterProScan (v5.42-78.0) 554 (81). Significance of GO term enrichments in a subset of genes were calculated with a Fisher 555 exact test with the alternative hypothesis being one-sided (greater). The significance values of 556 the multiple enrichments were corrected according Benjamini and Hochberg (82). 557 Carbohydrate-Active enzymes (CAZymes) were annotated using the dbCAN2 meta server 558 (83, 84). A protein was considered a CAZyme if at least two of the three tools 559 (HMMER, DIAMOND and Hotpep) predicted a CAZyme function.

560

561 **Comparative genomic analyses.**

562 Phylogenetic trees were constructed based on BUSCOs from the database 563 "basidiomycota_odb10" that are present without paralog in all members of the tree (59). For 564 every gene, the encoded protein sequences were aligned using MAFFT (v7.464) option "--565 auto" (85). These aligned protein sequences were then concatenated for every species and 566 used for tree construction using RAxML (v8.2.11) with substitution model 567 "PROTGAMMAWAG" and 100 bootstraps (86). Here, protein sequences that were present 568 in at least 60% of the tree members were excluded for tree construction.

569 Synteny block between the smut genome assemblies of were identified with SynChro 570 with DeltaRBH = 3 (87, 88). The genome assembly of the epiphytic yeast *Moesziomyces* 571 *bullatus* ex *Albugo* was included in this analysis to use as an outgroup (89). The ancestral 572 chromosome gene order was constructed with AnChro with Delta' = 3 and Delta'' = 3 (88, 573 90). Inter-chromosomal rearrangements, i.e. translocations of two blocks, were identified 574 with ReChro Delta = 10 (88, 90). No inter-chromosomal rearrangements in *U. nuda* could be automatically detected by ReChro. Here, the inter-chromosomal rearrangement that lead to amating-type polarity switch was manually determined.

577 To determine the specificity of *MAT* locus sequences, absent/present polymorphisms 578 between *U. hordei* strains were determined with NUCmer (version 3.1) from the MUMmer 579 package with the option "--maxmatch" (91). From the same package, delta-filter with the 580 option "-1" was used to find the one-to-one alignments.

581

582 LTR-RT evolution

583 To know the sequence identity distribution, the best orthologous and paralogous LTR-RTs 584 were identified using blastn (v2.2.31+) (92). LTR-RTs that did not belong to an LTR-RT 585 family of multiple members, were excluded from the analysis. Members of the same LTR-RT 586 family share at least 80% sequence identity in at least 80% of their sequence with at least one 587 other member (19). Orthologous or paralogous LTR-RTs that have reciprocally the highest 588 bit-score were used for analysis. The nucleotide identity distribution of these orthologous and 589 paralogous LTR-RTs was constructed using Gaussian Kernel Density Estimation with a 590 kernel bandwidth of 1.5.

591 To reconstruct the ancestor LTR-RTs, a subset LTR-RTs were used. LTR-RTs were 592 included that were larger than 3 kb and smaller than 15 kb. Furthermore, repetitive sequences 593 within the LTR-RT (>50 bp) were indicated using blastn (v2.2.31+) and removed from the 594 sequence (92). The region between the repeats were then used for ancestor construction if this 595 region was larger than 500 bp. Here, bedtools (v.2.29.2) function "getfasta" was used (93). 596 Open reading frames (ORFs) and there encoding amino acid sequence of were determined 597 with esl-translate (-1 50) as part of the Easel (v0.46) package. Functional domain within these 598 amino acid sequences were determined with pfam_scan.pl (-e_seq 0.01) using the Pfam 599 database version 32.0 (94). Only sequences were included in the ancestor construction if they 600 had at least 3 different Pfam domains from the following domains: PF00078, PF00665, 601 PF03732, PF07727, PF08284, PF13975, PF13976, PF14223, PF17917, PF17919 and 602 PF17921. All of these predicted Pfam domain had to located on the same nucleotide strand in 603 order to be used for ancestor construction. These sequences were then grouped in families, 604 according to the definition that family members share at least 80% sequence identity in at 605 least 80% of their sequence with at least one other member (19). Families were classified in 606 Copia or Gypsy using the tool LTRclassifier (95). Ancestors were constructed using prank 607 (v.170427) with the options "-showall" and "-F". Nucleotide substitutions between LTR-RTs 608 and their constructed ancestor were then determined after they were aligned using MAFFT 609 (v7.464) options "--auto" (85).

610

611 Gene divergence

612 One-to-one orthologs and homologs between U. hordei strains were found using the SiLiX 613 (v.1.2.10-p1) software with the setting of at least 35% identity and 40% overlap (96). 614 Homolog groups consisting of two members, each one of a different strain/species, were 615 considered one-to-one homologs. Nucleotide substitutions for orthologs were identified after 616 orthologs were aligned using MAFFT (v7.464) options "--auto" (85). Synonymous and 617 nonsynonymous substitutions between orthologs were identified using SNAP (97). The 618 nucleotide substitution level distributions were constructed using Gaussian Kernel Density 619 Estimation with a kernel bandwidth of 0.5.

620

621 Data accession

Raw RNAseq reads and genome assemblies are deposited at NCBI under the BioProjectPRJNA698760.

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441129; this version posted January 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

625 Acknowledgements

- 626 This work has been supported by the Alexander von Humboldt Foundation, the European
- 627 Research Council (ERC 2017 COG 771035, conVIRgens), the Cluster of Excellence on
- 628 Plant Sciences (CEPLAS; Germany's Excellence Strategy–EXC 2048/1 Project ID:
- 629 390686111) and the University of Cologne. We also thank the Regional Computing Centre of
- 630 Cologne (RRZK) for access to the Cologne High Efficient Operating Platform for Science
- 631 (CHEOPS). We thank Guus Bakkeren for sharing the *U. hordei* strains with us and critically
- reading the manuscript. We thank Karl-Josef Müller for the isolation and sharing of the U.
- 633 *nuda* and *U. tritici* strain with us.

635 SUPPLEMENTAL MATERIAL

- Table S1. Characteristics of the mating-type loci of smut species with a bipolar matingtype system.
- 638

639 Table S2. Transposable elements annotation in various smut genome assemblies.

640

Figure S1. Phylogenetic relationship between *Ustilago hordei* lineages based on Benchmarking Universal Single-Copy Orthologs (BUSCOs). In total, 1,692 BUSCOs were used for tree construction. Homologous BUSCO protein sequences were aligned using MAFFT and then concatenated for tree construction using RAxML with substitution model "PROTGAMMAWAG". *U. nuda* was used as on outgroup species to root the tree. The robustness of the trees was assessed using 100 bootstrap replicates.

647

Figure S2. Comparison of repeat content of gene flanking regions between expressed secretome genes and other expressed genes. Upregulated means a significantly higher expression *in planta* compared to growth in axenic culture. In total, 20 kb sequences on each side of the genes (40 kb in total) were considered as flanking regions. Significant differences were calculated with a two-sided T-test. No significant differences with *p*-value < 0.01 were found.

654

Figure S3. Correlation between median nucleotide substitution level and fraction U. *hordei* (UH) specific genes for ortholog windows. Ortholog windows of 75 UH genes with
a sliding step of 10 were used to determine the number of substitutions with U. nuda. UH
specific genes do not have an ortholog in U. maydis.

659

Figure S4. Comparison of nucleotide substitution type fractions for *U. brachipodiidistachyi/U. tritici* and *U. hordei/U. nuda* ortholog windows. The nucleotide substitutions were calculated for windows of 75 genes with a sliding step of 10. The x-axis consistently displays the total substitutions per 1 kb for these windows. (A) The y-axis depicts the fraction of every substation type (CT, AG, CG, AC, GT, AT) of ortholog windows. (B) The y-axis depicts the fraction of every substation type for the intergenetic regions of ortholog windows.

667 Figure S5. Correlations between the nucleotide substitution levels and the encoded 668 amino acid composition of genes. Correlations were calculated for windows of 75 U. hordei 669 genes with a sliding step of 10. Significant correlations, with p-value < 0.01, are indicated by 670 a black edge around the square. (A) Correlations between amino acid compositions of 671 encoded U. hordei proteins and the number of nucleotide substitutions with U. nuda. (B) 672 Correlations between amino acid alternations for encoded U. hordei proteins and the number 673 of nucleotide substitutions using U. nuda and U. brachipodii-distachyi orthologs as 674 comparison.

675

Figure S6. Fractions of transitions and transversion of recently proliferated *U. hordei* long terminal repeat retrotransposons (LTR-RTs) and their flanking regions. The fraction of transitions and transversions between recently proliferated *U. hordei* LTR-RTs and their ancestors were determined. Fractions of the 20 kb flanking regions (40 kb in total) of the LTR-RT with *U. nuda* (UN) were also determined. Significant differences between LTR and flanking regions were determined for transitions and transversions separately with an unequal variance t-test. ***: *p*-value < 0.001.

References

684	1.	Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault
685		M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. 2018. Ten things you
686		should know about transposable elements. Genome Biol 19:199.
687	2.	Stajich JE. 2017. Fungal genomes and instights into the evolution of the kingdom, p.
688		619–633. In The Fungal Kingdom.
689	3.	Stukenbrock EH, Croll D. 2014. The evolving fungal genome. Fungal Biol Rev 28:1-
690		12.
691	4.	Katinka MD, Duprat S, Cornillott E, Méténler G, Thomarat F, Prensier G, Barbe V,
692		Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoul H, Peyret P, Saurin W,
693		Gouy M, Weissenbach J. 2001. Genome sequence and gene compaction of the
694		eukaryote parasite Encephalitozoon cuniculi. Nature 414:450-453.
695	5.	Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. 2010. The complete
696		sequence of the smallest known nuclear genome from the microsporidian
697		Encephalitozoon intestinalis. Nat Commun 1:77.
698	6.	Ramos AP, Tavares S, Tavares D, Silva MDC, Loureiro J, Talhinhas P. 2015. Flow
699		cytometry reveals that the rust fungus, Uromyces bidentis (Pucciniales), possesses the
700		largest fungal genome reported-2489Mbp. Mol Plant Pathol 16:1006-1010.
701	7.	Tavares S, Ramos AP, Pires AS, Azinheira HG, Caldeirinha P, Link T, Abranches R,
702		Silva M do C, Voegele RT, Loureiro J, Talhinhas P. 2014. Genome size analyses of
703		Pucciniales reveal the largest fungal genomes. Front Plant Sci 5:422.
704	8.	Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D, Linning R, Sakthikumar S,
705		Song X, Adiconis X, Fan L, Goldberg JM, Levin JZ, Young S, Zeng Q, Anikster Y,
706		Bruce M, Wang M, Yin C, McCallum B, Szabo LJ, Hulbert S, Chen X, Fellers JP.
707		2017. Comparative analysis highlights variable genome content of wheat rusts and
708		divergence of the mating loci. G3 7:361–376.
709	9.	Oggenfuss U, Badet T, Wicker T, Hartmann FE, Singh NK, Abraham L, Karisto P,
710		Vonlanthen T, Mundt C, McDonald BA, Croll D. 2021. A population-level invasion
711		by transposable elements triggers genome expansion in a fungal pathogen. Elife
712		10:e69249.
713	10.	Ali S, Laurie JD, Linning R, Cervantes-Chávez JA, Gaudet D, Bakkeren G. 2014. An
714		immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an
715		Ustilaginaceae-specific cluster bearing signs of transposable element-assisted
716		evolution. PLoS Pathog 10:e1004223.
717	11.	Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ,
718		Thomma BPHJ. 2016. Transposons passively and actively contribute to evolution of
719		the two-speed genome of a fungal pathogen. Genome Res 26:1091-1100.
720	12.	Seidl MF, Thomma BPHJ. 2014. Sex or no sex: Evolutionary adaptation occurs
721		regardless. BioEssays 36:335–345.
722	13.	Thines M. 2019. An evolutionary framework for host shifts – jumping ships for
723		survival. New Phytol 224:605-617.
724	14.	Cook DE, Mesarich CH, Thomma BPHJ. 2015. Understanding plant immunity as a
725		surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563.

726	15.	Rouxel T, Balesdent MH. 2017. Life, death and rebirth of avirulence effectors in a
727		fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytol 214:526-532.
728	16.	Depotter JRL, Doehlemann G. 2020. Target the core: durable plant resistance against
729		filamentous plant pathogens through effector recognition. Pest Manag Sci 76:426-431.
730	17.	Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous
731		pathogens: waltz with plants. Curr Opin Genet Dev 35:57–65.
732	18.	Croll D, McDonald BA. 2012. The accessory genome as a cradle for adaptive
733		evolution in pathogens. PLoS Pathog 8:e1002608.
734	19.	Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy
735		P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. 2007. A unified
736		classification system for eukaryotic transposable elements. Nat Rev Genet 8:973-982.
737	20.	Finnegan DJ. 2012. Retrotransposons. Curr Biol 22:R432-R437.
738	21.	Havecker ER, Gao X, Voytas DF. 2004. The diversity of LTR retrotransposons.
739	21.	Genome Biol 5:225.
740	22.	Zuo W, Ökmen B, Depotter JRL, Ebert MK, Redkar A, Misas Villamil J, Doehlemann
741		G. 2019. Molecular interactions between smut fungi and their host plants. Annu Rev
742		Phytopathol 57:411–430.
743	23.	Möller M, Stukenbrock EH. 2017. Evolution and genome architecture in fungal plant
744	23.	pathogens. Nat Rev Microbiol 15:756–771.
745	24.	Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why
746	21.	bigger can be better. Nat Rev Microbiol 10:417–430.
747	25.	Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad
748	20.	JW, Gold SE, Müller O, Perlin MH, Wösten HAB, De Vries R, Ruiz-Herrera J,
749		Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse
750		CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE,
751		Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-
752		Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vraněs M, Ladendorf O,
753		Vincon V, Fuchs U, Sandrock B, Meng S, Ho ECH, Cahill MJ, Boyce KJ, Klose J,
754		Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier
755		PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T,
756		Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G,
757		Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW,
758		DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J,
759		Birren BW. 2006. Insights from the genome of the biotrophic fungal plant pathogen
760		Ustilago maydis. Nature 444:97–101.
761	26.	Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di
762	20.	Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer
763		E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E,
764		Güldener U, Kahmann R. 2010. Pathogenicity determinants in smut fungi revealed by
765		genome comparison. Science 330:1546-1548.
766	27.	Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L, Seitner D, Rabanal FA, Czedik-
767	<i>_</i> ,.	eysenberg A, Uhse S, Bindics J, Genenncher B, Navarrete F, Kellner R, Ekker H,
768		Kumlehn J, Vogel JP, Gordon SP, Walter MC, Marcel TC, Mu M, Sieber CMK,
769		Mannhaupt G, Gu U, Kahmann R, Djamei A. 2016. A complete toolset for the study of
107		mainimup 0, 04 0, mainimum R, Djunier M. 2010. A complete toolset for the study of

 <i>Ustilago bromivora</i> and <i>Brachypodium</i> sp. as a fungal-temperate gra Elife 5:e20522. 	ass pathosystem.
28. Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Guldener U, M	Aunstarlzottar M
773 Moore R, Kahmann R, Bakkeren G, Schirawski J. 2012. Genome co	
and maize smut fungi reveals targeted loss of RNA silencing compo	· ·
 specific presence of transposable elements. Plant Cell 24:1733–1745 	*
776 29. Kruse J, Dietrich W, Zimmermann H, Klenke F, Richter U, Richter J 2018. Ustillage appeales gauging loof string amut multisited. DAA Fung	
777 2018. <i>Ustilago</i> species causing leaf-stripe smut revisited. IMA Fung	
778 30. Maire RCJ. 1919. Une ustilaginale nouvelle de la flore nord-Africain	ne. Bull la Societe
779 d'Histoire Nat l'Afrique du Nord 10:46–47.	anishas hin slan
780 31. Bakkeren G, Kronstad JW. 1994. Linkage of mating-type loci distin	
781 from tetrapolar mating in basidiomycetous smut fungi. Proc Natl Ac	ad Sci U S A
782 91:7085-7089.	1
783 32. Lee N, Bakkeren G, Wong K, Sherwood JE, Kronstad JW. 1999. Th	0.11
 pathogenicity locus of the fungus <i>Ustilago hordei</i> spans a 500-kb reg Acad Sci U S A 96:15026-15031. 	gion. Proc Nati
	mann D 1002 A
786 33. Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kah	
 two-component regulatory system for self/non-self recognition in Us Cell 68:647-657. 	stilago mayais.
	nd nharomona
 789 34. Raudaskoski M, Kothe E. 2010. Basidiomycete mating type genes as signaling. Eukaryot Cell 9:847-859. 	na pheromone
 signaling. Eukaryot Cell 9:847-859. 35. Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, Chiu R, Li 	nning D. Schoin I
 <i>Backeten G</i>, <i>Hang G</i>, <i>Warten KL</i>, <i>Butterneu T</i>, <i>Shin H</i>, <i>Chu K</i>, <i>Li</i> Lee N, Hu G, Kupfer DM, Tang Y, Roe BA, Jones S, Marra M, Kro 	-
792 Lee N, Hu O, Kuplel DM, Tang T, Koe BA, Jones S, Marra M, Kro 793 Mating factor linkage and genome evolution in basidiomycetous pat	
	nogens of cerears.
	Dalderon G
 Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, E Cuomo CA, Heitman J, Sanyal K. 2018. RNAi is a critical determination 	
evolution in closely related fungi. Proc Natl Acad Sci U S A 115:31	
797 37. Schweizer G, Munch K, Mannhaupt G, Schirawski J, Kahmann R, E	
 799 Positively selected effector genes and their contribution to virulence 	
800 Sporisorium reilianum. Genome Biol Evol 10:629–645.	in the sinut fungus
 300 38. Zuther K, Kahnt J, Utermark J, Imkampe J, Uhse S, Schirawski J. 20 	117 Host
802 specificity of <i>Sporisorium reilianum</i> is tightly linked to generation of	
803 luteolinidin by <i>Sorghum bicolor</i> . Mol Plant-Microbe Interact 25:123	1 2
804 39. Wang Q-M, Begerow D, Groenewald M, Liu X-Z, Theelen B, Bai F	
805 2015. Multigene phylogeny and taxonomic revision of yeasts and re	
806 <i>Ustilaginomycotina</i> . Stud Mycol 81:55–83.	lated fullgi ill the
807 40. Depotter JRL, Shi-Kunne X, Missonnier H, Liu T, Faino L, van den	Berg GCM Wood
808 TA, Zhang B, Jacques A, Seidl MF, Thomma BPHJ. 2019. Dynamic	-
809 regions of the plant pathogenic fungus <i>Verticillium dahliae</i> display e	
810 conservation. Mol Ecol 28:3482-3495.	maneed sequence
 811 41. Wicker T, Yu Y, Haberer G, Mayer KFX, Marri PR, Rounsley S, Ch 	nen M. Zuccolo A
812 Panaud O, Wing RA, Roffler S. 2016. DNA transposon activity is as	
813 increased mutation rates in genes of rice and other grasses. Nat Com	

014	40	Larshan ML Unget LD 2002 Unman SND variability and mystation rate are bigher in
814 815	42.	Lercher MJ, Hurst LD. 2002. Human SNP variability and mutation rate are higher in
815	12	regions of high recombination. Trends Genet 18:337.340.
816	43.	Hwang DG, Green P. 2004. Bayesian Markov chain Monte Carlo sequence analysis
817		reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad
818		Sci U S A 101:13994-14001.
819	44.	Habig M, Lorrain C, Feurtey A, Komluski J, Stukenbrock EH. 2021. Epigenetic
820		modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat
821		Commun 12:5869.
822	45.	Lee GE, Mauro E, Parissi V, Shin CG, Lesbats P. 2019. Structural insights on
823		retroviral DNA integration: learning from foamy viruses. Viruses 21:249-256.
824	46.	Lesbats P, Engelman AN, Cherepanov P. 2016. Retroviral DNA integration. Chem
825		Rev 116:12730-12757.
826	47.	Torres DE, Oggenfuss U, Croll D, Seidl MF. 2020. Genome evolution in fungal plant
827		pathogens: looking beyond the two-speed genome model. Fungal Biol Rev 3:136-143.
828	48.	Frantzeskakis L, Kusch S, Panstruga R. 2019. The need for speed :
829		compartmentalized genome evolution in filamentous phytopathogens. Mol Plant
830		Pathol 20:3–7.
831	49.	Stam R, Münsterkötter M, Pophaly SD, Fokkens L, Sghyer H, Güldener U,
832		Hückelhoven R, Hess M. 2018. A new reference genome shows the one-speed genome
833		structure of the barley pathogen Ramularia collo-cygni. Genome Biol Evol 10:3243-
834		3249.
835	50.	Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C,
836		Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R. 2018. Signatures of host
837		specialization and a recent transposable element burst in the dynamic one-speed
838		genome of the fungal barley powdery mildew pathogen. BMC Genomics 19:381.
839	51.	Schwessinger B, Sperschneider J, Cuddy WS, Garnica DP, Miller ME, Taylor JM,
840		Dodds PN, Figueroa M, Park RF, Rathjen P. 2018. A near-complete haplotype-phased
841		genome of the dikaryotic. MBio 9:e02275-17.
842	52.	Laurie JD, Linning R, Wong P, Bakkeren G. 2013. Do TE activity and counteracting
843		genome defenses, RNAi and methylation, shape the sex lives of smut fungi? Plant
844		Signal Behav 8:e23853.
845	53.	Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. 2018. Fungal Sex: The
846		Basidiomycota, p. 147–175. In Heitman, J, Howlett, BJ, Crous, PW, Stukenbrock, EH,
847		James, TY, Gow, NAR (eds.), The Fungal Kingdom. American Society of
848		Microbiology, Washington DC.
849	54.	Horváth V, Merenciano M, González J. 2017. Revisiting the relationship between
850	0.11	transposable elements and the eukaryotic stress response. Trends Genet 33:832-841.
851	55.	Fouché S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D. 2020. Stress-
852		driven transposable element de-repression dynamics and virulence evolution in a
853		fungal pathogen. Mol Biol Evol 37:221-239.
854	56.	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
855	20.	sequence data. Bioinformatics 30:2114-2120.
856	57.	Lam KK, Labutti K, Khalak A, Lam K, Tse D. 2015. FinisherSC: a repeat-aware tool
850 857	51.	for upgrading de-novo assembly using long reads. Bioinformatics 31:3207–3209.
0.57		ior approximity do novo assoniory asing roads. Dioinformatics 51.5207-5209.

858	58.	Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu □:
859		scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
860		separation. Genome Res 27:722–736.
861	59.	Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: Assessing genome assembly and
862		annotation completeness, p. 227-245. In Methods in Molecular Biology. Humana Press
863		Inc.
864	60.	Hu K, Xu K, Wen J, Yi B, Shen J, Ma C, Fu T, Ouyang Y, Tu J. 2019. Helitron
865		distribution in Brassicaceae and whole genome Helitron density as a character for
866		distinguishing plant species. BMC Bioinformatics 20:354.
867	61.	Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible
868		software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18.
869	62.	Crescente JM, Zavallo D, Helguera M, Vanzetti LS. 2018. MITE Tracker: an accurate
870	02.	approach to identify miniature inverted-repeat transposable elements in large genomes.
871		BMC Bioinformatics 19:348.
872	63.	Mao H, Wang H. 2017. SINE-scan: An efficient tool to discover short interspersed
873	05.	nuclear elements (SINEs) in large-scale genomic datasets. Bioinformatics 33:743-745.
874	64.	Bao W, Kojima KK, Kohany O. 2015. Repbase Update, a database of repetitive
875	04.	elements in eukaryotic genomes. Mob DNA 6:11.
876	65.	Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets
877	05.	of protein or nucleotide sequences. Bioinformatics 22:1658-1659.
878	66.	Hoede C, Arnoux S, Moisset M, Chaumier T, Inizan O, Jamilloux V, Quesneville H.
878 879	00.	2014. PASTEC: An automatic transposable element classification tool. PLoS One
880		9:e91929.
880 881	67.	Berthelier J, Casse N, Daccord N, Jamilloux V, Saint-Jean B, Carrier G. 2018. A
882	07.	
883		transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga <i>Tisochrysis lutea</i> . BMC Genomics 19:378.
884	60	Ökmen B, Mathow D, Hof A, Lahrmann U, Aßmann D, Doehlemann G. 2018. Mining
	68.	C
885 886		the effector repertoire of the biotrophic fungal pathogen <i>Ustilago hordei</i> during host
886	(0)	and non-host infection. Mol Plant Pathol 19:2603–2622.
887	69.	Grabherr MG., Brian J. Haas, Moran Yassour Joshua Z. Levin, Dawn A. Thompson,
888		Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua
889		Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di
890		Palma, Bruce W. N, Friedman and AR. 2013. Trinity: reconstructing a full-length
891		transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652.
892	70.	Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat
893		Methods 9:357–359.
894	71.	Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk
895		V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang
896		XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková
897		H, Stanková H, Vrána J, Chan S, Munõz-Amatriaín M, Ounit R, Wanamaker S, Bolser
898		D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A,
899		Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin
900		C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI,
901		Borisjuk L, Houben A, Doleael J, Ayling S, Lonardi S, Kersey P, Langridge P,

902		Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close
903		TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein
904		N. 2017. A chromosome conformation capture ordered sequence of the barley genome.
905		Nature 544:427-433.
906	72.	Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper
907		and better for alignment and quantification of RNA sequencing reads. Nucleic Acids
908		Res 47:e47.
909	73.	Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: A Bioconductor package for
910		differential expression analysis of digital gene expression data. Bioinformatics 26:139-
911		140.
912	74.	Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. 2019. Whole-genome annotation
913		with BRAKER, p. 65–95. In Methods in Molecular Biology. Humana Press Inc.
914	75.	Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2
915		accurate alignment of transcriptomes in the presence of insertions, deletions and gene
916		fusions. Genome Biol 14:R36.
917	76.	Sharma R, Mishra B, Runge F, Thines M. 2014. Gene loss rather than gene gain is
918	/ 01	associated with a host jump from monocots to dicots in the smut fungus
919		Melanopsichium pennsylvanicum. Genome Biol Evol 6:2034–2049.
920	77.	Lefebvre F, Joly DL, Labbe C, Teichmann B, Linning R, Belzile F, Bakkeren G,
921	,,,	Belanger RR. 2013. The transition from a phytopathogenic smut ancestor to an
922		anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Plant
923		Cell 25:1946–1959.
924	78.	Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, Imura T, Machida M,
925	70.	Kitamoto D. 2013. Genome sequence of the basidiomycetous yeast <i>Pseudozyma</i>
926		antarctica T-34, a producer of the glycolipid biosurfactants. Genome Announc
927		1:e00064-13.
928	79.	Juan J, Armenteros A, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S,
929	17.	Heijne G Von, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using
930		deep neural networks. Nat Biotechnol 37:420–423.
931	80.	Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting
932	00.	transmembrane protein topology with a hidden Markov model: application to complete
933		genomes. J Mol Biol 305:567-580.
934	81.	Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J,
935	01.	Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M,
936		Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function
937		classification. Bioinformatics 30:1236–1240.
937 938	82.	Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate : a practical and
939 939	02.	powerful approach to multiple testing. J R Stat Soc B 57:289–300.
939 940	83.	Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. DbCAN: a web resource for
940 941	05.	automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445-451.
941 942	84.	Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y.
942 943	04.	2018. DbCAN2: A meta server for automated carbohydrate-active enzyme annotation.
943 944		Nucleic Acids Res 46:W95-W101.
944 945	85.	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
74J	05.	Katon K, Standiey DN. 2013. MATTA multiple sequence angiment software version

946		7: Improvements in performance and usability. Mol Biol Evol 30:772–780.
947	86.	Stamatakis A. 2014. RAXML version 8: A tool for phylogenetic analysis and post-
948		analysis of large phylogenies. Bioinformatics 30:1312–1313.
949	87.	Drillon G, Carbone A, Fischer G. 2014. SynChro: a fast and easy tool to reconstruct
950		and visualize synteny blocks along eukaryotic chromosomes. PLoS One 9:e92621.
951	88.	Drillon G, Carbone A, Fischer G. 2013. Combinatorics of chromosomal
952		rearrangements based on synteny blocks and synteny packs. J Log Comput 23:815-
953		838.
954	89.	Eitzen K, Sengupta P, Kroll S, Kemen E, Doehlemann G. 2021. A fungal member of
955		the Arabidopsis thaliana phyllosphere antagonizes Albugo laibachii via a GH25
956		lysozyme. Elife 10:e65306.
957	90.	Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, Blanpain L, Carbone
958		A, Devillers H, Dubois K, Gillet-Markowska A, Graziani S, Huu-Vang N, Poirel M,
959		Reisser C, Schott J, Schacherer J, Lafontaine I, Llorente B, Neuvéglise C, Fischer G.
960		2016. Reconstruction of ancestral chromosome architecture and gene repertoire reveals
961		principles of genome evolution in a model yeast genus. Genome Res 26:918-932.
962	91.	Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.
963		2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12.
964	92.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment
965		search tool. J Mol Biol 215:403–410.
966	93.	Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing
967		genomic features. Bioinformatics 26:841–842.
968	94.	El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M,
969		Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan
970		D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic
971		Acids Res 47:D427-D432.
972	95.	Monat C, Tando N, Tranchant-Dubreuil C, Sabot F. 2016. LTRclassifier: a website for
973		fast structural LTR retrotransposons classification in plants. Mob Genet Elements
974		6:e1241050.
975	96.	Miele V, Penel S, Duret L. 2011. Ultra-fast sequence clustering from similarity
976		networks with SiLiX. BMC Bioinformatics 12:116.
977	97.	Korber B. 2000. HIV signature and sequence variation analysis., p. 55–72. In Rodrigo,
978		AG, Learn, GH (eds.), Computational analysis of HIV molecular sequences. Kluwer
979		Academic Publishers, Dordrecht.