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Light Attention Predicts Protein Location from the Language of Life
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Abstract

Summary: Although knowing where a protein
functions in a cell is important to characterize
biological processes, this information remains
unavailable for most known proteins. Machine
learning narrows the gap through predictions from
expert-designed input features leveraging informa-
tion from multiple sequence alignments (MSAs)
that is resource expensive to generate. Here, we
showcased using embeddings from protein lan-
guage models (pLMs) for competitive localiza-
tion prediction without MSAs. Our lightweight
deep neural network architecture used a softmax
weighted aggregation mechanism with linear com-
plexity in sequence length referred to as light at-
tention (LA). The method significantly outper-
formed the state-of-the-art (SOTA) for ten local-
ization classes by about eight percentage points
(Q10). So far, this might be the highest improve-
ment of just embeddings over MSAs. Our new
test set highlighted the limits of standard static
data sets: while inviting new models, they might
not suffice to claim improvements over the SOTA.
Availability:  Online predictions are avail-
able at http://embed.protein.properties. Predic-
tions for the human proteome are available at
https://zenodo.org/record/5047020. Code is pro-
vided at https://github.com/HannesStark/protein-
localization.
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1. Introduction

Prediction bridges gap between proteins with and with-
out location annotations. Proteins are the machinery
of life involved in all essential biological processes (Ap-
pendix: Biological Background). Knowing where in the
cell a protein functions, natively, i.e. its subcellular loca-
tion or cellular compartment (for brevity, abbreviated by
location), is important to unravel biological function (Nair
& Rost, 2005; Yu et al., 2006). Experimental determina-
tion of protein function is complex, costly, and selection
biased Ching et al., 2018. In contrast, protein sequences
continue to explode (Consortium, 2021). This increases the
sequence-annotation gap between proteins for which only
the sequence is known and those with experimental function
annotations . Computational methods have been bridging
this gap (Rost et al., 2003), e.g. by predicting protein lo-
cation (Goldberg et al., 2012; 2014; Almagro Armenteros
et al., 2017; Savojardo et al., 2018). The standard tool
in molecular biology, namely homology-based inference
(HBI), accurately transfers annotations from experimentally
annotated to sequence-similar un-annotated proteins. How-
ever, HBI is either unavailable or unreliable for most pro-
teins (Goldberg et al., 2014; Mahlich et al., 2018). Machine
learning methods perform less well (lower precision) but
are available for all proteins (high recall). The best methods
use evolutionary information as computed from families of
related proteins identified in multiple sequence alignments
(MSAs) as input (Nair & Rost, 2005; Goldberg et al., 2012;
Almagro Armenteros et al., 2017). Although the marriage
of evolutionary information and machine learning has influ-
enced computational biology for decades (Rost & Sander,
1993), due to database growth, MSAs have become costly.

Protein Language Models (pLMs) better represent se-
quences. Recently, protein sequence representations (em-
beddings) have been learned from databases (Steinegger
& Soding, 2018; Consortium, 2021) using language mod-
els (LMs) (Bepler & Berger, 2019; Alley et al., 2019;
Heinzinger et al., 2019; Rives et al., 2021; Elnaggar et al.,
2021) initially used in natural language processing (NLP)
(Peters et al., 2018; Devlin et al., 2019; Raffel et al., 2020).
Models trained on protein embeddings via transfer learning
tend to be outperformed by approaches using MSAs (Rao
et al., 2019; Heinzinger et al., 2019). However, embedding-
based solutions can outshine HBI (Littmann et al., 2021)
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and advanced protein structure prediction methods (Bhat-
tacharya et al., 2020; Rao et al., 2020; Weillenow et al.,
2021). Yet, for location prediction, embedding-based mod-
els (Heinzinger et al., 2019; Elnaggar et al., 2021; Littmann
et al., 2021) remained inferior to the state-of-the-art (SOTA)
using MSAs, such as DeepLoc (Almagro Armenteros et al.,
2017).

In this work, we leveraged protein embeddings to predict
cellular location without MSAs. We proposed a deep neural
network architecture using light attention (LA) inspired by
previous attention mechanisms (Bahdanau et al., 2015).

2. Related Work

The best previous predictions of location prediction com-
bined HBI, MSAs, and machine learning, often building
prior expert-knowledge into the models. For instance, Loc-
Tree2 (Goldberg et al., 2012) implemented profile-kernel
(Support Vector Machines (SVMs) (Cortes & Vapnik, 1995)
which identified k-mers conserved in evolution and put
them into a hierarchy of models inspired by cellular sort-
ing pathways. BUSCA (Savojardo et al., 2018) combined
three compartment-specific SVMs based on MSAs (Pier-
leoni et al., 2006; Savojardo et al., 2017). DeepLoc (Al-
magro Armenteros et al., 2017) used convolutions fol-
lowed by a bidirectional long short-term memory (LSTM)
module (Hochreiter & Schmidhuber, 1997) employing the
Bahdanau-Attention (Bahdanau et al., 2015). Using the
BLOSUMSG62 substitution metric (Henikoff & Henikoff,
1992) for fast and MSAs for slower, refined predictions,
DeepLoc rose to become the SOTA. Embedding-based meth-
ods (Heinzinger et al., 2019) have not yet consistently out-
performed this SOTA, although ProtTrans (Elnaggar et al.,
2021), based on very large data sets, came close.

3. Methods
3.1. Data

Standard setDeepLoc. Following previous work
(Heinzinger et al., 2019; Elnaggar et al., 2021), we began
with a data set introduced by DeepLoc (Almagro Ar-
menteros et al., 2017) for training (13 858 proteins) and
testing (2 768 proteins). All proteins have experimental
evidence for one of ten location classes (nucleus, cytoplasm,
extracellular space, mitochondrion, cell membrane,
Endoplasmatic Reticulum, plastid, Golgi apparatus,
lysosome/vacuole, peroxisome). The 2 768 proteins making
up the test set (dubbed setDeepLoc), had been redundancy
reduced to the training set (but not to themselves), and
thus share < 30% PIDE (pairwise sequence identity) and
E-values < 107% to any sequence in training. To avoid
overestimations by tuning hyper-parameters, we split the
DeepLoc training set into: training-only (9 503 proteins)

and validation sets (1 158 proteins; < 30% PIDE; Appendix:
Datasets).

Novel setHARD. To catch over-fitting on a static standard
data set, we created a new independent test set from
SwissProt (Consortium, 2021). Applying the same filters
as DeepLoc (only eukaryotes; all proteins > 40 residues;
no fragments; only experimental annotations) gave 5 947
proteins. Using MMseqs2 (Steinegger & Soding, 2017), we
removed all proteins from the new set with > 20% PIDE
to any protein in any other set. Next, we mapped location
classes from DeepLoc to SwissProt, merged duplicates,
and removed multi-localized proteins (protein X both in
class Y and Z). Finally, we clustered at > 20% PIDE
leaving only one representative of each cluster in the new,
more challenging test set (dubbed setHARD; 490 proteins;
Appendix: Datasets).

3.2. Models

Input embeddings. As input to the Light Attention (LA)
architectures, we extracted frozen embeddings from pLMs,
i.e. without fine-tuning for location prediction (details be-
low). We compared embeddings from five main and a
sixth additional pre-trained pLMs (Table 1): (1) SeqVec
(Heinzinger et al., 2019) is a bidirectional LSTM based on
on ELMo (Peters et al., 2018) that was trained on UniRef50
(Suzek et al., 2015). (2) ProtBert (Elnaggar et al., 2021) is
an encoder-only model based on BERT (Devlin et al., 2019)
that was trained on BFD (Steinegger & Soding, 2018). (3)
ProtT5-XL-UniRef50 (Elnaggar et al., 2021) (for simplicity:
ProtT5) is an encoder-only model based on TS5 (Raffel et al.,
2020) that was trained on BFD and fine-tuned on Uniref50.
(4) ESM-1b (Rives et al., 2021) is a transformer model that
was trained on UniRef50. (5) UniRep (Alley et al., 2019)
is a multiplicative LSTM (mLSTM)-based model trained
on UniRef50. (6) Bepler&Berger (dubbed BB) is a bidi-
rectional LSTM by (Bepler & Berger, 2019), which fused
modelling the protein language with learning information
about protein structure into a single pLM. Due to different
training objectives, this pLM was expected suboptimal for
our task. As results confirmed this expectation, we confined
these to Appendix: Additional Results.

Frozen embeddings were preferred over fine-tuned embed-
dings as the latter previously did not improve (Elnaggar
et al., 2021) and consumed more resources/energy. ProtT5
was instantiated at half-precision (float16 weights instead of
float32) to ensure the encoder could fit on consumer GPUs
with limited vVRAM. Due to model limitations, for ESM-1b,
only proteins with fewer than 1024 residues were used for
training and evaluation (Appendix: Datasets).

Embeddings for each residue (NLP equivalent: word)
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Table 1. Implementation details for SeqVec (Heinzinger et al., 2019), ProtBert (Elnaggar et al., 2021), ProtT5 (Elnaggar et al., 2021),
ESM-1b (Rives et al., 2021), UniRep (Alley et al., 2019) and BB (Bepler & Berger, 2019). Estimates marked by *; differences in the
number of proteins (Sequences) for the same set (Dataset) originated from versioning. The embedding time (in seconds) was averaged
over 10 000 proteins taken from the PDB (Berman et al., 2000) using the embedding models taken from bio-embeddings (Dallago et al.,

2021).

SEQVEC PROTBERT PROTTS ESM-1B UNIREP BB
PARAMETERS 93M 420M 3B 650M 18.2M 90OM*
DATASET UNIREF50 BFD BFD UNIREF50 UNIREF50 PFAM
SEQUENCES 33M 2.1B 2.1B 27TM 27TM 21M
EMBED TIME (S) 0.03 0.06 0.1 0.09 2.1 0.1
ATTENTION HEADS 0 16 32 20 0 0
BITS PER FLOAT 32 32 16 32 32 32
Si1zE (GB) 0.35 1.6 3.6 7.3 0.06 0.12

in a protein sequence (NLP equivalent: document) were
obtained using the bio-embeddings software (Dallago
et al., 2021). For SegVec, the per-residue embeddings were
generated by summing the representations of each layer. For
all other models, the per-residue embeddings were extracted
from the last hidden layer. Finally, the inputs obtained from
the pLMs were of size d;,, x L, where L is the length of
the protein sequence, while d;,, is the size of the embedding.

Implementation details. The LA models were trained
using filter size s = 9, dyyy = 1024, the Adam (Kingma &
Ba, 2015) optimizer (learning rate 5 x 10~?) with a batch
size of 150, and early stopping after no improvement in val-
idation loss for 80 epochs. We selected the hyperparameters
via random search (Appendix: Hyperparameters). Models
were trained either on an Nvidia Quadro RTX 8000 with
48GB vRAM or an Nvidia GeForce GTX 1060 with 6GB
vRAM.
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Figure 1. Sketch of Light Attention (LA). The LA architec-
ture was parameterized by two weight matrices W), W) ¢
Re*din*dout and the weights of an FNN f : R?%out s Relass

Light Attention (LA) architecture.  The input to the
light attention (LA) classifier (Fig. 1) was a protein embed-
ding x € R%~*L where L is the sequence length, while
d;n is the size of the embedding (which depends on the
model, Table 1). The input was transformed by two sepa-
rate 1D convolutions with filter sizes s and learned weights
W) W) ¢ Rsxdinxdour . The convolutions were ap-
plied over the length dimension to produce attention coeffi-
cients and values e, v € Rout XL

din ’7%—‘

cig=bity. > Wik (D

k=11=—|3]

where b € Réout is a learned bias. For j ¢ [0, L), the
x. ; were zero vectors. To use the coefficients as attention
distributions over all j, we softmax-normalized them over
the length dimension, i.e. the attention weight «; ; € R for
the j-th residue and the i-th feature dimension was calculated
as:

- expley)

1,7 — 7

> expleir)

Note that the weight distributions for each feature dimen-
sion ¢ are independent, and they can generate different at-
tention patterns. The attention distributions were used to
compute weighted sums of the transformed residue embed-
dings v; ;. Thus, we obtained a fixed-size representation
x’ € R%ut for the whole protein, independent of its length.

2

L
T = Zai,jvi,j 3
j=1
p(c|x) = softmaz.(f(z' & m)) 4)

Methods used for comparison. For comparison, we
trained a two-layer feed-forward neural network (FNN)
proposed previously (Heinzinger et al., 2019). Instead
of per-residue embeddings in R%~*% the FNNs used
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sequence-embeddings in R%~ which derived from residue-
embeddings averaged over the length dimension (i.e. mean
pooling). Furthermore, for these representations, we
performed embeddings distance-based annotation transfer
(dubbed EAT) (Littmann et al., 2021). In this approach,
proteins in setDeepLoc and setHARD were annotated by
transferring the location from the nearest neighbor (L1 em-
bedding distance) in the training set.

For ablations on the architecture, we tested LA without
the softmax aggregation (LA w/o Softmax) that previously
produced z’, by replacing it with averaging of the coeffi-
cients e. Then, with LA w/o MaxPool, we discarded the
max-pooled values v™** as input to the FNN instead of
concatenating them with /. With Attention from v, we
computed the attention coefficients e via a convolution over
the values v instead of over the inputs x. Additionally, we
tested using a simple stack of convolutions (kernel-size 3,
9, and 15) followed by adaptive pooling to a length of 5
and an FNN instead of LA (Conv + AdaPool). Similarly,
Query-Attention replaces the whole LA architecture with
a transformer layer that used a single learned vector as
query to summarize the whole sequence. As the last alter-
native operating on LM representations, we considered the
DeepLoc LSTM (Almagro Armenteros et al., 2017) with
ProtT5 embeddings instead of MSAs.

To evaluate how traditional representations stack up against
pLM embeddings, we evaluated MSAs (LA(MSA)) and
one-hot encodings of amino acids (LA(OneHot)) as inputs
to the LA model.

3.3. Evaluation.

Following previous work, we assessed performance through
the mean ten-class accuracy (Q10), giving the percentage
of correctly predicted proteins in one of ten location classes.
As additional measures tested (i.e., F1 score and Matthew
correlation coefficient (MCC) (Gorodkin, 2004)) did not
provide any novel insights, these were confined to the Ap-
pendix: Additional Results. Error estimates were calcu-
lated over ten random seeds on both test sets. For previous
methods (DeepLoc and DeepLoc62 (Almagro Armenteros
et al., 2017), LocTree2 (Goldberg et al., 2012), MultiLoc2
(Blum et al., 2009), SherLoc2 (Briesemeister et al., 2009),
CELLO (Yu et al., 2006), iLoc-Euk (Chou et al., 2011),
YLoc (Briesemeister et al., 2010) and WoLF PSORT (Hor-
ton et al., 2007)) published performance values were used
(Almagro Armenteros et al., 2017) for setDeepLoc. For
setHARD, the webserver for DeepLoc! was used to gen-
erate predictions using either profile or BLOSUM inputs,
whose results were later evaluated in Q10 and MCC. As a
naive baseline, we implemented a method that predicted the
same location class for all proteins, namely the one most

"http://www.cbs.dtu.dk/services/DeepLoc

often observed (in results: Majority). We provided code to
reproduce all results?.

4. Results

Embeddings outperformed MSAs. The simple EAT
(embedding-based annotation transfer) already outper-
formed some advanced methods using MSAs (Fig. 2).
The FNNs trained on ProtT5 (Elnaggar et al., 2021) and
ESM-1b (Rives et al., 2021) outperformed the SOTA
DeepLoc (Almagro Armenteros et al., 2017) (Fig. 2).
Methods based on ProtT5 embeddings consistently reached
higher performance values than other embedding-based
methods (*ProtT5 vs. rest in Figure 2). Results on Q10
were consistent with those obtained for MCC (Appendix:
Additional Results).

LA architecture best. The light attention (LA) archi-
tecture introduced here consistently outperformed other
embedding-based approaches for all pLMs tested (LA* vs.
EAT/FNN* in Fig. 2). Using ProtBert embeddings, LA
outperformed the SOTA (Almagro Armenteros et al., 2017)
by 1 and 2 percentage points on setHARD and setDeepLoc
(LA(ProtBert) Fig. 2). For both test sets, LA improved
the previous best on either set by around eight percentage
points with ProtT5 embeddings.

Standard data set over-estimated performance. The
substantial drop in performance measures (by about 22
percentage points) between the standard setDeepLoc and the
new challenging setHARD (Fig. 2: light-gray vs. dark-gray,
respectively) suggested substantial over-fitting. Mimicking
the class distribution from setDeepLoc by sampling with
replacement from setHARD led to higher values (Q10:
DeepLoc62=63%; DeepLoc=54%; LA(ProtBert)=62%;
LA(ProtT5)=69%). DeepLoc performed worse on setHARD
with than without MSAs (only BLOSUM,; Fig. 2: DeepLoc
vs. DeepLoc62). Otherwise, the relative ranking and
difference of models largely remained consistent between
the two data sets setDeepLoc and setHARD.

Low performance for minority classes. The confusion
matrix of predictions for setDeepLoc using LA(ProtT5)
highlighted how many proteins were incorrectly predicted
to be in the second most prevalent class (cytoplasm),
and that the confusion of the two most common classes
mainly occurred between each other (Fig. 3: nucleus and
cytoplasm). As for other methods, including the previous
SOTA (Almagro Armenteros et al., 2017), performance was
particularly low for the most under-represented three classes
(Golgi apparatus, lysosomelvacuole, and peroxisome) that,

*https://github.com/HannesStark/protein-localization
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Figure 2. LA architectures performed best. Performance: Bars give the ten-class accuracy (Q10) assessed on setDeepLoc (light-gray
bars) and setHARD (dark-gray bars). Methods: Majority, CELLO*, LocTree2*, DeepLoc*, DeepLoc62; MSA-based methods marked
by star. EAT used the mean-pooled pLM embeddings to transfer annotation via distance, while FNN(pLM) used the mean-pooled
embeddings as input to a feed-forward neural network. LA(pLM) marked predictions using light attention on top of the pLMs from:
UniRep (Alley et al., 2019), SeqVec (Heinzinger et al., 2019), ProtBert (Elnaggar et al., 2021), ESM-1b (Rives et al., 2021), ProtT5
(Elnaggar et al., 2021). Horizontal gray dashed lines mark the previous SOTA (DeepLoc and DeepLoc62) on either set. Estimates for
standard deviations are marked in red for the new methods. Overall, LA significantly outperformed the SOTA without using MSAs, and
values differed substantially between the two data sets (light vs. dark gray).

together accounted for 6% of the data. To attempt boosting
performance for minority classes, we applied a balanced
loss, assigning a higher weight to the contributions of
underrepresented classes. This approach did not raise
accuracy for the minority classes but lowered the overall
accuracy, thus it was discarded.

Table 2. Comparison of LA(ProtT5) to different architectures and
inputs. Methods described in Section 3.2. Standard deviations are
estimated from 10 runs with different weight initializations.

METHOD SETDEEPLOC  SETHARD
LA(PROTTS) 86.0+ 0.3 65.2+ 0.6
LA W/0 SOFTMAX 85.3+£0.3 64.7+ 0.7
LA w/0 MAXPOOL 84.7£ 0.2 63.8+ 0.7
ATTENTION FROM v 85.4+0.3 64.7+ 0.9
DEEpPLOC LSTM 79.4+ 0.9 59.3£ 0.8
CONV + ADAPOOL 82.0+ 0.9 60.7+ 2.0
QUERY-ATTENTION 75.3+ 0.5 5241+ 0.4
LA(ONEHOT) 43.5+ 1.5 32.5+£2.4
LA(MSA) 43,7+ 1.3 333+ 1.8

Light attention (LA) mechanism crucial. To probe
the effectiveness of the LA aggregation mechanism on
ProtT5 we considered several alternatives for compiling the
attention (LA w/o Softmax & LA w/o MaxPool & Attention

fromv & DeepLoc LSTM & Conv + AdaPool), and used the
LA mechanism with non-embedding input (LA(OneHot) &
LA(MSA)). Q10 dropped substantially without softmax- or
max-aggregation. Furthermore, inputting traditional protein
representations (one-hot encoding, i.e. representing the 20
amino acids by a 20-dimensional vector with 19 zeroes)
or MSAs, the LA approach did not reach the heights of
using pLM embeddings (Table 2: LA(OneHot) & LA(MSA)).

Model trainable on consumer hardware. Extracting
ProtT5 pLM embeddings for all proteins used for evaluation
took 21 minutes on a single Quadro RTX 8000 with 48GB
VRAM. Once those input vectors had been generated, the
final LA architecture, consisting of 19 million parameters,
could be trained on an Nvidia GeForce GTX 1060 with 6GB
VRAM in 18 hours or on a Quadro RTX 8000 with 48GB
VRAM in 2.5 hours.

5. Discussion

LA predicting location: beyond accuracy, four observa-
tions for machine learning in biology. The LLA approach
introduced here constituted possibly the largest margin to
date of pLM embeddings improving over SOTA methods
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Figure 3. Mostly capturing majority classes. Confusion matrix
of LA predictions on ProtT5 (Elnaggar et al., 2021) embeddings
for setDeepLoc (Almagro Armenteros et al., 2017) (see Appendix:
Additional Results for setHARD). Darker color means higher frac-
tion; the diagonal indicates accuracy for the given class; vertical
axis: true class; horizontal axis: predicted class. Labels are sorted
according to prevalence in ground truth with the most common
class first (left or top). Labels: Nuc=Nucleus; Cyt=Cytoplasm;
Ext=Extracellular; Mit=Mitochondrion; Mem=cell Membrane;
End=Endoplasmatic Reticulum; Pla=Plastid; Gol=Golgi appara-
tus; Lys=Lysosome/vacuole; Per=Peroxisome; pred=distribution
for predicted (proteins predicted in class X / total number of pro-
teins); true=distribution for ground truth (proteins in class X / total
number of proteins)

using MSAs. Although this improvement might become cru-
cial to revive location prediction, ultimately this work might
become even more important for other lessons learned:

(i) The LA solution improved substantially over all previous
approaches to aggregate per-residue embeddings into per-
protein embeddings for predictions. Many protein function
tasks require per-protein representations, e.g. predictions of
Gene Ontology (GO), Enzyme Classifications (E.C.), binary
protein-protein interactions (to bind or not), cell-specific and
pathway-specific expression levels. Indeed, LA might help
in several of these tasks, too.

(ii) Although static, standard data sets (here the DeepLoc
data) jumpstart advances and help in comparisons, they
may become a trap for performance over-estimates through
over-fitting. Indeed, the substantial difference in perfor-
mance between setDeepLoc and setHARD highlighted this
effect dramatically. Most importantly, our results under-
lined that claims of the type “method NEW better than
SOTA” should not necessarily constitute wedges for advanc-
ing progress. For instance, NEW on setStandard reaching
P(NEW)>P(SOTA) does not at all imply that NEW out-
performed SOTA. Instead, it might point more to NEW
over-fitting setStandard.

(iii) The new data setHARD also pointed to problems with
creating too well-curated data sets such as setDeepLoc: one
aim in selecting a good data set is to use only the most re-
liable experimental results. However, those might be avail-
able for only some subset of proteins with particular features
(e.g. short, well-folded). Experimental data is already ex-
tremely biased for the classes of location annotated (Marot-
Lassauzaie et al., 2021). Cleaning up might even increase
this bias and thereby limit the validity of prediction methods
optimized on those data. Clearly, existing location data dif-
fer substantially from entire proteomes (Marot-Lassauzaie
etal., 2021).

(iv) setHARD also demonstrated that, unlike the protein
structure prediction problem (Jumper et al., 2021), the
location prediction problem remains unsolved: while Q10
values close to 90% for setDeepLoc might have suggested
levels close to - or even above - the experimental error,
setHARD revealed values of Q10 below 70%. In fact, while
most proteins apparently mostly locate in one compartment,
for others the multiplicity of locations is key to their role.
This issue of travellers vs. dwellers, implies that Q10
cannot reach 100% as long as we count only one class as
correctly predicted for each protein, and if we dropped
this constraint, we would open another complication
(Marot-Lassauzaie et al., 2021). In short, the new data set
clearly generated more realistic performance estimates.

Light attention (LA) beats pooling. The central
challenge for the improvement introduced here was to
convert the per-residue embeddings (NLP equivalent:
word embeddings) from pLMs (BB (Bepler & Berger,
2019), UniRep (Alley et al., 2019), SeqVec (Heinzinger
et al., 2019), ProtBert (Elnaggar et al., 2021), ESM-1b
(Rives et al., 2021), and ProtT5 (Elnaggar et al., 2021)) to
meaningful per-protein embeddings (NLP equivalent: docu-
ment). Qualitatively inspecting the influence of the light
attention (LA) mechanism through a UMAP comparison
(Fig. 4) highlighted the basis for the success of the LA.
The embedding-based annotation transfer (EAT) surpassed
some MSA-based methods without any optimization of
the underlying pLMs (Fig. 2). In turn, inputting frozen
pLM embeddings averaged over entire proteins into FNNs
surpassed EAT and MSA-based methods (Fig. 2). The
simple FNNs even improved over the SOTA, DeepLoc, for
some pLMs (Fig. 2). However, LA consistently distilled
more information from the embeddings. Most likely, the
improvement can be attributed to LA coping better with
the immense variation of protein length (varying from 30
to over 30 000 residues (Consortium, 2021)) by learning
attention distributions over the sequence positions. LA
models appeared to have captured relevant long-range
dependencies while retaining the ability to focus on specific
sequence regions such as beginning and end, which play a
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Figure 4. Qualitative analysis confirmed LA to be effective.
UMAP (Mclnnes et al., 2018) projections of per-protein embed-
dings colored according to subcellular location (setDeepLoc). Both
plots were created with the same default values of the python umap-
learn library. Top: ProtT5 embeddings (LA input; x) mean-pooled
over protein length (as for FNN/EAT input). Bottom: ProtT5
embeddings (LA input; x) weighted according to the attention
distribution produced by LA (this is not #’ as we sum the input
features x and not the values v after the convolution).

particularly important role in determining protein location
for some proteins (Nair & Rost, 2005; Almagro Armenteros
etal., 2017).

Embeddings outperformed MSA: first for function.

Effectively, LA trained on pLM embeddings from ProtT5
(Elnaggar et al., 2021) was at the heart of the first method
that clearly appeared to outperform the best existing method
(DeepLoc, (Almagro Armenteros et al., 2017; Heinzinger
et al.,, 2019)) in a statistically significant manner on a
new representative data set not used for development (Fig.
2). To the best of our knowledge, it was also the first in
outperforming the MSA-based SOTA in the prediction of
subcellular location in particular, and of protein function
in general. Although embeddings have been extracted
from pLMs trained on large databases of unannotated
(unlabelled) protein sequences that evolved, the vast
majority of data learned originated from much more generic
constraints informative of protein structure and function.
Clearly, pre-trained pLMs never had the opportunity to
learn protein family constraints encoded in MSAs.

Better and faster than MSAs. When applying our
solution to predicting location for new proteins (or at
inference), the embeddings needed as input for the LA
models come with three advantages over the historically
most informative MSAs that were essential for methods
such as DeepLoc (Almagro Armenteros et al., 2017) to
become top. Most importantly, embeddings can be obtained
in far less time than is needed to generate MSAs and
require fewer compute resources. Even the lightning-fast
MMseqs2 (Steinegger & Soding, 2017), which is not the
standard in bioinformatics (other methods 10-100x slower),
in our experience, required about 0.3 seconds per protein to
generate MSAs for a large set of 10000 proteins. One of
the slowest but most informative pLMs (ProtT5) is three
times faster, while the third most informative (ProtBert) is
five times faster (Table 1). Moreover, these MMseqs2 stats
derive from runs on a machine with > 300GB of RAM
and 2x40cores/80threads CPUs, while generating pLM
embeddings required only a moderate machine (8 cores,
16GB RAM) equipped with a modern GPU with >7GB of
vRAM. Additionally, the creation of MSAs relied on tools
such as MMseqs2 that are sensitive to parameter changes,
ultimately an extra complication for users. In contrast,
generating embeddings required no parameter choice for
users beyond the choice of the pLM (best here ProtT5).
However, retrieving less specific evolutionary information
(e.g. BLOSUM (Henikoff & Henikoff, 1992)) constituted a
simple hash-table lookup. Computing such input could be
instantaneous, beating even the fastest pPLM SegVec. Yet,
these generic substitution matrices have rarely ever been
competitive in predicting function (Ng & Henikoff, 2003;
Bromberg et al., 2008). One downside to using embeddings
is the one-off expensive pLM pre-training (Elnaggar et al.,
2021; Heinzinger et al., 2019). In fact, this investment pays
off if and only if the resulting pLMs are not retrained. If
they are used unchanged - as shown here - the advantage of
embeddings over MSA is increasing with every single new
prediction requested by users (over 3,000/months just for
PredictProtein (Bernhofer et al., 2021)). In other words,
every day, embeddings save more over MSAs.

Overfitting through standard data set? For location
prediction, the DeepLoc data (Almagro Armenteros et al.,
2017) has become a standard. Static standards facilitate
method comparisons. To solidify performance estimates,
we created a new test set (setHARD), which was redundancy-
reduced both with respect to itself and all proteins in the
DeepLoc data (comprised of training plus testing data, the
latter dubbed setDeepLoc). For setHARD, the 10-state ac-
curacy (Q10) dropped, on average, 22 percentage points
with respect to the static standard, setDeepLoc (Fig. 2).
We argue that this large margin may be attributed to some
combination of the following coupled effects.
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(i) Previous methods may have been substantially overfitted
to the static data set, e.g., by misusing the test set to optimize
hyperparameters. This could explain the increase in perfor-
mance on setHARD when mimicking the class distributions
in the training set and setDeepLoc.

(ii) The static standard set allowed for some level of
sequence-redundancy (information leakage) at various lev-
els: certainly within the test set, which had not been re-
dundancy reduced to itself (data not shown), maybe also
between train and test set. Methods with many free pa-
rameters might more easily exploit such residual sequence
similarity for prediction because proteins with similar se-
quences locate in similar compartments. In fact, this may
explain the somewhat surprising observation that DeepLoc
appeared to perform worse on setHARD using MSAs than
the generic BLOSUMS62 (Fig. 2: DeepLoc62 vs. DeepLoc).
Residual redundancy is much easier to capture by MSAs
than by BLOSUM (Henikoff & Henikoff, 1992) (for com-
putational biologists: the same way in which PSI-BLAST
can outperform pairwise BLAST (Altschul et al., 1997)).

(iii) The confusion matrix (Fig. 3) demonstrated how classes
with more experimental data tended to be predicted more
accurately. As setDeepLoc and setHARD differed in their
class composition, even without overfitting and redundancy,
prediction methods would perform differently on the two.
In fact, this can be investigated by recomputing the perfor-
mance on a similar class-distributed superset of setHARD,
on which performance dropped only by 11, 24, 18, and 17
percentage points for DeepLoc62, DeepLoc, LA(ProtBert),
and LA(ProtT5), respectively.

Possibly, several effects contributed to the performance
from standard to new data set. Interestingly, different
approaches behaved alike: both for alternative inputs
from pLMs (SeqgVec, ProtBert, ProtT5) and for alternative
methods (EAT, FNN, LA), of which one (EAT) refrained
from weight optimization.

What accuracy to expect for the next 10 location predic-
tions? If the top accuracy for one data set was Q10 ~ 60%
and Q10 ~ 80% for the other, what could users expect for
their next ten queries: either six correct or eight, or be-
tween six and eight? The answer depends on the query: if
those proteins were sequence similar to proteins with known
location (case: redundant): the answer would be eight. Con-
versely, for new proteins (without homologs of known lo-
cation), six in ten will be correctly predicted, on average.
However, this assumes that the ten sampled proteins follow
somehow similar class distributions to what has been col-
lected until today. In fact, if we applied LA(ProtT5) to a hy-
pothetical new proteome similar to existing ones, we can ex-
pect the distribution of proteins in different location classes
to be relatively similar (Marot-Lassauzaie et al., 2021). Ei-

ther way, this implies that for novel proteins, there seems
to be significant room for pushing performance to further
heights, possibly by combining LA(ProtBert)/LA(ProtT5)
with MSAs.

6. Conclusion

We presented a light attention mechanism (LA) in an archi-
tecture operating on embeddings from several pLMs (BB,
UniRep, SeqVec, ProtBert, ESM-1b, and ProtT5. LA ef-
ficiently aggregated information and coped with arbitrary
sequence lengths, thereby mastering the enormous range of
proteins spanning from 30-30 000 residues. By implicitly
assigning a different importance score for each sequence
position (each residue), the method succeeded in predict-
ing protein subcellular location much better than methods
based on simple pooling. More importantly, for three pLMs,
LA succeeded in outperforming the SOTA without using
MSA-based inputs, i.e., the single most important input
feature for previous methods. This constituted an impor-
tant breakthrough: although many methods had come close
to the SOTA using embeddings instead of MSAs (Elnag-
gar et al., 2021), none had ever overtaken as the methods
presented here. Our best method, LA(ProtT5), was based
on the largest pLM, namely on ProtT5 (Fig. 2). Many
methods were assessed on a standard data set (Almagro Ar-
menteros et al., 2017). Using a new, more challenging data
set (setHARD), the performance of all methods appeared
to drop by around 22 percentage points. While class dis-
tributions and data set redundancy (or homology) may ex-
plain some of this drop, over-fitting might have contributed
more. Overall, the drop underlined that many challenges
remain to be addressed by future methods. For the time
being, the best method LA(ProtT5) is freely available via
a webserver (embed.protein.properties) and as part of a
high-throughput pipeline (Dallago et al., 2021). Predic-
tions for the human proteome are available via Zenodo
https://zenodo.org/record/5047020.

Acknowledgements

Thanks to Tim Karl (TUM) for help with hardware and soft-
ware; to Inga Weise (TUM) for support with many other
aspects of this work. Thanks to the Rostlab for constructive
conversations and to the anonymous reviewers for construc-
tive criticism. Thanks to all those who deposit their experi-
mental data in public databases, and to those who maintain
these databases. In particular, thanks to the loanis Xenarios
(SIB, Univ. Lausanne), Matthias Uhlen (Univ. Upssala), and
their teams at Swiss-Prot and HPA. This work was supported
by the Deutsche Forschungsgemeinschaft (DFG) — project
number RO1320/4-1, by the Bundesministerium fiir Bildung
und Forschung (BMBF) — project number 03110168, and
by the BMBF through the program “Software Campus 2.0
(TU Miinchen)” — project number 011S17049.


http://embed.protein.properties
https://zenodo.org/record/5047020
https://doi.org/10.1101/2021.04.25.441334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441334; this version posted October 11, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Light Attention Predicts Protein Location from the Language of Life

References

Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M.,
and Church, G. M. Unified rational protein engineering
with sequence-based deep representation learning. Na-
ture Methods, 16(12):1315-1322, December 2019. ISSN
1548-7105. doi: 10.1038/541592-019-0598-1. URL
https://www.nature.com/articles/s415
92-019-0598-1. Number: 12 Publisher: Nature
Publishing Group.

Almagro Armenteros, J. J., Sgnderby, C. K., Sgnderby, S. K.,
Nielsen, H., and Winther, O. DeepLoc: prediction of pro-
tein subcellular localization using deep learning. Bioin-
formatics, 33(21):3387-3395, November 2017. ISSN
1367-4803. doi: 10.1093/bioinformatics/btx431. URL
https://academic.oup.com/bioinformat
ics/article/33/21/3387/3931857.

Altschul, S. F., Madden, T. L., Schiffer, A. A., Zhang,
J., Zhang, Z., Miller, W., and Lipman, D. J. Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25
(17):3389-3402, September 1997. ISSN 0305-1048. doi:
10.1093/nar/25.17.3389. URL https://doi.org/
10.1093/nar/25.17.3389.

Bahdanau, D., Cho, K., and Bengio, Y. Neural Machine
Translation by Jointly Learning to Align and Translate.
In Bengio, Y. and LeCun, Y. (eds.), 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/ab
s/1409.0473.

Bepler, T. and Berger, B. Learning protein se-
quence embeddings using information from structure.
arXiv:1902.08661 [cs, g-bio, stat], October 2019. URL
http://arxiv.org/abs/1902.08661. arXiv:
1902.08661.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E.
The Protein Data Bank. Nucleic Acids Research, 28(1):
235-242, January 2000. ISSN 0305-1048. doi: 10.1093/
nar/28.1.235. URL https://doi.org/10.1093/
nar/28.1.235.

Bernhofer, M., Dallago, C., Karl, T., Satagopam, V.,
Heinzinger, M., Littmann, M., Olenyi, T., Qiu, J., Schiitze,
K., Yachdav, G., Ashkenazy, H., Ben-Tal, N., Bromberg,
Y., Goldberg, T., Kajan, L., O’Donoghue, S., Sander, C.,
Schafferhans, A., Schlessinger, A., Vriend, G., Mirdita,
M., Gawron, P., Gu, W., Jarosz, Y., Trefois, C., Steineg-
ger, M., Schneider, R., and Rost, B. PredictProtein -
predicting protein structure and function for 29 years. Nu-
cleic Acids Research, 49(W1):W535-W540, May 2021.

ISSN 0305-1048. doi: 10.1093/nar/gkab354. URL
https://doi.org/10.1093/nar/gkab354.

Bhattacharya, N., Thomas, N., Rao, R., Dauparas, J., Koo,
P. K., Baker, D., Song, Y. S., and Ovchinnikov, S. Single
Layers of Attention Suffice to Predict Protein Contacts.
bioRxiv, pp. 2020.12.21.423882, December 2020. doi:
10.1101/2020.12.21.423882. URL https://www.bi
orxiv.org/content/10.1101/2020.12.21
.423882v2. Publisher: Cold Spring Harbor Laboratory
Section: New Results.

Blum, T., Briesemeister, S., and Kohlbacher, O. MultiLoc2:
integrating phylogeny and Gene Ontology terms improves
subcellular protein localization prediction. BMC bioin-
formatics, 10(1):274, 2009. Publisher: Springer.

Briesemeister, S., Blum, T., Brady, S., Lam, Y., Kohlbacher,
O., and Shatkay, H. SherLoc2: a high-accuracy hybrid
method for predicting subcellular localization of proteins.
Journal of proteome research, 8(11):5363-5366, 2009.
Publisher: ACS Publications.

Briesemeister, S., Rahnenfiihrer, J., and Kohlbacher, O.
YLoc—an interpretable web server for predicting sub-
cellular localization. Nucleic acids research, 38(suppl_2):
W497-W502, 2010. Publisher: Oxford University Press.

Bromberg, Y., Yachdav, G., and Rost, B. SNAP predicts
effect of mutations on protein function. Bioinformatics
(Oxford, England), 24(20):2397-2398, 2008. Publisher:
Oxford University Press.

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K.,
Kalinin, A. A., Do, B. T., Way, G. P,, Ferrero, E., Agapow,
P.-M.,, Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L.,
Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek,
S., Carpenter, A. E., Shrikumar, A., Xu, J., Cofer, E. M.,
Lavender, C. A., Turaga, S. C., Alexandari, A. M., Lu, Z.,
Harris, D. J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y.,
Wiley, L. K., Segler, M. H. S., Boca, S. M., Swamidass,
S.J., Huang, A., Gitter, A., and Greene, C. S. Oppor-
tunities and obstacles for deep learning in biology and
medicine. Journal of The Royal Society Interface, 15
(141):20170387, April 2018. doi: 10.1098/rsif.2017.0387.
URL https://royalsocietypublishing.o
rg/doi/10.1098/rsif.2017.0387. Publisher:
Royal Society.

Chou, K.-C., Wu, Z.-C., and Xiao, X. iLoc-Euk: a multi-
label classifier for predicting the subcellular localization
of singleplex and multiplex eukaryotic proteins. PloS one,
6(3):e18258, 2011. Publisher: Public Library of Science.

Consortium, T. U. UniProt: the universal protein knowl-
edgebase in 2021. Nucleic Acids Research, 2021. doi:
10.1093/nar/gkaal 100. URL https://academic.o


https://www.nature.com/articles/s41592-019-0598-1
https://www.nature.com/articles/s41592-019-0598-1
https://academic.oup.com/bioinformatics/article/33/21/3387/3931857
https://academic.oup.com/bioinformatics/article/33/21/3387/3931857
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1902.08661
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkab354
https://www.biorxiv.org/content/10.1101/2020.12.21.423882v2
https://www.biorxiv.org/content/10.1101/2020.12.21.423882v2
https://www.biorxiv.org/content/10.1101/2020.12.21.423882v2
https://royalsocietypublishing.org/doi/10.1098/rsif.2017.0387
https://royalsocietypublishing.org/doi/10.1098/rsif.2017.0387
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
https://doi.org/10.1101/2021.04.25.441334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441334; this version posted October 11, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Light Attention Predicts Protein Location from the Language of Life

up.com/nar/advance-article/doi/10.10
93/nar/gkaall00/6006196.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20(3):273-297, September 1995. ISSN
0885-6125, 1573-0565. doi: 10.1007/BF00994018. URL
http://link.springer.com/10.1007/BF00
994018.

Dallago, C., Schiitze, K., Heinzinger, M., Olenyi, T.,
Littmann, M., Lu, A. X., Yang, K. K., Min, S., Yoon,
S., Morton, J. T., and Rost, B. Learned embeddings from
deep learning to visualize and predict protein sets. Cur-
rent Protocols, 1(5):e113, 2021. doi: 10.1002/cpz1.113.
URL https://currentprotocols.onlinel

ibrary.wiley.com/doi/abs/10.1002/cpzl.

113.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In Burstein, J., Do-
ran, C., and Solorio, T. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pp. 4171-4186. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G.,
Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., Bhowmik, D., and Rost, B. Prot-
Trans: Towards Cracking the Language of Lifes Code
Through Self-Supervised Deep Learning and High Per-
formance Computing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1-1, 2021. doi:
10.1109/TPAMI.2021.3095381.

Goldberg, T., Hamp, T., and Rost, B. LocTree2 predicts
localization for all domains of life. Bioinformatics, 28
(18):1458-i465, September 2012.

Goldberg, T., Hecht, M., Hamp, T., Karl, T., Yachdav, G.,
Ahmed, N., Altermann, U., Angerer, P, Ansorge, S.,
Balasz, K., Bernhofer, M., Betz, A., Cizmadija, L., Do,
K. T., Gerke, J., Greil, R., Joerdens, V., Hastreiter, M.,
Hembach, K., Herzog, M., Kalemanov, M., Kluge, M.,
Meier, A., Nasir, H., Neumaier, U., Prade, V., Reeb, J.,
Sorokoumov, A., Troshani, 1., Vorberg, S., Waldraff, S.,
Zierer, J., Nielsen, H., and Rost, B. LocTree3 prediction
of localization. Nucleic Acids Research, 42(W1):W350—
W355, 2014. ISSN 0305-1048. doi: 10.1093/nar/gku396.
URL https://doi.org/10.1093/nar/gku3
96.

Gorodkin, J. Comparing two K-category assignments by a
K-category correlation coefficient. Computational Biol-
ogy and Chemistry, 28(5):367 — 374, 2004. ISSN 1476-
9271. doi: https://doi.org/10.1016/j.compbiolchem.200
4.09.006. URL http://www.sciencedirect.co
m/science/article/pii/S1476927104000
799.

Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C.,
Nechaev, D., Matthes, F., and Rost, B. Modeling as-
pects of the language of life through transfer-learning
protein sequences. BMC Bioinformatics, 20(1):723, De-
cember 2019. ISSN 1471-2105. doi: 10.1186/s12859-0
19-3220-8. URL https://doi.org/10.1186/sl
2859-019-3220-8.

Henikoff, S. and Henikoff, J. G. Amino acid substitution
matrices from protein blocks. Proceedings of the National
Academy of Sciences, 89(22):10915-10919, November
1992. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.8
9.22.10915. URL http://www.pnas.org/cgi/d
01/10.1073/pnas.89.22.10915.

Hochreiter, S. and Schmidhuber, J. Long Short-Term
Memory. Neural Computation, 9(8):1735-1780, 1997.
doi: 10.1162/neco0.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada,
H., Adams-Collier, C., and Nakai, K. WoLF PSORT:
protein localization predictor. Nucleic acids research, 35
(suppl_2):W585-W587, 2007. Publisher: Oxford Univer-
sity Press.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zl’dek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583-589,
August 2021. ISSN 1476-4687. doi: 10.1038/s41586-0
21-03819-2. URL https://doi.org/10.1038/
s41586-021-03819-2.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Littmann, M., Heinzinger, M., Dallago, C., Olenyi, T., and
Rost, B. Embeddings from deep learning transfer GO


https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1100/6006196
http://link.springer.com/10.1007/BF00994018
http://link.springer.com/10.1007/BF00994018
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpz1.113
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpz1.113
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpz1.113
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1093/nar/gku396
https://doi.org/10.1093/nar/gku396
http://www.sciencedirect.com/science/article/pii/S1476927104000799
http://www.sciencedirect.com/science/article/pii/S1476927104000799
http://www.sciencedirect.com/science/article/pii/S1476927104000799
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1186/s12859-019-3220-8
http://www.pnas.org/cgi/doi/10.1073/pnas.89.22.10915
http://www.pnas.org/cgi/doi/10.1073/pnas.89.22.10915
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1101/2021.04.25.441334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441334; this version posted October 11, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Light Attention Predicts Protein Location from the Language of Life

annotations beyond homology. Scientific Reports, 11(1):
1160, January 2021. ISSN 2045-2322. doi: 10.1038/s4
1598-020-80786-0. URL https://www.nature.c
om/articles/s41598-020-80786—-0. Number:
1 Publisher: Nature Publishing Group.

Mahlich, Y., Steinegger, M., Rost, B., and Bromberg, Y.
HFSP: high speed homology-driven function annotation
of proteins. Bioinformatics, 34(13):1304—i312, July 2018.
ISSN 1367-4803. doi: 10.1093/bioinformatics/bty262.
URL https://doi.org/10.1093/bioinfor
matics/bty262.

Marot-Lassauzaie, V., Goldberg, T., Armenteros, J. J. A.,
Nielsen, H., and Rost, B. Spectrum of protein location
in proteomes captures evolutionary relationship between
species. Journal of molecular evolution, pp. 1-10, 2021.
Publisher: Springer.

Mclnnes, L., Healy, J., Saul, N., and GrofBiberger, L.
UMAP: Uniform Manifold Approximation and Projec-
tion. J. Open Source Softw., 3(29):861, 2018. doi:
10.21105/joss.00861. URL https://doi.org/
10.21105/joss.00861.

Nair, R. and Rost, B. Sequence conserved for subcellular
localization. Protein Science, 11(12):2836-2847, 2002.
ISSN 1469-896X. doi: https://doi.org/10.1110/ps.02074
02. URL https://onlinelibrary.wiley.co
m/doi/abs/10.1110/ps.0207402.

Nair, R. and Rost, B. Mimicking cellular sorting improves
prediction of subcellular localization. Journal of Molec-
ular Biology, 348(1):85-100, 2005. ISSN 0022-2836.
doi: https://doi.org/10.1016/j.jmb.2005.02.025. URL
https://www.sciencedirect.com/scienc
e/article/pii/sS0022283605001774.

Ng, P. C. and Henikoff, S. SIFT: predicting amino acid
changes that affect protein function. Nucleic Acids
Research, 31(13):3812-3814, July 2003. ISSN 0305-
1048. doi: 10.1093/nar/gkg509. URL https:
//doi.org/10.1093/nar/gkg5009.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep Contextualized
Word Representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 2227-2237, New
Orleans, Louisiana, June 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N18-1202. URL
https://www.aclweb.org/anthology/N18
-1202.

Pierleoni, A., Martelli, P. L., Fariselli, P., and Casadio, R.
BaCelLo: a balanced subcellular localization predictor.
Bioinformatics, 22(14):e408—416, July 2006.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., 21:140:1-140:67,
2020. URL http://jmlr.org/papers/v21/20

-074.html.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen,
X., Canny, J., Abbeel, P., and Song, Y. S. Evaluat-
ing Protein Transfer Learning with TAPE. Advances
in neural information processing systems, 32:9689-9701,
December 2019. ISSN 1049-5258. URL https:
//pubmed.ncbi.nlm.nih.gov/33390682.

Rao, R., Ovchinnikov, S., Meier, J., Rives, A., and Sercu, T.
Transformer protein language models are unsupervised
structure learners. bioRxiv, pp. 2020.12.15.422761, De-
cember 2020. doi: 10.1101/2020.12.15.422761. URL
https://www.biorxiv.org/content/10.1
101/2020.12.15.422761v1.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J.,
Guo, D., Ott, M., Zitnick, C. L., Ma, J., and Fergus, R.
Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences.
Proceedings of the National Academy of Sciences, 118
(15), 2021. ISSN 0027-8424. doi: 10.1073/pnas.20162
39118. URL https://www.pnas.org/content
/118/15/e2016239118.

Rost, B. Twilight zone of protein sequence alignments.
Protein Engineering, Design and Selection, 12(2):85-94,
February 1999. ISSN 1741-0126. doi: 10.1093/protein/
12.2.85. URL https://doi.org/10.1093/prot
ein/12.2.85.

Rost, B. Enzyme Function Less Conserved than Anticipated.
Journal of Molecular Biology, 318(2):595-608, April
2002. ISSN 0022-2836. doi: 10.1016/S0022-2836(02)0
0016-5. URL http://www.sciencedirect.co
m/science/article/pii/sS0022283602000
165.

Rost, B. and Sander, C. Prediction of protein secondary
structure at better than 70% accuracy. Journal of molecu-
lar biology, 232(2):584-599, 1993. doi: 10.1006/jmbi.1
993.1413.

Rost, B., Liu, J., Nair, R., Wrzeszczynski, K. O., and Ofran,
Y. Automatic prediction of protein function. Cellular
and Molecular Life Sciences, 60(12):2637-2650, 2003.
doi: 10.1007/s00018-003-3114-8. URL http://www.
rostlab.org/papers/2003_rev_func/. Type:
Journal article.

Sander, C. and Schneider, R. Database of homology-
derived protein structures and the structural meaning


https://www.nature.com/articles/s41598-020-80786-0
https://www.nature.com/articles/s41598-020-80786-0
https://doi.org/10.1093/bioinformatics/bty262
https://doi.org/10.1093/bioinformatics/bty262
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.0207402
https://onlinelibrary.wiley.com/doi/abs/10.1110/ps.0207402
https://www.sciencedirect.com/science/article/pii/S0022283605001774
https://www.sciencedirect.com/science/article/pii/S0022283605001774
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1093/nar/gkg509
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://pubmed.ncbi.nlm.nih.gov/33390682
https://pubmed.ncbi.nlm.nih.gov/33390682
https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.biorxiv.org/content/10.1101/2020.12.15.422761v1
https://www.pnas.org/content/118/15/e2016239118
https://www.pnas.org/content/118/15/e2016239118
https://doi.org/10.1093/protein/12.2.85
https://doi.org/10.1093/protein/12.2.85
http://www.sciencedirect.com/science/article/pii/S0022283602000165
http://www.sciencedirect.com/science/article/pii/S0022283602000165
http://www.sciencedirect.com/science/article/pii/S0022283602000165
http://www.rostlab.org/papers/2003_rev_func/
http://www.rostlab.org/papers/2003_rev_func/
https://doi.org/10.1101/2021.04.25.441334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441334; this version posted October 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Light Attention Predicts Protein Location from the Language of Life

of sequence alignment. Proteins: Structure, Function,
and Bioinformatics, 9(1):56—-68, 1991. ISSN 1097-0134.
doi: https://doi.org/10.1002/prot.340090107. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/prot.340090107.

Savojardo, C., Martelli, P. L., Fariselli, P., and Casadio, R.
SChloro: directing Viridiplantae proteins to six chloro-
plastic sub-compartments. Bioinformatics, 33(3):347-
353, 2017.

Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G., and
Casadio, R. BUSCA: an integrative web server to pre-
dict subcellular localization of proteins. Nucleic Acids
Research, 46(W1):W459-W466, 2018. ISSN 0305-
1048. doi: 10.1093/nar/gky320. URL https:
//doi.org/10.1093/nar/gky320.

Steinegger, M. and Soding, J. MMseqs2 enables sensi-
tive protein sequence searching for the analysis of mas-
sive data sets. Nature Biotechnology, 35(11):1026—-1028,
November 2017. ISSN 1546-1696. doi: 10.1038/nbt.39
88. URL https://doi.org/10.1038/nbt.39
88.

Steinegger, M. and Soding, J. Clustering huge protein se-
quence sets in linear time. Nature Communications, 9(1):
2542, June 2018. ISSN 2041-1723. doi: 10.1038/s41467
-018-04964-5. URL https://doi.org/10.1038/
s41467-018-04964-5.

Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu,
C. H., and the UniProt Consortium. UniRef clusters:
a comprehensive and scalable alternative for improving
sequence similarity searches. Bioinformatics, 31(6):926—
932, March 2015. ISSN 1367-4803. doi: 10.1093/bioinf
ormatics/btu739. URL https://doi.org/10.109
3/bioinformatics/btu739.

Urban, G., Torrisi, M., Magnan, C. N., Pollastri, G., and
Baldi, P. Protein profiles: Biases and protocols. Com-
putational and Structural Biotechnology Journal, 18:
2281 — 2289, 2020. ISSN 2001-0370. doi: https:
//doi.org/10.1016/j.csbj.2020.08.015. URL http:
//www.sciencedirect.com/science/arti
cle/pii/S2001037020303688.

Weillenow, K., Heinzinger, M., and Rost, B. Protein lan-
guage model embeddings for fast, accurate, alignment-
free protein structure prediction. bioRxiv : the preprint
server for biology, 2021. doi: 10.1101/2021.07.31.45457
2.

Yu, C.-S., Chen, Y.-C., Lu, C.-H., and Hwang, J.-K. Predic-
tion of protein subcellular localization. Proteins: Struc-
ture, Function, and Bioinformatics, 64(3):643-651, 2006.


https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340090107
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340090107
https://doi.org/10.1093/nar/gky320
https://doi.org/10.1093/nar/gky320
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/bioinformatics/btu739
http://www.sciencedirect.com/science/article/pii/S2001037020303688
http://www.sciencedirect.com/science/article/pii/S2001037020303688
http://www.sciencedirect.com/science/article/pii/S2001037020303688
https://doi.org/10.1101/2021.04.25.441334
http://creativecommons.org/licenses/by-nd/4.0/

