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ABSTRACT  

 

When we remember events, we often do not only recall individual events, but also the 

connections between them. However, extant research has focused on how humans segment 

and remember discrete events from continuous input, with far less attention given to how the 

structure of connections between events impacts memory. Here we conduct a functional 

magnetic resonance imaging study in which subjects watch and recall a series of realistic 

audiovisual narratives. By transforming narratives into networks of events, we demonstrate that 

more central events—those with stronger semantic or causal connections to other events—are 

better remembered. During encoding, central events evoke larger hippocampal event boundary 

responses associated with memory formation. During recall, high centrality is associated with 

stronger activation in cortical areas involved in episodic recollection, and more similar neural 

representations across individuals. Together, these results suggest that when humans encode 

and retrieve complex real-world experiences, the reliability and accessibility of memory 

representations is shaped by their location within a network of events.  
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INTRODUCTION 

 

Remembering the experiences of our lives requires collecting and connecting the pieces and 

reasons for what transpired. When we tell each other about the minutes and hours leading up to 

this moment, the tale will be composed of a string of time periods, "events"
1,2

, distinguished by 

properties such as their locale or mood, and by our companions or goals at the time. Traditional 

experimental memory paradigms
3,4

 rely on isolated stimuli in which meaningful connections 

between memoranda across time are removed via trial randomization. Yet in reality, each event 

exists within, and is to some extent defined by, a dense network of connections across time. 

These connections come in multiple forms: different timepoints could share properties to greater 

or lesser degrees, and actions earlier may have consequences later. When remembering and 

retelling, we often need to recapitulate not only the most important individual events, but also 

the overall structure of the experience, i.e., the pattern of connections across time
5,6

. Thus, it is 

important to understand in what ways the web of interrelations between events contributes to 

our memories of those experiences. 

In order to test how inter-event structure relates to later memory, experimenters must 

use study material which contains inter-event structure. Recently, researchers have sought to 

incorporate the complex, multi-event nature of real-world input into laboratory experiments by 

using auditory and/or visual narratives
7,8

. Since narratives are temporally continuous, a major 

question in the literature has been how the human brain identifies and remembers discrete 

events from continuous experiences
2,9,10

. As input arrives from the world, the perceiver 

constructs a mental model of the situation, which consists of agents, objects, spatiotemporal 

contexts, and the relations between these components
11

. Changes in the ongoing situation 

trigger the registration of the just-concluded event into long-term memory, evoking transient 

responses in the hippocampus and its cortical partners
12,13

. The boundaries between events are 

also associated with shifts in neural activation patterns in higher associative areas in the default 

mode network (DMN
14

)
15

. DMN activity patterns specific to individual events are thought to 

represent situation models
16

, and are reinstated during narrated memory recall
17,18

. However, 

these studies focus on how each event is segmented from its temporally adjacent neighbors. 

How do the myriad connections between events, both temporally proximal and distal, impact the 

cognitive and neural underpinnings of naturalistic memory? 

Inter-event connections could benefit both memory encoding and retrieval. At encoding, 

events with strong connections to numerous other events might be frequently reactivated by 

these links to form robust and integrated representations
19,20

. At retrieval, events with many 
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connections might be more likely to be cued by other events, enhancing their accessibility. 

These enhancing effects of inter-event connections on memory have been demonstrated in the 

reading comprehension literature, which focused on casual relations in relatively short and 

carefully designed text passages
21,22

. For example, statements that form causal chains are 

better remembered than isolated statements, and memory accuracy for a statement increases 

with the number of causal connections that it has
22,23

. Causal connectivity between statements 

also predicts how important readers will deem a given statement to be, and what they will judge 

to be the gist of the narrative
22,24

. The current study aims to examine the mnemonic benefits of 

inter-event connections in light of the burgeoning cognitive neuroscience of memories for 

events. Using previously unavailable neuroimaging approaches, we investigate the effect of 

inter-event structure on brain functions supporting the encoding and retrieval of event 

representations. In addition to testing the influence of causal relations, we take advantage of 

natural language processing techniques which allow effortless quantification of semantic 

similarity between text descriptions of complex events
25–27

. These non-causal (semantic) 

relations, based on shared meaning and overlapping components between events, may 

constitute a previously underexplored pathway through which inter-event connections enhance 

memory.   

Here, we propose that when people view and recall realistic, continuous audiovisual 

stimuli (e.g., movies), events with stronger and more numerous semantic or causal connections 

to other events will be better remembered, with concomitant hippocampal and DMN activity 

reflecting enhanced encoding and retrieval-related processing for these events. We conducted a 

functional magnetic resonance imaging (fMRI) study in which participants watched a series of 

movies and then verbally recounted the movie plots. To quantify and assess the semantic 

relationship between events within a movie, we employed an approach scalable and easily 

generalizable to different types of narratives (Figure 1). In this method, each narrative is 

transformed into a network of interconnected events based on semantic similarity measured 

from sentence embedding distances (the semantic narrative network). We then calculate 

semantic centrality for each event as the node degree, a graph metric which quantifies the 

number and strength of connections that a node (event) has to other nodes in the network. 

Behavioral results revealed that events with higher semantic centrality are more likely to be 

recalled, without showing primacy and recency effects typical in traditional random list memory 

experiments
3,28

. High centrality events are also associated with the neural signatures of stronger 

and more accurate recall: greater activation and more consistent neural patterns across 

individuals in the DMN areas including the posterior medial cortex (PMC). The hippocampus 
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shows higher activation following the offset of high centrality events, suggesting that stronger 

hippocampus-mediated encoding contributes to the high centrality advantages. In parallel, we 

created a causal narrative network for each movie based on causal relations between events 

defined by human judgments. Causal centrality of events, again defined as node degree in the 

network, predicts memory success and neural responses in a similar way to semantic centrality, 

but also makes an independent contribution to each. Overall, our findings demonstrate that 

memories for events are shaped by their location within a narrative network, highlighting the 

importance of considering inter-event structure when studying the cognitive and neural 

mechanisms of complex and continuous real-world memory. 

 

 
 

Figure 1. Semantic narrative networks. a. To create semantic narrative networks, each movie was 

split into events, and independent annotators provided text descriptions of the events. The text 

descriptions were transformed into sentence embedding vectors using Google’s Universal Sentence 

Encoder (USE)
25

. Semantic similarity between events was computed as the cosine similarity between 

the USE vectors. A semantic narrative network was defined as a network whose nodes are movie 

events and the edge weights are the semantic similarity between the events. b. Semantic narrative 

networks of four example movies used in the fMRI experiment. Edge weights were thresholded at 

cosine similarity = .6 for visualization purposes. Node size is proportional to centrality computed from 

unthresholded networks. Edge thickness is proportional to edge weights. c. Semantic centrality 

(normalized degree) for individual movie events of the 10 movies used in the fMRI experiment. 

Different colors denote different movies. Source data are provided as a Source Data file. For the 

semantic similarity matrices and narrative networks of all 10 movies, see Supplementary Figure 3. 

Movie scene images in a were created by the author H. L. using Adobe Illustrator (adobe.com). 
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RESULTS  

 

Behavioral characteristics of unguided narrative recall 

We first examined the behavioral characteristics of free spoken narrative recall. Subjects 

watched a series of short movies with unique narratives (Supplementary Table 1) and then 

verbally recalled the movie plots while undergoing functional MRI. Subjects were instructed to 

describe what they remembered from the movies in their own words in as much detail as they 

could, regardless of the order of presentation. No external cues or experimenter guidance were 

provided during recall.  

Two example subjects’ recall behaviors are depicted in Figure 2a. On average, subjects 

recalled 9 out of the 10 movies (s.d. 1.2) and the recall lasted 32.4 minutes in total (s.d. 14.5 

min). Each movie was divided into 10 – 35 events by an independent coder based on major 

shifts in the narrative (e.g., time, location, action). Subjects on average recalled 77.6% of the 

events within each recalled movie (s.d. 11.2%). Movies tended to be recalled in the original 

presentation order (mean Spearman’s ρ between the presentation order and the recalled order 

= .52, s.d. across subjects = .55; Figure 2b, top panel). Although subjects were not explicitly 

instructed to perform serial recall, events were typically recalled strictly in the order in which 

they occurred within each movie (mean ρ = .97, s.d. = .03; Figure 2c). Thus, recalling an event 

likely served as a strong cue for the following event which was often semantically/causally 

related.  

Contrary to traditional random list memory experiments
3,28

, we did not observe the 

classic primacy and recency effects on recall probability
3
 either at the movie level or the event 

level. The proportion of subjects who successfully recalled a movie was not higher for the first or 

last few movies compared to the movies presented in the middle of the list (Figure 2b, bottom 

panel). Likewise, the recall probability of the first/last few events was not higher than that of the 

events presented in the middle, either within each movie or across all movies (Figure 2d). 

Specifically, we did not find a significant difference between the mean recall probabilities of the 

first/middle/last three events of each movie (F(2,18) = .78, p = .47, η2 = .05). These results 

suggest that memorability of a movie event was largely influenced by narrative properties 

beyond the serial position of events.   
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Figure 2. Unguided spoken narrative recall behavior. a. The duration and order of spoken recall 

for two example fMRI subjects. Each colored rectangular dot represents a movie event. Different colors 

denote different movies. The x and y coordinates of a dot represent the temporal position of the event 

during recall and movie watching, respectively (TR = 1.5 s). The width and height of a dot represent 

the duration of the event during recall and movie watching, respectively. b. Recall order (top) and 

recall probability (bottom) of the ten movies used in the fMRI experiment. c. Recall order of individual 

movie events in four example movies. d. Recall probability of individual movie events for the ten 

movies shown in different colors. In b and c, recall order was defined as the rank among recalled 

movies or events (i.e., 1 = recalled first, N = recalled last, where N is the total number of movies or 

events). Shaded areas indicate SEM across subjects. In b and d, recall probability was calculated as 

the proportion of subjects who recalled each movie or event. Source data for b, c, and d are provided 

as a Source Data file. 

 

Narrative network centrality predicts what people will remember later  

One important factor that may have affected the behavioral characteristics of movie event recall 

is the inter-event structure inherent in narratives. We quantified narrative structure by 
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transforming each movie plot into a network of events (Figure 1), in which the connections 

between events were determined by their similarity based on semantic contents. To measure 

semantic similarity between movie events, we first converted the text descriptions of the events, 

generated by independent annotators, into vectors of 512 numbers using Google’s Universal 

Sentence Encoder (USE
25

). Consistent with a recent study
26

, the trajectories of movie 

annotations in the high-dimensional vector space were highly consistent across annotators 

(Supplementary Figure 1), demonstrating that the text embeddings captured the semantic gist 

despite the differences in specific words used to describe the events. Likewise, the USE vectors 

of recall transcripts were similar to those of movie annotations and were also similar across 

subjects (Supplementary Figure 2). Semantic similarity between events was defined as the 

cosine similarity between their USE vectors.  

 Our main variable of interest reflecting the inter-event narrative structure was the 

centrality of individual events within a narrative network (Figure 1c). An event’s centrality was 

computed as its degree (i.e., the sum of the weights of all connections to the event) normalized 

within each movie. Thus, events with stronger (higher semantic similarity) and greater numbers 

of connections with other events had higher centrality. Critically, semantic centrality positively 

predicted subsequent event recall probability, measured as the proportion of subjects who 

recalled each event (r(202) = .20, p = .004, 95% confidence interval (CI) = [.07, .33]; Figure 3a). 

To further test the effect of semantic centrality in individual subjects, we grouped events into 

high or low centrality conditions within each movie (i.e., events whose semantic centrality values 

are within the top/bottom 40%), and measured the proportion of successfully recalled events in 

each condition. The recall probability averaged across movies was higher for the high than for 

the low semantic centrality condition (t(14) = 6.12, p < .001, Cohen’s dz = 1.58, 95% CI of the 

difference = [.06, .12]; Figure 3b).   

 We next demonstrated that inter-event semantic relations and causal relations made 

overlapping as well as unique contributions to narrative memory performance. Classic studies 

on story comprehension have reported that the number of causal connections with other events 

predicts the perceived importance and memorability of an event
22,24

. To test the effect of causal 

relations, we created the causal narrative networks of the movies (Supplementary Figure 4) by 

having independent coders identify causally related events within each movie (see 

Supplementary Figure 5 and Supplementary Methods for detailed descriptions of causality 

responses and the instructions given to the coders). The connection strength between a pair of 

events was defined as the proportion of coders who responded that the pair is causally related. 

Centrality (i.e., normalized degree) of each event was then computed within each causal 
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narrative network. Causal centrality was positively correlated with semantic centrality (r(202) 

= .28, p < .001, 95% CI =[.15, .41]) and recall probability (r(202) = .29, p < .001, 95% CI = 

[.16, .42]; Figure 3c). Recall probability was also higher for high than for low causal centrality 

events within each subject (t(14) = 8.23, p < .001, Cohen’s dz = 2.12, 95% CI of the difference = 

[.1, .17]; Figure 3d), consistent with earlier studies
22,23

. Importantly, a mixed-effects logistic 

regression analysis revealed that semantic centrality explains successful event recall even after 

controlling for causal centrality (β = .17, standard error (SE) = .05, χ2
(1) = 12.24, p < .001) and 

vice versa (β = .38, SE = .05, χ2
(1) = 55.04, p < .001).  

 

 

 

Figure 3. Effects of narrative centrality on recall performance. a. Correlation between semantic 

centrality and recall probability. b. Recall probability for High (top 40%) vs. Low (bottom 40%) semantic 

centrality events defined within each movie (averaged across movies). c. Correlation between causal 

centrality and recall probability. d. Recall probability for High (top 40%) vs. Low (bottom 40%) causal 

centrality events defined within each movie (averaged across movies). In a and c, each dot represents 

an individual movie event. Different colors denote different movies. In b and d, white circles represent 

individual subjects (N = 15). Black diamonds represent the mean across subjects within each 

condition. Error bars show SEM across subjects. Two-tailed paired t-tests indicated that both higher 

semantic (p = .00003) and causal centrality (p = .000001) were associated with higher recall 

probability. **p < .01, ***p < .001. Source data are provided as a Source Data file. 
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We conducted a preregistered online experiment (N = 393) and replicated the same 

behavioral characteristics of narrative recall using a new set of 10 short movies (Supplementary 

Figure 7). Each subject watched one of the movies and then performed a free written recall of 

the movie plot. Consistent with the behavioral results from the fMRI experiment, semantic 

centrality (β = .17, SE = .03, χ2
(1) = 48.52, p < .001) and causal centrality (β = .44, SE = .03, 

χ2
(1) = 255.67, p < .001) each uniquely predicted the successful recall of an event, without any 

clear evidence of serial position effects (i.e., no statistically significant difference between the 

mean recall probabilities of the first/middle/last three events of each movie, F(2,18) = .85, p 

= .44, η2 = .04).     

   

High centrality events more strongly activate DMN during recall  

Narrative network centrality predicted successful memory recall of movie events. Does it also 

predict brain responses associated with movie watching and recall? We first identified brain 

regions whose activation scaled with the semantic centrality of events. In this and all following 

analyses, we excluded the first event of each movie from the movie watching data. This was to 

minimize the influence of transient changes in activation associated with the boundaries 

between narratives
12,29

. The movie boundary-related responses also disrupted event-specific 

neural patterns by creating similar activation patterns across all movies (Supplementary Figure 

8).  

We performed a whole-brain general linear model (GLM) analysis designed to predict 

the mean activation of individual events with their semantic centrality. Group-level analysis of 

the subject-specific beta maps showed that, at a liberal threshold (uncorrected p < .001), higher 

semantic centrality of an event was associated with stronger activation in several regions 

including visual and auditory association cortices and precuneus during movie watching 

(Supplementary Figure 9a). The involvement of sensory areas may reflect high-level perceptual 

differences between the high and low centrality events, although low-level visual and auditory 

features including luminance, contrast, and audio amplitude were not significantly modulated by 

semantic centrality (all χ2
(1)s < 1.94, ps > .16). More importantly, during recall, events with 

higher semantic centrality more strongly activated default mode network (DMN) areas including 

the angular gyrus and PMC (Supplementary Figure 9b). DMN areas have been strongly 

associated with episodic recollection
16,30

. We also observed higher activation during recall for 

high than low semantic centrality events in the bilateral hippocampus (t(14) = 2.71, p = .017, 

Cohen’s dz = .7, 95% CI of the difference = [.01, .05]). These results are in accordance with the 

positive relationship between recall performance and semantic centrality, and may suggest that 
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high centrality events were more strongly recollected with rich episodic details.  

We used causal centrality as a regressor in the GLM analysis and again found greater 

activation in the same DMN areas for higher centrality events during recall (Supplementary 

Figure 9d). In this and following fMRI analyses, the effects of causal centrality were generally 

comparable to those of semantic centrality, except that causal centrality effects were weaker in 

analyses involving intersubject similarity. Thus, we focus on the semantic centrality effects and 

report the causal centrality effects in Supplementary Figure 10. We consider potential 

differences between semantic and causal centrality in the Discussion.   

 

Neural patterns in DMN reflect both event-specific representations and narrative network 

structure 

Prior studies have shown that narrative events are represented as distributed patterns of 

activation in DMN
17,18

. How does inter-event structure relate to the neural representations of 

events during movie watching and recall? To answer this question, we performed an 

intersubject pattern correlation (pISC) analysis
17

. Within a brain region, event-specific pISC was 

computed as the mean spatial similarity (i.e., Pearson correlation) between a subject’s 

activation pattern of a given event and each of the other subjects’ activation patterns of the 

same event (Figure 4a). By measuring neural signals shared across subjects, the intersubject 

correlation method was expected to reduce the influence of task-unrelated idiosyncratic 

noise
31,32

.  

 We first created whole-brain pISC maps to identify brain regions that showed robust 

event representations shared across subjects. For each cortical parcel of an atlas
33

, we 

computed the mean pISC averaged across events and subjects. We then performed a 

nonparametric randomization test to determine whether the mean pISC was significantly 

different from a null distribution generated by randomly shuffling event labels across all movies. 

Replicating our prior study
17

, positive pISC was observed in widespread cortical regions during 

both movie watching and recall (FDR corrected q < .05). During movie watching 

(Supplementary Figure 11a), the strongest pISC was found in sensory cortices, as all subjects 

processed the same audiovisual stimuli. During recall (Figure 4d), DMN areas, especially PMC, 

showed the strongest pISC, consistent with the view that PMC and functionally connected areas 

are engaged in the episodic construction and representation of events or situation models
16

.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2022. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 

 

Figure 4. Event-specific intersubject pattern correlation. a. Intersubject pattern correlation (pISC) 

was computed for each movie event by correlating the event-specific activation pattern (averaged 

across times within the event) of a subject and that of each of the other subjects. b. Posterior medial 

cortex (PMC; orange) and early visual cortex (EVC; green) regions-of-interest visualized on the inflated 

surface of a template brain (medial view). c. pISC in PMC and EVC during movie watching (left) and 

recall (right). Black diamonds show the mean pISC averaged across all subjects and movie events. 

Orange and green histograms show the null distributions of the mean pISC in PMC and EVC, 

respectively. Statistical significance reflects difference from zero based on one-tailed randomization 

tests (all ps = .000999). d. Whole-brain surface map of mean pISC during recall. pISC was computed 

for each of 400 parcels in a cortical atlas
33

. The pISC map was arbitrarily thresholded at r = .015 for 

visualization purposes. pISC values in all visualized parcels were significantly greater than zero based 

on randomization tests (FDR-corrected q < .05 across parcels). e & f. pISC for High vs. Low semantic 

centrality events during recall and the difference (Diff) between the two conditions in PMC (e) and EVC 

(f). For High and Low semantic centrality conditions, white circles represent individual subjects (N = 

15). Black diamonds represent the mean across subjects within each condition. Error bars show SEM 

across subjects. For the difference between High and Low conditions (Diff), black diamonds show the 

true subject average, and histograms show the null distribution of the mean difference. Statistical 

significance reflects difference from zero based on two-tailed randomization tests (p = .037 and .012 

in PMC and EVC, respectively). *p < .05, ***p < .001. Source data for c, e, and f are provided as a 

Source Data file. 

 

 We next demonstrated that neural patterns in DMN areas reflect not only the situations 

specific to individual events within each movie, but also the semantic relationships between 

them during recall. We used whole-brain representational similarity analysis (RSA
34

): for each 
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cortical parcel and movie, we correlated the event-by-event similarity matrix based on the text 

descriptions of events (i.e., USE vectors from the movie annotations) and the similarity matrix 

based on neural responses during recall (Figure 5). The neural similarity was again computed 

as intersubject pattern correlation, but here the pISC was computed between different events 

rather than matching events. Statistical significance was determined by randomization tests 

using event labels randomly shuffled within each movie, and then corrected for multiple 

comparisons across parcels (FDR q < .05). We found positive correlations between the 

semantic similarity and neural similarity in parcels mostly within DMN, especially those in and 

around PMC (Figure 5). We also observed similar but stronger effects in DMN using the 

semantic similarity matrix generated from subjects’ recall transcripts rather than movie 

annotations (Supplementary Figure 12b).  

 

 

 

 

Figure 5. Representational similarity during recall. To identify brain regions whose activation 

patterns during recall reflect the whole semantic narrative network structure, we performed a 

representational similarity analysis (RSA
34

). For each cortical parcel, the representational similarity 

between the fMRI patterns and movie annotations was computed within each movie by correlating the 

cross-event intersubject pattern similarity matrix and the USE sentence embedding vector similarity 

matrix. The correlation coefficients were averaged across movies and subjects. The resulting mean 

representational similarity was tested for statistical significance against zero using a randomization 

test. The whole-brain RSA map was thresholded at q < .05 (FDR-corrected across parcels). 
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Narrative network centrality predicts the between-brain similarity of event 

representations  

Our next key question was whether the centrality of events modulates the quality of event-

specific neural representations in DMN measured as pISC. Here, we used a region-of-interest 

(ROI) approach (Figure 4b) and focused on PMC, which showed the strongest effects in the 

whole-brain pISC and RSA analyses above. As a lower-level control region, we used the early 

visual cortex (EVC). Both regions showed event-specific neural patterns (i.e., significantly 

positive pISC) during movie watching (pISC in PMC = .12, EVC = .3, one-tailed randomization 

ps < .001; Figure 4c, left panel) and recall (pISC in PMC = .06, EVC = .01, ps < .001; Figure 4c, 

right panel).  

 For each ROI, we compared the mean pISC of high vs. low semantic centrality events 

defined within each movie. Randomization tests were used to test the statistical significance of 

the difference between conditions. During recall, higher semantic centrality of an event was 

associated with higher pISC in PMC (high − low difference = .019, two-tailed randomization p 

= .037; Figure 4e), whereas lower semantic centrality was associated with higher pISC in EVC 

(difference = −.013, p = .012; Figure 4f). These findings indicate that high semantic centrality 

events were represented in a more reliable and convergent manner across brains within a 

higher associative region supporting situation model representations, but not within a sensory 

control area. In contrast, no significant difference between conditions was observed in either 

ROI during movie watching, although the direction of effect was consistent with that during recall 

in both ROIs (PMC difference = .019, p = .17; EVC difference = −.031, p = .12; Supplementary 

Figure 11b). While speculative, the diminished effect of centrality on pISC during movie 

watching may reflect the fact that the structure of the whole narrative becomes apparent only 

after subjects finish watching the movies (i.e., during recall).  

In this and all the above analyses involving pISC during recall, twelve events recalled by 

fewer than five subjects were excluded. However, our main pISC analysis results remained 

qualitatively identical when all events were included in the analysis (Supplementary Figure 13).  

 

Narrative network centrality modulates hippocampal encoding signals 

Hippocampus has been known to play a crucial role in encoding continuous narratives as 

discrete events
35

. Hippocampus activation increases at the offset of a movie event, and the 

magnitude of the activation predicts subsequent remembering and neural reactivation of the 

event
12,15,36

. This boundary response has been interpreted as the registration of the just-

concluded event into long-term memory. We tested whether the centrality of events influences 
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the offset-triggered hippocampal encoding signal during movie watching, potentially mediating 

the behavioral effect of narrative network centrality. We measured the time courses of 

hippocampal blood oxygenation level dependent (BOLD) responses locked to the boundaries 

between events, and found that hippocampal responses were higher following the offset of high 

than low semantic centrality events (Figure 6a). In contrast, hippocampal responses following 

the onset of high vs. low centrality events (i.e., before the events fully unfold and diverge in 

terms of their semantic contents) were not significantly different from each other (Figure 6b), 

confirming that semantic centrality specifically affected the encoding of information accumulated 

during just-concluded events. Stronger hippocampal event offset responses (averaged across 

10 – 13 TRs from each offset; TR = 1.5 s) also predicted the successful recall of individual 

events in a mixed-effects logistic regression analysis (β = .26, SE = .1, χ2
(1) = 6.37, p = .012), 

consistent with prior studies
36,37

. Moreover, hippocampal offset responses significantly mediated 

the effects of semantic centrality on event recall (average causal mediation effects = .001, p 

= .016, 95% CI = [.0002, .003]); the effect of semantic centrality was still significant after 

controlling for hippocampal responses (β = .2, SE = .05, χ2
(1) = 13.91, p < .001), indicating a 

partial mediation. These results suggest that rich connections between events lead to stronger 

hippocampus-mediated encoding.          

 

 

 

Figure 6. Effects of semantic centrality on hippocampal event boundary responses. a & b. Mean 

hippocampal blood oxygenation level dependent (BOLD) response time courses aligned at the offset 

(a) or onset (b) of events during movie watching. Solid lines and dotted lines show responses for the 

high and low semantic centrality events, respectively. The BOLD time course of each event was first 

baseline corrected by subtracting the mean response of the two TRs (TR = 1.5 s) immediately 

preceding the offset/onset of the event from each time point. The baseline-corrected time courses 

were averaged across events within each movie and then across movies and subjects. Shaded areas 

indicate SEM across subjects. Statistical significance reflects the difference between High vs. Low 

centrality events at each time point. *q < .05 (FDR corrected across time points). Source data are 

provided as a Source Data file. 
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Hippocampus also interacts with higher associative cortices when encoding naturalistic 

events
38

, and increased hippocampus-cortex connectivity during encoding is associated with 

successful learning and memory formation
39,40

. Does the centrality of events affect 

hippocampal-cortical coupling as well? We used intersubject functional connectivity analysis 

(ISFC
32

) to measure the interaction between the hippocampus and cortical ROIs during movie 

watching. ISFC computes correlations between activation time courses of different brain regions 

across subjects rather than within subjects, which makes it possible to isolate stimulus-locked 

activity from background noise
32

. We first computed ISFC between the hippocampus and PMC 

during the 26 movie events which were 22.5 seconds (15 TRs) or longer. Functional 

connectivity patterns computed within windows as short as 22.5 seconds have previously been 

shown to robustly predict cognitive states
41

. We then correlated the ISFC values with the 

semantic centrality of the events. We found that the hippocampal-PMC interaction was stronger 

for higher centrality events (r(26) = .49, p = .01, 95% CI = [.13, .74]). In contrast, the 

hippocampal-EVC interaction did not show a significant relationship with centrality (r(26) = .01, p 

= .95, 95% CI = [−.38, .4]), and the correlation was significantly lower than that between 

hippocampus-PMC ISFC and centrality (95% CI of the difference between correlations
42

 = 

[.05, .87]). Similar results were observed using different minimum event duration thresholds 

(Supplementary Table 5). The stronger hippocampal-PMC connectivity during higher centrality 

events might reflect greater reinstatement of other event representations cued by overlapping 

components (e.g., ref.
43

). However, due to the limited number of movie events included in the 

analysis, it will be important to replicate these findings with a larger dataset.    

 

DISCUSSION 

 

In this study, we found that the structure of inter-event connections in complex naturalistic 

experiences predicts the behavioral and neural signatures of their memory traces. We applied 

an approach of transforming audiovisual movies into networks, whose nodes are events and 

whose edges are based on semantic similarity or cause-effect relationships between events. 

Subjects watched and recounted the movies in their own words; events highly connected with 

other events within the narrative network, i.e., high centrality events, were more likely to be 

recalled. Higher centrality was also associated with greater hippocampal activity at event 

boundaries, as well as with increased hippocampal-cortical interaction during movie watching. 

Furthermore, recalling high centrality events more strongly recruited high-order cortical regions 

in the DMN involved in episodic recollection, and the multivoxel patterns of high-centrality 
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events were reinstated in a more convergent manner across individuals, relative to lower-

centrality events. These findings demonstrate that the specific structure of relations between 

events in a natural experience predicts both what will be remembered and what the properties 

of hippocampal and DMN regions will be during later recollection.  

Recent years have seen an explosion in the use of naturalistic stimuli such as movies 

and narratives in exploring the behavior and neuroscience of human memory, as they provide 

an engaging laboratory experience with strong ecological validity compared to isolated words or 

pictures
7,8,44

. These studies have suggested that findings from traditional random-item list 

paradigms, which have dominated the field for decades, do not always fully extend to 

naturalistic recall (e.g., ref.
26

). In line with this, we observed that the recall probability of events 

from a movie does not show serial position effects typically reported in random-item list 

learning
3,28

 where the first and last few items in a list tend to be better remembered than items in 

the middle. This finding was consistent regardless of whether each subject watched a single 

movie (Supplementary Figure 7c) or a series of movies in a row (Figure 2d). The lack of clear 

primacy or recency advantages may be due to the inter-event dependencies which made each 

narrative a coherent structure, supporting memories for central events which did not necessarily 

occur at the beginning or end of the story; that is, inter-event connections may overshadow the 

existing effects of temporal positions. At the same time, centrality effects may not be specific to 

narratives; semantically related items in a random list trigger recall of each other
4,45

, which could 

lead to better memory performance for those items. Furthermore, the event complexity of 

narratives is not likely to be the main reason for the lack of serial position effects: in a highly 

realistic encoding setting (a real-world walk) where the events consisted of unrelated activities 

(e.g., visiting a number of artworks), naturalistic recall showed similar characteristics to random-

item list recall
46

. Further studies are needed to determine the roles of structural coherence and 

event complexity in centrality effects on memory. Understanding when and how classic list-

based memory effects fail to extend to narratives and other natural stimuli will be essential for 

evaluating the results of future studies which use complex realistic conditions to study memory. 

Why does higher event centrality improve memory performance? Distinct benefits may 

be present at recall and at encoding. During recall, high centrality events may have greater 

opportunity to be cued during recall, as by definition they have higher association strengths with 

other events. In our experiment, recall itself took the form of a narrative; under these conditions, 

high centrality events may have been especially likely to be recounted, because omitting them 

might disproportionately affect the logical structure and coherence of the reconstructed story. 

Inter-event connections may also benefit encoding. During movie watching, events highly 
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connected with other events are more likely to reactivate and be reactivated by the other events 

containing shared components
43,47,48

. Consistent with this, we found that the coupling between 

the hippocampus and a cortical region involved in representing events (PMC
16,49

, see below) 

was stronger when subjects were watching events with higher semantic centrality. The 

reactivation of high centrality events during encoding may result in more robust memory for 

those events by functioning as repeated encoding, and/or integrating the interconnected events 

to form joint representations
19,20,50

. The benefit of high centrality during encoding is also 

reflected in the greater hippocampal responses following the offset of high than low centrality 

movie events (Figure 6a). Such hippocampal event boundary responses have been linked to the 

successful registration of just-concluded episodes into long-term memory
12,13,35

, which was 

replicated in the current study. It has been shown that DMN connectivity during movie-viewing is 

modulated by surprise
51

; one possibility is that the conclusion of a higher centrality event 

produces greater uncertainty in the ongoing narrative, as higher centrality events are more likely 

to influence the main storyline of the narrative. This may result in a more salient boundary and 

stronger boundary-evoked encoding signals.  

We demonstrated that DMN activity during remembering was modulated by the 

recollected event’s position in the narrative network. High-level associative areas in the DMN
14

, 

especially the PMC and its functionally connected subregions such as the angular gyrus, have 

been implicated in the episodic construction and representation of events
16,17,49

. In accordance 

with this view, we observed event-specific neural activation patterns in the medial and lateral 

DMN areas during recall (Figure 4d), and representational similarity analysis revealed that the 

relational structure of these neural event patterns could be predicted by human-generated 

descriptions of the movie and by recall transcripts (Figure 5, Supplementary Figure 12b; for a 

similar approach, see ref.
26

). Critically, activation in the PMC and angular gyrus scaled with the 

degree to which events had more connections with other events during recall (Supplementary 

Figures 9b, 9d), consistent with prior studies showing that these areas are involved in combining 

and comprehending semantically connected information
52–54

. 

Furthermore, higher semantic centrality predicted greater between-subject pattern 

convergence in PMC (Figure 4e). This is likely to be a neural signature of stronger and more 

accurate recall of episodic details
17,55

 for high centrality events, dovetailing with the behavioral 

results. Additionally, higher intersubject similarity for high centrality events might arise from 

design pressure on narratives. Highly connected events are likely to be logically important in a 

story; indeed, we found that semantic centrality was positively correlated with the perceived 

importance of events as retrospectively rated by independent coders (r(202) = .22, p = .002, 
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95% CI = [.08, .34]). Thus, to aid the understanding of their linked events and eventually the 

whole story, high centrality events need to be designed in a way that minimizes the variability or 

ambiguity in how people interpret them. This adoption of a similar canonical interpretation of an 

event across people gives rise to more similar neural responses across individuals
56–58

. The 

design pressure may even produce unique characteristics associated with high centrality shared 

across events and narratives; high centrality events were semantically more similar to other high 

centrality events than to low centrality events across movies, although the difference was small 

(difference in r = .047, p < .001). Future work may investigate whether real-life everyday events 

without such design pressure would show similar centrality effects to what we observed here 

using fictional narratives.  

In contrast with the pattern in the DMN, we observed that a low-level sensory region 

(EVC) showed higher between-brain convergence for low semantic centrality events during 

recall (Figure 4f). This result should be interpreted with caution as the overall pISC was 

extremely low in EVC during recall due to the absence of shared visual stimulation (below the 

level typically considered reliable signal, in line with prior reports
17,18,59

). Nonetheless, we can 

speculate that the opposite effects obtained in PMC and EVC may reflect switching between 

internal and external modes of processing, primarily involving higher-order cortices in the DMN 

and sensory areas, respectively
60,61

. Subjects are more likely to be in internal mode that 

prioritizes retrieval
62,63

 while watching high centrality events that reactivate associated events, 

whereas external mode is more likely to prevail during low centrality events as subjects would 

focus primarily on the novel current input. This may result in more visually-driven memory 

reinstatement (e.g., involving salient visual fragments rather than the gist of the event) and thus 

stronger pISC in EVC for low centrality events. EVC indeed tended to show higher activation for 

low semantic centrality events during movie watching (Supplementary Figure 9a), even though 

low-level visual features such as luminance and contrast were not modulated by semantic 

centrality. Similarly, a recent study
64

 reported that the visual sensory network is more activated 

when subjects report a lower understanding of an ongoing narrative.   

One might have expected that the effects of narrative structure would not be apparent in 

brain responses measured during ongoing movie watching, as the full structure of inter-event 

connections is only available after all movie events are completed. Still, as discussed above, 

event centrality significantly influenced hippocampal and cortical univariate responses during 

movie watching. A simple explanation for these results is that centrality based on partial 

narrative networks (i.e., a network that excluded events not-yet-presented) was sufficiently 

similar to the full-narrative centrality values, especially later in a movie. Indeed, semantic 
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centrality computed from networks excluding not-yet-presented events was positively correlated 

with that based on full networks (r(192) = .76, p < .001, 95% CI = [.69, .81]). Another interesting, 

and not mutually exclusive, possibility is that subjects were able to predict the full-narrative 

centrality of a current event by anticipating the potential connections with future events. In 

support of this interpretation, we found a strong positive correlation between the perceived 

importance of events obtained concurrently with watching the movies and those obtained 

retrospectively, after the movie ended (r(202) = .67, p < .001, 95% CI = [.58, .74]). Predictions of 

event centrality could be based on the learned schema of canonical story structures
65,66

 as well 

as on director’s cues used in popular movies such as luminance and shot motion
67

. Future work 

will explore how brain responses are driven by the temporally evolving, rather than static, inter-

event structure when subjects consume unpredictable stories, or actively engage in selecting 

upcoming narrative events. Future work may also explore the cognitive and neural mechanisms 

supporting the learning of novel narrative network structures, and whether they are similar to 

learning the network structure of simple isolated stimuli or actions (e.g., refs.
68,69

).     

What is the nature of information reflected in narrative network centrality? We believe 

that both semantic centrality and causal centrality primarily reflect aspects of how situation 

models for individual events are related to each other, rather than surface features (or 

"textbase") of the stimuli or annotations as discussed in classic discourse theories
70,71

. With 

respect to semantic centrality, each event annotation included descriptions from three different 

annotators and often consisted of multiple sentences. All of these different sentences and 

phrasing choices were incorporated into the text embedding for each event, from which the 

semantic narrative network arises. Thus, the event embedding vectors capture information 

abstracted beyond the surface features of the original sentences. With respect to causal 

centrality, cause-effect relations between events are traditionally associated with the situation 

model, identified as crucial elements of knowledge structures
70,72,73

. Indeed, half of the movies in 

the current study contain no dialogue at all, and thus human raters cannot be relying on text or 

language provided in the stimulus to make causality judgments. Thus, while some surface 

features such as annotators’ word choices should be expected to reflect aspects of the situation 

model (see Supplementary Methods for semantic centrality based on word-level information), 

situation-level information, rather than low-level textual overlap, is likely to determine our 

centrality measures. 

Causal relations have long been considered an important organizing factor for event and 

narrative memories
22,65,74

. Consistent with earlier work, we found that events with stronger 

causal connections with other events are better remembered (Figures 3c-d), and these effects 
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were not redundant to those of semantic connections. Yet, while the effects of causality on 

univariate responses during movie-viewing (see also ref.
64

) were comparable to the effects of 

semantic centrality (Supplementary Figures 9c, 10c), multivoxel pattern effects of causality 

during recall were not as clear as those of semantic similarity (Supplementary Figures 10b, e). 

Several characteristics of causal relations in movie stimuli might have reduced the reliability of 

the effects of causal narrative network structure. First, causal relations were sparse and mostly 

identified between adjacent events (Supplementary Figures 4a, 5d). In addition, causality 

judgments may be more idiosyncratic: average across-coder correlation was lower for causal 

(mean r(202) = .34) than semantic centrality (mean r(202) = .52) when centrality was computed 

from each individual coder’s causality rating or movie annotation. It is also noteworthy that 

semantic and causal connections were measured in distinct ways (text embeddings and human 

judgments, respectively) and reflect different types of information: semantic connections are 

based on similar or shared features such as people, places, and objects, whereas causal 

connections additionally require an action, its outcome, and internal models providing a logical 

dependency between the two
75,76

. For example, two events “Jill threw the ball” and “Jack fell to 

the ground, unconscious” may have a clear causal link for a reader with some background 

knowledge, but low semantic similarity according to text embeddings as they have no 

overlapping or similar-meaning words or topics. In this study, we did not focus strongly on 

dissociating semantic and causal centrality, as they were positively correlated in our movie 

stimuli. Future studies designed to orthogonalize different types of inter-event relations, 

including semantic and causal relations as well as other dimensions such as emotional 

similarity
77,78

, will be able to further clarify their unique influences on the behavioral and neural 

signatures of memory. Additionally, further investigations with more stimuli may examine the 

extent to which the two co-occur in naturalistic narratives, as well as in non-narrative real-world 

experiences. 

In summary, we applied a recently developed natural language model and neuroimaging 

techniques to a universal and natural form of human memory recall: telling stories about the 

past. This approach allowed us to demonstrate that rich connections between events in complex 

realistic experiences protect against forgetting and predict the neural responses associated with 

successful memory encoding, as well as the properties of brain activity during spoken recall. 

Consideration of the effects of inter-event structure on real-world memory may benefit practical 

applications such as the development of memory interventions for clinical and healthy aging 

populations
79

 or promoting learning in educational settings
80–82

. In addition, our work 

demonstrates that holistic metrics which capture the interrelations of events within episodes 
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may be important to incorporate into models of learning and comprehension, especially as these 

models grow in their sophistication and power to explain complex experiences in the real 

world
83,84

. 

 

METHODS 

 

The current study complies with ethical regulations for research on human subjects. The fMRI 

experiment was conducted following protocols as approved by the Princeton University 

Institutional Review Board. The preregistered online experiment was conducted following 

protocols as approved by the Johns Hopkins University Institutional Review Board.    

 

Participants 

Twenty-one healthy subjects were recruited from the Princeton community (12 female, ages 20 

– 33 years, mean age 26.6 years). All subjects were right-handed native English speakers and 

reported normal hearing and normal or corrected-to-normal vision. Informed consent was 

obtained in accordance with procedures approved by the Princeton University Institutional 

Review Board. Subjects received monetary compensation for their time ($20 per hour). Data 

from 6 of the 21 subjects were excluded from analyses due to excessive head motion (absolute 

displacement greater than 4 mm) in at least one scanning run.  

 

Stimuli 

The audiovisual stimuli consisted of 10 short movies including 3 animations and 7 live-action 

movies. The movies were on average 4.54 minutes long (ranged 2.15 – 7.75 minutes) and had 

narratives that varied in content and structure. Two of the movies consisted of short clips edited 

from longer full movies (Catch Me If You Can, The Prisoner). Detailed information about each 

movie is provided in Supplementary Table 1. Each movie was prepended with a 6-second long 

title scene in which the title in white letters appeared at the center of the black screen and then 

gradually disappeared. Five movies were presented in the first movie watching phase scanning 

run and the other five were presented in the second run. The movies were played consecutively 

within each scanning run without gaps in between other than the title scenes. The presentation 

order of the ten movies was fixed across subjects. As in our prior study
17

, an additional 39-

second audiovisual cartoon (Let’s All Go to the Lobby) unrelated to the movie stimuli was 

prepended at the beginning of each movie watching scanning run. The introductory cartoon was 

excluded from analyses.   
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Experimental procedures 

The experiment consisted of three phases: movie watching, free spoken recall, and cued 

spoken recall. All three phases were performed inside the scanner. Before the movie watching 

phase, subjects were told that they would be watching a series of short movies. As in our prior 

study
17

, we instructed subjects to pay attention to the movies as they would normally do in real 

life. Subjects were also told that they would be asked to verbally describe the movie plots later. 

The movie watching phase consisted of two consecutive scanning runs. Subjects watched five 

movies in each run (first run video duration = 24.9 minutes, second run video duration = 22.9 

minutes). No behavioral responses were required from the subjects during scanning. 

         The free spoken recall phase immediately followed the movie watching phase. Subjects 

were instructed to describe aloud what they remembered from the movies in as much detail as 

they could, regardless of the order of presentation. We encouraged subjects to speak for at 

least ten minutes and told them that if they chose to speak for longer, that would be even better. 

Subjects were also allowed to return to a movie that they had described earlier in case they 

realized they had missed something while speaking about another movie. We instructed 

subjects to verbally indicate that they were finished by saying “I’m done” after recalling 

everything they could remember. A white fixation dot was presented on the black screen while 

subjects were speaking; subjects were told that they did not need to fixate on this dot. In case 

subjects needed to take a break or the duration of the scanning run exceeded the scanner limit 

(35 minutes), we stopped the scan in the middle and started a new scanning run where subjects 

resumed from where they had stopped in the previous run. 4 of the 15 subjects included in the 

analysis had such a break within their spoken recall session.      

         During the cued spoken recall phase immediately following the free spoken recall phase, 

subjects viewed a series of titles of the ten movies they watched. For each movie, subjects were 

instructed to first read the title out loud and then describe the movie. Subjects were told to 

provide a short summary of a few sentences in case they previously described the movie during 

the free spoken recall, but describe the movie in as much detail as they could if the movie was 

previously forgotten. The cued spoken recall phase was not analyzed for the current study. 

         All visual stimuli were projected using an LCD projector onto a rear-projection screen 

located in the magnet bore and viewed with an angled mirror. The Psychophysics Toolbox 

(http://psychtoolbox.org/) for MATLAB was used to display the stimuli and to synchronize 

stimulus onset with MRI data acquisition. Audio was delivered via in-ear headphones. Subjects’ 

speech was recorded using a customized MR-compatible recording system (FOMRI II; 
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Optoacoustics Ltd.). 

 

Behavioral data collection and preparation 

Movie event segmentation. Each of the ten movie stimuli was segmented into 10 – 35 events 

(mean 20.2, excluding the title scenes) by an independent coder who was not aware of the 

experimental design or results. Following the method used in our previous study
17

, we instructed 

the coder to identify event boundaries based on major shifts in the narrative (e.g., location, 

topic, and/or time). Unlike in the prior study that used a 50-minute movie
17

, we did not set the 

minimum event duration (10 seconds) because we used much shorter movie stimuli in the 

current study. The coder gave each event a descriptive label (for example, “girl inside room 

alone with a pizza”). The start and stop timestamps of each event were recorded. There were 

202 movie events in total and the duration of events ranged from 2 to 42 s (s.d. = 7.4 s). The 

number and the mean duration of events for individual movies are summarized in 

Supplementary Table 2.         

 

Movie annotations. Movie annotations were provided by three independent annotators who did 

not participate in the fMRI experiment. Each annotator identified finer-grained sub-event 

boundaries within each of the 202 movie events based on their subjective judgments. The 

beginning and end of the fine-grained sub-events were also timestamped. For each sub-event, 

the annotators provided written descriptions about what was happening in the movie at that 

moment in their own words. No edits were made on the written descriptions other than 

correcting typos and removing/replacing special characters not recognized by our text analysis 

scripts. Supplementary Table 2 summarizes the number of fine-grained sub-events and the 

number of words generated by individual annotators for each movie. An example movie 

annotation can be found in Supplementary Table 3. 

 

Recall transcripts. The audio recording of each subject’s free spoken recall was transcribed 

manually. Each recall transcript was segmented into discrete utterances based on pauses and 

changes in the topic. The recall transcripts were segmented such that each utterance was not 

longer than 50 words. Timestamps were also identified for the beginning and end of each 

utterance. Each utterance was categorized as one of the followings based on its content: 1) 

recall of specific movie events, 2) general comment about the movie, 3) memory search attempt 

(e.g., “Let’s see…”), 4) end of recall (e.g, “I’m done.”), and 5) speech unrelated to the task (e.g., 

“Can I start now?”). In case an utterance was a recall of movie events, the specific movie events 
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described in the utterance were identified. Among the different types of utterances, only the 

recall of specific movie events was used in the behavioral and fMRI analyses in the current 

study. 

  

Importance ratings. Importance ratings for each of the 202 movie events were collected from 

four independent raters who did not participate in the fMRI experiment. The raters watched each 

movie and then retrospectively rated how important each event was for understanding what 

happened within the movie on a scale from 1 (not important at all) – 10 (very important). The 

ratings were averaged within each event across raters for analyses (range 1.5 – 10 across 

events, mean 6.09, s.d. 1.92). We additionally collected importance ratings from a separate 

group of four independent raters while they were watching the 10 movies for the first time. At the 

end of each movie event, the movie stopped playing, and the raters rated the importance of the 

just-played event on a scale from 1 – 10. These rate-as-you-go importance ratings averaged 

across the raters were positively correlated with the retrospective ratings (r(202) = .67, p < .001, 

95% CI = [.58, .74]). Importance ratings were positively correlated across raters for both 

retrospective ratings and rate-as-you-go ratings (mean event-wise cross-rater correlation 

computed within each movie = .65 and .55, respectively). 

 

Narrative networks 

To quantify and assess the inter-event structure of the movie stimuli, we transformed each 

movie plot into a graph/network. In this narrative network, the events within a movie (nodes) 

form connections with each other (edges), and the connection strength between a pair of events 

(edge weight) is determined by their content similarity or causality. The narrative network edges 

were unthresholded (except for the visualization of semantic narrative networks) and undirected. 

The centrality of each individual event within a movie was defined as the degree of each node 

(i.e., the sum of the weights of all edges connected to the node) in the network, normalized by 

the sum of degrees and then z-scored within each movie. Events with stronger and greater 

numbers of connections with other events had higher centrality.  

  

Semantic narrative networks. Movie annotations were used to generate narrative networks 

based on the semantic similarity between events (Figure 1). For each annotator and movie, the 

text descriptions for the fine-grained sub-events were concatenated within each movie event. 

The text descriptions were then encoded into high-dimensional vectors with Google’s Universal 

Sentence Encoder (USE
25

), a natural language processing model built in TensorFlow 
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(https://www.tensorflow.org), such that each movie event was represented as a 512-

dimensional vector. The USE vectors from the three annotators were highly similar to each 

other (mean event-wise cross-annotator cosine similarity between all possible annotator pairs 

= .78; Supplementary Figure 1); thus the USE vectors were averaged across annotators within 

each movie event. For each movie, the narrative network was generated by using the cosine 

similarity between the USE vectors of movie event pairs as the edge weights between nodes 

(events). The semantic centrality values based on USE sentence embedding vectors were 

correlated with those based on word-level overlap or word2vec embeddings (Supplementary 

Methods). 

 

Causal narrative networks. To generate narrative networks based on the causal relationship 

between events (Supplementary Figure 4), we had 18 independent coders identify causally 

related event pairs (the cause event and the effect event) within each movie. Each coder coded 

different subsets of the ten movies and each movie was coded by 12 (Catch Me If You Can) or 

13 coders (all the other movies). The coders watched the movies and were given the movie 

annotation with sub-event segmentation by the annotator JL. The coders were instructed to 

consider two movie events as causally related if any fine-grained sub-event of an event is a 

strong cause of any (at least one) sub-event of the other event (see Supplementary Methods for 

the exact instructions given to the coders). Whether a causal relationship was strong enough to 

be identified depended on the coders’ subjective criteria; the coders were instructed to keep the 

criteria as consistent as possible. The coders were also told to ignore any causal relationship 

between the sub-events within the same event. Thus, an event pair always consisted of two 

different events. For each movie, the edge weights between nodes in the narrative network 

were defined as the proportion of coders who identified a movie event pair as causally related, 

regardless of the cause-effect direction. However, causal centrality computed from directed 

networks which accounted for the cause-effect direction showed highly similar behavioral effects 

as the centrality computed from undirected networks (Supplementary Figure 6). The average 

Jaccard similarity between a pair of coders’ lists of causally related event pairs was .31 

(computed within each movie and then averaged across movies). 

 

Semantic similarity between events across movies 

To examine whether there are semantic characteristics shared among high semantic centrality 

events across different movies, we computed similarity between event-specific USE vectors 

(averaged across annotators) across movies. Specifically, we tested whether the similarity 
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between high centrality events was higher than the similarity between high and low centrality 

events. High and low centrality events were defined as the events whose semantic centrality 

values were within the top and bottom 40% in each movie, respectively. For each movie, we 

computed Pearson correlations between the USE vector of each high centrality event and the 

USE vectors of each of the other movies’ high centrality events. The correlation coefficients 

were averaged across events and movies to produce the mean similarity value for high 

centrality-high centrality event pairs. Likewise, we computed the mean similarity between each 

movie’s high centrality events and each of the other movies’ low centrality events. We then 

performed a randomization test to assess whether the difference between the mean similarities 

of high-high pairs and high-low pairs was significantly different from zero. A null distribution of 

the difference of mean USE vector similarities was generated by randomly shuffling the high or 

low centrality labels of the events within each movie and then computing the difference 1000 

times. A two-tailed p-value was defined as the proportion of values from the null distribution 

equal to or more extreme than the actual difference. 

 

Mixed-effects logistic regression analysis of recall behavior 

We performed a mixed-effects logistic regression analysis implemented in R’s “lme4” package 

to test the unique effect of semantic centrality and causal centrality on recall performance after 

controlling for each other. Each event from each subject served as a data point. Data were 

concatenated across all subjects. The dependent variable of each data point was the event 

recall success (1 = recalled, 0 = not recalled). Normalized semantic and causal centrality were 

included as fixed effects. Individual subjects and movie stimuli were included as random effects. 

Statistical significance of the unique effect of each type of centrality was tested by performing a 

likelihood ratio test for the full model against a null model including all independent variables 

except for the variable of interest.  

 

fMRI acquisition 

fMRI scanning was conducted at Princeton Neuroscience Institute on a 3T Siemens Prisma 

scanner with a 64-channel head/neck coil. Functional images were acquired using a T2*-

weighted multiband accelerated echo-planar imaging (EPI) sequence (TR = 1.5 s; TE = 39 ms; 

flip angle = 50°; acceleration factor = 4; shift = 3; 60 oblique axial slices; grid size 96 × 96; voxel 

size 2 × 2 × 2 mm
3
). Fieldmap images were also acquired to correct for B0 magnetic field 

inhomogeneity (60 oblique axial slices; grid size 64 × 64; voxel size 3 × 3 × 2 mm
3
). Whole-brain 

high-resolution anatomical images were acquired using a T1-weighted MPRAGE pulse 
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sequence. Scanning parameters for the anatomical images varied across subjects (15 subjects 

had 176 sagittal slices with voxel size 1 × 1 × 1 mm
3
; 6 subjects had 192 sagittal slices with 

voxel size .9 × .86 × .86 mm
3
), as the anatomical images of a subset of subjects were originally 

obtained for other projects unrelated to the current study.  

 

fMRI preprocessing 

Preprocessing of high-resolution anatomical images and cortical surface reconstruction were 

performed using FreeSurfer’s recon-all pipeline. For each scanning run, functional images were 

corrected for head motion and B0 magnetic inhomogeneity using FSL’s MCFLIRT and FUGUE, 

respectively. Functional images were then coregistered to the anatomical image, resampled to 

the fsaverage6 template surface (for cortical analysis) and the MNI 305 volume space (for 

subcortical analysis), and then smoothed (FWHM 4 mm) using the FreeSurfer Functional 

Analysis Stream. The smoothed functional data were then high-pass filtered within each 

scanning run (cutoff = 140 s). For intersubject functional connectivity analysis, we additionally 

projected out the following nuisance regressors from the filtered functional data: the average 

time courses (z-scored within each run) of 1) high s.d. voxels outside the grey matter mask 

(voxels in the top 1% largest s.d.), 2) cerebrospinal fluid, and 3) white matter
32

. The resulting 

time series were z-scored within each vertex or voxel across TRs. The first 2 TRs of movie 

watching scanning runs were discarded as the movies were played 2 TRs after the scanning 

onset. The first 3 TRs of both movie watching and free spoken recall scanning runs were 

additionally removed, shifting the time-courses by 4.5 s, to account for the hemodynamic 

response delay.  

 

Cortical parcellation and region of interest (ROI) definition 

For whole-brain pattern-based analyses, we used a cortical parcellation atlas based on fMRI 

functional connectivity patterns
33

. Specifically, we used the atlas where the cortical surface of 

the brain is divided into 400 parcels (200 parcels per hemisphere) which are clustered into 

previously reported 17 functional networks
85

. For region-of-interest analyses, we defined the 

bilateral posterior-medial cortex (PMC) and the bilateral early visual cortex (Figure 4b) by 

combining parcels from the 400-parcel atlas that correspond to the areas of interest. The PMC 

ROI consisted of the posterior cingulate cortex and precuneus parcels in the default mode 

network. The early visual cortex ROI consisted of parcels around the primary visual cortex (see 

Supplementary Table 4 for the list of parcels used to create the ROIs). The bilateral 

hippocampus mask was extracted from FreeSurfer’s subcortical (Aseg) atlas on the MNI volume 
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space.  

  

Univariate activation analysis 

We performed whole-brain univariate activation analysis on the cortical surface to identify 

regions whose activation scales with the narrative network centrality (Supplementary Figure 9). 

The analysis was performed separately for the movie watching phase and the recall phase. For 

each vertex of each subject, we first computed the mean activation for each movie event by 

averaging the preprocessed BOLD signal across TRs that correspond to the event. The first 

event of each movie was excluded from this and all other univariate analysis of the movie 

watching phase (see Supplementary Figure 8). For the recall phase, only the events 

successfully recalled by the subject were included in the analysis. We then performed a linear 

regression where the event-by-event activation (combined across all 10 movies) was explained 

by the semantic or causal centrality of the events, after regressing out the overall movie-level 

activation from the event-by-event activation. Finally, one-sample t-tests against zero (two-

tailed) were applied on the subject-specific vertex-wise parameter estimate maps to generate 

the group-level t-statistic map.  

We also compared the ROI-specific univariate activation for high vs. low centrality movie 

events during each experimental phase. High and low centrality events were defined as the 

events whose semantic/causal centrality metrics were within the top and bottom 40% in each 

movie, respectively. For each subject and event, the preprocessed BOLD signals were first 

averaged across voxels or vertices within an ROI and across all TRs corresponding to the 

event. The mean signal was then averaged across events in the same condition and then 

across movies, resulting in a single value per subject and condition. Two-tailed paired t-tests 

were used to test the statistical significance of the difference between the high vs. low centrality 

conditions.  

 

Intersubject pattern correlation analysis 

Whole-brain intersubject pattern correlation (pISC
17,31

) maps were generated for the movie 

phase (Movie-Movie similarity; Supplementary Figure 11a) and the recall phase (Recall-Recall 

similarity; Figure 4d) separately. pISC was calculated in a subject-pairwise manner using the 

following procedures. For each cortical parcel of each subject, first the mean activation pattern 

of each event was generated by averaging the preprocessed movie or recall phase BOLD data 

across TRs within the event in each vertex within the parcel. Note that as recall BOLD data 

existed only for successfully recalled events, each subject had a different subset of recall event 
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patterns. For each subject and event, we computed the Pearson correlation between the event 

pattern of the subject and the pattern of the matching event from each of the remaining 

subjects, which resulted in N – 1 correlation coefficients (N = the total number of subjects who 

watched/recalled the event). The correlation coefficients were then averaged to create a single 

pISC (r) value per event per subject. These pISC values were averaged across events 

(combined across all 10 movies) and subjects, resulting in a single pISC value for each parcel. 

We performed a randomization test for each parcel to test the statistical significance of the 

mean pISC. Parcel-wise mean pISC values were obtained using the same procedures as 

described above, except that we randomly shuffled the event labels before computing the 

between-subjects pattern similarity. That is, one subject’s neural pattern of an event was 

correlated with another subject’s neural pattern of a non-matching event. This procedure was 

repeated 1000 times to generate a null distribution of pISC. A one-tailed p-value was defined as 

the proportion of values from the null distribution equal to or greater than the actual mean pISC. 

The p-values from the entire cortical surface were corrected for multiple comparisons across all 

400 parcels using the Benjamini-Hochberg procedure (q < .05). 

We also computed pISC in the PMC and early visual cortex to test the relationship 

between the semantic/causal narrative network centrality metrics and event-specific neural 

representations in the ROIs. The subject-specific, event-by-event pISC values were computed 

for each ROI in the same way we computed pISC for each parcel of the whole-brain pISC map 

above (Figure 4a), separately for movie watching and recall. We compared the pISC for high vs. 

low centrality events, defined as the events whose centrality metrics were within the top or 

bottom 40% in each movie. The pISC values were first averaged across events within the 

high/low centrality condition for each movie and then across movies, resulting in a single pISC 

value per condition per subject. We then ran a randomization test to assess whether the 

difference of pISC between the high vs. low centrality conditions, averaged across subjects, was 

significantly different from zero. A null distribution of the mean difference between the conditions 

was generated by randomly shuffling the event labels of the event-specific pISC values within 

each movie and then computing the difference 1000 times. A two-tailed p-value was defined as 

the proportion of values from the null distribution equal to or more extreme than the actual 

difference. 

In all analyses involving intersubject neural similarity (including the representational 

similarity analysis and the intersubject functional connectivity analysis), the first event of each 

movie was excluded from movie phase analyses to minimize the effect of movie onset 

(Supplementary Figure 8). For recall phase analyses, we excluded twelve events recalled by 
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fewer than five subjects (1 – 3 events per movie from 6 movies). However, we obtained 

qualitatively identical results when we included all events in the analyses (Supplementary Figure 

13). 

 

Representational similarity analysis 

We performed representational similarity analysis
34

 by comparing the event-by-event similarity 

matrices based on two different types of event representations: the text descriptions of events 

(i.e., movie annotations or recall transcripts) and neural activation patterns measured during 

recall (Figure 5, Supplementary Figure 12b). The similarity matrix based on movie annotations 

was generated for each movie by computing the pairwise cosine similarity between the USE 

vectors of all events within the movie. This matrix was identical to the adjacency matrix of the 

semantic narrative network. To create the similarity matrix based on recall, we first extracted the 

sentences from each subject’s recall transcript describing each event and then converted them 

into USE vectors. The similarity matrix was generated for each subject and movie by computing 

the cosine similarity between the USE vectors of all events recalled by the subject. The matrices 

were then averaged across all subjects. As subjects recalled different subsets of events, the 

number of subjects averaged was different across event pairs.  

The fMRI recall pattern similarity matrix was generated for each parcel of the Schaefer 

atlas. Within each of the ten movies, we computed pattern correlations (Pearson r) between all 

possible pairs of events between all pairs of subjects. For each subject and movie, this resulted 

in N – 1 fMRI pattern similarity matrices with the size of M × M, where N is the total number of 

subjects and M is the number of events within the movie. We took the average of each matrix 

and its transpose to make the similarity matrix symmetric (i.e., similarity between events a and b 

across subjects i and j = average of corr(subject i event a, subject j event b) and corr(subject j 

event a, subject i event b)), and then averaged the N – 1 similarity matrices to generate a single 

fMRI similarity matrix per movie and subject.  

The representational similarity between a text-based similarity matrix and an fMRI 

pattern-based similarity matrix was measured by computing the Pearson correlation between 

the lower triangles (excluding the diagonal values) of each matrix. The correlation coefficients 

were next averaged across movies and then across subjects to create a single value per parcel. 

For each parcel, a randomization test was performed to test whether the mean representational 

similarity was significantly greater than zero. We randomly shuffled the event labels of the text-

based similarity matrix within each movie and then computed the mean representational 

similarity as described above. This procedure was repeated 1000 times to generate a null 
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distribution, and a one-tailed p-value was defined as the proportion of values from the null 

distribution equal to or greater than the actual mean representational similarity. The whole-brain 

p-values were corrected for multiple comparisons across parcels using the Benjamini-Hochberg 

procedure (q < .05). 

 

Hippocampal event boundary responses 

We compared hippocampal event boundary responses following the onset/offset of high vs. low 

centrality events during movie watching (Figure 6), High and low centrality events were defined 

as the events whose centrality values were within the top or bottom 40% in each movie. We first 

averaged TR-by-TR BOLD signals across voxels within the bilateral hippocampus mask for 

each subject. We then extracted time series around the onset/offset (-2 – 15 TRs) of each 

high/low centrality event. The first and last events of each movie were excluded to minimize the 

effect of between-movie transitions. Each time series was baseline corrected by subtracting the 

mean activation of the two TRs immediately preceding the onset/offset of the event from each 

time point. The subject-specific time series were then averaged across events within each 

condition and then across movies. Two-tailed paired t-tests were used for each time point to 

compare the high vs. low centrality conditions. We applied the Benjamini-Hochberg procedure 

(q < .05) to correct for multiple comparisons across time points. 

 To test whether the effect of semantic centrality on event-by-event recall success (1 = 

recalled, 0 = not recalled) was mediated via the hippocampal event offset responses, we 

performed a mediation analysis. Each event from each subject served as a data point, and data 

were concatenated across all subjects. For each subject, the hippocampal offset response of 

each event was computed by averaging the BOLD time series measured from 10 to 13 TRs 

after the event offset. Again, the responses were baseline corrected for each event by 

subtracting the mean response of the two TRs immediately preceding the event offset from the 

time series. The first/last events of each movie and not recalled events were excluded from the 

analysis. Three mixed-effects linear or logistic regression models were defined to test 1) the 

total effect of semantic centrality on recall success (logistic), 2) the effect of semantic centrality 

on hippocampal offset responses (linear), and 3) the direct effect of semantic centrality on recall 

success, controlling for hippocampal offset responses (logistic). An additional mixed-effects 

logistic regression analysis was also performed to test the effect of hippocampal offset 

responses on recall success. In all models, subjects were included as random effects. The 

significance of the indirect effect of hippocampal offset responses on the relationship between 

semantic centrality and recall success was tested via the quasi-Bayesian Monte Carlo 
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simulation as implemented in the “mediation” package in R. Specifically, 1000 simulations were 

performed to compute the 95% confidence interval of the average causal mediation effects.  

 

Intersubject functional connectivity analysis 

We performed intersubject functional connectivity analysis (ISFC
32

) to test the relationship 

between narrative network centrality and the hippocampus-cortex interaction during movie 

watching. We first averaged the TR-by-TR time courses of the preprocessed (non-neuronal 

signals removed; see fMRI preprocessing) functional data across all voxels/vertices within each 

of the hippocampal and cortical ROIs (PMC, early visual cortex). For each movie event as long 

as 22.5 seconds or longer (total number of events used across all movies = 26), we computed 

the ISFC between the hippocampus and a cortical ROI. Functional connectivity patterns 

computed within windows as short as 22.5 seconds have previously been shown to robustly 

predict cognitive states
41

. For each subject, we correlated the subject’s hippocampal time series 

of the event and the cortical ROI time series averaged across all other subjects. We then 

averaged the Pearson correlation coefficients across all subjects. This procedure was repeated 

by correlating each subject’s cortical ROI time series and the hippocampal time series averaged 

across all other subjects. Again, the correlation coefficients were averaged across subjects. We 

then took the mean of the two averaged correlations to produce a single ISFC between the 

hippocampus and the cortical ROI for each event. Finally, we computed the Pearson correlation 

between the event-wise ISFC and the semantic/causal narrative network centrality.    

 

Low-level sensory characteristics of movie events 
We measured the low-level visual and auditory features of movie events to examine whether the 

sensory characteristics can explain the effects of centrality on neural responses during movie 

watching. For visual features, we measured luminance and contrast averaged across grayscale-

converted movie frames within each event. In each frame, luminance was defined as the mean 

of pixel values, and contrast was defined as the difference between the maximum and minimum 

pixel values. For an auditory feature, we measured the mean amplitude of sounds played during 

each event. We extracted the single-channel downsampled (8000 Hz) version of audio signals 

from the movie clips. Within each event, the audio signals were divided into 100-ms segments, 

and each segment’s amplitude was computed as the difference between the maximum and 

minimum signal intensities. The amplitudes were then averaged across all segments within 

each event. The first events of each movie were excluded from the analysis to be consistent 

with the movie phase fMRI analyses. All sensory features were z-scored across events. We 
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performed mixed-effects linear regression analyses to test whether each of the event-wise low-

level sensory features was modulated by semantic centrality, using semantic centrality as a 

fixed effect and movies as a random effect. Statistical significance of the effect of centrality was 

tested via likelihood ratio tests for the full models against the null models including the random 

effect of movies only.   
 

Preregistered online experiment 

We conducted an online experiment to replicate and generalize the behavioral results of the 

fMRI experiment with a larger number of subjects and a new set of movie stimuli 

(Supplementary Figure 7). The online experiment was preregistered at AsPredicted 

(https://aspredicted.org/fw59g.pdf; Preregistration date: July 15, 2019). We recruited a total of 

393 subjects (194 female, 198 male, 1 other) on Amazon’s Mechanical Turk using the psiTurk 

system
86

. The final sample size was slightly larger than the preregistered sample size (N = 380) 

because one extra batch of subjects was recruited due to a technical issue. Subjects were aged 

between 18 and 71 years (mean age 38.2 years), excluding two subjects who failed to report 

their ages. Each subject watched one of 10 short movies and then provided a written recall of 

the movie plot. The audiovisual movie stimuli were different from the ones used in the fMRI 

experiment and included both animations and live-action movies. The movies were on average 

9.1 minutes long (ranged 5.9 – 12.7 minutes). Each movie was watched by 38 – 49 subjects 

(mean = 39.3). Additional 99 subjects were excluded from the analysis because their recall was 

too short (< 150 words) or they had watched the movie before the experiment. All subjects were 

provided with an informed consent form approved by the Johns Hopkins University Institutional 

Review Board. Subjects received monetary compensation for their time ($10 per hour).    

The experiment was run in web browsers using JavaScript. After reading instructions, 

subjects watched a 2-minute-long example video clip. An example recall of the example video 

clip was also provided to inform subjects about the level of detail they need to produce during 

recall. Subjects then watched a short movie and performed the written recall task by typing in a 

text box to retell the movie plot in their own words. To mimic the irreversible nature of the 

spoken recall used in the fMRI experiment, subjects were not allowed to backspace beyond the 

current sentence in order to edit already-written sentences. Subjects were encouraged to take 

as much time as needed to provide as much detail as they can remember. During the delay 

between movie watching and recall, subjects completed a short demographic questionnaire and 

the Mind-Wandering Questionnaire
87

, and then practiced using the text box by providing written 

descriptions of simple shapes. Subjects also completed a series of questionnaires at the end of 
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the experiment, including the Survey of Autobiographical Memory
88

 and the Plymouth Sensory 

Imagery Questionnaire
89

. Findings from the delay period and post-experiment questionnaires 

are not reported in this paper.     

As in the fMRI experiment, independent coders segmented each movie into discrete 

events (mean number of events per movie = 25.2) and provided written descriptions of each 

event. The written recall of each subject was also segmented into sentences, and the movie 

events that each sentence describes were identified. The semantic and causal narrative 

networks of the movies were generated using procedures identical to those used in the fMRI 

experiment, except that 1) the USE vectors were not averaged across annotators as each 

movie was annotated by a single coder, and 2) a total of 16 independent coders identified the 

causally related events and each movie was rated by 10 coders. 

 

Testing statistical assumptions 

To validate the normality assumption for paired t-tests comparing the recall probability or mean 

ROI  activation for high vs. low semantic/causal centrality events, we performed Anderson-

Darling tests on the differences between conditions. The distributions of the differences did not 

significantly deviate from a normal distribution (ps > .2). For the repeated-measures one-way 

ANOVAs testing the serial position effects in recall performance, we performed Mauchly’s tests 

of sphericity and confirmed that the assumption of sphericity was not violated (ps > .44). We 

also performed Anderson-Darling tests and confirmed that the distribution of recall probability for 

each condition did not significantly deviate from a normal distribution (ps > .17). 

 

Citation diversity statement 

Recent work in neuroscience and several other fields of science has identified a citation bias 

whereby papers from women and minorities are under-cited
90–94

. Here we aimed to proactively 

cite references that reflect the diversity of the field in gender, race, and ethnicity. First, we 

predicted the gender of the first and last author of each reference based on the first names of 

the authors using online databases
94,95

. Excluding self-citations, the references of the current 

article contain 8.86% woman(first)/woman(last), 15.53% man/woman, 25.66% woman/man, and 

49.95% man/man. Note that this method may not always be indicative of gender identity, and 

cannot account for intersex, non-binary, or transgender individuals. Similarly, we predicted the 

racial/ethnic category of the first and last author of each reference based on the first and last 

names of the authors using online databases
96,97

. Excluding self-citations, the references of the 

current article contain 5.24% author of color (first)/author of color(last), 12.87% white 
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author/author of color, 16.34% author of color/white author, and 65.55% white author/white 

author. Noe that this method may not always be indicative of racial/ethnic identity, and cannot 

account for Indigenous and mixed-race individuals, or those who may face differential biases 

due to the ambiguous racialization or ethnicization of their names. 

 

DATA AVAILABILITY 

Source data associated with the figures are provided with this paper. The raw fMRI and 

behavioral data generated in this study have been deposited in OpenNeuro.org 

(https://doi.org/10.18112/openneuro.ds004042.v1.0.0)
98

. The region-of-interest labels, activation 

maps from univariate analysis, movie annotations, and raw behavioural data from the 

preregistered online experiment are available at GitHub (https://github.com/jchenlab-

jhu/filmfest)
99

.  

 

CODE AVAILABILITY 

The analyses in the current manuscript used code available through MATLAB, R, and Python. 

Custom scripts that can be used to reproduce the figures from the source data are included in 

the Source Data file. Other analysis scripts are available upon request to the corresponding 

author (H. L.). 
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Supplementary Methods 
 
Causality judgment instructions.  

Your job is to identify and make a list of event pairs that are causally related to each other within 

each movie. How can we decide whether two events are causally related or not? In an 

extremely broad sense, one might say that any event that happened before a target event could 

be at least partially responsible for the event to happen (e.g., you were born because there was 

Big Bang), but this wouldn’t give us very useful information. So we want to identify only those 

event pairs that are more strongly related, and you will need to use your own best judgment to 

decide whether the causal relationship is strong enough. For example, if we have a movie like 

below, 

 

Event 1: Jane orders a crab cake at a restaurant. 

Event 2: Jane finds a dead fly in her crab cake.  

Event 3: Jane complains to the manager of the restaurant. 

 

You may say that there is a causal relationship between Event 2 and Event 3, but not between 

Event 1 and Event 3. We don’t really have strict rules or criteria, so it is up to your subjective 

judgment. But please try to keep your criteria as consistent as possible.  

 

Semantic narrative networks based on word-level information.  

To test the effects of semantic centrality based on word-level rather than sentence-level 

similarity between movie event annotations, we created two additional types of semantic 

narrative networks. First, we created narrative networks whose edge weights between events 

were defined as Jaccard indices reflecting the word overlap (exact matching words) between 
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event text descriptions. The Jaccard indices were computed within each annotator, and then 

averaged across annotators within each movie. As in the USE-based narrative networks, event 

centrality was defined as the normalized node degree. We found that the semantic centrality 

computed from the networks based on Jaccard indices was positively correlated with the 

semantic centrality based on USE embeddings (r(202) = .64, p < .001, 95% CI = [.55, .71]) and 

also with recall probability (r(202) = .27, p < .001, 95% CI = [.14, .39]). Second, we created 

networks whose edge weights between events were the cosine similarity between the word 

embeddings of the events. Specifically, the word embedding of an event was generated by 

averaging the word vectors (based on Google’s pre-trained Word2Vec model; GoogleNews-

vectors-negative300-SLIM) of unique words contained in the text description of the event, 

separately for each annotator. The word embeddings were then averaged across annotators. 

Words that were not included in the pre-trained Google database were excluded from the 

analysis. The centrality (normalized node degree) computed from these networks was again 

positively correlated with the USE-based semantic centrality (r(202) = .54, p < .001, 95% CI = 

[.43, .63]) and with recall probability (r(202) = .34, p < .001, 95% CI = [.21, .46]).   
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Supplementary Table 1. Movie stimuli details. 

 

Order Title (*animation) Duration 
(min:sec) 

Original title Release 
year 

Director(s) 

1 Catch Me If You Can 5:46 Catch Me If You 
Can 

2002 Steven 
Spielberg 

2 The Record* 2:12 A Single Life 2014 Marieke 
Blaauw, 

Joris Oprins, 
Job Roggeveen 

3 The Boyfriend 7:45 High Maintenance 2006 Phillip Van 

4 The Shoe 2:09 How They Get 
There 

1997 Spike Jonze 

5 Keith Reynolds* 5:48 Keith Reynolds 
Can’t Make It 

Tonight 

2008 Felix Massie 

6 The Rock* 5:25 An Object at Rest 2015 Seth Boyden 

7 The Prisoner 4:20 Arrival (First episode 
of the TV series 
“The Prisoner”) 

1967 Don Chaffey 

8 The Black Hole 2:22 The Black Hole 2008 Philip Sansom, 
Olly Williams 

9 Post-It Love 2:41 Post-It Love 2009 Simon Atkinson, 
Adam Townley 

10 Bus Stop 6:54 Stray Dogs 2015 Minka Farthing-
Kohl 
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Supplementary Table 2. Descriptive statistics for movie annotations (title scenes excluded). 

 

Movie Number 
of 

events 

Mean 
event 
dur. 
(sec) 

Mean number of words 
used to describe each 

event 

Mean number of sub-
events within each 

event 

RC JL KM Mean RC JL KM Mean 

Catch Me If You Can 23 15.1 50.3 52.7 71.8 58.3 2.6 2.5 2.5 2.5 

The Record 14 9.4 37.3 65.7 78.4 60.5 2.1 3.5 2.8 2.8 

The Boyfriend 25 18.4 48.3 71.4 89.1 69.6 2.9 4.1 3.4 3.5 

The Shoe 12 10.8 66.2 46.4 49.7 54.1 3.2 2.4 2.2 2.6 

Keith Reynolds 25 14.1 30 61.2 70.4 53.9 2.0 2.3 1.7 2 

The Rock 27 12.0 35.6 53.4 44.8 44.6 1.9 3.2 1.9 2.3 

The Prisoner 16 16.3 53.4 66.4 97.8 72.5 2.8 3.1 3.2 3.0 

The Black Hole 10 14.3 88.3 67.1 87 80.8 3.6 4.2 3.2 3.7 

Post-It Love 15 10.7 31.6 42.5 41.5 38.5 1.7 2.3 1.7 1.9 

Bus Stop 35 11.9 30.4 59.7 48.5 46.2 1.6 2.7 1.9 2.1 

Mean across movies 20.2 13.3 47.1 58.7 67.9 57.9 2.4 3.0 2.5 2.6 
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Supplementary Table 3. An example movie annotation of “The Record” with event-wise ranks 
based on semantic centrality and causal centrality (annotation by the annotator RC). 
 

Semantic 
centrality 

rank 

Causal 
centrality 

rank 

Event description 

14 10 
The camera pans into an animated scene with a teenage girl in a room in 
a tall building. The camera is inside the apartment, and the girl opens the 
pizza box and grabs a pizza.  

13 9 The girl, before she can eat, hears a knock on the door. The girl opens 
the door and looks around to see no one is there.  

9 7 

The girl looks down and sees a package for her in an envelope at her 
doorstep. The girl goes back to her chair and to her pizza and opens the 
envelope. The girl pulls out a package with a disc inside it that says "A 
Single Life."  

12 7 The girl pulls out the record disc from the package and the title "A film by: 
Job, Joris, and Marieke"  

4 6 
The girl gets up and puts the record disc into the record player and puts 
down the needle. The song on the disc plays and she sits down and 
begins to eat her pizza.  

6 5 The girl is about to eat the pizza but then there is a flash. She stops and 
then the song plays its lyrics on the song. Part of the pizza is gone.  

3 7 
She notices the pizza is eaten and then looks at the disc. The camera 
pans to the disc playing on the record player, and the disc is spinning on 
the player.  

2 1 

The girl stops the disc and there's a record scratch. The girl pulls the disc 
back and forth on the player and pizza disappears and reappears as she 
tests it back and forth. The girl pulls the disc forth and the pizza pie 
disappears completely in the box as well as in her hand. Then she pulls it 
back and the pizza reappears.  

1 6 

The girl realizes her power and gets up then lifts the needle on the record 
player. The disc plays the song and then the flash goes to her as a 
pregnant woman. The woman stops the record player and stops the song 
from playing.  

10 4 
The woman pulls the disc forward and back and sees the baby develop 
and devolve like the pizza before. The woman pulls the disc forward and 
the baby develops and pops into her arms but the baby starts crying.  

5 4 The woman then flashes into her childhood self and looks at herself. The 
girl goes up to record player and tries to stop it but pops off the needle.  

7 3 

The girl flashes to her in a wheelchair as an elderly woman and she looks 
at herself. The woman rolls up her wheelchair but she flashes back to the 
same scene over and over again, getting frustrated. The woman rolls up 
again and flashes but then stops rolling up and finds that nothing 
happens. She then tries to roll really fast but falls back.  

8 2 
The woman gets up and she is an old woman who needs a walker and is 
wearing glasses. The woman sees that the song is about to end and tries 
to get to the record player.  

11 8 The woman turns into ashes in a pot in the same nursery home and the 
record player stops with the needle lifting.  
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Supplementary Table 4. List of Schaefer 400 parcels used to create regions of interest. 

 

Region of interest Hemisphere Schaefer 
parcel ID 

Schaefer parcel name 

Posterior medial cortex Left 154 17Networks_LH_DefaultA_pCunPCC_1 

155 17Networks_LH_DefaultA_pCunPCC_2 

156 17Networks_LH_DefaultA_pCunPCC_3 

157 17Networks_LH_DefaultA_pCunPCC_4 

158 17Networks_LH_DefaultA_pCunPCC_5 

159 17Networks_LH_DefaultA_pCunPCC_6 

160 17Networks_LH_DefaultA_pCunPCC_7 

Right 363 17Networks_RH_DefaultA_pCunPCC_1 

364 17Networks_RH_DefaultA_pCunPCC_2 

365 17Networks_RH_DefaultA_pCunPCC_3 

366 17Networks_RH_DefaultA_pCunPCC_4 

367 17Networks_RH_DefaultA_pCunPCC_5 

Early visual cortex Left 7 17Networks_LH_VisCent_Striate_1 

18 17Networks_LH_VisPeri_StriCal_1 

19 17Networks_LH_VisPeri_StriCal_2 

20 17Networks_LH_VisPeri_ExStrSup_1 

Right 207 17Networks_RH_VisCent_Striate_1 

218 17Networks_RH_VisPeri_StriCal_1 

219 17Networks_RH_VisPeri_StriCal_2 
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Supplementary Table 5. Relationship between semantic centrality and hippocampal-cortical 
intersubject functional connectivity (ISFC) during movie watching. 
 

Minimum 
event 

duration 
threshold 

(sec) 

Number 
of 

events 

Correlation between 
semantic centrality and 

hippocampus-PMC ISFC 
(a) 

Correlation between 
semantic centrality and 

hippocampus-EVC ISFC 
(b) 

95% CI3 of  
(a) - (b) 

r p1 95% CI2 r p1 95% CI2 

27 14 .61 .02 [.11, .86] -.33 .24 [-.73, .24] [.1, 1.46] 

25.5 16 .59 .02 [.14, .84] -.32 .23 [-.7, .21] [.12, 1.42] 

24 19 .52 .02 [.09, .79] -.17 .49 [-.58, .31] [.01. 1.21] 

22.5 26 .49 .01 [.13, .74] 
 .01 .95 [-.38, .4] [.04, .87] 

21 31 .38 .04 [.02, .64] .02 .93 [-.34, .37] [-.04, .72] 

19.5 44 .29 .06 [-.01, .54] .05 .75 [-.25, .34] [-.07, .53] 

18 55 .21 .12 [-.05, .45] -.02 .88 [-.28, .25] [-.08, .52] 

 
1 Uncorrected significance of the Pearson correlation coefficient r (two-tailed)  
2 Confidence Interval of the correlation coefficient, [lower bound, upper bound]. 
3 Confidence interval of the difference between two overlapping correlations based on 
dependent groups, computed using the method described in ref.1. 
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 8 

 
 
Supplementary Figure 1. Similarity of movie event descriptions across annotators. a. 
Visualization of three independent annotators’ movie event descriptions as trajectories in the 
Universal Sentence Encoder (USE)2 text embedding space (for a related method, see ref.3). T-
distributed stochastic neighbor embedding (t-SNE) was applied on the USE vectors 
(concatenated across annotators) for dimensionality reduction into a two-dimensional space. 
Events within each movie formed visible clusters in the space, and the overall configuration of the 
trajectories was highly similar across annotators. Each dot represents a movie event. Temporally 
adjacent events are connected with gray lines. Different colors indicate different movies. b. Two 
example movies’ annotation trajectories from the three annotators (isolated from the trajectories 
in a). Numbers and the color of dots indicate the order of events within each movie. Dots (events) 
in brighter colors were presented earlier in the movie. c. Cosine similarity between the USE 
vectors of all 202 events (combined across 10 movies) generated from each annotator’s movie 
event descriptions. Each black square on the diagonal indicates an individual movie (i.e., within-
movie similarities). d. We performed a randomization test (1000 iterations, one-tailed) to test the 
statistical significance of the cross-annotator similarity between movie event USE vectors. The 
red line shows the true mean event-wise cross-annotator cosine similarity between all possible 
annotator pairs. The histogram shows the null distribution of the mean cross-annotator similarity, 
generated by shuffling the event labels within each movie and annotator. The mean cross-
annotator similarity was significantly greater than zero (M = .78, p = .000999).  
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Supplementary Figure 2. Individual subjects’ recall trajectories in a text embedding space. 
Each subject’s recall transcript was segmented into utterances based on pauses and changes in 
the topic. Each utterance was transformed into vectors using the Universal Sentence Encoder 
(USE)2. T-distributed stochastic neighbor embedding (t-SNE) was applied on the USE vectors 
concatenated across all subjects’ recall transcripts and the movie annotation vectors (averaged 
across annotators). This allowed us to visualize the USE vectors of the movie annotation (top left 
cell in the red frame) and recall transcripts (all the other cells in black frames) into a shared two-
dimensional space. Each dot in the movie annotation trajectory represents a movie event. Each 
dot in the recall trajectories represents an utterance during recall. Temporally adjacent 
events/utterances are connected with gray lines. Different colors indicate different movies. 
Consistent with a prior study3, the overall configuration of the recall trajectories was similar to that 
of the movie annotation trajectory. The recall trajectories were also similar across subjects, 
although the number of movies recalled and the number of utterances made varied across 
subjects.   
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Supplementary Figure 3. Semantic narrative networks of all movie stimuli. a. Semantic 
similarity matrices of the 10 movies used in the fMRI experiment. b. Semantic narrative networks 
of the 10 movies used in the fMRI experiment. Node size is proportional to centrality (normalized 
degree) computed from unthresholded networks. Edge thickness is proportional to edge weights. 
Nodes with brighter colors indicate high (i.e., within the top 40% in each movie) semantic centrality 
events. 
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Supplementary Figure 4. Causal narrative networks. a. Causal relationship matrices of the 10 
movies used in the fMRI experiment. Causal relatedness between a pair of events within a movie 
was computed as the proportion of independent coders who identified the pair as causally related. 
b. Causal narrative networks whose nodes are movie events and edge weights are the causal 
relatedness shown in a. Node size is proportional to centrality (normalized degree) computed 
from unthresholded networks. Edge thickness is proportional to edge weights. Nodes with brighter 
colors indicate high (i.e., within the top 40% in each movie) causal centrality events. c. Causal 
centrality for individual movie events concatenated across the 10 movies. Different colors denote 
different movies. Source data are provided as a Source Data file.     
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Supplementary Figure 5. Causality rating responses. a. Average number of event pairs 
identified as causally related within each of the 10 movies used in the fMRI experiment (mean 
across movies 10.47, s.d. 4.18). b. Average percentage of event pairs identified as causally 
related among all possible event pairs within each movie (mean 6.78 %, s.d. 3.95 %). c. Average 
distance between a pair of causally related events (i.e., the number of events between the two 
events) within each movie. Lag = 1 if the events are adjacent to each other (mean 1.79 events, 
s.d. .51 events). d. The distribution of lags between causally related events, combined across all 
movies and coders. Most (73.1%) identified causal relationships occurred between temporally 
adjacent events. In a, b, and c, gray dots represent individual coders (N = 12 for CMIYC, 13 for 
all other movies) and black bars show the mean across coders. CMIYC = Catch Me If You Can, 
KR = Keith Reynolds. Source data for a – c are provided as a Source Data file.  
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Supplementary Figure 6. Relationship between recall performance and causal centrality 
computed from directed networks. We generated directed causal narrative networks where 
source nodes were “cause” events and target nodes were “effect” events. The edge weight of a 
cause-effect event pair was defined as the proportion of coders who identified the pair as causally 
related. An event has high outdegree centrality if the event causes many other events. An event 
has high indegree centrality if the event is caused by many other events. Both outdegree and 
indegree centrality were positively correlated with the centrality computed from undirected casual 
narrative networks (outdegree: r(202) = .79, p < .001, 95% CI = [.73, .83]; indegree: r(202) = .71, 
p < .001, 95% CI = [.63, .77]). a. Correlation between outdegree centrality and recall probability. 
b. Recall probability for High (top 40%) vs. Low (bottom 40%) outdegree centrality events defined 
within each movie (averaged across movies). c. Correlation between indegree centrality and 
recall probability. d. Recall probability for High (top 40%) vs. Low (bottom 40%) indegree centrality 
events defined within each movie (averaged across movies). In a and c, each dot represents an 
individual movie event. Different colors denote different movies. In b and d, white circles represent 
individual subjects (N = 15). Black diamonds represent the mean across subjects within each 
condition. Error bars show SEM across subjects. Two-tailed paired t-tests indicated that both 
higher outdegree (t(14) = 5.9, p = .00004, Cohen’s dz = 1.52, 95% CI of the difference = [.05, .11]) 
and indegree centrality (t(14) = 7.34, p = .000004, Cohen’s dz = 1.9, 95% CI of the difference = 
[.07, .13]) were associated with higher recall probability. **p < .01, ***p < .001. Source data are 
provided as a Source Data file.  
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Supplementary Figure 7. Online behavioral experiment. a. The semantic similarity matrices 
(top) and semantic narrative networks (bottom) of two example movies used in the preregistered 
online behavioral experiment. b. The causal relationship matrices (top) and causal narrative 
networks (bottom) of the same two example movies shown in a. c. Recall probability for individual 
movie events of the ten movies used in the online behavioral experiment, concatenated across 
movies. As in the fMRI experiment, primacy/recency effects were not observed. Different colors 
indicate different movies. d. Recall order of individual movie events in two example movies. Recall 
order was calculated as the rank (1 = recalled first, N = recalled last, where N is the total number 
of events in the movie) among recalled events. Subjects’ written recall strictly followed the original 
event presentation order. e. Recall probability was positively correlated with semantic centrality 
(left; r(252) = .25, p = .00007, 95% CI = [.13, .36]) and causal centrality (right; r(252) = .34, p 
< .000001, 95% CI = [.22, .44]). Each dot represents a movie event. Different colors denote 
different movies. ***p < .001. Source data for c – e are provided as a Source Data file.  
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Supplementary Figure 8. Cortical responses at between-movie boundaries during movie 
watching. a. Example movie frame images around a boundary between two movies presented 
in the movie watching phase of the fMRI experiment. At between-movie boundaries, the last 
scene of the preceding movie was followed by a 6-second-long title scene of the upcoming movie. 
The transition between the 39-s introductory cartoon (presented at the beginning of each scanning 
run) and the first movie of each scanning run was also counted as a between-movie boundary. b. 
Whole-brain maps of z-scored cortical blood oxygenation level dependent (BOLD) signals from 
10 TRs before to 29 TRs after between-movie boundaries during movie watching (TR = 1.5 s). 
The BOLD signals were averaged across times within each 10-TR time window and then across 
movies and subjects. Time zero means the onset of the movie title scene. The maps were 
arbitrarily thresholded to visualize brain areas whose activation was relatively higher (red-yellow) 
or lower (cyan-blue) than the mean activation across all time points within a scanning run (z = 0). 
Between-movie boundaries evoked transient changes in activation across widespread cortical 
areas. The black outlines indicate the posterior medial cortex (PMC) and early visual cortex (EVC) 
regions-of-interest. c. Activation time courses around between-movie boundaries in PMC (left) 
and EVC (right). Gray lines show individual subjects’ time courses, averaged across all between-
movie boundaries. Black lines show the averages across subjects. The four shades of the gray 
bars at the top of each panel correspond to the four time windows used in b. Source data are 
provided as a Source Data file. d. Intersubject pattern correlation between the mean activation 
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patterns of the first four events in each of the 10 movies. Each row and column of the similarity 
matrix represents an event, and the events are grouped by their temporal positions in the movie 
(i.e., row/column 1 – 10 = the first events of the 10 movies, row/column 11 – 20 = the second 
events, etc.). The black squares on the diagonal indicate cross-movie similarity within the first, 
second, third, and fourth events of the movies. In PMC (left), all first events showed similar 
patterns regardless of specific movies, and this tendency decreased in later events further away 
from between-movie boundaries. EVC (right) showed relatively weaker pattern similarity across 
movies within the first events compared to PMC. Movie scene images in a were created by the 
author H. L. using Adobe Illustrator and Adobe Photoshop (adobe.com).  
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Supplementary Figure 9. Univariate activation. a & b. Whole-brain t-statistic maps showing 
the brain regions whose activation scale with semantic centrality during movie watching (a) and 
recall (b). c & d. Whole-brain t-statistic maps showing the brain regions whose activation scale 
with causal centrality during movie watching (c) and recall (d). All maps were liberally thresholded 
at p < .001 (Two-tailed one-sample t-tests against zero, uncorrected).     
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Supplementary Figure 10. Effects of causal narrative structure on neural responses. a & b. 
Intersubject pattern correlation (pISC) for High vs. Low causal centrality events and the difference 
(Diff) between the two conditions during movie watching (a) and recall (b) in the posterior medial 
cortex (PMC; left panels) and early visual cortex (EVC; right panels). For High and Low causal 
centrality conditions, white circles represent individual subjects (N = 15). Black diamonds 
represent the mean across subjects within each condition. Error bars show SEM across subjects. 
For the difference between High and Low conditions (Diff), black diamonds show the true subject 
average, and histograms show the null distribution of the mean difference. Randomization tests 
showed that the difference between High vs. Low causal centrality conditions was not significantly 
different from zero in any of the experimental phases and ROIs (ps > .05, two-tailed). c. Mean 
hippocampal blood oxygenation level dependent (BOLD) response time courses aligned at the 
offset (left) or onset (right) of events during movie watching. Solid lines and dotted lines show 
responses for the high and low causal centrality events, respectively. Shaded areas indicate SEM 
across subjects. Statistical significance reflects the difference between High vs. Low centrality 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2022. ; https://doi.org/10.1101/2021.04.24.441287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

events at each time point (two-tailed paired t-tests). Higher hippocampal responses were 
observed following the offset, but not onset, of high causal centrality events. *q < .05 (FDR 
corrected across time points). TR = 1.5 s. d & e. Whole-brain representational similarity analysis 
maps showing the brain regions whose activation patterns reflect the whole causal narrative 
network structure during movie watching (d) and recall (e). For each cortical parcel, the causal 
relationship matrix (Supplementary Figure 3a) of a movie was correlated with the movie’s cross-
event intersubject fMRI pattern similarity matrix. The correlation coefficients were averaged 
across movies and subjects and then tested for statistical significance against zero using a 
randomization test (one-tailed). All maps were thresholded at q < .05 (FDR-corrected across 
parcels). Source data for a – c are provided as a Source Data file.  
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Supplementary Figure 11. Intersubject pattern correlation (pISC) during movie watching. 
a. Whole-brain surface map of mean pISC across matching events during movie watching. The 
pISC map was arbitrarily thresholded at r = .05 for visualization purposes. pISC values in 
visualized parcels were all significantly greater than zero (FDR-corrected q < .05 across parcels, 
one-tailed). b. pISC for High vs. Low semantic centrality events during movie watching and the 
difference (Diff) between the two conditions in the posterior medial cortex (PMC; left) and early 
visual cortex (EVC; right). For High and Low semantic centrality conditions, white circles represent 
individual subjects (N = 15). Black diamonds represent the mean across subjects within each 
condition. Error bars show SEM across subjects. For the difference between High and Low 
conditions (Diff), black diamonds show the true subject average, and histograms show the null 
distribution of the mean difference. The difference between High vs. Low semantic centrality 
events was not significantly different from the null distribution in either ROI (ps > .05, two-tailed 
randomization tests). Source data are provided as a Source Data file.  
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Supplementary Figure 12. Representational similarity analysis using movie watching 
phase data and recall transcripts. a. Brain regions that show positive correlations between the 
movie watching phase cross-event intersubject pattern similarity matrix and the movie annotation 
sentence embedding vector similarity matrix. b. Brain regions that show positive correlations 
between the recall phase cross-event intersubject pattern similarity matrix and the recall transcript 
sentence embedding vector similarity matrix. The recall transcript similarity matrix was first 
generated within each subject by computing the cosine similarity between the USE vectors of the 
subject’s recall of movie events. The subject-specific similarity matrices were then averaged 
across subjects. In both a and b, representational similarity (i.e., fMRI–text correlation averaged 
across movies and subjects) for each parcel was tested for statistical significance against zero 
using a randomization test (one-tailed). All maps were thresholded at q < .05 (FDR-corrected 
across parcels).     
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Supplementary Figure 13. Effects of semantic centrality on event-specific intersubject 
pattern correlation including all events. a & b. Intersubject pattern correlation (pISC) for High 
vs. Low semantic centrality events and the difference (Diff) between the two conditions during 
movie watching (a) and recall (b) in the posterior medial cortex (PMC; left panels) and early visual 
cortex (EVC; right panels). All movie events were included in the analysis. For High and Low 
semantic centrality conditions, white circles represent individual subjects (N = 15). Black 
diamonds represent the mean across subjects within each condition. Error bars show SEM across 
subjects. For the difference between High and Low conditions (Diff), black diamonds show the 
true subject average, and histograms show the null distribution of the mean difference. Two-tailed 
randomization tests were performed to test whether the differences between High vs. Low 
semantic centrality conditions were significantly different from zero. Higher semantic centrality 
was associated with higher pISC in PMC (p = .039) but lower pISC in EVC (p = .008) during recall. 
No significant relationship between semantic centrality and pISC was observed during movie 
watching (ps > .05). Thus, the results were qualitatively identical to those obtained after excluding 
the first events from movie watching data and after excluding the events recalled by fewer than 
five subjects from recall data. *p < .05, **p < .01. Source data are provided as a Source Data file. 
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