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Abstract 28 
 29 
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces 30 
(BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) 31 
are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of 32 
neural source, computational methods and PD pathophysiology on decoding performance are unknown. 33 
This represents an unmet need for the development of future neurotechnology. To address this, we 34 
developed an invasive brain-signal decoding approach based on intraoperative sensorimotor 35 
electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement 36 
decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to 37 
subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) 38 
outperformed other model architectures. ECoG based decoding performance negatively correlated with 39 
motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and 40 
movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode 41 
movement kinematics. Finally, we developed a connectomic analysis that could predict grip-force decoding 42 
performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study 43 
provides a neurophysiological and computational framework for invasive brain signal decoding to aid the 44 
development of an individualized precision-medicine approach to intelligent adaptive DBS.  45 

 46 
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 49 
Significance Statement 50 
Neurotechnology will revolutionize the treatment of neurological and psychiatric patients, promising novel 51 
treatment avenues for previously intractable brain disorders. However, optimal surgical and computational 52 
approaches and their interactions with neurological disorders are unknown. How can recent advances in 53 
machine learning and connectomics aid the precision and performance of invasive brain signal decoding 54 
strategies? Do the brain disorders treated with such approaches have impact on decoding performance? 55 
We propose a real time compatible advanced machine learning pipeline for invasively recorded brain signals 56 
in Parkinson’s disease (PD) patients. We report optimal movement decoding strategies with respect to 57 
signal source, model architecture and connectomic fingerprint and demonstrate that PD pathophysiology 58 
significantly and negatively impacts movement decoding. Our study has broad impacts for the development 59 
of smart brain implants for the treatment of PD and other brain disorders. 60 
   61 
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Introduction 62 
 63 
Subthalamic deep brain stimulation (DBS) for Parkinson’s disease (PD) is one of the most successful 64 
neurotechnological advances in translational neuroscience to date. In addition to its clinical utility, DBS has 65 
provided unique insight into the neurophysiology of movement disorders (Cagnan et al., 2019; Krauss et 66 
al., 2021). PD has been associated with increased beta synchronization and beta bursts in the basal ganglia 67 
(Kühn et al., 2006; Neumann et al., 2016; Kehnemouyi et al., 2021) and exaggerated phase amplitude 68 
coupling and waveform sharpness asymmetry in cortex (de Hemptinne et al., 2015; Cole et al., 2017).  69 
Symptom severity in the OFF medication state was shown to correlate with resting beta power in the STN 70 
across patients (Kühn et al., 2006; Neumann et al., 2016). Such observations have inspired the idea of 71 
adaptive DBS (aDBS), where electrophysiological signals are used to change stimulation parameters in 72 
response to evolving clinical states (Little et al., 2013; Beudel and Brown, 2016; Tinkhauser et al., 2017; 73 
Swann et al., 2018; Piña-Fuentes, van Dijk and M, 2019; Velisar et al., 2019; Hwang et al., 2020; Petrucci 74 
et al., 2020). In a series of seminal papers it was shown that significant clinical benefit and reduced side-75 
effects could be achieved, when stimulation was triggered by beta power (Little et al., 2013; Velisar et al., 76 
2019). Machine-learning for aDBS applications can integrate multivariate feature sets for adaptive DBS 77 
control beyond beta power. First trials on machine learning based movement classification to trigger 78 
adaptive DBS either using electrocorticography (ECoG) or subcortical local field potentials (LFP) in essential 79 
tremor have shown promising results (Opri et al., 2020; He et al., 2021). In the future, smart implants may 80 
become available that combine invasive brain signal decoding with real time stimulation adaptation, towards 81 
a precision medicine approach to adaptive DBS in PD and other brain disorders. However, the identification 82 
of optimal decoding strategies and the characterization of relevant factors with impact on decoding 83 
performance remains and unmet need. With the present study, we address this by a thorough investigation 84 
grip-force decoding that is motivated by the well described relationship of vigor, movement velocity, 85 
bradykinesia and dopamine in Parkinson’s disease (Turner and Desmurget, 2010; Yttri and Dudman, 2016; 86 
Lofredi et al., 2018). We use state-of-art machine learning algorithms with multimodal invasive 87 
neurophysiology and whole-brain connectomics in PD patients undergoing DBS electrode implantation. Our 88 
results highlight the utility of cortical vs. subcortical signals to accurately decode grip-force and establish a 89 
link between decoding performance and motor impairment in PD. Finally, we investigate brain networks 90 
from ECoG recording locations with normative structural and functional connectomics and demonstrate the 91 
predictive power of connectomic fingerprints for brain signal decoding.  92 
 93 
Results 94 
 95 
Real-time processing & Feature Definition 96 
 97 
We analyzed sensorimotor ECoG and subthalamic LFP data recorded intraoperatively from 11 PD patients 98 
undergoing DBS implantation during performance of a Go/No-Go based cued grip-force task (Figure 1A). 99 
Individual electrode localizations in Montreal Neurological institute (MNI) space are shown in Figure 1B with 100 
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typical responses (Kühn et al., 2004; Androulidakis et al., 2007; Kondylis et al., 2016; Lofredi et al., 2018) 101 
in Figure 1C aligned to onset of grip force (total n=2685, on average n=244 ± 149 STD movements per 102 
patient, see Figure 1-figure supplement 1 for more detail on grip-force variability). For the use in machine 103 
learning models, band power feature time-series were extracted in a real-time BCI compatible 104 
implementation (Figure 1D) streamed in virtual packets of 100 ms length at a sampling rate of 1000 Hz to 105 
mimic the online application. Variance as a measure of amplitude of rereferenced, band-pass filtered raw 106 
data segments was extracted at 10 Hz with an adaptive window length from 1000 – 100 ms of past data for 107 
eight oscillatory features [θ (4-8 Hz), α (8-12 Hz), β (13-35 Hz), low β (13-20 Hz), high β (20-35 Hz), low γ 108 
(60-80 Hz), high frequency activity (HFA) (90-200 Hz) and all γ (60-200 Hz)]. All features were normalized 109 
to the median of the past 10 seconds to compensate for potential signal changes over time. The target 110 
variable was continuously measured grip-force (z-scored for each recording session), which was cleaned 111 
from noise and baseline drift (Xie, Schwartz and Prasad, 2018).  112 
 113 

 114 
 115 
Figure 1: Movement induced spectral changes are more dominant for ECoG than STN-LFP signals 116 
for a grip force task before and after a machine learning feature signal processing pipeline.  117 
(A) ECoG, STN and gripping force were recorded simultaneously during performance of a Go / No-Go task. 118 
(B) Individual ECoG and STN electrodes were localized and transformed into in Montreal Neurological 119 
Institute (MNI) space. Note that ECoG strip designs varied slightly between patients (see Supplementary 120 
File 1a), leading to varying dimensions of overall input feature matrices. The number of ECoG channels 121 
(average n= 9.45 ± 11.15 STD per hemisphere) is higher compared to the number of STN LFP channels 122 
(n=3). (C) Mean spectral power of all ECoG and STN channels for contra- and ipsilateral movements 123 
showed typical movement induced spectral changes. (D) Virtual streaming of data packets secured real-124 
time compatible processing and normalization to extract time-frequency modulations into discrete feature 125 
time-series. Mean features of all ECoG and STN channels are visualized. (E) Schematic flow chart of the 126 
implemented real-time enabled feature extraction, machine learning evaluation and functional and structural 127 
connectivity analysis pipeline.  128 
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Including preceding signals up to 500 ms before the decoded sample improves 129 
grip-force decoding performance 130 
 131 
A linear model analysis of all eight oscillatory features per channel was used to investigate the contributing 132 
band power correlations for time-points simultaneous to and preceding target samples of continuous grip-133 
force measurements. Figure 2A shows the weight distributions of multivariable linear models of the best 134 
performing channels per subject. Since each cortical or STN electrode has multiple channels, only the best 135 
channel per electrode is selected for this visualization. As the interpretability of coefficients in multivariable 136 
models is limited (Haufe et al., 2014) we have further visualized the normalized coefficients of univariate 137 
models for each relative time-point and frequency band in Figure 2B. Next, to investigate the cumulative 138 
performance contribution of preceding time points for optimal feature construction, all frequency bands were 139 
concatenated while continuously increasing the cumulative number of premovement time-points (from -100 140 
to -1000 ms) and each set was subjected to training a Wiener Filter. The respective best channel 𝑅ଶ 141 
performances are shown in Figure 2C. A performance saturation becomes visible when concatenating 5 142 
time-points from 500 ms (prior to target sample) to 0 ms (target sample), resulting in an optimal input vector 143 
of 8 frequency bands with 5 time-points (= 40 features) for further analyses. 144 
 145 

 146 
Figure 2: Linear Models and Wiener Filters reveal temporally and spectrally specific coefficient 147 
distributions with grip-force decoding performance gain by including signals preceding the target 148 
sample by up to 500 ms. Multivariable linear model coefficients trained only from the instantaneous sample 149 
(0 time lag with respect to decoded target sample) including all frequency bands from best channels per 150 
patient resemble movement induced spectral changes with beta desynchronization and gamma 151 
synchronization (A). ECoG derived coefficients yield higher absolute values than STN-LFP derived 152 
coefficients. (B) Univariate frequency and time lag specific Linear Models were trained and visualized to 153 
improve interpretability of average coefficients in the absence of interactions. Low γ (60 - 80 Hz), HFA (90 154 
- 200 Hz) and all γ (60 – 200 Hz) bands show stronger positive associations for contralateral over ipsilateral 155 
movements. Moreover, stronger associations are visible for ECoG over STN-LFP signals for β, HFA and γ 156 
bands. (C) Wiener Filters can integrate multiple time-steps in Linear Models leading to an incremental 157 
performance gain when signals are included preceding the current target sample by up to 500 ms. 158 
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XGBOOST outperforms other machine learning models for grip-force decoding 159 
 160 
In order to build a grip-force decoder, different machine learning (ML) algorithms were tested in a large-161 
scale Bayesian Optimization hyperparameter search (see Supplementary File 1B for a list of 162 
hyperparameters for each model). Elastic - Net regularized Linear Models, Neural Networks and Gradient 163 
Boosted trees (XGBOOST) (Chen and Guestrin, 2016) were tested for each channel for contra- and 164 
ipsilateral movements. XGBOOST was included as it can learn non-linearities and has advantages over 165 
other models with respect to feature selection. To further utilize potential information derived from spatial 166 
patterns, the Source Power Comodulation (SPoC) framework (Dähne et al., 2014) was used in combination 167 
with Elastic - Net or XGBOOST predictors. Each model was informed by 40 features (8 specific frequency 168 
bands concatenated at 5 time-points ranging from t = -500 ms to t = 0 ms to the target sample) per channel 169 
and evaluated via rigorously cross-validated test-set predictions ranked by 𝑅ଶ coefficients of determination. 170 
Figure 3 shows performance outcomes for the different machine learning methods, with overall best results 171 
achieved by XGBOOST from ECoG signals (see Supplementary File 1c for further details). Contralateral 172 
ECoG strips had significantly higher decoding performances than ipsilateral ones (contralateral 173 
𝑅ଶ=0.31±24, ipsilateral 𝑅ଶ=0.13±0.16, p = 0.02). Given the relatively low decoding performances for STN-174 
LFP, we applied permutation tests to confirm that performance was above chance (contralateral p = 0.025, 175 
ipsilateral p = 0.028). Corroborating the model choice in previous literature, highest STN performances were 176 
achieved with the Wiener Filter method for contra- and ipsilateral movements (Shah et al., 2018).  177 
Importantly, varying combinations of multiple ECoG and/or STN channels did not lead to significant 178 
performance advantages (Figure 3C+D), which is important for the utility and design of machine learning 179 
enabled implantables.   180 
 181 
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 182 
Figure 3: XGBOOST outperforms other machine learning methods for ECoG based grip-force 183 
decoding. Based on the presented real-time compatible signal processing pipeline Neural Networks, Elastic 184 
- Net regularized Linear Models, Wiener Filters and extreme Gradient Boosting (XGBOOST) regression 185 
models were tested. Mean 𝑅ଶ test-set grip-force decoding performances are shown for the best channel per 186 
patient after 10 rounds of Bayesian Optimization of hyperparameters with nested cross-validation for ECoG 187 
(A) and STN-LFP (B). The same pipeline was subjected to spatial feature extraction approach using all 188 
available channels of an electrode for each patient with Source Power Comodulation (SPoC). Best ECoG 189 
(A) performances were obtained by XGBOOST regressors. STN-LFP signals (B) did not exhibit performance 190 
gain when applying advanced machine learning methods. The mean ECoG vs. STN XGBOOST 191 
performance differences of contralateral ∆𝑅ଶ= 0.21  ± 0.18 and ipsilateral ∆𝑅ଶ= 0.069 ± 0.08 movements, 192 
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indicate the higher grip-force decoding performance of ECoG over STN signals. The mean test-set 193 
prediction performances were higher for ECoG than for STN-LFP signals across all patients, for both contra- 194 
and ipsilateral movements. Best ECoG channels outperformed best STN-LFP channels and the 195 
combination of best channels from both ECoG and STN-LFP (C). When combining multiple channels, 196 
performances improve through the combination of ECoG and STN-LFPs (D), but the performances remain 197 
below individual best ECoG channels as depicted in (C). For combined ECoG + STN – LFP training, the 198 
model learned specific combinations between both feature locations and failed to select only the best ECoG 199 
features due to overfitting.  200 
 201 
Grip-force decoding performance is correlated with PD motor impairment and 202 
subthalamic beta burst dynamics 203 
 204 
To investigate potential sources of bias from patient specific information on grip-force decoding 205 
performance, we performed Spearman’s correlations with the grand average from all contra -and ipsilateral 206 
decoding performances. Averaging was necessary to obtain one value per patient. Age (ρ = -0.16, p = 0.32), 207 
disease duration in years (ρ = 0.31, p = 0.17) and number of movements (ρ = -0.41, p = 0.11) and movement 208 
variability (Rho = -0.49, p = 0.06) did not reveal significant correlations. We further investigated whether 209 
motor impairment related to the hypodopaminergic state in PD can explain differences in grip-force decoding 210 
across patients. Therefore, we correlated preoperative OFF medication total UPDRS-III scores, which 211 
revealed negative correlations for best ECoG (ρ = -0.55, p = 0.039) and STN-LFP (ρ = -0.55, p = 0.042) 212 
channels (Figure 4A+B). Combined ECoG and STN channel performance also showed significant 213 
correlations (𝜌 = -0.54, p = 0.045), as well as combined ECoG (𝜌 = -0.55, p = 0.045) and combined STN-214 
LFP performances (𝜌 = -0.61, p = 0.024). To test whether the correlation measure was corrupted by outliers, 215 
we repeated the analysis using the robust percentage-bend correlation (Pernet, Wilcox and Rousselet, 216 
2013) which replicated the significant association between UPDRS total score and mean contra -and 217 
ipsilateral channel performance for ECoG (r = -0.62, p = 0.04) and STN (r = -0.7, p = 0.016). This correlation 218 
was temporally specific to decoding of ongoing grip-force, indicative of the models’ underestimation of motor 219 
output (Figure 4C). Thus, the lower decoding performance in patients with more severe symptom severity 220 
could not be attributed to changes in decoder output in the absence of movement or temporal imprecision. 221 
This has practical implications and highlights the importance of investigating interactions between disease 222 
and machine learning approach for neural implants.  223 
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 224 
Figure 4: Grand average grip-force decoding performances correlate inversely with preoperative PD 225 
motor sign severity. UPDRS-III scores show significant negative correlations with patient-wise XGBOOST 226 
grip-force decoding performance averages for (A) ECoG (ρ = -0.55, p = 0.039) and (B) STN-LFP signals (ρ 227 
= -0.55, p = 0.042). The temporal specificity of this correlation is revealed through movement aligned 228 
sample-wise correlations of average force prediction model output with UPDRS-III scores across patients 229 
(cluster based corrected significant segments are displayed shaded) (C+D). 230 
 231 
To better understand the relationship of PD pathophysiology and grip-force decoding performance we have 232 
further investigated associations between cortical and subthalamic beta burst dynamics. We follow the 233 
methodology of previous reports that demonstrated that the time spent in beta burst correlates with 234 
impairment of movement kinematics (Torrecillos et al., 2018). Beta bursts were defined as threshold 235 
crossings of the beta feature vector above the 75th percentile of the baseline period. Following the previous 236 
finding that specifically the time-spent in low-beta but not high-beta bursts was correlated with PD motor 237 
impairment (Lofredi et al., 2019), we investigated these bands separately for the motor preparation period 238 
(-1 to 0 s with respect to movement onset) and movement execution period (0 to 1 s following movement 239 
onset). To uncover a potential relationship of the beta-burst metric with PD pathophysiology, we performed 240 
correlations with UPDRS-III total scores. Significant correlations were found between UPDRS-III and low-241 
beta bursts in STN-LFP signals during motor preparation (𝜌 = 0.63, p = 0.02; Figure 5A) and movement 242 
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execution (𝜌 = 0.56, p = 0.04; data not shown), but not for the high-beta band (p>0.05). Conversely, for 243 
ECoG high-beta but not low-beta burst dynamics during motor preparation but not movement periods were 244 
significantly correlated with UPDRS-III total scores (𝜌 = 0.55, p = 0.04). In summary, we provide evidence 245 
that both subthalamic and cortical beta burst dynamics relate to PD motor sign severity with subthalamic 246 
low-beta bursts showing the most robust correlations, both during motor preparation and movement periods.  247 
To relate these findings to movement decoding performance from cortex, we correlated the grand average 248 
XGBOOST grip-force decoding performances from ECoG channels (as above for UPDRS-III) with high- and 249 
low-beta burst dynamics in both ECoG and STN-LFP signals. ECoG based grip-force decoding performance 250 
was significantly correlated with subthalamic low-beta burst dynamics during motor preparation (𝜌 = -0.76, 251 
p = 0.004) and movement execution (𝜌 = -0.71, p = 0.005; Figure 5B). Subthalamic burst dynamics in the 252 
high-beta band also correlated with ECoG decoding performances during movement (𝜌 = 0.71, p = 0.007) 253 
but not motor preparation. Cortical burst dynamics from ECoG signals did not reveal significant correlations 254 
with ECoG based grip-force decoding performances. Relevant correlations alongside exemplar burst 255 
visualizations and corresponding grip-force decoding traces are shown in Figure 5.  256 
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 257 
Figure 5: Subthalamic low-beta bursts relate to PD motor impairment and are associated with lower 258 
ECoG decoding performance. UPDRS-III scores are significantly correlated with time spent in subthalamic 259 
low-beta bursts in the motor preparation period (A) and during movement (not shown). Average XGBOOST 260 
decoding performance correlated inversely with time spent in subthalamic low-beta bursts during motor 261 
preparation and movement performance (B). Patient examples with excellent (R² = 0.71; blue) and 262 
suboptimal (R² = 0.11; red) performances are highlighted in (B) and shown in further detail in (C). Note the 263 
difference in decoder output with respect to the original grip-force trace (left panel) and the differences in 264 
burst frequencies and durations across movement repetitions (right panel) in the motor preparation and 265 
movement execution (grey shaded area) period.  266 
 267 
 268 
 269 
 270 
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Brain mapping of grip-force decoding performance from invasive cortical and 271 
subthalamic recordings 272 
 273 
The spatial distributions of decoding performance on cortex and STN for contra- and ipsilateral movements 274 
are shown in Figure 6. To evaluate the relevance of recording location with respect to decoding 275 
performance, we calculated correlations of performance measures with a priori defined implantation targets, 276 
namely the dorsolateral STN (Caire et al., 2013; Horn, Kühn, et al., 2017) and the hand-knob of the 277 
precentral gyrus (Mayka et al., 2006). Linear mixed effects models showed a significant within-subject 278 
relation for contralateral ECoG decoding performances (β=-0.002, Lower CI=-0.003, upper CI=-0.001, 𝑅ଶ= 279 
0.57, p<0.001), but not STN locations (p > 0.05). The dependent variable was the decoding performance, 280 
the fixed effect was the distance to hand knob area or dorsolateral STN respectively, and the random effect 281 
the subject. Repeating the analyses across electrodes and patients in a cross-validated manner revealed 282 
no significant predictive value (p > 0.05). Thus, Euclidean distance to hand knob area for ECoG and 283 
therapeutic target for STN was significantly correlated with decoding performance within patients, but could 284 
not predict decoding performance across channels or patients. 285 
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 286 
Figure 6: Grip-force decoding performances spatially peak in sensorimotor cortex and the 287 
dorsolateral STN. (A) Channels are color coded for individual XGBOOST grip-force regression 288 
performances per channel. Performance differences shown are in favor of ECoG over STN and contralateral 289 
over ipsilateral recording locations for movement decoding. (B) Spatial interpolation across all contacts 290 
projected to the left hemisphere shows peak performances in sensorimotor cortex. STN interpolated 291 
decoding performance peaks in the dorsolateral portion of the STN, in proximity to the best therapeutic 292 
target (Caire et al., 2013). 293 
 294 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2021.04.24.441207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441207


 

14 
 

Whole-brain connectomics can aid the discovery of brain networks underlying the 295 
neural encoding of grip-force 296 
 297 
The ability to account for decoding performances for invasive electrodes may soon become as important as 298 
accounting for variance in stimulation effects, as bidirectional clinical brain computer interfaces will rely both 299 
on electrical sensing and stimulation. Recently, network mapping of neurostimulation targets has shown 300 
utility to predict variance in clinical outcomes following DBS (Horn, Reich, et al., 2017; Horn and Fox, 2020; 301 
Li et al., 2020). Here, we extended the same framework to predict variance in grip-force decoding 302 
performance observed from single channels, using the XGBOOST grip-force decoding results. In this 303 
approach – termed prediction network mapping – we calculated functional and structural connectivity 304 
fingerprints by projecting each recording location to a group connectome that was acquired in a cohort of 305 
PD patients. These fingerprints denote to which other brain areas each site is connected to. Using a 306 
discriminative fiber tracking analysis, (Baldermann et al., 2019; Li et al., 2020) we analyzed the predictive 307 
value of structural connectivity from ECoG recording locations (for an exemplar case see Figure 7A) for 308 
XGBOOST decoding performance. Therefore, diffusion imaging derived whole-brain fiber connectome data 309 
traversing to more than 20% of recording locations were used (Figure 7B). The specific fiber distributions 310 
included structural projections spanning sensory, motor and prefrontal cortex, and could significantly predict 311 
decoding performance of left out channels (ρ = 0.38, p < 0.0001; thresholded at a false discovery rate α = 312 
0.05) and patients (ρ = 0.37, p < 0.0001) in a cross validated manner (Figure 7D). Next, we created spatial 313 
models of optimal decoding performance for functional connectivity (R-Maps are shown in Figure 7C). This 314 
model led to significant predictions of decoding performance in leave-one-channel-out (𝜌 = 0.37, p < 0.0001) 315 
and leave-one-subject-out cross validations (functional connectivity 𝜌 = 0.37, p < 0.0001) (Figure 7E). The 316 
results were further validated with voxel-wise correlations using the statistical parametric mapping (SPM) 317 
framework (see methods for further details). Models such as the two presented here could be generalized 318 
to all BCI applications and used to identify brain networks that encode specific behavioral and clinical target 319 
variables.   320 
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 321 
Figure 7: Structural and functional movement decoding network analysis reveals cerebellar as well 322 
as sensorimotor cortical decoding capacity. (A) Visualization of fibers originating from the ECoG 323 
recording locations of subject 1. (B) Decoding performance across all subjects and channels significant fiber 324 
tracts are displayed. All ECoG contacts were projected to the left hemisphere. For every fiber a t-test statistic 325 
between connected and unconnected brain regions was calculated. Only significant fibers, indicating 326 
structural connectivity to grip-force decoding performance, are shown. (C) The optimal R-Map is shown for 327 
the cortical surface as well as cerebellum for fMRI functional connectivity. Fingerprints were calculated 328 
between the functional connectivity of every electrode contact to all other voxels. The R-Map was then 329 
calculated as a correlation between individual contact fingerprints and the contact specific 𝑅ଶ decoding 330 
performance. (D) Fiber tracking connectivity predicts grip-force decoding performance (leave one channel 331 
out cross validation ρ = 0.38, p < 0.0001, leave one patient out cross validation ρ = 0.24, p = 0.0004). Here 332 
each individual point represents a statistic of connected and unconnected fibers of each contact or patient. 333 
The previously calculated fiber statistic within each cross-validation fold could thus predict the channel or 334 
patient specific performance. (E) Functional connectivity predicts decoding performance (leave one channel 335 
out cross validation ρ = 0.37, p < 0.0001, leave one patient out cross validation ρ = 0.25, p = 0.0004). The 336 
spatial correlation between individual fingerprints and the cross-validation specific R-Map, predicts left out 337 
decoding performances. 338 
 339 
 340 
Discussion  341 
 342 
Bidirectional brain computer interfaces will revolutionize the treatment of previously intractable brain 343 
disorders with brain signal decoding based adaptive neuromodulation. DBS provides a unique platform to 344 
trailblaze neurophysiological approaches, disease specific modulation and computational strategies for 345 
brain signal decoding for next-generation brain implants. Here, we investigated clinical and computational 346 
strategies for grip-force decoding as a representative and pathophysiologically relevant behavioral target 347 
variable. We used multimodal invasive neurophysiology time-series data in PD patients undergoing DBS 348 
electrode implantation. Our findings can be broken down into four advances to the field: 1) we developed a 349 
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new decoding approach based on multispectral time-concatenated band-power measures, subjected to 350 
Bayesian optimized extreme gradient boosted ensembles (XGBOOST): this outperformed traditional linear 351 
model-based methods and may be generalized to all brain signal-based regression problems. 2) Next, we 352 
demonstrate that electrocorticography signals outperform subthalamic LFP for grip-force decoding, 353 
supporting the utility of additional ECoG in adaptive DBS research for PD patients. 3) Our findings link PD 354 
motor impairment, PD pathophysiology with deterioration in decoding performance, highlighting a potential 355 
impairment in movement coding capacity through subthalamic low-beta bursts during motor preparation and 356 
execution periods. 4) Finally, we could significantly predict how well a specific recording site would perform 357 
to decode grip force based on brain connectivity. This novel framework (termed prediction network mapping) 358 
can be used in future implants to identify connectomic networks from which brain sensing can predict 359 
symptoms and behavior. 360 
 361 

Limitations 362 
 363 
Our analysis is retrospective in nature and the data were obtained in context of a Go/No-Go task, which 364 
may have implications on the generalizability of the findings in the application during naturalistic behavior.  365 
All model training and evaluations were conducted offline. Nevertheless, we took meticulous care to exclude 366 
any circularity in processing and machine learning applications. To this date, such circularities are 367 
overlooked in some movement decoding papers with filtering, normalization and time frequency 368 
transformation across entire sessions, thus reaching into the future from the point of the individually decoded 369 
sample. Ridding our analysis from data that would be unavailable in a real-time setting as reported in this 370 
study, leads to worse performances, but gives a more realistic estimate of model performance in the clinical 371 
use-case. While gripping is a relevant motor skill for human behavior, our findings are restricted to the 372 
decoding of grip-force and may have limited generalizability to other movements. The overall number of 373 
patients in this study is low. This may have limited a more detailed analysis of bias and other factors, beyond 374 
the described correlation of clinical symptom severity, subthalamic beta burst dynamics, electrode location 375 
and connectomics. Most importantly, the signal to noise ratio may further impact decoding accuracies 376 
differently for ECoG and LFP signals. This could in part explain why decoding from ECoG signals may 377 
benefit more from complex and non-linear model architectures. The comparability of ECoG and LFP 378 
recordings was further affected by the higher number of available ECoG channels, when compared to only 379 
three bipolar LFP channels. However, the large effect size of superior decoding performances with ECoG 380 
may indicate that this bias does not relevantly impact the interpretation of our findings. An additional 381 
limitation was the relatively small amount of available data per patient, which was constrained by the 382 
intraoperative setting (see Table 1). For deep learning approaches we expect better performances with 383 
increased dataset sizes, which may become available, either through externalized extraoperative recordings 384 
(He et al., 2021) or sensing enabled implantable devices (Opri et al., 2020; Gilron et al., 2021). Importantly, 385 
our finding that decoding performances from single contacts outperform multi-electrode models may be a 386 
consequence of a combination of short recording durations in this study, suboptimal computational model 387 
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selection and the fact that sensorimotor cortex and STN are part of the same circuit that is synchronized in 388 
oscillations. While we have made an effort to accommodate models that are optimized for spatio-spectral 389 
feature learning, and we are confident that these cannot outperform single channel approaches in this 390 
dataset, future studies should cautiously reinterrogate this issue in larger datasets, e.g. by implementing 391 
neural networks optimized for this purpose (Peterson et al., 2021). Finally, we should acknowledge that the 392 
exploration of the neural feature space in this study was non-exhaustive, and further raw data features, such 393 
as the local motor potential (Mehring et al., 2004), waveform shape features (Cole and Voytek, 2017) and 394 
aperiodic signal components (Wilson, Castanheira and Baillet, 2022) could further improve decoding 395 
performances in future movement decoding studies. 396 
 397 

Decoding grip force based on invasive electrophysiology 398 
 399 
Our study defines a novel computational strategy to decode grip-force based on ECoG and LFP in patients 400 
undergoing DBS for PD. It explores defined oscillatory feature sets and compares machine learning models 401 
with varying complexity, from linear models to artificial neural networks and regression trees. ECoG based 402 
movement decoding of varying movement types has been previously investigated in epilepsy patients that 403 
underwent electrophysiological monitoring (Leuthardt et al., 2004) through which local motor potentials and 404 
gamma band activity were highlighted as informative features (Gunduz et al., 2016). First analyses based 405 
on STN-LFPs in PD patients have shown that Wiener Filter architectures can be successfully used for grip-406 
force decoding (Tan et al., 2016; Shah et al., 2018). The present study extends these previous reports to a 407 
continuous non-trial-based decoding approach. Furthermore, a direct comparison of ECoG and LFP 408 
performance with relation to systematic machine learning methods was lacking. Our findings indicate that 409 
sensorimotor ECoG recordings are more informative than LFP recordings from the STN for grip-force 410 
decoding. While this finding is robust, we should acknowledge that the size and shape of electrodes (see 411 
Supplementary File 1a) and the spatial orientation and size of the neural architectures that are sampled are 412 
not directly comparable across these methods. Thus, it is difficult to derive the relative importance of the 413 
different brain regions for grip-force and vigor processing in motor control from this comparison. Instead, we 414 
interpret our result as a practical demonstration of the greater utility of ECoG signals for movement 415 
decoding. The results in this study are based on extracted band-power features and show superior 416 
performances with XGBOOST, when compared to other model architectures and algorithms. More 417 
specifically, best performances were obtained for Bayesian optimized XGBOOST models trained on data 418 
from single ECoG channels without additional benefit from channel combinations or combined ECoG and 419 
STN channel sets. In the future, this machine learning approach can be adopted to extend the clinical utility 420 
of invasive brain stimulation approaches for other brain disorders, e.g. through decoding of tics or obsessive 421 
compulsive behavior in neuropsychiatric DBS indications. 422 

 423 

 424 
 425 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2021.04.24.441207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441207


 

18 
 

Towards machine learning based adaptive stimulation in Parkinson’s disease 426 
 427 
Adaptive DBS (aDBS) has the potential for significant innovation in movement disorders (Starr, 2018). For 428 
Parkinson’s disease, different control policies of subthalamic beta band activity are now tested in clinical 429 
trials to improve the treatment for patients with akinetic rigid dominant PD (ClinicalTrials.gov Identifier: 430 
NCT04681534, NCT04547712) (Little et al., 2013; Arlotti et al., 2018; Velisar et al., 2019). Beyond 431 
subthalamic beta power, ECoG recordings were previously used to successfully decode the presence of 432 
dyskinesia through elevated levels of gamma band synchronization. This could be used to reduce 433 
stimulation intensity to alleviate medication and stimulation induced dyskinesia (Swann et al., 2018). Such 434 
single biomarker approaches have the advantage that pathophysiological mechanisms may be the direct 435 
target of intervention, while machine learning based decoding methods derive correlates of symptoms and 436 
behavior indirectly through learning potentially noisy correlations (Neumann et al., 2019). Therefore, single 437 
biomarker based aDBS presents an optimal starting point for investigating the clinical utility of aDBS in 438 
controlled study designs. However, single biomarkers alone cannot account for the diverse and complex set 439 
of clinical signs of PD and behavior, e.g. during gait (Molina et al., 2021; Thenaisie et al., 2022), speech 440 
and tremor (Hirschmann et al., 2013, 2017). Here a versatile decoding based control algorithm may further 441 
improve clinical outcome for these patients in the future (Neumann et al., 2019; Merk et al., 2022).  Indeed, 442 
machine learning-based decoding has been successfully described in first translational breakthrough 443 
studies (Opri et al., 2020; Gilron et al., 2021; He et al., 2021). In a complementary approach, we focused 444 
on direct grip-force decoding, motivated by the hypothesis that future aDBS studies increasing DBS 445 
amplitude during periods of higher movement vigor may advance the successful treatment of bradykinesia 446 
in PD. While our previous findings indicate that relative amounts of beta can still signal bradykinesia during 447 
movement, (Lofredi et al., 2019; Feldmann et al., 2021) further positive control parameters could keep 448 
stimulation proportional to intended movement vigor. Moreover, recent reports that beta power correlates 449 
negatively with phasic dopamine release may further substantiate the idea of movement/kinematics based 450 
STN stimulation to support intrinsic movement related dopamine signals (Schwerdt et al., 2020). We may 451 
speculate that DBS constitutes a network modulation that is similar to dopamine transients by suppressing 452 
local firing of the subthalamic nucleus (Milosevic et al., 2018) and shifting the balance of basal ganglia from 453 
indirect to direct pathway activity. As highlighted above it was recently shown in non-human primates that 454 
phasic decreases in beta in the basal ganglia are correlated to phasic dopamine signals during movement 455 
(Schwerdt et al., 2020). Thus, in order to support the intrinsic dopaminergic capacity of PD patients, future 456 
machine learning based aDBS approaches could be complemented by algorithms that inform the stimulation 457 
on behavioral and motor adjustments to mimic intrinsic phasic dopamine signals. Previous studies have 458 
successfully decoded the presence of movement using cortical beta activity (Opri et al., 2020) which could 459 
also become a viable treatment option in PD. However, getting an estimate of movement vigor i.e. through 460 
the prediction of grip-force may complement advanced aDBS control policies, as multivariate models 461 
emerge for the next-generation of neurotherapeutics. 462 
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Notably, the proposed adaptive stimulation would require a fast algorithmic adaptation of stimulation to 463 
ongoing behavior. This could be combined with additional slower adaptations in response to medication or 464 
sleep cycles.  Specifically for PD, beta activity based adaptive stimulation can be well suited to track the 465 
patient’s overall symptom state (Tinkhauser and Moraud, 2021) while more rapid stimulation adaptations 466 
based on vigor can follow fast kinematic changes. The utility of vigor-based stimulation and the combination 467 
of this approach with additional slower adaptation algorithms, require further proof-of-concept studies before 468 
the clinical utility can be foreseen. In our study, we demonstrate that motor symptom severity itself can have 469 
direct and negative effects on decoding performance, which we should keep in mind during clinical decision 470 
making. Previous studies have shown that the presence of beta bursts correlated with motor performance 471 
in cortex (Little et al., 2019) and STN (Torrecillos et al., 2018), which could degrade decoding performance 472 
(Khawaldeh et al., 2020). Our study replicates and extends these findings, as we show a direct correlation 473 
between movement related beta burst dynamics and PD motor sign severity. More importantly, our results 474 
show that the amount of time the STN is bursting in the low-beta band, during motor preparation and 475 
movement execution is inversely correlated with ECoG based grip-force decoding performance. An obvious 476 
interpretation of this finding is that excessive synchronization in the STN may impair flexible motor control 477 
by decreasing information coding capacity and neural entropy as previously suggested in animal studies 478 
(Mallet et al., 2008; Cruz et al., 2009) and recently suggested for subthalamic beta bursts (Velasco et al., 479 
2022). Again based on the inverse relationship of beta activity and dopamine (Schwerdt et al., 2020), we 480 
may speculate that beta bursts may relate to transient dips in dopamine signaling. Dopamine was shown to 481 
precede and invigorate future movement (da Silva et al., 2018). If subthalamic beta bursts indicate phasic 482 
decreases in dopaminergic innervation, we could expect a loss of invigoration and reinforcement of ongoing 483 
neural population activity in the cortex – basal ganglia – thalamic loop, which offers an elegant explanation 484 
for the lower decoding performance from ECoG signals in the absence of obvious cortical activity patterns. 485 
Beyond beta bursts our findings indicate general impact of motor symptoms in the hypodopaminergic state 486 
on machine learning based kinematic decoding capacity. This highlights the conceptual relevance of 487 
disease specific interactions with computational models. Interestingly, in the hypodopaminergic state, the 488 
model output underestimated the grip force extent produced by the patients. This could reflect a loss of 489 
neural vigor representations related to insufficient dopaminergic modulation (Turner and Desmurget, 2010). 490 
In the future, we will have to account for the individual impact of disease specific changes in brain signals 491 
that affect decoding performance. Further, our results corroborate the notion that dopamine plays a key role 492 
in coding and modulating neural representations of movement kinematics in the human brain.  493 
 494 

Connectomics can aid the discovery of brain networks underlying encoding of 495 
clinical and behavioral target variables 496 
 497 
Decoding performance for clinical BCI may be drastically improved when adjusting brain signal recording 498 
sites to the underlying interconnected network that is relevant for encoding of the specific target behavior. 499 
For instance, when decoding language or speech, one could envision that recordings at either Broca’s or 500 
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Wernicke’s region could be helpful, but a combination of both could be optimal. The two regions form a 501 
network with direct connections via the Arcuate Fascicle. In the present study we have leveraged multisite 502 
recordings from various electrode locations across patients to identify the network that would be most 503 
informative for grip force decoding. For this endeavor, we adapted two existing methods that are able to 504 
isolate i) connected voxels and ii) connected fiber tracts (Horn, Reich, et al., 2017; Li et al., 2020) associated 505 
with a specific target metric (such as grip-force decoding performance in the present case). While Euclidean 506 
distance to motor target, i.e. hand knob area for ECoG and therapeutic target for STN, was significantly 507 
correlated with decoding performance within-subject, this simplistic notion could not predict decoding 508 
performance across channels or patients. Thus, proximity to landmarks alone does not reliably help the 509 
identification of optimal recording sites. Given the complexity and vast distribution of movement related brain 510 
areas, from cerebellum to frontal cortex to parietal cortex, it may not be surprising that whole-brain 511 
connectomics outperform single region of interest based distance metrics for predicting informative 512 
recording locations. The development of a connectomic identification of optimal decoding locations has 513 
important implications in clinical adoptions of BCI technology. Preoperative identification of brain networks 514 
would allow the design of optimal electrode architectures and targeted implantation to cover strategic nodes 515 
of distributed networks for decoding of clinical variables and behavior. Moreover, connectomic approaches 516 
can inform the optimal spatial feature selection of pretrained machine learning models to facilitate brain 517 
signal decoding without the requirement for individual (re-)training. Importantly, the connectomic models 518 
that we used can be trained based on multiple dimensions of input-output relationships, e.g. for decoding 519 
of behavior like grip-force, but also for decoding clinical signs, such as tremor or mood disturbances. Thus, 520 
when implanting a high-density ECoG grid, connectomic analyses can generate target specific contact 521 
combinations, e.g. focusing on primary cortex for tremor and supplementary motor area for motor intention 522 
and bradykinesia. Our results highlight the utility of whole-brain connectomics to predict machine learning-523 
based brain signal decoding performance that can be generalized to any bidirectional clinical brain-computer 524 
interface use-case. In the future, neurosurgeons may not target individual sensing locations in isolation, but 525 
instead determine optimal implant trajectories in accordance with whole-brain connectomic fingerprints for 526 
optimal BCI performance. 527 
 528 

Conclusion 529 
 530 
Our analysis from PD patients undergoing DBS implantation showed that ECoG recordings outperform STN-531 
LFP recordings for grip-force decoding throughout different machine learning methods, with XGBOOST 532 
showing the highest performance. Parkinsonian motor sign severity and subthalamic low-beta bursts were 533 
associated with loss of decoding performance, indicating a specific link between PD pathophysiology, 534 
kinematic coding capacity and motor impairment. To investigate the spatial relationship of ECoG decoding 535 
performances in the brain, we have formalized a connectomic framework that could cross-predict decoding 536 
performances across recording sites and patients, based on underlying whole brain MRI connectivity 537 
patterns. Our findings highlight the utility of ECoG for intelligent adaptive stimulation in PD, corroborate the 538 
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role of PD symptom severity in kinematic coding and pave the way for connectomic neurosurgery for 539 
machine learning-based brain signal decoding. We hypothesize that future neurotechnological treatments 540 
may have the potential to outperform traditional drug regimes, due to a key advantage in the temporal and 541 
spatial precision of therapeutic delivery towards a precision medicine approach for intelligent adaptive DBS 542 
(Neumann et al., 2019; Neumann and Rodriguez‐Oroz, 2021; Merk et al., 2022). 543 
 544 
Materials and Methods 545 

 546 
Participants 547 

The current study is based on previously published data (Alhourani et al., 2020). In brief, subthalamic LFP 548 
and subdural ECoG recordings were simultaneously acquired from 11 PD patients. The patients were 549 
subjected to bilateral STN-DBS lead implantation, as proposed by standard clinical indications criteria. In 550 
accordance with protocol #PRO13110420, approved by the Institutional Review Board of the University of 551 
Pittsburgh, informed consent for all patients was obtained prior to any surgical procedure. The subject 552 
characteristics are detailed in Table 1. UPDRS Part III scores for the off-medication conditions were 553 
collected in a time period of 1-3 months prior to surgery by movement disorder neurologists. Dopaminergic  554 
medications were withheld for at least 12 hours before intraoperative testing. 555 

Table 1: Subject characteristics 556 
N Gender UPDRS 

total 
Hemisphere Age Movements Disease 

duration 
[years] 

ECoG Strip 
Contact 

Number Left 

ECoG Strip 
Contact Number 

Right 
0 Male 28 R 60.3 128 10.7 0 6 

1 Male 27 L+R 51.2 464 14 28 28 

2 Male 33 L+R 53.8 213 7.2 8 8 

3 Male 31 L+R 44.2 285 10.1 8 8 

4 Male 32 2L+2R 63.6 381 13.1 28+8 28+8 

5 Male 52 L 59.6 84 5.9 6 0 

6 Male 55 L 71.6 161 1.4 6 0 

7 Male 50 L 52.5 131 8.7 6 0 

8 Male 62 L+R 66.8 547 9.8 6 6 

9 Male 48 L 67.9 86 17.1 6 0 

10 Female 31 R 69 205 10.4 0 6 

 557 
Behavioral Paradigm 558 
 559 
The behavioral task performed for this study was previously described (Kondylis et al., 2016; Alhourani et 560 
al., 2020; Fischer et al., 2020) and it is schematically shown in Figure 1A. The task included Go/No-Go cues 561 
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with randomized inter-trial interval durations. Feedback durations were adjusted based on grip force reaction 562 
times. In the present analyses, time-series were virtually streamed as continuous data to simulate real time 563 
grip-force decoding, irrespective of task trials. Subjects were fully awake, and no anesthetic agents were 564 
administered for at least 1 hour before the task procedure. No medication was given during the task. The 565 
task paradigm was implemented using the Psychophysics Toolbox (Brainard, 1997) on a portable computer. 566 
The trials consisted of a simultaneous presentation of a yellow traffic light in the center of a screen, and a 567 
cue on one side indicating which hand the subject should use for the subsequent response of squeezing 568 
the handgrip. The cue remained on screen for 1000 - 2000 ms, followed by the traffic light changing either 569 
green or red, signaling a ‘’go cue’’ and ‘’no-go cue’’ respectively. Subjects performed the task for a 570 
cumulative total time of 10 to 25 min. As the present study focuses on grip-force decoding performance 571 
based on the electrophysiological signals, all sessions containing valid movements were merged per subject 572 
for further analysis. To validate that the used grip-force label in our data varies not only between two 573 
movement states, but constitutes a relevant regression problem with varying force amplitude and velocity, 574 
all movement maximum amplitudes and velocity traces are visualized in the Figure 1-figure supplement 1. 575 
 576 

Electrophysiological Recordings 577 
 578 
Subdural electrode strips were implanted temporarily through standard frontal burr holes located near the 579 
coronal suture and aimed posteriorly to the hand knob motor cortex region. Strip targeting has been 580 
previously described and was based on markings of stereotactically defined overlying scalp locations 581 
(Kondylis et al., 2016). STN-DBS electrodes were implanted bilaterally, targeting the dorsolateral motor area 582 
of the STN. ECoG data were recorded intra-operatively using six-contact (left n = 5 patients, right n = 3), 583 
eight-contact (left n = 3, right n = 3) and twenty-eight-contact (left n = 2, right n = 2) strip electrodes. The 584 
electrode details are shown in Supplementary File 1a and all ECoG and STN electrodes are plotted in Figure 585 
1B (mean number of electrode contacts were 10.18±11.29 for left and 8.9±12 for right hemispheres). A 586 
referential montage was used in which the reference electrode was placed in the scalp and a ground 587 
electrode was placed in the skin overlying the acromion process. ECoG and STN signals were filtered (0.3–588 
7.5 kHz), amplified, and digitized at 30 kHz using a Grapevine neural interface processor (Ripple Inc.). Force 589 
signals were digitally recorded simultaneously with the ECoG and STN-LFP signals. LFPs from the STN 590 
were recorded using the clinical DBS lead (model 3389, Medtronic) from all four contacts and referenced 591 
offline in a bipolar montage. All signals were resampled to 1 kHz for offline analysis. To investigate the 592 
variability of grip-force as a potential bias for decoding performance, we calculated the variance of peak 593 
force across movement repetitions.  594 

Electrode Localization 595 

Subdural electrode reconstructions were obtained by aligning pre-operative MRI, intra-operative 596 
fluoroscopy, and postoperative CT. Representative images of this technique were previously shown in detail 597 
(Randazzo et al., 2016). In short, the CT and MRI were co-registered using mutual information using the 598 
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SPM software library and rendered onto 3D skull and brain surfaces using Osirix (v7.5) (Rosset, Spadola 599 
and Ratib, 2004) and Freesurfer (v5.3) software packages (Dale, Fischl and Sereno, 1999), respectively. 600 
These surfaces and the fluoroscopy images were then aligned according to common points: stereotactic 601 
frame pins, implanted depth electrodes, and skull outline positions (Randazzo et al., 2016). The parallax 602 
effect of the fluoroscopic images was accounted for using the obtained distance from the radiation source 603 
to the subject’s skull. Succeeding the surface-to-fluoroscopic image orientation alignment, a 3D location for 604 
each electrode contact was projected from the fluoroscopic image to the cortical surface. Deep brain 605 
stimulation electrode locations were reconstructed using the advanced neuroimaging pipeline defined by 606 
Lead-DBS using default settings (Horn et al., 2019). In brief, preoperative MRI and postoperative CT scans 607 
were co-registered and normalized to MNI 2009b NLIN ASYM space. Electrode artefacts were visually 608 
identified and marked to obtain MNI coordinates of DBS electrode contacts. All electrode localizations are 609 
visualized in Figure 1B. 610 
 611 

ECoG and LFP preprocessing and feature extraction   612 
 613 
The entire preprocessing pipeline used in the present study was optimized for real-time performance and 614 
inspired by the Berlin Brain Computer Interface (Blankertz et al., 2006). Processing was performed in Python 615 
using custom code based on MNE-python (Gramfort et al., 2013), mne_bids (Appelhoff et al., 2019) and 616 
pybv (https://pybv.readthedocs.io/en/stable/). All raw data files were saved in the iEEG-BIDS structure 617 
(Holdgraf et al., 2019). To account for baseline drifts, the force traces were cleaned using a normalization 618 
approach presented for previous ECoG finger trajectory decoding (Xie, Schwartz and Prasad, 2018). A real-619 
time data stream of untouched electrophysiological raw data was emulated to ensure that all processing 620 
that can impact decoding is performed in a real-time compatible manner. Referencing was performed online 621 
(i.e. after streaming virtual data packets). All LFP recordings were referenced bipolarly, against the adjacent 622 
contacts (0-1, 1-2, 2-3 with contact 0 being the lowest by convention of the manufacturer). Throughout the 623 
manuscript, we adopt the clinical usage of electrodes (also named “leads”) and contacts from the DBS 624 
realm. During preprocessing (in pseudo real time), we derive 3 bipolar STN-LFP channels from 4 adjacent 625 
contacts in one DBS electrode (also called "lead"). We also follow this nomenclature for ECoG, where we 626 
call the entire strip an “electrode”. ECoG electrodes in our dataset can have varying number of contacts 627 
(see Supplementary File 1a). ECoG recordings were referenced by subtracting the common average of all 628 
ECoG electrodes, therefore the number of channels per ECoG electrode is equal to the number of contacts 629 
per strip. To facilitate computationally efficient real-time enabled algorithms, time frequency decomposition 630 
for the machine learning analysis was conducted by bandpass filtering in the 𝜃 (4-8 Hz), 𝛼 (8-12 Hz), 𝛽 (13-631 
35 Hz), low 𝛽 (13-20 Hz), high 𝛽 (20-35 Hz), all 𝛾 (60-200 Hz), low 𝛾 (60-80 Hz) and high-frequency activity, 632 
(90-200 Hz) frequency bands. Overlapping broad 𝛽 and 𝛾 bands were added in addition to subbands to 633 
enable the investigation of distinct interactions within these frequency bands (Figure 1C). To estimate band 634 
specific activity, different time durations were used for band-pass filtering with longer time segments for 635 
lower frequencies, and shorter time segments for higher frequencies (𝜃 = 1000 ms, 𝛼 and 𝛽 bands = 500 636 
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ms, 𝛾 = 100 ms). To get an estimate of amplitude of the activity in the filtered signals, variance was extracted 637 
in intervals of 1 s in a sliding window of 100 ms resulting in a time resolution of 10 Hz. All variance estimates 638 
were normalized by subtracting and dividing by the median in a sliding window of 10 s to account for 639 
differences in impedance and proximity to the source before subjecting the data to the machine learning 640 
analysis. All features were clipped as an artifact rejection mechanism when they exceeded a normalized 641 
value of [-2 2]. The used normalization is fully compatible with a real time prediction approach, as data 642 
acquired in the future do not influence the present predictions. See figure 1E for an outline of the methods 643 
pipeline. For the purpose of visualization, Morlet wavelets (7 cycles) were used to demonstrate the entire 644 
time-frequency decomposition (Figure 1C). 645 
 646 

Machine learning training and evaluation 647 
 648 
A rigorous nested cross-validation approach was implemented. An outer 3-fold cross validation split the 649 
data into folds of two third training and one third test set. For each individual channel a Bayesian 650 
Optimization hyperparameter search (Frazier, 2018) was then conducted for 10 rounds using the training 651 
set only. For each round the training data was trained and tested in an inner 3-fold cross-validation with 80 652 
percent training size. Post-hoc assessment confirmed convergence in performance after a maximum of 5 653 
rounds in all recordings. The mean 𝑅ଶ coefficient of determination of every test set estimate of the outer 654 
cross-validation was used as the performance measure as defined below:  655 

𝑅ଶ(𝑦, 𝑦ො) = 1 −
∑ (𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ

∑ (𝑦௜ − 𝑦ത)ଶ௡
௜ୀଵ

 656 

Since the Rଶ metric can be lower than zero for predictions that are worse than constant predictions, we used 657 
a lower threshold at zero to make performances comparable for the purpose of visualization. The input 658 
features for every model were all eight previously described frequency bands. In order to test the 659 
contribution of time points preceding the decoded target sample, frequency band features of different time 660 
points were concatenated and compared with respect to their decoding performance. The present study 661 
investigated commonly used and promising linear and non-linear machine learning algorithms, specifically 662 
elastic net regularized linear models, linear Wiener filters, neural networks, gradient boosted decision trees 663 
(XGBOOST) and source power comodulation.  664 

Linear Models 665 

Linear models can capture underlying feature dependencies and reveal those as correlations in each weight 666 
parameter. Input features are multiplied by a weight coefficient. The dot product of the weight vector 𝒘 and 667 
feature vector 𝒙 is then shifted by the bias 𝑏. The feature vector in this analysis is the vector of all frequency 668 
bands for a single time point. The prediction label 𝑦 is the baseline corrected gripping force. For a linear 669 
regression the activation function is linear, is defined as follows: 670 
 𝑦 = 𝒘𝒙 + 𝑏 671 
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To prevent overfitting, regularization in the form of 𝑙ଵ  and 𝑙ଶ  norm is commonly used. Here we tested 672 
different parameters of the elastic-net (enet) regularization(Zou and Hastie, 2005), which is a combination 673 
of the 𝑙ଵ and 𝑙ଶ norm specified by the regularization hyperparameters 𝛼 and 𝜌, respectively. The objective 674 
function of the enet model follows: 675 

 min
௪

ଵ

ଶ௡ೞೌ೘೛೗೐ೞ
‖𝑿𝒘 − 𝒚‖ଶ

ଶ + 𝛼𝜌‖𝒘‖ଵ +
ఈ(ଵି௣)

ଶ
‖𝒘‖ଶ

ଶ 676 

where 𝑿 is a matrix of dimension 𝑛 x 𝑚 whom ith row is the feature vector 𝒙 of size 𝑚 and 𝒘 is the solution 677 
vector, which, due to the 𝑙ଵ  sparse regularization term, most of the coefficient will be expected to be zero. 678 
For hyperparameter-search, 𝛼 and 𝜌 were both sampled from a uniform distribution ranging from zero to 679 
one. Since elastic nets are solved using gradient descent, the maximum training iteration also needs to be 680 
specified. Here an iteration number of 1000 has been used. The implementation was done using the scikit 681 
learn Python package (Pedregosa et al., 2011).  682 

Wiener Filters 683 

Tan et al. described the use Wiener filters in the application of force estimation from STN-LFP signals (Shah 684 
et al., 2018). Here the output 𝑦 is a weighted sum of features in the time and frequency domain in the weight 685 
matrix 𝑾. 𝐼 frequency band features are used together with 𝐽 lags. For the regression analysis the activation 686 
function is kept linear, as follows: 687 
  688 

𝑦(𝑛) =  ෍ ෍ 𝑤௜௝𝑥௜(𝑛 − 𝑗)

ூ

௜ୀ଴

௃

௝ୀ଴

 689 

 690 
This equation has a closed form solution, known as the normal equation (Proakis and Monolakis, 1996). 691 
Wiener filters essentially implement a multivariable linear model with multiple time-steps. Using Wiener 692 
filters we tested the contribution of different concatenated time-steps of brain signals preceding the decoded 693 
target sample. This provides insight about the optimal feature length in the time domain.  694 

Neural Networks  695 

We have further investigated the utility of artificial neural networks. While linear models and Wiener filters 696 
may underfit the data, neural networks can be very complex and have a higher risk to overfit with increasing 697 
complexity. The ideal model architecture finds a balance between under and over- fitting to the training 698 
dataset. In this context not only single weight correlations of band features could contribute to force decoding 699 
performances, but a richer representation of feature invariances in combinations of different frequency 700 
bands may be learned by additional layers and units of the model. The architecture of neural networks is 701 
derived from linear models with non-linear activation functions, which are referred to in this context as units. 702 
Multiple units are combined in different layers with different activation functions.  703 
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Explicitly, the output 𝑦 of the ith unit in layer 𝑙 is the weighted sum of activations of the previous layer units 704 
𝑦௞

௟ିଵ with weights 𝑤௜௞
௟  ,  705 

 𝑦௜
௟ = 𝑓௟൫෌ 𝑤௜௞

௟ 𝑦௞
௟ିଵ + 𝑏௜

௟
௞

൯ 706 

 707 
Neural networks are trained through a cost function using a gradient descent algorithm. Hyperparameters 708 
were adjusted in order to prevent over -and underfitting (Geman, Bienenstock and Doursat, 1992). Here 709 
neural networks were tested with at least one hidden layer. The input nodes of this layer were in the 710 
hyperparameter search uniformly sampled in a range of 1 to 10. The number of hidden dense layers were 711 
sampled from a range of 1 to 3 layers. The hidden dense layer neurons were uniformly sampled in a range 712 
of 1 to 10. Sigmoidal and hyperbolic tangent activation functions were tested in the hidden layers. After each 713 
hidden layer a batch normalization layer and a dropout layer with a factor of 0.2 was added. The output 714 
activation function was set linear. The used training algorithm was the Adam optimizer (the learning rate 715 
was sampled from a log uniform distribution from 0.0001 to 0.01, 𝛽ଵ was set to 0.9, 𝛽ଶ to 0.999 and 𝜀 to 716 
0.999). The Adam optimizer improves backpropagation such that each weight parameter is adapted 717 
according to its first and second momentum (Kingma and Ba, 2015). Each neural network was trained using 718 
1000 epochs with a batch size of 100. The loss function was set to the mean squared error. To prevent 719 
overfitting, the training set was further split into train and validation set with 80 percent train. The validation 720 
dataset was then used for early stopping with a patience parameter of 10 epochs. The model with lowest 721 
validation error is then used for test set prediction. Due to poor performances, the inner cross validation was 722 
left out for the neural network training sequence. Neural Networks were implemented using the TensorFlow 723 
framework (Abadi et al., 2016).  724 

Gradient Boosted Trees using the XGBOOST Framework 725 

A common problem with neural networks is the high dependency on the provided set of features and 726 
potential to learn spurious input-output associations. In this analysis a feature vector of all 8 frequency bands 727 
concatenated for 5 time points requires a Wiener Filter with 40 weights. In an architecture like neural 728 
networks all these features are contributing to the overall force prediction, nevertheless not all weight 729 
parameters are promising. Decision Tree algorithms overcome this problem naturally by implementing 730 
optimization of input feature use in their architecture. Thus, decision trees and random forests, first 731 
described by Breiman (Breiman, 2001), were proven to be a robust, accurate and successful tool for solving 732 
machine learning tasks, including classification, regression, density estimation and manifold learning or 733 
semi-supervised learning (Gall and Lempitsky, 2013). Random forests are an ensemble method consisting 734 
of many decision trees. A decision tree is a statistical optimal data segregation method, that is only controlled 735 
by conditional sequences. Different implementations were proposed on top of Decision Trees. AdaBoost 736 
(Schapire, 2009) is an adaptive learning algorithm that builds up successive decision trees iteratively. By 737 
that an ensemble of multiple weighted weak learners are combined to yield a strong estimator. Gradient 738 
Boosting is built using the same concept. According to Empirical Risk Minimization it fits each decision tree 739 
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based on the residuals of a defined objective function. This objective function is typically based on an error 740 
loss and a regularization term. The model is initialized using a constant value. In an iterative process the 741 
new trees are added to the model up till the maximum defined estimators are reached. Here the scalable 742 
tree boosting framework XGBOOST (Chen and Guestrin, 2016) was used. In this analysis the number of 743 
boosting rounds is set to 10. The depth of each tree is sampled uniformly in a range from 1 to 100. When 744 
adding new trees to the model the parameter learning rate 𝜂  is scaling the contribution of each tree 745 
prediction and is sampled here log uniformly from of the range [10ିହ, 1]. Regularization in Gradient Boosted 746 
Trees is controlled by different factors. One of the factors is the minimum splitting loss 𝛾. For every decision 747 
tree new nodes were added only if the gain metric was above 𝛾. It is here sampled from a uniform distribution 748 
between 1 and 10. Hyperparameters for all used machine learning methods are listed in detail in 749 
Supplementary File 1b.  750 

Source Power Comodulation  751 

A state of the art movement prediction approach is the source separating framework called Source Power 752 
Comodulation (SPoC) (Dähne et al., 2014). Oscillatory sources are here extracted based on their power 753 
comodulation with the force gripping target. SPoC was implemented using the MNE framework (Gramfort 754 
et al., 2013). Thus, discriminant neural sources are made visible. In this context, the band-power at each 755 
frequency band of interest was calculated by taking the logarithm of the variance of the projected signal in 756 
the source space. For sake of comparison, only one spatial filter was used for feature computation at each 757 
frequency band. In the same manner as before, a Wiener filter was then applied in order to resample time 758 
lags up to 500 ms. Here again, the band power features are then used as input features. A Bayesian 759 
Optimization hyperparameter search was also here implemented for both the enet model as well as the 760 
XGBOOST framework with the aforementioned parameters.  761 

Hyperparameter Search: Bayesian Optimization 762 

All models underwent an extensive hyperparameter search using Bayesian optimization. A common 763 
problem using machine learning algorithms is finding the optimal hyperparameter settings given a certain 764 
architecture. Grid search exhaustively tries out all provided hyperparameters while Random search only 765 
draws random parameters from the given hyperparameter distributions. Sampling the error loss function 766 
can be computationally expensive. Bayesian Optimization formulates this problem into an optimization 767 
problem. Here a cost function is minimized given a set of hyperparameters. Instead of sampling from the 768 
objective cost function, a probabilistic model is defined. The hyperparameters minimizing the negative 769 
expected improvement are selected given a multinomial Gaussian process using a Matern kernel. Those 770 
parameters are then used to sample from the respective regressor in the given dataset. The resulting error 771 
is used to update the gaussian process distribution and given the maximum expected improvement, the 772 
next best hyperparameter set is drawn. This process is repeated for the elastic net, neural networks and 773 
XGBOOST architecture for 10 iterations. For every round a 3 fold cross validation is used in order to prevent 774 
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overfitting. Given log-uniform distributions a wide range of hyperparameters can thus be sampled in a 775 
computationally efficient manner. The implementation was done using the scikit-optimize framework 776 
(https://scikit-optimize.github.io/stable/). Supplementary File 1b lists the hyperparameters subjected to 777 
Bayesian optimization. The chosen methodology is non-exhaustive and primarily serves the comparison of 778 
variance in decoding explained by the recording location of the signal (ECoG vs. STN), motor symptom 779 
severity (UPDRS-III), beta bursts and brain networks. It further gives an intuition about the potential of more 780 
complex and elaborate machine learning methods for brain computer interfaces. 781 
 782 

Definition of best model and best channels 783 
 784 
Previous studies have repeatedly demonstrated that using a single optimal channel in the STN is 785 
advantageous over using all available channels (Shah et al., 2018). Most importantly, addition of more 786 
channels leads to decreased generalization and higher risk of overfitting with little performance benefit. 787 
Based on these results and to account for varying numbers of available electrode contacts, one channel 788 
with optimal decoding performance on the cross-validation test set was chosen per patient to quantify and 789 
compare decoding performance for the ECoG and STN analysis across patients. Since hyperparameter 790 
optimization is implemented only within each inner cross validation fold, any circularity and data leakage is 791 
circumvented. A robust decoding performance estimate is thus obtained through left out testing data only.  792 
 793 

Analysis of beta bursts during motor preparation and movement execution 794 
periods 795 
 796 
To investigate a potential relationship between grip-force decoding performance and beta burst activity, we 797 
have adopted a previously validated approach to movement related burst analyses (Torrecillos et al., 2018; 798 
Lofredi et al., 2019). Therefore, the beta feature time-series were used and a threshold constituting the 75th 799 
percentile of the rest periods were calculated. Next, threshold crossings of at least 100 ms lengths in the 800 
motor preparation (-1 to 0 s with respect to movement) and movement execution (0 to 1 s with respect to 801 
movement execution) were marked as bursts. In previous reports, the most informative metric was the “time 802 
spent in burst” which is calculated as the sum of burst durations in the time period of interest. This metric is 803 
directly proportional to the burst probability at a given time-point. All burst analyses were repeated for the 804 
low-beta and high-beta bands in ECoG and STN-LFP. The times spent in bursts were correlated with 805 
UPDRS-III and ECoG based decoding performances.  806 
 807 

Prediction Network Mapping with whole-brain connectomics 808 
 809 
To investigate whether decoding performance from different recording locations can cross-predict decoding 810 
performances across patients, we developed a whole-brain connectomics based approach. Therefore, 811 
ECoG electrode recording locations were projected to normative structural and functional MRI data 812 
(Parkinson's Progression Markers Initiative [PPMI]; www.ppmi-info.org) using Lead-DBS software in Matlab 813 
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(www.lead-dbs.org).(Horn et al., 2019) The PPMI connectomes of patients with PD (n = 74) was priorly 814 
computed (Ewert et al., 2018) and has been used in context of DBS multiple times (Horn, Neumann, et al., 815 
2017; Neumann et al., 2018; de Almeida Marcelino et al., 2019; Lofredi et al., 2021). No patient specific 816 
diffusion or functional MRI was required for this analysis. Seeding from each recording site resulted in 817 
connectivity profiles (fingerprints) that were expressed as voxel-wise whole-brain volumes for functional and 818 
structural connectivity and a set of streamline connections for structural connectivity. We have adapted 819 
three previously published methods leveraging normative connectomes as predictive models.  820 
First, fiber streamlines representative of structural connectivity between ECoG channels and all other brain 821 
areas were isolated and assigned with a “Fiber T-score”, associating XGBOOST decoding performance 822 
with the fiber tracts connectivity from respective ECoG recording locations across patients using mass-823 
univariate two-sample t-tests between 𝑅ଶ scores in connected vs. unconnected recording locations. Only 824 
fibers with significant t-scores surviving FDR correction at an alpha level 0.05 were considered further. Next, 825 
T-values were used as weights in an aggregated fiber score to predict out of training sample channel and 826 
patients’ performances.  Next, functional connectivity maps were used to generate an “R-Map”, a 827 
connectivity model which is associated with optimal decoding performance, by performing voxel-wise 828 
correlations of connectivity and decoding performance from recording locations. The connectomic 829 
fingerprint from each recording location can then be assigned a spatial correlation coefficient that may have 830 
predictive value for the underlying decoding performance. The predictive value of these two methods were 831 
confirmed using “leave-one-channel-out” and “leave-one-subject-out” cross-validation. Finally, statistical 832 
parametric mapping was used to confirm the described correlations of structural and functional connectivity 833 
using linear-mixed effects models. In a voxel-wise approach, structural connectivity between ECoG 834 
channels and all other brain areas was calculated using Lead Mapper (www.lead-dbs.org). Statistical voxel-835 
wise correlation between decoding performance and structural and functional connectivity, separate mixed 836 
effects models, with a subject based random effect, were corrected for multiple comparisons with random 837 
field theory as implemented in the Statistical parametric mapping (SPM12) toolbox 838 
(https://www.fil.ion.ucl.ac.uk/spm/). Functional connectivity strengths between recording sites and 839 
sensorimotor cortex (peak coordinate x = -38, y = -22, z = 72), parietal lobe (x = 6, y = -32, z = 82), striatum 840 
(x = -34, y = -24, z = 26) and cerebellum (x = 18, y = -50, z = -50 and x = -22, y = -52, z = -54) accounted 841 
for decoding performance. Similarly, for structural connectivity, a significant cluster in the sensorimotor 842 
region (x = -44, y = -18, z = 70) correlated with high decoding performance. All connectivity analyses were 843 
performed using ECoG recording locations with contralateral 𝑅ଶ performances (Figure 1E). A schematic 844 
illustrating the different steps of functional and structural prediction network mapping can be found in Figure 845 
7-figure supplement 1.  846 
 847 
 848 

Statistical Analysis 849 
 850 
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Results are stated as mean ± standard deviation. All significance testing was performed using two-sided 851 
Monte-Carlo permutation tests and bootstrapping. P-values were obtained by shuffling value positions and 852 
determining the resulting original rho value percentile in the distribution of surrogate combinations. 853 
Spearman’s correlations were performed because of small sample size and varying distributions. Clinical 854 
correlations were performed using preoperative UPDRS-III total scores. To test for the temporal specificity 855 
of the clinical correlation with decoding performance, we performed sample-wise correlations of decoding 856 
output with UPDRS-III total scores across subjects. Multiple comparisons were corrected by adjusting the 857 
significance threshold α to the false discovery rate (Benjamini and Hochberg, 2000). 858 
 859 

Data availability 860 
 861 
The original raw data can be made available after definition and institutional signatures on data sharing 862 
agreements in accordance to data privacy protection and data governance laws. The code and data for the 863 
reproduction of every Figure, machine learning and statistical analysis are openly available at the GitHub 864 
repository (https://github.com/neuromodulation/icn/tree/master/ECOG_vs_STN).  865 
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Supplementary Figure Legends  882 
 883 

Figure 1-figure supplement 1: Analyzed movements show variability in maximum amplitude and velocity. 884 
(A) All used normalized and baseline corrected grip force traces. (B) Maximum peak amplitude histogram 885 
(C) All movement trace velocities.  886 
 887 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2021.04.24.441207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441207


 

31 
 

Figure 7-figure supplement 1: “Prediction Network Mapping” allows for prediction of machine learning 888 
decoding performances using functional and structural connectivity. (A) Functional connectivity 889 
“Fingerprints” are estimated using fMRI resting state correlations of the Volume of Tissue Activated (VTA) 890 
voxels correlation to all other voxels. (B) The correlation of every fingerprint voxel values and their 891 
respective Rଶ decoding performances allow for calculation of the optimal connectivity profile for maximum 892 
decoding performance called “R-MAP”. (C) The R-MAP correlation with individual fingerprints of cross 893 
validation left out channels, or set of channels for single subjects, allows for prediction of decoding 894 
performance. High correlation with the R-MAP optimal connectivity predicts high decoding performance. 895 
(D) Structural connectivity can be used for decoding performance prediction. For all fibers a two sample t-896 
test estimates a t value of connected and unconnected decoding performance contacts. The fiber t-value 897 
can thus be predictive of decoding performance. 898 
 899 
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