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Abstract

The brain must extract behaviorally relevant latent variables from the signals streamed by the sensory
organs. Such latent variables are often encoded in the dynamics that generated the signal rather than in
the specific realization of the waveform. Therefore, one problem faced by the brain is to segment time
series based on underlying dynamics. We present two algorithms for performing this segmentation task
that are biologically plausible, which we define as acting in a streaming setting and all learning rules
being local. One algorithm is model-based and can be derived from an optimization problem involving
a mixture of autoregressive processes. This algorithm relies on feedback in the form of a prediction
error, and can also be used for forecasting future samples. In some brain regions, such as the retina,
the feedback connections necessary to use the prediction error for learning are absent. For this case, we
propose a second, model-free algorithm that uses a running estimate of the autocorrelation structure
of the signal to perform the segmentation. We show that both algorithms do well when tasked with
segmenting signals drawn from autoregressive models with piecewise-constant parameters. In particular,
the segmentation accuracy is similar to that obtained from oracle-like methods in which the ground-truth
parameters of the autoregressive models are known. We provide implementations of our algorithms at
https://github.com/ttesileanu/bio-time-series.

1 Introduction

Detecting changes in the environment is essential to a living organism’s survival (Koepcke et al., 2016). To a
first approximation, environmental stimuli reaching our senses are generated by switching between different
dynamical systems driven by a stochastic source. This implies that the temporal dependency structure of
the stimuli, rather than their exact time evolution, contains information about the dynamics, which allows
to detect important changes in the environment. For example, does the AC sound different today? Is your
conversational partner’s voice sad or cheerful? Is the recent surge in electrical activity in the brain indicative
of an imminent seizure?

In this paper we develop unsupervised, biologically plausible neural architectures that segment time series
data in an online fashion, clustering the underlying generating dynamics. Our focus here is different from
typical applications of change-point detection in neuroscience (e.g., (Beck et all 2001; Yul |2006)), as we are
focusing on changes in the temporal correlation structure of the data, in contrast to changes in instantaneous
statistics like the mean or the variance. We are also addressing a different question compared to sequence
learning or identification (e.g., (Brea et al.| 2011} |2013; [Memmesheimer et al., 2014)), since we aim to segment
time series based on the dynamical processes that generated them, rather than the precise patterns that they
contain in any given instance. Methods based on hidden Markov models (HMMs) have been used to segment
spike-train data (Abeles et al., [1995; [Jones et al., |2007; Mazzucato et al.l 2015} [Escola et al.| |2011]), but these
generally do not work online and are not implemented using biologically plausible circuits. Methods similar
to ours, but without a neural substrate, have also been used in econometrics (Ni and Yinj 2009; (Ouyang and
Yin|, 2014) and for analysis of EEG data (Camilleri et al., |2015)).
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In order to build circuits that perform time-series clustering in a biologically plausible way, we require
that learning occurs online and uses only local update rules. The first constraint is because biological learning
and inference tend to happen in a streaming setting, with decisions taken as the sensory data is received and
without the possibility of reprocessing the same dataﬂ The second constraint reflects the fact that synaptic
plasticity involves chemical processes that only have access to the local environment of the synapse. Synaptic
updates thus typically depend only on the activity of pre- and post-synaptic neurons, potentially modified by
a modulator, using a Hebb-like mechanism (Hebbl 2005 [Kusmierz et al., |2017]).

Apart from constraints like the ones above, which one would expect to hold across all brain circuits,
there are also limitations specific to certain areas. For instance, the retina in mammals does not receive
feedback connections from the rest of the brain (Kandel et al.l 2000]), and so the results of computations
performed downstream cannot be used to inform learning in the retina. In particular, algorithms involving
the calculation of prediction errors seem implausible at this level. In other parts of the brain, however, neural
correlates for prediction errors have been found (Schultz et al. 1997 |(Cohen, 2007; [Egner et al.l 2010 Tang
et al.l |2018]), and thus this constraint can be lifted in those cases.

Here we show how the brain can implement time-series segmentation using two different biologically
plausible architectures. If prediction error calculations are allowed, a model-based algorithm related to online
k-means learning (Pehlevan et al., |2017)) can solve the task effectively. The model predicts the existence of
multiple independent modules in the brain, one for each learned generating process, and one global inhibitory
neuron that silences all but the module that most accurately represents the data at any given time. Because
of this latter feature we will typically refer to the model-based algorithm as “winner-take-all”. We note
also that this approach is related to developments in machine learning, particularly in the field of causal
learning (Bengio et al., [2013} |Scholkopf], |2019; [Parascandolo et al.l 2018; |[Locatello et al., [2019, 2018} |Goyal
et al., 2019).

In a second, model-free approach, a running estimate of the autocorrelation structure of the signal is
clustered using a non-negative similarity-matching algorithm (Hu et al., |2014; Minden et all [2018). By
employing a metric that focuses on the similarity structure instead of encoding error, the model-free approach
provides an architecture that does not require any feedback connections. This approach can therefore model
brain areas in which such feedback is not available. The distinction between our model-based and model-free
algorithms is similar to the difference between parametric and non-parametric models (Deng et al., [1997]).

In the following sections, we will formally define the segmentation task; we will then introduce the winner-
take-all algorithm and the autocorrelation-based algorithms together with their biological implementations;
next we will compare their segmentation performance with each other and with an oracle-like method with
roots in control theory; and we will end with a summary and discussion of future work.

2 Piecewise stationary autoregressive dynamics

More formally, we consider time series data y(t) whose structure at any given time ¢ is induced by one of a
number of different stationary autoregressive (AR) processes (see Figure . Mathematically,

wyy(t —1) 4+ Fwpy(t —p) +e(t), if 2(t) =1,
y(t) = : (1)
wany(t — 1) + - +wary(t — p) +e(t), if 2(t) = M,

where 2(t) indicates the process that generated the sample at time ¢, and e(t) ~ N(0,0?) is white Gaussian
noise. We can write this more compactly as

NE

y(t) = Y zu(t) [wl () +€(t)] e

k=1
where we introduced the notation x(t) for the lag vector with components

xi(t):y(t_i)7 ie{lv'“vp}v (3)

Hippocampal replay is a notable exception (Pavlides and Winson, [1989} |Buhry et all [2011)).
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Figure 1: Sketch of the inference task. A signal (black line in top panel) is generated by alternating processes—
e.g., an intact AC, a broken AC, a gust of wind, as shown in the icons on the top, and also indicated by
the colored ribbon between the icons and the signal line. The segmentation task amounts to identifying the
transitions and clustering the sources (bottom panel). The z; curves sketched in the bottom panel perform a
soft clustering. We also sketched a delay in recognizing each transition, which is inherent in an online setting.

and used a one-hot encoding for the latent-state variable 2 (¢),

anlt) = {1 if 5(t) = k, @)

0 else.

Our aim is thus to develop a biologically plausible mechanism that assigns each sample to a particular
generative process (segmentation) and, in the model-based case, infer the process parameters (system
identification). More specifically, this amounts to inferring the latent states zj(t) for the segmentation task
and estimating the coefficients wy, for the system identification task.

There are several generalizations that we will not address in detail, but are straightforward to implement:
handling processes with non-zero mean; allowing for more complex dependencies on past samples; and
working with multidimensional time series. For example, we can lift the assumption on the mean by using an
adaptation mechanism to subtract the mean from the data before segmentation. We can use arbitrary (but
fixed) functions of the past, ;(t) = g;(y(t — 1), y(t — 2),...), instead of time-lagged samples x;(t) = y(t — 7),
in eq. , with minimal changes to our algorithm. We can similarly extend our methods to continuous time
using a set of fixed kernels, x;(t) = K;(t) *y(t). And the generalization to multi-dimensional y(¢) € R? is also
straightforward. In this work, we focus on the special case described in eq. , and leave these extensions for
future work.

3 Model-based, winner-take-all algorithm

3.1 Basic framework

A natural approach for solving both the segmentation and system-identification tasks outlined above is to
find the latent states zj(t) and AR coefficients wy, that minimize the discrepancy between the values of the
signal predicted from eq. and the actual observed values y(t),

M
1
minmin — E 2 (t) |y (t) — w,;r:c(t)|2 such that zj(t) is one-hot, (5)
we = 20% S i
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where o is the standard deviation of the noise €(t) from eq. (2]).
The optimal zj(t) values at fixed wy, are given by the following expression (see Appendix:

alt) =buey, () = argmax —3 5 [u(6) — wl a0, (6)
where dgi+ = 1 if kK = k* and 0 otherwise is the Kronecker delta. Intuitively, the best estimate for the latent
state at time ¢ is the one that produces the lowest prediction error. This depends both on the current estimate
for the model coefficients wy and on the recent history of the signal, represented by the lag vector x(¢).

The optimal latent state assignments z(¢) and the optimal process parameters wy, depend on each other,
which means that a full solution to the optimization problem requires iteratively re-evaluating all the
latent state variables zi(1),. .., 2zx(t) and the coefficients wy. This is analogous to Lloyd’s iterative solution
for k-means clustering (Lloyd, |1982)), but is unsuitable for an online algorithm where samples are presented
one at a time and are generally not stored in memory.

To obtain an online approximation, we assume that the latent-state estimates zx(t) do not change once
they are made. We thus apply eq. @ only once for each time step ¢, and we then use stochastic gradient
descent to update the coefficients wy given a new sample. This yields:

wi(t+ 1) = wi(t) + nwzrt)z(t) [y(t) — z(t) Twi(t)], (7)

where 7,, is a learning rate.

We call the algorithm based on eqns. @ and “winner-take-all” because only one z}(t) is non-zero and
only the weights associated with the inferred latent state, wy-(;), are updated at each step. Below we will
relax this condition by softening the clustering and allowing several zx(t) to be non-zero, but it will generally
hold true that the weight updates are strongest for the process that yields the best prediction for the sample.
We will therefore sometimes refer to the algorithm as “soft” or “enhanced” winner-take-all.

3.2 Enhancements to the basic method

Soft clustering. Instead of forcing the latent-state vector z to be one-hot, as in eq. @, we can soften the
clustering by employing a soft max nonlinearity instead,

2k (t) = soft max {—%;‘y(t) - wk(t)—ra:(t)|2} , (8)

where
eAk /T

Zk/ eBw /T (9)
Here T is a “temperature” parameter controlling the softness of the clustering. In the T — 0 limit, this

reduces to the arg max solution.
This is equivalent to the following change in the objective function (cf. eq. ; see derivation in Ap-

pendix :

soft max A, =

1 M 2
min min 257 Z Z 2(t)|y(t) —wi @)+ T
k=1

wr 220,

S zp=1 t k=1

M
> zlogzk — 1] . (10)

Persistence of latent states: penalizing transitions. In many realistic situations, the latent states
exhibit some level of persistence: if the signal was generated by model k*(¢) at time ¢, we can assume that
the signal at time ¢ + 1 will likely be generated by the same model. Assuming persistence helps to avoid
spurious switches in the inferred latent states that are due to noise. The downside is that actual switches in
the state are more likely to be dismissed as noise.

One way to encourage persistence of the inferred latent states is to add a pairwise interaction term to the
loss function:

w, z2>0 20

M
min min % SN a®yt) —wie®)] - T30 an(t — 1zlt) (11)
t k=1 k t


https://doi.org/10.1101/2021.04.23.441218
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441218; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where J controls the strength of the persistence correction. The extra term can be seen as a regularizer, or
equivalently, as imposing a prior on the structure of the latent states.

In the online algorithm, this regularization has the effect of penalizing states that are different from the
state at time t — 1 by adding a term proportional to J to their squared prediction errors. Mathematically,
eq. @ is replaced by

26(t) = Opre= 1) 5 E*(t) = arg;nax {—%;’y(t) - wk(t)—r:c(t)‘2 + Jz(t — 1)} . (12)

Averaging the squared error. A different approach that combines the signal across several consecutive
samples is to replace the instantaneous squared prediction error |y(t) — wy(t) Tx(t)|? in eq. (12) with a
time-average,
26(t) = Opre (1) »
* A
k(1) = argmax — 2 {|y(t) — wi (1) Ta(0)]?
k 20
+ (L =na)ly(t = 1) —wi(t — 1) T2(t - 1)]?
(1= naPly(t — 2) — wy(t —2) Ta(t — 2)P 13)

)

1
= — At
arg max —o k(t)

where we used the notation Ag(t) for the exponential moving average (EMA) of the squared prediction error
with smoothing factor na. This can be calculated online using

Ap(t+1) = naly(t) — wi(t) ") + (1 - 1) Ax(t). (14)

Averaging the squared error mitigates the effect of noise on latent-state inference much like the penalty on
state transitions described above does.

Final expression for latent-state estimates. Combining all the techniques in this section, we obtain
the following expression for inferring the identity of the latent states:

25 (t) = soft max { ! Ap(t) + Jzp(t — 1)} . (15)

202

3.3 Biologically plausible implementation

Algorithm 1 Biological winner-take-all method

function PROCESSSAMPLE(z, y, 2z} )

Ay < (1 =na)Ak +1a ’y(t) — w,:—ar:‘2 . > averaged reconstruction error
repeat > output-neuron dynamics

Zp 4 2 — 1N [ﬁAk — I +n+ Tlogzk} ,

n<—n—|—77n<zkz;C - 1).
until convergence
Wy — Wi + nwzkx[y — wkT:c} .
return z; .
end function

> synaptic updates

We now construct a circuit that can implement the winner-take-all algorithm defined in eqns. and
in a biologically plausible way. The key observation is that the latent state zj(¢) can be obtained from the
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Figure 2: Biological implementations of our algorithms. (A) The model-based winner-take-all algorithm.
(B) The model-free autocorrelation-based algorithm. The neurons are linear unless an activation function is
shown. The neurons in blue are leaky integrators with timescales related to the appropriate learning rates in
the models (see text); the other neurons are assumed to respond instantaneously.

following optimization problem (see Appendix |Al):

minmax » zx(¢) {%Ak(t) — Jap(t — 1) + T(log z1,(t) — 1) — n(t) | +n(t), (16)

where Ay (t) is the EMA of the squared prediction error (eq. (14)) and n(t) is a Lagrange multiplier enforcing
the constraint Y, 2;(t) = 1. Similar to (Pehlevan et all [2017)), we can solve this min-max optimization
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objective with gradient descent-ascent dynamics:

1

54(t) = e (—QUQAM Tt — 1) 4 () - Tlogzku)) ,

At) = nn(1 - sz(t)) .

Note that here ¢ refers to the sample index, while the dynamics happens on a fast timescale that must achieve
convergence before the next sample can be processed.
Running the neural program above until convergence recovers the soft max solution of eq. . The
T log 21 (t) term enforces the non-negativity constraint on zx(t) by going to negative infinity as z(t) — 0.
Combining eq. with the synaptic plasticity rule from eq. @,

(17)

wi(t+1) = wi(t) + nwze Oz ) [y(t) — 2(t) Twi )], (18)

yields the basis of our biological winner-take-all neural circuit. The method is summarized in Algorithm
and the resulting circuit, providing a biological implementation of a neural attention mechanism modulated
via competition, is sketched in Figure .

The neurons labeled 2, in Figure [2JA represent the cluster assignments and compete with each other via
the interaction with the interneuron n. The “winning” clusters get their parameters updated following a
three-factor Hebbian learning rule (Kusmierz et all [2017)) (eq. ) at the z—A synapses, where the outputs
from the z; neurons are used as modulators. The circuit uses leaky integrator neurons with a quadratic
nonlinearity (Ay) to estimate the average squared error from eq. . These neurons project to the output
neurons (z) that implement the soft max function in conjunction with the normalizing (n) neuron, as in

eq. (T7).

4 Model-free, autocorrelation-based algorithm

Algorithm 2 Biological autocorrelation method

function PROCESSSAMPLE(x, y)
R+ R+nr(y* - R). > autocorrelation update
s p+n,(yx/R—p).

M, + diagonal part of M . > output-neuron dynamics
M, <+ off-diagonal part of M .

Zo+ M7 (W),

2 Zq— M7 (Myzq) .

W« W+alzu —W]. > synaptic updates
M+ M+77taz2T — M].
return zj .

end function

In this section, we propose a network that operates without an explicit error calculation, in contrast to
the winner-take-all circuit which relies on an estimate of the prediction error for both inference and learning.
To do so, we combine a running estimate of the autocorrelation structure of the signal with a biologically
plausible clustering algorithm.

The key observation is that the dynamical characteristics of a signal can be summarized through its
autocorrelation structure. Indeed, the coefficients defining an autoregressive process are related to the
autocorrelation function of the signal it generates through the Yule-Walker equations (Shumway et al.| [2000),
although the precise relationship is not important here. We summarize the autocorrelation structure using a
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p-dimensional vector p with components

pUE = %E[y(t)y(t + k)], where R is the variance, (19)
R =E[y(t)’].

Time-series segmentation then reduces to calculating short-time estimates of the autocorrelation vectors p(¢),
and clustering the vectors obtained at different moments in time.

The following set of update rules can be used to estimate the autocorrelation structure in a streaming
setting:

AR(t) =nr(y(t)* — R(t)),

1 (20)
Ap(t) =n, my(t)w(t) -p@)|,

where g and 7, are learning rates. Note that, as in the winner-take-all algorithm, we are assuming that the
input signal has mean zero. If it does not, a simple adaptation mechanism could be used to subtract the
mean.

To cluster the vectors p(t) that summarize the dynamics at time ¢, we use non-negative similarity matching
(NSM), an online algorithm that admits a simple neural interpretation (Hu et al., [2014; [Minden et al., [2018]).
The NSM algorithm is based on the idea that signals with similar autocorrelation structure should be mapped
to similar outputs,

arg minz () ") — Z(t)—r,é(t’)|2
u(t)>0 Lt

; (21)

where we force the outputs to be non-negative, Z(¢) > 0. With this constraint, the outputs of the network
perform soft clustering (Pehlevan and Chklovskii, 2014]), such that Z;(¢) can act as an indicator function for
whether the k*" generating process is responsible for the output at time t.

Note that unlike in the case of BioWTA, the outputs Z(t) from the autocorrelation-based algorithm do
not in general sum to 1. This is why we use a slightly different notation here, Z(¢) instead of zx(t), for the
outputs. We can still recover the best guess for the latent state at time ¢, zx(t), by finding the largest Zj(¢):

21 (t) = Opp= (1) , With k*(t) = arg max 2 (1) . (22)
k

The optimization from eq. can be implemented using the following equations (Minden et al., [2018):

Z2(t) = MO W(Hu(®)], .
alZt)p@®)" - W], (23)
[

where o and 77! are learning rates and [u], denotes a rectifying nonlinearity. Note how the synaptic
weights W and M undergo Hebb-like dynamics. As in (Minden et al., |2018]), in practice we use a more
biologically plausible two-step approximation instead of calculating the inverse M (¢)~! in the equation for
Z(t); see Algorithm

A downside of the autocorrelation approach is that the coefficients w;. describing the generating processes
are difficult to recover. Information about them is in principle contained in the weight matrices M and
W, which encode information about the autocorrelation structure characteristic of each process. However,
obtaining the AR coefficients from the weight matrices is a non-trivial task that our circuit does not perform.

We note also that the model-free algorithm implicitly assumes a level of persistence of the latent states
because of the updating rules from eq. : the system needs a number of samples of order 1/, before it
can detect a change in the autocorrelation structure, and so transitions happening on timescales faster than
this will typically go undetected. The learning rate 7, in the autocorrelation model thus plays a similar role
as the na parameter used in the averaging step of the BioWTA algorithm, eq. .

The overall dynamics of the autocorrelation model combined with the clustering model can be represented
using the neural architecture shown in Figure 2B. It is assumed that a quadratic nonlinearity from the signal
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neurons y to the interneuron R implements the necessary squaring operation, with leaky integration responsible
for averaging over recent samples. Inhibitory connections from the interneuron to the autocorrelation neurons
i perform the divisive normalization from eq. . The multiplications needed for updating the covariances
can be the result of the synergistic effects of simultaneous spikes reaching the same neuron (Bugmann, 1991)).
A rectifying nonlinearity ensures the non-negativity of the outputs, and the synaptic updates from eq. (23))
follow Hebbian and anti-Hebbian rules for the feedforward and lateral connections, respectively.

5 Numerical results

Table 1: Performance measures for our algorithms. Results are summarized over 100 runs, each run using
a different 200,000-sample long signal generated using alternating AR(3) processes. The same 100 signals
were used across the different algorithms. The plain BioWTA algorithm assumes hard clustering and no
relation between latent states z(t) at different times. The enhanced BioWTA algorithm uses soft clustering
(eq. ) and the persistence correction (eq. ) described in the text. The cepstral algorithm assumes that
the ground-truth AR coefficients are known and uses a running estimate of a cepstral norm to identify the
generating process at each time (see text and Appendix [H).

autocorr. plain BlioWTA enh. BioWTA cepstral

Mean seg. score 0.75 0.73 0.88 0.89
Fraction well-segmented 0.40 0.21 0.70 0.79
Seg. score of bottom 5% 0.52 0.56 0.59 0.72
Mean weight error — 0.79 0.76 —
Mean convergence time 620 7370 5040 —

We consider several ways to assess the effectiveness of our algorithms: segmentation accuracy; speed
of convergence; and accuracy of system identification. We measure segmentation accuracy using a score
equal to the fraction of time steps for which the inferred latent state is equal to the ground truth, up to a
permutationﬂ We measure the speed of convergence by the number of steps needed to reach 90% of the
final segmentation score. And we measure the accuracy of system identification by the root-mean-squared
difference between the learned AR coefficients and the ground-truth coefficients, normalized by the size of the
difference between the ground-truth coefficients. See Appendix [B] for details.

We use artificially generated time series to test our algorithms, as this gives us access to unambiguous
ground-truth data. More specifically, we generate time series data by stochastically alternating several AR
generative processes, themselves having coefficients that are chosen randomly for each signal. The switch
between processes is governed by a semi-Markov model, ensuring a given minimum dwell time in every state.
Beyond that minimum time, we use a constant probability of switching at each step, which is chosen to
achieve a given average dwell time. To source the signals, we use a constant noise scale (e(t) in eq. ),
and we normalize the entire signal’s variance to 1 before feeding it into the segmentation algorithms. See
Appendix [C] for details.

In the simulations below, unless otherwise indicated, we use signals 200,000-samples long generated from
two alternating AR(3) processes, each with a minimum dwell time of 50 steps and an average of 100. Typically
only a fraction of the samples are needed for learning.

Table |1 summarizes the performance of our algorithms on a few different metrics, and compares it to an
oracle-like cepstral method rooted in control theory. The sections below provide some detail and context for
these results.
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Figure 3: Segmentation accuracy for our BioWTA algorithm. (A) Rolling segmentation score for a subset of
10 of the 100 simulated runs. The blue and red traces single out runs that are used in subsequent figures.
A kernel-density estimate of the distribution of segmentation scores for all 100 runs is shown on the right.
(B) Kernel-density estimate of the convergence times for all 100 runs. Convergence is defined as reaching a
segmentation score that is at least 90% of the final score. (C) Comparison of segmentation scores from our
BioWTA learning algorithm (on the y-axis) with the scores obtained from a BioWTA “oracle”—an otherwise
identical inference procedure in which the weights are kept fixed and equal to the ground-truth values.

5.1 Winner-take-all algorithm is highly accurate

To test the results of the winner-take-all algorithm, we first had to choose values for the learning rates 7,,,
1A, the persistence parameter J, and the “temperature” from the soft max function, 7. We did this by
generating 200 random signals and running the simulation on these signals for 2000 randomly generated
hyperparameters choices. We then selected parameter values that maximized the fraction of successful runs
(defined as runs reaching a segmentation score of at least 85%). We obtained the best performance by using
soft clustering 7" > 0 and a non-zero persistence parameter J, but no averaging, na = 1. We call this the
“enhanced” BioWTA algorithm. See Appendix [D] for details.

Figure [3[shows the performance of this enhanced winner-take-all algorithm on a new batch of 100 simulated
time series. We find that segmentation is typically very accurate, reaching a median score after learning of
93%, with more than two thirds of runs exhibiting scores over 85%. Learning is relatively fast, too: almost
90% of runs converge to 90% of their final segmentation scores in less than 10,000 time steps.

5.2 Model coefficients are also learned by winner-take-all algorithm

One of the advantages of the model-based BioWTA algorithm compared to the model-free, autocorrelation-
based one is that BioWTA learns the coefficients of the generating autoregressive processes. This should in
principle allow the system to predict future inputs. But how well does weight learning actually work?

In Figure @A, we show that most runs learn a noisy version of the AR weights, with deviations from the
ground-truth that are smaller than the differences between the two sets of ground-truth coefficients. The
accuracy of the weight reconstruction can become quite good in some cases, such as for the run highlighted
in blue in the figure.

Good weight reconstruction implies high segmentation accuracy, but interestingly, the converse is often
not true, as seen in Figure [B. Consider, for instance, the run highlighted in red in Figure[d The accuracy of
the segmentation is essentially as good as that for the run highlighted in blue, but its weight reconstruction
is much worse.

2Since ours is an unsupervised learning task, the ordering of models in the simulations can be different from the ground-truth
ordering. We choose the mapping between simulation labels and ground-truth labels that maximizes the segmentation score.
This implies that the segmentation score is always > 1/M, where M is the number of clusters.
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Figure 4: Weight reconstruction in the BioWTA algorithm. (A) Time evolution of the reconstruction error
in the weights normalized by the difference between the ground-truth coefficients. The kernel-density plot
on the right shows the distribution of final normalized reconstruction errors. (B) Relation between final
normalized reconstruction error of the AR weights and segmentation accuracy. (C) Poles of the ground-truth
(larger, faded triangles) and inferred (smaller, more saturated triangles) models for the runs shown in blue
and red in panel A. The poles are the complex roots of the polynomial z? — w12~ — -+ — w, and are a
convenient representation of the properties of an autoregressive model (see Appendix |G| for details). Note
how in the blue run, each inferred model is close to one ground-truth model, and very different from each
other. In contrast, in the red run, both inferred models are very similar to each other and interpolate between
the ground-truth models.

To understand how a run can exhibit poor weight reconstruction but good segmentation accuracy, it
is convenient to look at the complex roots of the characteristic polynomial 22 — w; 2P~ 1 — ... — wy, where
w are the AR coefficients for the inferred and ground-truth models. These roots are called poles and they
correspond to different modes of the dynamical SystemEl

Figure [4IC shows the poles for the inferred and ground-truth AR processes in a run with successful weight
reconstruction (highlighted in blue) compared to a run where weight reconstruction failed (highlighted in
red). The left panel shows good weight reconstruction: the poles for the inferred models are relatively close
to the respective ground-truth values. In contrast, the right panel shows how the inferred models for the
red run converged to almost a single point that interpolates between the two ground-truth models. Despite
the bad weight reconstruction, the segmentation accuracy can still be high as long as the inferred models
are different enough that samples from ground-truth model 1 are typically just a little bit more accurately
described by inferred model 1 than inferred model 2, and vice versa.
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Figure 5: Understanding when and why BioWTA has trouble, and how enhancements help. (A) Sketch
showing how latent-state inference can fail even if the ground-truth weights are exactly known. A fraction
of samples from model 1 will predictably end up closer to the prediction from model 2 due to noise, and
thus be misclassified. (B), (C) Comparison of segmentation score from our learning procedure to the naive
prediction based on the argument from panel (A) (see eq. (24)). Panel (B) shows the results from the plain
BioWTA algorithm (eq. ); panel (C) shows the improvement when using “enhanced” BioWTA, that is,
when adding soft clustering (eq. (8)) and a persistence correction (eq. (12)). (D) Kernel-density estimates of
the distribution of segmentation accuracies for several variations of our algorithms. The green and dark red
violins correspond to the plain and enhanced BioWTA algorithms from panels (B) and (C), respectively.

5.3 Some segmentation problems are intrinsically harder

Although the BioWTA algorithm performs very well, it is clear from Figure [3] that a number of runs are
not so successful. In some cases, such as when the segmentation accuracy stays close to chance level, this is
due to a failure in learning, which in turn can happen if, for instance, the learning rate is too large for that
particular case. There is, however, significant variability even among the runs that do converge—as can be
seen from Figure [BIC, which shows on the z-axis the segmentation scores of the BioWTA algorithm when the
weights are kept fixed at their ground-truth values. Why is this?

The explanation for much of the variability seen in the segmentation accuracy of the BioWTA algorithm
is that each randomly generated pair of AR processes can be more or less similar to each other. In the limit
in which the two AR processes are identical, there would of course be no way to perform better than chance
in the segmentation task. It is thus reasonable to expect that the segmentation accuracy depends on how
different the two AR processes are.

This is indeed the case: even with perfect knowledge of the generating processes, segmentation will fail
when a noise sample is large enough to move the signal into a range that is closer to the prediction from the
wrong model. Indeed, our BioWTA algorithm infers which process the sample came from by choosing the
one with the smallest prediction errorEl This guess will often be correct, but it will inevitably also fail if the
predictions are close enough or the noise large enough—even if in the “oracle” case where we have perfect
knowledge of the parameters describing the generating models (Figure )

We can derive an analytical expression for how frequently we would expect a segmentation error to occur
in the “oracle” case, and use that to predict the segmentation accuracy. The result is the following (see

3Note that because the characteristic polynomial is real, complex roots always appear in complex-conjugate pairs.
4This is also the best possible way to make the inference if the noise scales are the same for the two processes and we cannot
assume anything about the relation between the states at different times.
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Appendix@:
1 arctan(Jw, — ws|/o\/7/8)

expected segmentation score = 5 + , (24)
T

where w; and ws are the ground-truth coefficient vectors for the two processes and o is the standard deviation
of the noise, which is chosen here such that the standard deviation of the whole signal equals 1. This guess in
fact does a great job of estimating an upper bound for the segmentation accuracy of our “plain” BioWTA
algorithm—which uses hard clustering (i.e., T = 0), no persistence correction (J = 0), and no error averaging

(na = 1); see Figure [fB.

5.4 Algorithm enhancements boost winner-take-all performance

Adding a persistence correction J > 0 significantly improves segmentation scores (see first two violins in
Figure ), at the expense of some runs failing to converge. The latter happens because the simulation can
get stuck in a single state and fail to learn both generating processes. This issue can be avoided by using soft
clustering instead of hard clustering (third violin, in dark red, in Figure ) Interestingly, using soft-clustering
on its own hurts rather than improve performance (see Appendix . Also, adding error-averaging (na < 1)
to the soft, persistent BioWTA model can slightly hinder performance (fourth violin in Figure ); and in
fact, this “fully-enhanced” BioWTA model is not much better than using error-averaging on its own (last
violin in ) For each variation of the algorithm, the relevant hyperparameters were optimized according to
the procedure described in section [5.1]

5.5 Autocorrelation-based algorithm learns faster but less accurately
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Figure 6: Segmentation accuracy for our autocorrelation-based algorithm. (A) Rolling segmentation score for
a subset of 10 of the 100 simulated runs. The blue and red traces single out runs used in the other figures.
A kernel-density estimate of the distribution of segmentation scores for all 100 runs is shown on the right.
(B) Kernel-density estimate of the convergence times for all 100 runs. Convergence is defined as reaching
a segmentation score that is at least 90% of the final score. (C) Comparison of segmentation scores from
our autocorrelation learning algorithm (on the y-axis) with the scores obtained from an oracle-like BioWTA
algorithm where the weights are kept fixed and equal to the ground-truth values.

Figure [6] shows the performance of the autocorrelation-based algorithm on the same 100 simulated time
series used to test BioWTA above (Figure [3). The segmentation is less accurate than we obtained using
BioWTA, but it still reaches a median score after learning of 78%, with 40% of runs scoring above 85%.
Learning, however, is much faster than with BioWTA: 99% of runs reach 90% of their final segmentation score
in less than 10,000 time steps; 84% converge in less than 1,000 steps (Figure ) As for the winner-take-all
algorithm, we see that generally, signals generated by pairs of less similar AR processes are easier to segment
using the autocorrelation method than ones where the generating processes are very similar.
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5.6 BioWTA is competitive with oracle-like cepstral method
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Figure 7: Comparison of segmentation accuracy across our algorithms, and with an oracle-like cepstral
method. Each thick, colored horizontal mark corresponds to the segmentation accuracy estimated in the
last fifth of a 200,000-sample signal. Each algorithm was tested on the same set of 100 signals drawn from
alternating AR(3) processes. The corresponding marks between every pair of consecutive algorithms are
connected by a thin gray line. This allows us to see, for instance, that although the plain BioWTA and
autocorrelation method perform approximately the same in aggregate, the kinds of signals that are better
segmented are very different between the two algorithms, so that many signals that are poorly segmented
by the former work better with the latter and wvice versa. In contrast, the ordering is roughly the same for
the enhanced BioWTA results as for the plain BioWTA, with an almost uniform increase in quality for the
latter. Meanwhile, the cepstral method is as accurate as enhanced BioWTA for the runs where the latter is
relatively accurate, but it is not vulnerable to the cases where the coefficient learning fails, since it assumes
knowledge of the ground-truth weights.

Finally, we compare our algorithms with a method from control theory that uses the ground-truth
weights and a cepstral measure to perform segmentation. Specifically, the inverse (moving-average) process is
calculated for each ground-truth AR generating process, and the time series y(t) is filtered using each inverse.
When the matching inverse filter is used, the filtered output should be uncorrelated white noise. We use a
cepstral norm (De Cockl, [2002; Boets et al., 2005) to determine how close to uncorrelated each filtered output
is, and assign each time step to the model that yields the lowest cepstral norm. This method effectively relies
on a rolling-window estimate for the cepstral norm, so like the autocorrelation method, it naturally takes
advantage of the persistence of the latent states in our simulations. See Appendix [H] for details.

We find that our enhanced BioWTA method works basically as well as the oracle-like cepstral method,
with the exception of a small fraction of runs that were likely unable to converge on a set of useful weights
(see Figure @ Meanwhile, the plain BioWTA and the autocorrelation-based methods work less well but can
still achieve good segmentation performance on many runs.

6 Conclusion

In this work we developed two biologically plausible algorithms for segmenting a one-dimensional time series
based on the autoregressive processes that generated it. One algorithm is model-based and takes a normative
approach, following from an optimization objective that combines clustering with model learning. This
method relies on an estimate of the prediction error for both making inferences about latent states and

14


https://doi.org/10.1101/2021.04.23.441218
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441218; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

learning the model parameters. An alternative algorithm is model-free and relies on an ad-hoc mechanism for
computing a running estimate of the autocorrelation structure of the signal. This estimate is then plugged
into a clustering algorithm to achieve segmentation.

Importantly, both algorithms act online, and can be implemented in small neural networks comprised of
biologically plausible units and connections with local learning rules. These provide two different architectures
to look for in animal brains, depending on whether prediction error is present or not in the particular circuit
under study.

Our circuits perform their task very well: the model-based, winner-take-all method achieves segmentation
accuracies on-par with an oracle-like cepstral method that takes the ground-truth model parameters for
granted. It also performs well when learning model parameters, although this can take many more samples
than just learning to perform a good segmentation. The model-free method is less accurate than the model-
based approach, but has the advantage of requiring very little training before becoming effective. This comes
at the cost of not learning the model parameters in a form that can be easily used for prediction.

There are several extensions of our methods that can be readily implemented: multi-dimensional signals
are a straightforward generalization; continuous signals or more complicated (but fixed) time dependencies
can be handled directly by using arbitrary kernels relating the predictor vectors @ to the signal values y; and
signals with non-zero or even changing means can be accommodated.

Of course, nature is often not linear, so the ability to learn the parameters of non-linear dynamical
systems and segment a signal based on their usage in a biologically plausible way is an important avenue for
future work. Nature also does not always exhibit sharp transitions between different modalities but rather
allows for gradual transitions. Adding support for such phenomena in our models would connect our work to
non-negative independent component analysis (ICA), another interesting thought that we leave for future
research.
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A Derivation of the BioWTA algorithm

The BioWTA algorithm with all its enhancements (section [3.2)) can be seen as an online approximation based
on the following objective function:

M t
£= 23 a0 24 00 - na) e - 1) - wiat— 1)

t k=1 7=0

— Jz(t — 1) + T (log 2 (t) — 1)} + Zn(t) [1 - sz(t)} (A.1)
t k=1

-3

where we added a sequence of Lagrange multipliers, n(t), that help enforce the constraint ), z,(t) =1 at
every time step . We are also assuming that the z; variables are constrained to be non-negative, zj(¢t) > 0.
We use the convention 0log 0 = 0 to make sense of the zj log z; terms when 2z = 0.

To obtain an online algorithm, we separate the objective function into a sequence of terms, one for each

time step:
L=> L), (A.2)
t

M

21 (t) {%;Ak(t) — Jzp(t — 1) + T(log 2 (t) — 1) — n(t)} + n(t)} ,
k=1

with
M 1
0t) = sz(t) {MAk(t) — Jzp(t — 1) + T(log 2 (t) — 1) — n(t)] +n(t). (A.3)
k=1
We now make the online approximation by considering ¢(t) alone to be the objective function that

we use when processing the tth sample. Differentiating with respect to z(¢) and n(t) and using gradient
descent-ascent yields the fast dynamics:

£0(0) =~ g = . | G A0 = Tt — 1)+ Thogn(t) ~ (1)

M
oL(t)
(t) = N =N |l — t)| .
0 =gty = [~ 2 0]
In our simulations we do not explicitly model these fast variables, but instead directly set zx(t) to the

fixed-point solution, eq. .
Differentiating ¢(¢) with respect to the process coefficients wy, and using gradient descent, we get

(A4)

2
_ mwot OUt) OA(t)
Ak == e~ aa ) g,
t
Nw T a 2
= =5 3 (1= na) g [yt = 7) — wla(t —7) (A.5)

7=0
t

= Nwzr(t) Z(l —na)x(t—7) (y(t —-7)— w,;ra:(t — T)) )
=0

This depends on the history of the input which we would want to avoid: in an online setting we do not want
to keep many things in memory. The approach taken in the text simply ignores terms with 7 > 0, which
makes sense if 7a is not much smaller than 1. Then eq. (A.5)) reduces to

which matches the text.
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A different approach would involve keeping track of the expression

t

z(t) = Z(l —na)Tx(t—7) (y(t —7)— 'w,;r:c(t — T)) , (A7)

7=0

which is akin to an eligibility trace. This obeys

z(t) = a(t) (y(t) — wy 2 Z (1= na)Ta(t—7)(y(t - 7) —wya(t - 7))

= x(t) (y(t) - wi=(t) + 2(t - 1).

Note that there is a subtlety in the expression above: in principle, the value that we use at time t for
Z(t') for t' < t should depend on wy(t), not on earlier values of wy. This would again pose problems in an
online setting, so we can use the approximation

z(t) = z(t) (y(t) — wi(t) "z(t)) + 2t —1). (A.9)

(A.8)

We do not pursue this alternative approach here.

B Accuracy measures

Segmentation accuracy We define segmentation accuracy by measuring the fraction of time steps for
which the inferred segmentation matches the ground-truth. We ignore the first p samples for models using
p-dimensional coefficient vectors wy, since no prediction can be made for an autoregressive process without
having sufficient historical data.

The inferred labels can be a permutation of the ground-truth labels, since learning is unsupervised. To ac-
count for this, we use a minimum-weight matching algorithm (linear_sum_assignment from scipy.optimize)
to find the permutation that maximizes the segmentation score. A side effect of this is that the segmentation
score cannot drop below 1/M, where M is the number of models in the simulation.

For calculating the evolution of the accuracy score with time, we use a rolling window and apply the
method described above in each window. In particular, this allows the inferred-to-ground-truth permutation
to be different for different positions of the rolling window. The step by which we shift the rolling window is
typically smaller than the size of the window itself. As described in the text, we use a window size of 5000
and a step of 1000 in this paper.

Weight-reconstruction accuracy The weight reconstruction error is calculated by taking the differences
between inferred and ground-truth coefficients, and normalizing these by the magnitude of the difference
between the ground-truth values. More specifically, the error is given by:

\/2 Zk [ inferred w‘;r(l;ce)] 2

true __ true
|ws wi™|

normalized weight-reconstruction error =

, (B.1)

where o is the permutation that maps each inferred model with the ground-truth model that it matches best.

The measure defined above has the useful property that if both sets of model weights converge to the
same value in-between the two ground-truth coefficients, winferred — (qirue 4 qpirue) /2 then the normalized
weight-reconstruction error is 1. An even larger error, /2, is obtained if both inferred weights converge to a
single one of the true models, witferred — qptrue,

The normalized weight reconstruction error is calculated using the instantaneous weight values at each
time step. The error for an entire run is defined to be the error at the final time step. The time evolution of
the weight reconstruction (Figure ) employs a rolling average of the normalized reconstruction scores, with
rolling-window size and step size equal to those used for calculating the rolling segmentation score (5000
steps and 1000 steps, respectively).
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C Signal generation

We generate the signals for testing our segmentation algorithms in two steps: (1) generate the latent-state
sequence, and (2) generate AR samples. The parameters of the autoregressive processes themselves are chosen
randomly, as discussed below.

Latent-state sequence generation We sample the latent states from a discrete-time semi-Markov model
with dwell times distributed according to a truncated geometric distribution. In other words, each latent
state persists for a minimum number of steps, beyond which the system switches to a different latent state
with a fixed probability at each step.

Autoregressive sample generation Samples are generated directly according to the model definition in
eq. . For the first p samples, some components of the lag vector are not defined; we define them by setting
y(t) = 0 for ¢ < 0. Thus we can expect the first few samples of each signal to behave like a transient before
stationarity is reached. After each latent-state transition, the output from the new model will depend on
past samples that are generated by the old model for the first p time steps.

Choice of autoregressive processes We generate random autoregressive processes by starting with
randomly generated poles. For this purpose, we choose a maximum pole radius rmax and generate |p/2]
complex numbers uniformly distributed inside the disk of radius ryax. These and their complex conjugates
will by chosen as poles. If n is odd, we additionally generate one single real pole, drawn uniformly from
[—Tmax; Tmax)- We then build the monic polynomial that has these poles as roots and set it equal to
2P — P — . — wy, to read off the coefficients wy,.

We typically set the maximum pole radius rpax to 0.95 to ensure that the generated processes are stable.

D Hyperparameter optimization

The algorithms that we use depend on a number of parameters, such as the learning rate 1,,, the temperature
T, and the persistence parameter J in the case of enhanced BioWTA. We optimize these parameters once
for every choice of algorithm and type of signal. Different choices of enhancements of BioWTA count as
different algorithms. The type of signal is set by the order of the autoregressive processes and the parameters
of the semi-Markov model that dictates the latent-state sequence. Throughout this paper we use only one
choice for the type of signal—AR order p = 2, minimum dwell time 50, and average dwell time 100—so all
hyperparameter optimizations are done for that case.

We use uniform random sampling of hyperparameter values to perform hyperparameter optimization.
Random search has been shown to be one of the best hyperparameter optimization methods when the number
of hyperparameters is small (Bergstra and Bengio, 2012).

The performance of our algorithms varies due to several factors. The hyperparameter choices change the
way the algorithms behave. The initial conditions affect initial transients and unlucky choices can lead to
getting caught in local optima. And the signal-generation process itself is stochastic. We thus summarize the
performance of the inference procedure for a batch of signals at any fixed value of the hyperparameters.

Specifically, for a number N}, of randomly generated hyperparameter tuples, we choose Ny random signals
and measure the algorithm’s segmentation accuracy on each signal at each value of the hyperparameters.
We summarize the score for each hyperparameter tuple by using the fraction of “successful” runs, where
successful is defined as having a segmentation score above some threshold fg,0q4. This method balances the
desire for runs that reach very good segmentation scores with the requirement that only a few of the runs
diverge (thus receiving close to the minimum segmentation score, 1/M).

Throughout this paper, we used Nj, = 2000 hyperparameter choices, Ny, = 200 signals per batch, and
0g00a = 0.85 to define successful runs.
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E Theoretical estimate of oracle BioWTA segmentation score

To estimate how the theoretically maximum segmentation score of plain BioWTA depends on the difference
between the two ground-truth AR processes, we assume an “oracle” setting, where the two inferred models are
kept equal to their ground-truth counterparts, wirferred = e and use the argument sketched in Figure |5|A
to estimate the fraction of misclassified samples.

More specifically, assume that a particular signal is generated by ground-truth model 1. The algorithm,
however, will assign this sample to whichever process yields the lowest squared prediction error,

2, = argmin|y — w, x|?. (E.1)
k
Note that we are omitting the time index in this section, since it is always equal to ¢, and we are also omitting
the “true” superscript on the ground-truth coefficients wy.

For model 1, the squared prediction error is simply given by the noise sample €(t) = € (see eq. ) For
model 2, we have

ly —wy x> = |y —wz — Aw "z

E.2
=le—Aw'z|?, (£2)
where
Aw = wy — w; (E.3)
is the difference between the two ground-truth models.
Now, the sample will be assigned to the correct model (model 1) provided we have
e <(e—Aw'x)?. (E.4)
Expanding the square, this yields
s > 2es, (E.5)
with s denoting the separation between the predictions from the two models,
s=Aw'x. (E.6)
Dividing through by 2s, we get
<1 if s >0,
correct prediction: { 281 nes (E.7)
e>—3ls| if s <O.

This corresponds to the area shaded in blue in Figure [FA.
Since € is drawn from a normal distribution with standard deviation o, we can calculate the probability of
a correct prediction:

1 1 1 ]
P.oirect = NormalCDF (20|5|> =3 + 3 erf (0|\/|§) . (E.8)

Note that due to the symmetry of the Gaussian distribution, this works for either sign of s.

The expression above tells us how accurately we can expect the cluster assignment for a given sample to
be. Suppose we are now looking at an entire signal where the components of  are drawn from a normal
distribution with standard deviation . The expected accuracy is

E[Peorrect] = % + %E [erf ('A;”\/T;'ﬂ : (E.9)

The value Aw "z is itself normally distributed, with mean and variance given by

E[AwTw] =0,
E[(A’U)T:B)Q] =E Z Awiijl‘i,Ij = Z AU}Z‘A’LU]'COVU (ElO)
i, ,J
~|Aw]s?,
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where in the last line we neglected cross-correlations between different components of . Note that these
cross-correlations are not necessarily small—the fact that our signals are generated by autoregressive processes
implies that these correlations are there and potentially large. Our approximation is simply meant to give a
rough estimate for the expected segmentation score of plain BioWTA. Simulations suggest that our estimate
is indeed quite good, Figure [FB.
We thus have
1 Y | Aw] B

1
IE[P)correct} = 5 + iE [erf <0_ \/g

where HN(0,1) is the half-normal distribution. The half-normal appears here as a direct result of eq. (E.9).
This expectation value can actually be calculated analytically (we used Mathematica), and the result is

1 1 ¥ I
IE[F)Correct] = 5 + ; arctan (O’ \/?lA’LU) . (E12)

Now, the expression above gives the probability of assigning a sample to, e.g., the first cluster provided
the sample was, in fact, generated from that cluster. In a typical simulation run used in this paper, the
ground truth will alternate between the two clusters, spending about half the time in each one. This implies
that the overall segmentation accuracy score should be given by

1 1 by by
predicted accuracy = = + — |arctan 1\/?Aw| + arctan | =2 \/?|Aw|
2 g 8 o 8 (El?))

1
= 3 + o [arctan aX1 + arctan 0422] ,

ﬂ . for z ~ HN(0,1), (E.11)

=N

where ¥; is the standard deviation of the samples generated from process i, and we introduced the notation

1 /7
= —/=|Aw]|. E.14
o= /%]Aw| (B.14)

In our simulations, we choose the noise standard deviation ¢ such that the overall variance of the output is 1.
Since the generating process is split 50-50 between the two possible latent states, this implies

%(zf +33) =1. (E.15)

The specific values for X; will depend on the run, but in order to get a rough answer (that will turn out to
work well in practice), we choose the case in which the two are approximately equal,

This means that we can estimate
1 1 1 1 1
predicted accuracy ~ = + — arctan o« = = + — arctan — E\A'w| . (E.17)
2 m 2 7 g\ 8
This is the formula we used in the paper.

General case Employing a standard trigonometric identity and using the fact that o, 1, and X5 are all

positive, we can rewrite eq. (E.13) a

11 1—a’%,%
predicted accuracy = 3 + o arccot ﬁ . (E.18)
From eq. (E.15)), we find
(31 +%2)% =2(1 +21%,), (E.19)

5We use the arccot here instead of arctan because the range of arctan is [—m/2,7/2], while the sum arctan a¥; + arctan aXs
can range from 0 to 7.
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which, using the notation

Y1+ X
0= — E.20
1 (.20)
yields
1 1 1—a?(20% -1
predicted accuracy = = + — arccot 1=a”(27 1) . (E.21)

2 27 2a0

Now, eq. (E.19) shows that the sum of the two standard deviations, X1 + ¥y, is at least v/2. Put differently,

0> % ~ 0.71. Conversely, the product of two numbers with a fixed sum is maximum when the two numbers
are equal to each other, which, in combination with eq. (E.15]), implies that $2%% < 1. This in turn means
that 8 < 1. All in all, the mean standard deviation is confined to a rather small range of values:

ggegy (E.22)

F Performance effects of BioWTA enhancements

We saw in the text that the enhancements we described for the BioWTA method—the persistence correction
controlled by the J parameter; the soft clustering controlled by the temperature T; and the averaging of the
squared error controlled by the na parameter—affect performance in non-trivial way. Figure |8 shows this in
more detail.

In particular, note that soft clustering on its own has a consistent detrimental effect on segmentation
performance, but the highest-scoring method includes soft clustering in addition to the persistence correction.
This latter method performs significantly better than if the persistence correction is used on its own (see first,
sixth, and last row and column in Figure .

The error-averaging correction has the opposite behavior: on its own it yields results almost as good
as the top-performing method, although it is more vulnerable to convergence failure. On the other hand,
when combined with the other enhancements, it fails to improve the high-performing runs and instead hurts
performance by hindering convergence in some runs (see first through fourth row and column in Figure .
The only exception is when used in conjunction with soft clustering, which works better than either having
only one of the enhancements, or none at all (see second, fifth, and last row and column in Figure .

Persistence on its own improves performance significantly for many runs, but leads to convergence problems
in other runs (see sixth and seventh row and column in Figure . It behaves almost identically to the
error-averaging correction alone when used in conjunction with it (second and fourth row and column in
Figure , but it has the best performance of all the methods we’ve tried when used with soft clustering (first
and last row and column in Figure .

G Some details about ARMA processes

ARMA processes and inverses It can be useful to think of an extension of AR models, the autoregressive
moving-average (ARMA) process. These involve a weighted moving average (MA) of the noise signal in
addition to the autoregressive part,

yt) =wiy(t —1) + -+ wpy(t —p) +e(t) +bre(t — 1)+ -+ bge(t — q) . (G.1)
The output of an AR process can be inverted using an MA process to get back at the noise sequence €(t):

ify(t) =wiy(t —1) + - +wpy(t —p) + €(t),

then (t) = y(t) — wiy(t — 1) — - — wyy(t —p). (G2

More generally, any ARMA process admits an inverse (though the inverse process might be unstable). This
is relevant for the cepstral oracle method described in the next section.
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Figure 8: Comparison of segmentation accuracy for all combinations of BioWTA enhancements. The plot at
position (i, 5), for i # j in the figure compares the segmentation accuracy from method i (on the y-axis) to
that from method j (on the z-axis). The plots on the diagonal (i.e., when i = j) are histograms showing
the distribution of the accuracy scores for each method. The number above each histogram is the median
segmentation score obtained for that method.

Spectral properties: poles and zeros The signal y(t) and noise €(t) enter linearly in the definition of an
ARMA process, eq. (G.1), with various delays. Because of this, a z-transform is useful for analyzing ARMA
processes:

Y(z) =yt (G3)

where z is a complex number. This can be related to the Fourier series (or frequency-space representation) of
the signal by focusing on the unit circle, z = e~ 27,
The transformation induced by an ARMA process has a simple form after a z-transform:

Y(z) = H(2)E(2), (G4)
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where the transfer function H(z) is given by

Lbiz7t 4 bz B(z)
H(z) = = . .
(2) l—wiz7t —wpz7?  W(z) (G.5)

The transfer function blows up at roots of the denominator W (z), which is why they are also called the
“poles” of the system. The magnitude of a pole is related to the temporal extent of the response to a particular
excitation; poles outside the unit circle give rise to instabilities in the ARMA process.

The transfer function vanishes at the roots of the numerator B(z), so these are called the “zeros” of the
system. Inverting an ARMA process swaps the poles with the zeros, so a system with a stable inverse must
have all the zeros contained within the unit circle.

¢

H Cepstral oracle method

General overview A standard control-theory method for fault detection relies on using the inverse of a
system with a known transfer function to detect anomalies in the functioning of the system (De Cockl [2002;
Boets et al., [2005]).

Specifically for our purposes, consider the signal from eq. ,

M
y(t) = 3 a(t) [wla(t) + (b)) (H.1)
k=1

Each of the AR processes defined by the coefficients wy has an inverse MA process with coefficients by, = —wy,
as shown in eq. (G.2). We can filter the signal y(¢) using each of these inverse filters to obtain

e(t) = y(t) — wyx(t). (H.2)

Notice that this is nothing else but the prediction error in the “oracle” setting where the model weights wy,
are set to their ground-truth values.
If the actual process that generated the sample at time ¢ is 2(t), then e;y) = €(t), i.e., uncorrelated
Gaussian noise. In contrast, all other filterings, ex(t) for k # 2(¢), will still contain temporal correlations.
The cepstral oracle method relies on a measure of the strength of temporal correlations to find the index
k that leads to the least temporally correlated filtering e (¢). This provides a best guess for the identity of
the generating process.

Cepstral norm The specific measure of temporal correlation that we use here is a cepstral norm (De Cock
and De Moor} 2002; De Cockl |2002; |Boets et al., |2005]).

The (power) cepstrum is the inverse Fourier transform of the logarithm of the power spectrum of a
signal (De Cockl, 2002,

(k) = |7~ (1og | Fw(e) )| (H3)

where F denotes the Fourier transform operator. This has the convenient property that it turns convolutions
into sums, thus allowing to separate different stages of filtering if these have different-enough spectral
responses.

If we define the cepstral norm

9(®)* = kle(k)?, (H.4)
k=0

this provides a measure of the distance between the signal y(¢) and uncorrelated Gaussian noise (De Cockl
2002; [Boets et al., [2005)). In practice, only a finite number of cepstral coefficients are used in the calculation.
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Calculating the cepstral norm A sequence of samples from the signal y(¢) are necessary for calculating
the cepstral norm. Applying the definitions (H.3) and (H.4) directly does not lead to the most efficient
estimate. Instead, we start by defining “past” and “future” Hankel matrices,

y(0)  y@) ... y(r-1)
SRR IR T
p = \/’7' . . . ’
y(k—1) y(k) y(k+71-2) (H5)
y(k)  yk+1) y(k+71-1)
v 1 ylk+1) yk+2) y(k+7)
T ; : g : ’
y(2k—1) y(2k) ... y2k+71-2)

where k gives the maximal cepstral order used in the cepstral norm formula, eq. (H.4), and 7 gives the number
of samples over which we're averaging. We also define a “total” Hankel matrix

Yy = @;) . (H.6)

In terms of the Hankel matrices, the cepstral norm can be approximated by
9(y)* =~ logdet Y, Y, + logdet Y,V —logdet YY", (H.7)

which becomes exact in the limit & — oo, 7 — co. Furthermore, the calculation of the determinants can be
simplified by using LQ decompositions,

Y, =LpyQp, Yy =L¢Qy, Y =L1LQ, (H.8)

where L are lower-triangular matrices and ) are orthogonal matrices. With these notations, we can write

k k
g(y)? ~ QZ(logLﬁj + logij) — 2ZIOngj
j=1

Jj=1

(H.9)

k 2k
=2) logL;—2 ) logLy,
= Pt

Rolling estimate of the cepstral norm In our setting, the generating process changes during the
duration of the signal. To find a local estimate of how uncorrelated a filtering e () from eq. is, we could
apply the cepstral norm calculation in sliding window, much like we do when we calculate the segmentation
score. A more efficient approach uses a discounting mechanisms akin to an exponential moving average, and
can be implemented online. We will not give all the details here, but it relies on a redefinition of the Hankel
matrices: ~
Yij(t) ="yt +i+j) ="Yi5(0), (H.10)

where the indices are assumed to be zero-based. This discounts older samples by a factor of v raised to the
number of time steps that have passed since those samples were observed.

Whenever a new sample is obtained, a column is appended to the Hankel matrix, and the rest of the
elements are discounted by an additional factor of ~,

~ . =7 . ~
Yij(t+1) ="yt +i+j+1) = #Yi,j-‘rl(t) =Y +1(t) (H.11)
Since for the cepstral norm calculation we are only interested in the L factor of the LQ decomposition of
Y (as in eq. ), we can actually use an algorithm for updating the LQ decomposition based on Givens
rotations (Oppenheim et al.l |2001)) to calculate the effect of appending a column. The effect of multiplying
the Hankel matrix by « is simply to multiply L by the same factor.

Details of these procedure can be found in the implementation available on GitHub, at https://github,
com/ttesileanu/bio-time-seriesl
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