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Abstract

Spike sorting – the process of separating spikes from different neurons – is often the first and
most critical step in the neural data analysis pipeline. Spike-sorting techniques isolate a single
neuron’s activity from background electrical noise based on the shapes of the waveforms (WFs)
obtained from extracellular recordings. Despite several advancements in this area, an important
remaining challenge in neuroscience is online spike sorting, which has the potential to
significantly advance basic neuroscience research and the clinical setting by providing the
means to produce real-time perturbations of neurons via closed-loop control. Current
approaches to online spike sorting are not fully automated, are computationally expensive and
are often outperformed by offline approaches. In this paper, we present a novel algorithm for
fast and robust online classification of single neuron activity. This algorithm is based on a deep
contractive autoencoder (DCAE) architecture. DCAEs are deep neural networks that can learn a
latent state representation of their inputs. The main advantage of DCAE approaches is that they
are less sensitive to noise (i.e., small perturbations in their inputs). We therefore reasoned that
they can form the basis for robust online spike sorting algorithms. Overall, our DCAE-based
online spike sorting algorithm achieves over 90% accuracy at sorting previously-unseen spike
waveforms. Moreover, our approach produces superior results compared to several
state-of-the-art offline spike-sorting procedures.
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Introduction

Spike sorting refers to the process of isolating spikes according to the individual neurons that
generate them. It presents a significant challenge in neural data analysis [1], and consists of
three major steps: filtering, detection, and clustering, each of which critically affects spike
sorting accuracy. Conventional approaches to spike sorting consist of four components: 1)
Band-pass filtering of raw signals, 2) Extracting relevant waveform features, 3) Feeding these
features to a clustering algorithm, and 4) Using these clusters as inputs to a classifier. The
classifier associates each cluster with the activity of a single neuron. The approach we outline in
this paper consists of these four  components (Fig. 1).

Figure 1: Different stages of the spike-sorting algorithm. Our end-to-end method consists of
three main components: First, a contractive autoencoder which consists of two hidden layers for
both the encoder and decoder layers of our neural network. A dropout layer immediately follows
each hidden layer in order to prevent overfitting. The output of the latent space representation
produced by the autoencoder (blue nodes) is fed into a K-means clustering algorithm to label
the embedded samples in an unsupervised manner.

Efficient and reliable spike sorting is an ever more crucial problem for neuroscience
practitioners. The number of neurons that can be recorded simultaneously has doubled every 7
years [2], while advancements in spike sorting have lagged considerably. This gap between the
capacity of neural recording devices and the limits of current spike-sorting methods is growing
even larger. Existing algorithms are simply unable to cope with the challenge of processing such
high volumes of data.

To address this gap, more recent algorithms have significantly improved spike sorting
procedures, greatly reducing the need for manual intervention [3]. These methods have focused
on improving spike detection through the use of template-based filtering [4, 5], wavelet
transforms [6] and energy operators [7]. However, most of these approaches are ‘offline’, i.e.
their application is limited to cases where spikes are sorted after the data has already been
acquired. In contrast, the novel algorithm that we introduce here can be adapted to online (as
well as offline) applications. Apart from introducing a fast and effective means of sorting spikes
on the fly, we also propose an algorithm that is robust to both measurement noise, and noise
due to electrode drift (a significant challenge for spike sorting using chronically implanted
electrodes).
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While different components of every step in the spike sorting pipeline are the subject of active
research, our approach focuses on robust feature extraction. Inspired by the design of denoising
[8] and contractive auto-encoders [9], we propose an embedding method for learning a
noiseless low dimensional representation from input waveforms. Although the idea of learning a
low dimensional representation from extracellular recordings has been implemented in previous
work [8], these algorithms often do not take the presence of background noise in the raw spikes
into consideration. In contrast, the tests we ran on our models unequivocally demonstrate that
our proposed method is robust to different levels of background noise, while the performance of
other state-of-the-art models drops as we introduce additional background noise into the raw
signal.

Results

Figure 2 - DCAE with additive noise. (a) Example waveform. We increased the amount of
additive noise injected into this waveform (light to dark blue). (b) Latent space representation of
the example waveform. The latent space representation was near identical for all noise
conditions (light to dark blue).

As mentioned, our proposed end-to-end model consists of three different components or
processes: a deep contractive autoencoder (DCAE), which is followed by clustering and
classification procedures (Fig. 1). The DCAE takes in high dimensional data as its input and
maps it onto a low-dimensional latent space that generates the inputs for subsequent stages of
the spike-sorting pipeline. We visually demonstrate the robustness of this approach by injecting
different levels of additive noise into a sample spike waveform (Fig. 2). We demonstrate that
DCAE can produce near-identical low-level representations of the waveform for different
amounts of injected noise.

Furthermore, we compare the performance of our algorithm against several others when
different sizes of training sets are used. We also evaluate our model’s robustness relative to a
standard autoencoder by applying different levels of noise to our training set. Finally, we use
gap statistics to demonstrate that there is no need to pre-specify the exact number of clusters
for our proposed algorithm. Our comparisons were made across four simulated ground-truth
extracellular recordings (described below).

We used four publicly available datasets in this study [10].
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● Neurocube_Easy1, Neurocube_Easy2, and Neurocube_Sim2: These datasets have been
adapted from the SYNTH_MONOTRODE dataset [10]. All of them generate spike waveform
templates based on single-neuron simulations, and randomly placing the spike waveforms
conforming to pre-specified ISI distributions. These datasets consist of a single channel, but
with a different number of units Neurocube_Easy1 and Neurocube_Easy2 have an intrinsic
noise level of 0.005, whereas Neurocube_Sim2 is noise free.

● SpikeInterface_Synthetic: This is a single channel dataset consisting of 10 units generated
using the SpikeForest platform.

Additional details about the datasets we used are presented in the following table (Table 1).

Table 1:Statistics of Synthetic Electrophysiology Recordings

Sample
Rate
(KHz)

#
Channel

s

Duration
(sec)

# Units

Neurocube_Easy1 24 1 60 3
Neurocube_Easy2 24 1 60 3
Neurocube_Sim2 24 1 600 16
SpikeInterface_Synt
hetic

24 1 4000 10

As demonstrated in Fig. 2, when dealing with intrinsically noisy data, adding a contractive loss
term to a standard autoencoder leads to the generation of more robust representations. We
specifically consider two alternative forms of contractive autoencoders in our study: 1-
Semi-supervised and 2- Unsupervised (see Methods).

The main difference in these approaches lies in the fact that the semi-supervised online CAE
(hereafter referred to as SOCAE) relies on ground truth labels, whereas unsupervised online
CAE (UOCAE) uses labels derived from a K-means algorithm. As such, UOCAE produces
slightly lower-accuracy values relative to SOCAE. Nonetheless, UOCAE substantially
outperforms (both in terms of accuracy and runtime) other SOTA spike sorters, and a support
vector machine (SVM) classifier that was trained on the original dataset (Fig. 3). Importantly, the
accuracy values for both ‎UOCAE and SOCAE remain largely unaffected by training dataset
size, implying that DCAE is an appropriate algorithm for online spike sorting, given that it can
produce reliable results on small datasets.

Figure 3: Spike sorting accuracy as a function of training size. Our proposed algorithm produced
much higher accuracy scores than the other alternative we tested.
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We further assessed the superiority of UOCAE over alternative spike sorting methods using
several standard performance metrics, such as accuracy, precision, and recall (Table 2). Taken
together, these measures fully characterize the efficacy of any classification algorithm. We
demonstrate that, out of all the standard spike-sorting algorithms we evaluated, MountainSort4
achieved the highest accuracy, nonetheless our DCAE algorithm vastly outperformed this
algorithm.

Table 2: Summary of accuracy metrics for the algorithms we tested on different datasets.

We further sought to demonstrate the extent to which our model was robust to additive noise.
We applied different levels of noise to our training dataset and evaluated the effects of injecting
increasingly large quantities of noise into our training datasets on classifier accuracy. We found
that DCAES (compromising both UOCAE and SOCAE) achieved similar rates of classifier
accuracy in spite of the different levels of noise injected into the training dataset. This could be
contrasted with UOAE whose performance dropped as a function of increasing noise levels.
These results serve to further demonstrate the robustness of DCAE models in spike sorting
applications, relative to standard autoencoders.

Figure 4: Sorter accuracy results on different levels of noise. To show our model’s robustness to
noise,  different levels of noise were applied to 20% of the training data.‎

A major challenge in cluster analysis is determining the optimal number of clusters in a
particular dataset. The gap statistic is a standard unsupervised method for overcoming this
challenge. As such, we sought to establish that our DCAE methods can automatically converge
on the correct (“ground-truth”) number of clusters by adopting this method. As Fig.  5 illustrates,
our model could identify the exact number of clusters consistently across all datasets. In other
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words, we found that our algorithm did not need to have access to the correct number of
clusters in advance in order to identify them accurately.

Figure 5: Gap statistic results. ‎Our model with a Gap statistic determines the correct number of
clusters automatically.

Finally, we compared and contrasted the performance of our DCAE algorithms by substituting
the SVM classifier with three other basic classifiers: 1) linear SVM, 2) Naive Bayes and 3)
K-nearest neighbours. We refer to these classifiers as “basic” because they are among the most
common out of the box procedures used in supervised learning. We demonstrate that neither of
these basic classifiers is better at sorting spikes than an algorithm that combines the same
basic classifier with a DCAE (be it SOCAE or UOCAE), and while the performance of the basic
classifiers improved by increasing the size of the training dataset, it was never as high as any
of our DCAE algorithms combined with a basic classifier.

Figure 6: Spike sorting accuracy for different classifiers as a function of training dataset size.
Our DCAE algorithms outperformed three different vanilla classifiers (Linear SVM, Naive Bayes
and k-NN).
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Discussion

In this paper we introduced a novel algorithm for spike sorting and validated it using four
synthetic datasets. We demonstrated three key properties for our DCAE algorithms: 1) They
produce representations of the data that are robust to additive noise. We demonstrated that the
performance of our algorithm did not significantly drop with the addition of noise, in contrast to
other traditional methods. 2) They outperform several SOTA models in various online and offline
spike-sorting applications. 3) They reliably classify spikes for small and large datasets.

One shortcoming of this approach is that we restricted our evaluation of DCAE to datasets that
consisted of a single channel. In the future we wish to apply the same algorithm to datasets
consisting of multiple channels, as we believe that it will achieve similarly high levels of accuracy
for such datsets.

Method

A novel approach for regularizing auto-encoders has recently been proposed, termed Deep
Contractive ‎Auto-Encoders (DCAE) [9]. It shares a similar motivation to DAEs in that it aims to
be robust to small variations in the training dataset ‎‎[8]. However, DCAE achieves its robustness
in a ‎rather different manner: instead of stochastically corrupting the input, it balances the
‎reconstruction error with an analytical penalty term that penalizes the Frobenius norm of the
‎encoder's Jacobian at training points. In doing so, DCAE algorithms seek to generate
representations that are robust to noise, whereas DAEs are concerned with generating a
noiseless reconstruction of their inputs.

The basic Auto-Encoder (AE) framework considered here starts from an encoding function 𝑓

that maps an input to a hidden representation where . It has the form:𝑥∈𝑅
𝑑

𝑥 ℎ∈𝑅
𝑑

ℎ 𝑅
𝑑

ℎ ≪ 𝑅
𝑑

𝑥

ℎ = 𝑓 𝑥( ) = 𝑠 𝑊𝑥 + 𝑏
ℎ( )

where is the logistic sigmoid activation function . The encoder is parametrized by𝑠 𝑠 𝑧( ) = 1

1+𝑒−𝑧

a weight matrix , and a bias vector .𝑑
ℎ

× 𝑑
𝑥

𝑊 𝑏
ℎ

∈ 𝑅
𝑑

ℎ

A decoder function then maps the hidden representation back to a reconstruction as𝑔 ℎ 𝑦
follows:

𝑦 = 𝑔 ℎ( ) = 𝑠 𝑊'ℎ + 𝑏
𝑦( )

The decoder's parameters are a bias vector , and a matrix . In this paper we only𝑏
𝑦

∈ 𝑅
𝑑

𝑥 𝑊'

explore the case in which .𝑊' = 𝑊𝑇

Basic auto-encoder training consists of finding parameters that minimize theθ = {𝑊, 𝑏
ℎ
, 𝑏

𝑦
}

reconstruction error on a training set of examples , i.e. minimizing the following objective𝐷
𝑛

function:
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𝐶
𝐴𝐸

θ( ) =
𝑥∈𝐷

𝑛

∑ 𝐿 𝑥, 𝑔 𝑓 𝑥( )( )( )

where is the reconstruction error between target and reconstruction (typically a𝐿 𝑡,  𝑟( ) 𝑡 𝑟
squared error or cross-entropy loss).

To encourage to be robust to small variations of training input , we penalize its sensitivity𝑓 𝑥( ) 𝑥
to that input, measured as the Frobenius norm of the Jacobian, .‖𝐽

𝑓
𝑥( )‖

𝐹
A CAE is trained to optimize the following objective function:

𝐶
𝐶𝐴𝐸

θ( ) =
𝑥∈𝐷

𝑛

∑ 𝐿 𝑥, 𝑔 𝑓 𝑥( )( )( ) + λ‖𝐽
𝑓

𝑥( )‖
𝐹

2

where is a positive hyperparameter that controls the strength of the regularization.λ

One can see that:
𝑑

𝑑𝑧 𝑠 𝑧( ) = 𝑒−𝑧

1−𝑒−𝑧( )
2 = 𝑠 𝑧( ) 1 − 𝑠 𝑧( )( )

Where , the linear + sigmoid mapping yields a simple expression for the penalty termℎ = 𝑓(𝑥)
[9]:

‖𝐽
𝑓

𝑥( )‖
𝐹

2 =
𝑗=1

𝑑
ℎ

∑ ‖ℎ
𝑗

1 − ℎ
𝑗( )𝑊

𝑗,:
‖

2
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