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Abstract 
The brain performs various cognitive functions by learning the spatiotemporal salient 
features of the environment. This learning likely requires unsupervised segmentation of 
hierarchically organized spike sequences, but the underlying neural mechanism is only 
poorly understood. Here, we show that a recurrent gated network of neurons with 
dendrites can context-dependently solve difficult segmentation tasks. Dendrites in this 
model learn to predict somatic responses in a self-supervising manner while recurrent 
connections learn a context-dependent gating of dendro-somatic current flows to 
minimize a prediction error. These connections select particular information suitable for 
the given context from input features redundantly learned by the dendrites. The model 
selectively learned salient segments in complex synthetic sequences. Furthermore, the 
model was also effective for detecting multiple cell assemblies repeating in large-scale 
calcium imaging data of more than 6,500 cortical neurons. Our results suggest that 
recurrent gating and dendrites are crucial for cortical learning of context-dependent 
segmentation tasks. 
 
 
Introduction 
The ability of the brain to learn hierarchically organized sequences is fundamental to 
various cognitive functions such as language acquisition, motor skill learning, and 
memory processing [1-8]. To adequately process the cognitive implications of sequences, 
the brain has to generate context-dependent representations of sequence information. 
For instance, in language processing the brain may recognize "nueron" as a misspelling 
of "neuron" if the brain knows the word "neuron" but not the word "nueron". However, 
the brain recognizes "affect" and "effect" as different words even if the two words are 
very similar. "Break" and "brake" are also different words although these words combine 
the same letters in different serial orders. The brain can also recognize the same word 
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presented in different temporal lengths. All these examples suggest the inherent 
flexibility of context-dependent sequence learning in the brain. However, the neural 
mechanisms underlying this flexible learning, which occurs in an unsupervised manner, 
remain elusive. 
 
 Segmentation or chunking of sensory and motor information is at the core of 
the context-dependent analysis of hierarchically organized sequences [9-12]. However, 
little is known about the neural representations and learning mechanisms of hierarchical 
sequences. Recently, neurons encoding long-range temporal correlations in the song 
structure were found in the higher vocal center of songbirds [13]. These neurons 
responded differently to the same syllables (the basic elements of bird song) depending 
on the preceding phrases (constituted by several syllables) or the succeeding phrases. 
Different responses of the same neurons in different sequential contexts were also found 
in the monkey supplementary motor area [14,15]. Hierarchical sequences are often 
assumed to mirror the hierarchical organization of brain regions. However, the human 
premotor cortex jointly represents movement chunks and their sequences [16] and 
linguistic processing in humans also lacks an orderly anatomical representation of 
sequential context [17]. 
 

Unsupervised, context-dependent segmentation is difficult in computational 
models. Recurrent network models can generate rich sequential dynamics, but these 
networks are typically trained by a supervised method. Spike-timing-dependent 
plasticity was used for unsupervised segmentation of input sequences in a recurrent 
network model [18]. However, while the model worked for simple hierarchical spike 
sequences, it could not learn context-dependent representations for overlapping spike 
sequences. Single-cell computation with dendrites could solve a variety of temporal 
feature analysis including the unsupervised segmentation of hierarchical spike 
sequences [19], supporting the role of dendrites in sequence processing [20]. However, 
context-dependent segmentation was also difficult for this model. Although the 
segmentation problem has been partially solved, recurrent connections alone or 
dendrites alone are insufficient for solving the difficult segmentation tasks such as 
exemplified in the beginning of this article.  
 

Here, we demonstrate that a combination of dendritic computation and a 
recurrent gating dramatically improves the ability of neural networks to context-
dependently segment hierarchical spike sequences. Our central hypothesis is that 
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recurrent synaptic input multiplicatively regulates the degree of gating of instantaneous 
current flows from the dendrites to the soma. As suggested previously [19,21], the 
dendrites in this model predict the somatic responses. We derive an optimal learning 
rule for afferent and recurrent synapses to minimize a prediction error. The resultant 
dendrites generally learn redundant representation of multiple sequence elements 
while recurrent input learns to selectively gate the dendritic activity suitable for the 
given context. Recurrent networks with gating synapses were recently used in supervised 
sequence learning [22]. 
 

There is an increasing need for efficient methods to detect and analyze the 
characteristic spatiotemporal patterns of activity in large-scale neural recording data. 
We demonstrate that the proposed model can efficiently detect cell-assembly 
structures in large-scale calcium imaging data. We show two example cases of such 
analysis in the hippocampus and visual cortex of behaving rodents. In particular, the 
latter dataset contains the activity of tremendously many neurons (~ 6,500), and 
analyzing the fine-scale spatiotemporal structure of activity patterns is computationally 
costly and difficult for any other methods. In contrast, the data size hardly affected the 
performance and speed of learning in our model. Surprisingly, the efficiency was even 
somewhat higher for larger data sizes. These results highlighted the crucial role of 
recurrent gating in amplifying the weak signature of cell assembly structure detected by 
the dendrites. 

 
 
Results 
 
The role of recurrent-driven gating in complex segmentation tasks 
Our recurrent network model consists of two-compartment neurons with somatic and 
dendritic compartments (Fig.1a, b). The dendritic components receive hierarchically 
structured afferent input and recurrent synaptic input, and the sum of these inputs 
drives the activity of the dendritic component. A similar two-compartment model 
without recurrent inputs has been studied in segmentation problems [19]. Here, we 
hypothesize that recurrent synaptic input multiplicatively amplifies or attenuates a 
current flow from the dendrite to the soma in an input-dependent fashion: The stronger 
the recurrent input, the larger the dendro-somatic current flow. This "gating" effect is 
described by a non-linear function of recurrent input to the neuron and controls the 
instantaneous impact of dendritic activity on the soma (Fig. 1c). We will show below that 
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the recurrent-driven gating plays a pivotal role in the learning of flexible segmentation. 
Unless otherwise stated, below the results are shown for network models with 
multiplicative recurrent inputs but no additive ones. In this setting, afferent inputs can 
evoke large somatic responses if and only if both dendritic activity and gating effect are 
sufficiently strong. A network model with both additive and multiplicative recurrent 
inputs will be considered later. 

We first demonstrate the segmentation of two spike pattern sequences (chunks) 
repeated in input spike trains (Fig. 2a). Each chunk was a combination of three fixed 
spike patterns out of the total five: “A”, “B”, “C”, “D” and “E”, where the component 
pattern “E” appeared in both chunks. Therefore, the two chunks were mutually 
overlapped. We fixed the average firing rate of each input neuron at 5 Hz over the entire 
period of simulations. As training proceeded, the network generated two distinct cell 
assemblies, each of which selectively responded to one of the chunks (Fig. 2b, c). 
Notably, each cell assembly responded to the pattern “E” in a preferred chunk of the 
cell assembly but not in a non-preferred chunk (Fig. 2c, d). A network with a constant 
gating function trained on the same afferent input failed to discriminate the pattern “E” 
in different chunks and consequently could not learn the chunks (Supplementary Fig. 1). 
The result suggests the crucial role of the recurrent-driven gating in the segmentation 
task. 
 

The above results suggest that this model can discriminate the context of 
sequences (i.e., the relationship between “E” and other component patterns in a chunk). 
However, it is also possible that the model separated the overlapping chunks merely 
relying on the component patterns that were not common between the two chunks 
and/or on the nonhomogeneous occurrence probabilities among the component 
patterns. To exclude these possibilities, we examined the case where different chunks 
shared all component patterns with equal frequencies (Fig. 3a, left). In other words, the 
same component patterns occurred in different chunks in different orders (i.e., “ABCD”, 
“DCBA”, “BDAC”). During learning, the model was exposed to irregular spike trains 
recurring the three chunks intermittently (Fig. 3a, right). The model developed distinct 
cell assemblies responding selectively to one of these chunks (Fig. 3b, Supplementary 
Fig. 2a and 2b), thus successfully discriminating the same components belonging to 
different chunks. 
 
The network mechanism of context-dependent gating 
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In this model, the recurrent-driven gating provides context-dependent signals necessary 
for segmenting overlapping chunks. To gain an insight into the role of recurrent gating 
in learning, we investigated how the somatic and dendritic compartments and gating 
factors of individual neurons behave during training. The dendritic compartments of 
these neurons responded to a preferred component pattern irrespective of which chunk 
the component appeared, showing that the dendrites were unable to discriminate the 
same component pattern as shared by different chunks (Fig. 3c). In contrast, the gaiting 
factors responded differently to the same component pattern appearing in different 
chunks depending on the preceding component patterns (Fig. 3d). This selective gating 
is thought to arise from the memory effect generated by recurrent synaptic input. As a 
consequence, the somatic compartment could selectively respond to a particular chunk 
that strongly activated the gating factor during the presentation of the preferred 
component pattern (Fig. 3e). Similar results are shown for other neurons in the trained 
network (Supplementary Fig. 2c)  
 

Our model developed low-dimensional representations that strongly reflect the 
temporal structures of chunks. The principal component analysis (PCA) of the network 
responses to the overlapping chunks shown in Fig. 2 revealed that a smaller number of 
eigenvectors explained a larger cumulative variance as the training progressed (Fig. 4a). 
At different stages of learning, the low-dimensional trajectories differently represented 
the chunks. Before learning, the two chunks and unstructured input segments (i.e., 
random spike trains) occupied almost the same portions of the low-dimensional 
trajectories (Fig. 4b, left). At the mid stage of learning, the portions of the chunks grew 
while those of the random segments shrank, but the trajectories evoked by the 
presentation of the shared pattern “E” were not well separated (Fig. 4b, middle). After 
sufficient learning, the trajectories were completely separated (Fig. 4b, right). As 
previously shown, recurrent gating crucially contributed to this separation. Indeed, the 
network generated almost overlapping trajectories for the pattern "E" if we fastened 
recurrent gating during learning and test (Fig. 4c) or if we trained the model with 
recurrent gating but fastened it during test (Fig. 4d). Two trajectories for the overlapping 
chunks were not clearly separable due to large fluctuations if we randomly shuffled the 
learned recurrent connections to destroy their connectivity pattern (Fig. 4e). Thus, the 
context-dependent gating depends crucially on the learned fine structure of recurrent 
connections. 
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While the network model could learn noisy chunks as far as jitters in spike times 
were not too large (Supplementary Fig. 3a and 3b), the magnitude of jitters strongly 
influenced learning speed. This was indicated by the slow saturation of normalized 
mutual information (see Methods) between network responses and the true labels of 
chunks during learning (Supplementary Fig. 3c). The normalized mutual information 
took near the maximum value (≈ 1) as far as the variance of jitters fell within the length 
of chunks (50 ms). This information dropped rapidly beyond the chunk length 
(Supplementary Fig. 3d).  

 
Just like the brain can recognize a learned sequence irrespective of the length of its 

presentation, a learned pattern is detectable for the network even if the pattern is 
presented with a length different from the learned one (Fig. 5a, b). We quantified the 
similarity of network responses to otherwise same input patterns with different lengths 
by calculating the rank-order correlation between responses to stimuli presented with 
three different lengths. In the network that learned the original pattern, the similarity 
increased significantly for all three durations of stimulus presentation (Fig. 5c), 
suggesting that our model learns the manifold of temporal spike patterns rather than 
individual specific patterns. The robustness shown above raises a question about 
whether the present model can discriminate precise temporal spike patterns. Indeed, 
the network model clearly discriminated between similar but different input patterns 
when the inputs were learned as separate chunks. To study this, we trained the network 
model with random spike trains involving a repeated temporal pattern and stimulated 
the learned model with the original pattern (Fig. 5d, top) and its time-reversal version 
(Fig. 5d, bottom). The cell assembly that learned to detect the original pattern also 
responded to the reversed pattern in a reversed temporal order, meaning that the 
different temporal spike patterns were not discriminable in this case (Fig. 5e). 
Interestingly, the same network model trained with both original pattern and time-
reversed pattern self-organized distinct cell assemblies selective for the individual 
patterns (Fig. 5f). This result may account for discrimination between "break" and 
"brake" when these words were learned as separate entities. 

 
Cell assembly detection in large-scale calcium imaging data 
A virtue of our model is its applicability to analyzing large-scale neural recoding data. 
We show this in two calcium imaging data. The first data contains the activities of 452 
hippocampal CA1 neurons recorded from mice running back and forth along a linear 
track between two rewarded sites (Fig. 6a, top) [23]. Repetitive sequential activations 
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of place cells were reported previously in the data (https://github.com/zivlab/island. For 
the use of our model, we binarized the data by thresholding activity of each neuron at 
the 50% of its maximal intensity (Fig. 6a, bottom). After training, model neurons 
detected groups of input spike trains that tended to arrive in sequences, each of which 
was preferentially observed at a particular position of the track in a particular direction 
of run (Fig. 6b). Sorting the activities of hippocampal neurons according to the 
sequential firing of model neurons (Methods) revealed place-cell sequences without 
referring to the behavioral data (Fig. 6c). 

 
Our second example is from the visual cortex in mice running on an air-floating ball 

[24]. The dataset [25] contains the activity of 6,532 neurons recorded by two-photon 
calcium imaging from visual cortex as well as behavioral data (facial movements) 
monitored simultaneously with an infrared camera (Fig. 6d) 
(https://figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visu
al_cortex_during_spontaneous_behaviors/6163622/4. Due to the large data size, 
detecting cell assemblies is computationally challenging in this dataset. After training, 
the network model formed several neural ensembles, each of which displayed distinct 
spatiotemporal response patterns (Fig. 6e). Interestingly, these neural ensembles 
showed their maximal responses at different periods of time, and the pupil area also 
changed its maximal size depending on active neural ensembles (Fig. 6d and 6e). By 

sorting cortical neurons according to the response patterns of model neurons (Methods), 
we could find the repetition of distinct cell assemblies in the visual cortex (Fig. 6f). The 
result revealed that active cell assemblies were changed between the early (< 280-290 
s) and late epoch of spontaneous behavior. To find the cell-assembly structures, we 
sorted recurrent connections by grouping co-activated model neurons (Fig. 6g: see 
Methods). In contrast, such structures were unobvious in the weight matrix of afferent 
synapses (Fig. 6h). Importantly, without recurrent gating (in this case, the model is 
equivalent to the previous feedforward network [19]) the cell-assembly structures 
detected were vague, indicating the crucial contribution of recurrent gating to cell 
assembly detection (Supplementary Fig. 4). Unexpectedly, the time necessary for 
learning little changed with data size, or the time was even slightly shorter for larger 
data sizes (Fig. 6i). Presumably, this unintuitive result was because each cell assembly 
was represented by more neurons in larger data [19]. 
 
Redundant information representations on dendrites 
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Evidence from the visual cortex [26], retrosplenial cortex [27], and hippocampus [28] 
suggested that the representations of sensory and environmental information in cortical 
neurons are more redundant on the dendrites compared to the soma. The dendrites can 
have multiple receptive fields while the soma generally represents only one of these 
receptive fields. The soma is likely to access information represented in a subset of the 
dendritic branches that share the same receptive field. A similar redundant coding 
occurs in the present somato-dendritic sequence learning. To show this, we constructed 
a recurrent network of neurons having three dendritic components and simulated how 
the model learns orientation tuning. The individual dendritic branches were assumed to 
undergo independent recurrent gating and mutual competition through softmax (Fig. 
7a). During learning, the competition suppressed the dendritic activities that were less 
correlated with the somatic responses. In the self-organized network, the somatic 
compartments acquired unique preferred orientations (Fig. 7b). In contrast, dendritic 
branches displayed different preferred orientations in some neurons (Fig. 7c, d). Thus, 
the learning rule and recurrent gating proposed in this study possibly underlie the 
somatic selection process of redundant dendritic representations. 
 
Role of the conventional recurrent synaptic input 
While the multiplicative recurrent input (i.e., recurrent gating) is crucial for segregating 
complex chunks, what is the role of additive (i.e., conventional) recurrent input? We 
demonstrate that the additive component is still needed for retrieving chunked 
sequences, namely, for pattern completion. We simulated a network model having both 
recurrent gating and non-vanishing additive recurrent inputs. The network received a 
temporal input containing two mutually overlapping chunks (Fig. 8a), and all synaptic 
connections underwent learning. The trained network formed two cell assemblies 
responding selectively to either of the chunks, as in the previous network without 
additive recurrent connections (Supplementary Fig. 5). Since only additive recurrent 
input, but not recurrent gating, can activate postsynaptic cells, the additive input 
generates a reverberating activity, which may in turn assist the retrieval of learned 
sequences. This actually occurred in our simulations. Applying a cue stimulus, which was 
the first component pattern of one of the learned chunks, enabled the trained network 
to retrieve the subsequent component patterns in the chunk (Fig. 8b, c). Thus, recurrent 
gating and additive recurrent inputs contribute to learning and retrieval of segmented 
sequence memory, respectively, in our network model. 
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Discussion 
In this study, we constructed a recurrent network of compartmentalized neuron models 
to explore the neural mechanisms to segment temporal input. The crucial role of 
recurrent gating in context-dependent chunking of complex sequences is a major finding. 
Recurrent gating enables the instantaneous network state to regulate the degree of the 
dendro-somatic information transfer in single neurons in different contexts. In contrast, 
simple segmentation tasks do not necessarily require recurrent connections. With the 
help of recurrent gating, the model is capable of detecting the fine structures of cell 
assemblies in large-scale neural recording data.  
 
 Our model describes a possible form of integrating dendritic computation into 
computation at the network level. Learning in our model minimizes the prediction error 
between the soma and dendrites, thus improving the consistency in responding to 
synaptic input between the input terminal (dendrites) and the output terminal (soma) 
of single neurons. This enables the neurons to learn repeated patterns in synaptic input 
in a self-supervised manner. Previous theoretical studies utilized the local dendritic 
potential with a fixed gating factor to predict the somatic spike responses [19,21]. We 
extended the previous learning rule over recurrent connections such that recurrent 
input helps the dendritic compartment to predict the somatic responses by regulating 
the degree of signal transfer to the soma in a network state-dependent manner. As a 
consequence of recurrent gating, the soma can respond differently to the same 
sequence component depending on the preceding element in sequences, whereas the 
dendrites respond similarly to the same component. As in our model, some neurons in 
the premotor nucleus HVC in canaries change their responses to a song element 
depending on the preceding phrases in songs [13]. However, the response of HVC 
neurons can also vary according to the following phrases in songs. Such response 
modulations are likely to represent action planning, which was not considered in this 
study. Previous experimental and theoretical studies suggested that dendritic inhibition 
implements a gating operation on synaptic input [29-32]. The role of inhibition on the 
context-dependent segmentation of input should also be investigated further. 
 

 Previously, spike-timing-dependent plasticity was used for detecting recurring 
patterns in input spike trains in a recurrent neural network without recurrent gating 
[18]. While the model successfully discriminated relatively simple sequences, it could 
not discriminate complex sequences involving, for instance, overlapping 
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spatiotemporal patterns. Our results suggest that additive recurrent connections are 
unlikely to be crucial for learning hierarchically organized sequences. These 
connections are necessary for retrieving chunked sequences but are unnecessary for 
learning these sequences. Our results instead suggest that such learning crucially relies 
on recurrent gating and its context-dependent tunning. Thus, multiplicative and 
additive recurrent connections have a clear division of labor in the present model. 
Recurrent synapses were shown to amplify the responses of cortical neurons having 
similar receptive fields [33], and this amplification resembles the selective 
amplification of a particular sequence component shown in this study. However, the 
experimental confirmation of recurrent gating is open to future studies. 

 
 Some neural network models in artificial intelligence also utilize gating 
operations. A well-known example is Long Short-Term Memory (LSTM) for sequence 
learning and control [34]. The most general form of LSTM contains three types of gate 
functions, i.e., input, output, and forget gates, and these functions are optimized 
through supervised learning. In an interesting attempt at the learning-to-learn paradigm 
[35-37], LSTM was coupled with another network model for self-supervised learning of 
visual features [38]. In another LSTM-inspired model, neural dynamics with oscillatory 
gated recurrent input were used to convert spatial activity patterns to temporal 
sequences in working memory and motor control [22]. In contrast to LSTM, our model 
learns the optimal gating of the dendro-somatic information transfer by seeking a self-
consistent solution to the optimization problem without supervision. Unlike in LSTM, 
our model only has a single type of gate, which likely corresponds to the input gate of 
LSTM, to regulate a current flow into the output terminal (soma) of the neuron. In LSTM, 
however, the most influential gate on learning performance is thought to be the forget 
gate [39,40]. It is intriguing to ask whether and how recurrent networks learn an optimal 
forget gate for the unsupervised learning of hierarchical sequences. 
 
 When multiple dendritic branches compete for repeated patterns of synaptic 
input to a single neuron, recurrent gating enables these branches to learn different input 
features. Consequently, in each neuron, the dendrites learn more redundant 
representations of input information than the soma. In pyramidal neurons in the rodent 
primary visual cortex, the dendritic branches have heterogeneous orientation 
preferences while the somata have unique orientation preferences [26]. Similarly, in 
retrosplenial cortex [27] and place cells in the hippocampal CA3 [28], the dendritic 
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branches have multiple receptive fields whereas the somata have unique receptive 
fields. Our model provides a possible neural mechanism for these redundant 
representations on the dendrites. When the environment suddenly changes, such 
redundancy may allow neural networks to quickly remodel their responses to adapt to 
the novel situation. However, the functional benefit of this redundancy has yet to be 
clarified. 
 
 A practically interesting feature of our model is its applicability to large-scale 
neural recording data. For such purposes, various mathematical tools have been 
proposed based on methods in computer science and machine learning [41-45]. 
However, many of these methods suffer time-consuming, combinatorial problems 
necessary for an exhaustive search for activity patterns in the neural population. In 
contrast, our model with a biologically inspired learning rule is free from this problem, 
presumably due to the same reason that cortical circuits do not have this problem. 
Actually, the present data from the mice visual cortex contain more than 6,000 active 
neurons, yet our analysis revealed clear evidence for cell assembly structures. These 
results are interesting because they suggest that cell assemblies underly the 
multidimensional neural representations of mice spontaneous behavior [24]. As the size 
of neural recording data is increasing rapidly, the low computational burden and high 
sensitivity to structured activity patterns show big advantages of this model. 
 
 
Methods 
Neural network model 
Our network model consists of 𝑁!"  input neurons and 𝑁  recurrently connected 
neurons. Each neuron in the recurrent network consists of two compartments: the 
somatic and dendritic compartments. Inspired from a previous single neuron model, the 
somatic response can be approximated as an attenuated version of the dendritic 
potential 𝑉 [21]. In our recurrent network model, the dendro-somatic signal transfer is 
regulated by the gating factor 𝜆 that depends on recurrent synaptic inputs through the 
local potential 𝑐 as follows: 

𝑐#(𝑡) = 	𝐰#
"$%(') ∙ 𝒆"$%(𝑡),																																						(1)	

𝜆#(t) = 𝑔)2𝑐#̂(𝑡)4																																																				(2)	
𝑉#(𝑡) = 	𝐰#

"$%(*) ∙ 𝒆"$%(𝑡) + 𝐰#
$+%(*) ∙ 𝒆$+%(𝑡),							(3) 

where the subscript 𝑖  is the neuron index, 𝐰#
"$%(')  are the 𝑁-dimensional weight 

vector of recurrent gating on the local potential 𝑐, and 𝐰#
"$%(*)  the 𝑁-dimensional 
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weight vector of additive recurrent connections on the dendrite of the 𝑖-th neuron. In 

Eq. (2), 𝑔)  and 𝑐̂  will be defined later. The 𝑁!" -dimensional vector 𝐰#
$+%(*) 

represents the weights of afferent inputs. Except in Fig. 8, we set as 𝐰#
"$%(*) = 𝟎. The 

variables 𝒆"$%  and 𝒆$+%  are the post-synaptic potentials evoked by recurrent and 

afferent inputs, respectively. The initial values of 𝐰#
"$%(',*)  and 𝐰#

$+%(*)  were 
generated by Gaussian distributions with zero mean and the standard deviations of 
1 √𝑁⁄  and 1 <𝑁!"⁄ , respectively. All three types of connections are fully connected.  

The dynamics of the somatic membrane potential are described as 

𝑈̇#(𝑡) = −
1
𝜏 𝑈#

(𝑡) + 𝜆#(t) A−𝑈#(𝑡) + 𝑉B#(𝑡)C − 𝑮# ∙ 𝒆"$%(𝑡),			(4) 

where 𝜏 = 15 ms, and 𝑐̂#  and 𝑉B#  are the standardized potentials calculated as 

𝑐̂#(𝑡) = [𝑐#(𝑡) − 𝜇#-(𝑡)] J𝜌#-(𝑡) − 𝜇#-(𝑡).L ,																																	(5)	

𝑉B#(𝑡) = [𝑉#(𝑡) − 𝜇#/(𝑡)] J𝜌#/(𝑡) − 𝜇#/(𝑡).L ,																															(6) 

where 𝜇#-(𝑡)  and 𝜌#-(𝑡)  are exponentially decaying averages of the membrane 
potential and its square of the gating compartment, 

𝜇#-(𝑡) = (1 − 𝛾)𝜇#-(𝑡 − 1) + 𝛾𝑐#(𝑡),																																									(7)	
𝜌#-(𝑡) = (1 − 𝛾)𝜌#-(𝑡 − 1) + 𝛾𝑐#(𝑡).,																																							(8)	

respectively (0 < 𝛾 < 1). The values of 𝜇#/(𝑡) and 𝜌#/(𝑡) are calculated from 𝑉#  in a 
similar fashion. The last term in Eq. (4) represents peri-somatic recurrent inhibition with 
uniform inhibitory weights of strength 1 (2<𝑁)⁄ . No self-inhibition is considered. In Eq. 
(2), the gating function 𝑔)(𝑥) is defined as 

𝑔)(𝑥) = 𝑔0T1 + exp2−𝛽1(𝑥 − 𝜃1)4Z
23,																																					(9) 

where 𝑔0 = 0.7, 𝛽1 = 5	and 𝜃1 = 0.5.  
The somatic compartment generates a Poisson spike train with saturating 

instantaneous firing rate given as 

𝜙(𝑥) = 𝜙0T1 + exp2−𝛽(𝑥 − 𝜃)4Z
23,																																												(10) 

where 𝜙0 = 0.05 kHz, 𝛽 = 5 and 𝜃 = 1 throughout the present simulations. 
    Afferent inputs are described as Poisson spike trains of 𝑁!" input neurons:  

𝑋4$+%(𝑡) =_𝛿2𝑡 − 𝑡4,5$+%4,
5

																																			(11) 
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where 𝛿 is the Dirac’s delta function and 𝑡4,5$+% is the time of the 𝑞-th spike generated 
by the 𝑘 -th input neuron. The postsynaptic potential evoked by the 𝑘 -th input is 
calculated as 

𝜏6𝐼4̇$+% = −𝐼4$+% +
1
𝜏 𝑋4

$+%,																																							(12)	

𝑒̇4$+% = −
𝑒4$+%

𝜏 + 𝑒0𝐼4$+%,																																											(13) 

where 𝜏6 = 5	ms and 𝑒0 = 25 . The postsynaptic potentials induced by recurrent 
inputs, 𝒆"$%, are similarly calculated. 
 
The optimal learning rule for recurrent gated neural networks 
We derive an optimal learning rule for the gating recurrent neural network in the spirit 
of minimization of regularized information loss (MRIL), which we recently proposed for 
single neurons [19]. The objective function is the KL-divergence between two Poisson 
distributions associated with the somatic and dendritic activities: 

𝐸(𝐖*,𝐖') = gh 𝑑𝑡	_D78[𝜙(𝑈#(𝑡))||𝜙(𝑉#∗(𝑡))]
#

:

0
l,											(14) 

where angle bracket stands for the averaging over input spike trains, and 𝐖* and 𝐖' 
are the weight matrix of synaptic inputs onto the dendrite 𝑉 and those onto the local 
potential 𝑐  for recurrent gating, respectively. The gated dendritic potential 𝑉#∗  is 
defined as 

𝑉#∗(𝑡) ≡
𝑔)(𝑐#)

𝑔8 + 𝑔)(𝑐#)
𝑉#(𝑡).											(15) 

The crucial point in Eq. (15) is that the degree of gating depends on 𝑐, and hence on 
network states through Eq. (1). 
    The learning rule for the weights on the dendritic compartments is similar to the 
previously derived rule [19] except that the degree of gating is no longer constant in the 
present model: 

∆𝐰#
"$%,$+%(*) 	 ∝ 	−

𝜕𝐸
𝜕𝐰#

"$%,$+%(*)	

										= 	 gh 𝑑𝑡	𝜓*(𝑐# , 𝑉#∗)[𝜙(𝑈) − 𝜙(𝑉#∗)]𝒆"$%,$+%
:

0
l ,								(16) 

where the function 𝜓*(𝑐# , 𝑉#∗) is defined as 
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𝜓*(𝑐# , 𝑉#∗) =
𝑔)(𝑐#)

𝑔8 + 𝑔)(𝑐#)
𝜙(𝑉#∗) r1 −

𝜙(𝑉#∗)
𝜙0

s.															(17) 

The learning rule for recurrent gating is novel and can be calculated by a gradient 
descent as follows: 

∆𝐰#
"$%(') 	 ∝ 	−

𝜕𝐸
𝜕𝐰#

"$%(')	

											= 	 gh 𝑑𝑡	 t𝜙(𝑈#)
𝜕

𝜕𝐰#
"$%(') log𝜙(𝑉#

∗) −
𝜕

𝜕𝐰#
"$%(') 𝜙(𝑉#

∗)x
:

0
l	

											= 	 gh 𝑑𝑡	
𝜙;(𝑉#∗)
𝜙(𝑉#∗)

[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝑉#
𝜕

𝜕𝐰#
"$%(')

𝑔)(𝑐#)
𝑔8 + 𝑔)(𝑐#)

:

0
l	

											= 	 yh 𝑑𝑡	
𝛽1𝑔8𝑔)(𝑐#) z1 −

𝑔)(𝑐#)
𝑔0

{

[𝑔8 + 𝑔)(𝑐#)].
𝜙;(𝑉#∗)
𝜙(𝑉#∗)

[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝑉#𝒆"$%
:

0
|	

											= gh 𝑑𝑡	𝜓'(𝑐# , 𝑉#∗)[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝑉#𝒆"$%
:

0
l,																									(18) 

where the function 𝜓'(𝑐# , 𝑉#∗) is defined as 

𝜓'(𝑐#) =
𝛽1𝑔8 z1 −

𝑔)(𝑐#)
𝑔0

{

𝑔8 + 𝑔)(𝑐#)
𝜓*(𝑐#).																									(19) 

In the present simulations, we used an online version of the above learning rules: 

∆𝐰#
"$%,$+%(*) = 𝜀"$%,$+%(*)𝜓*(𝑐# , 𝑉#∗)[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝒆"$%,$+%								(20)	

∆𝐰#
"$%(') 	= 𝜀"$%(')𝜓'(𝑐# , 𝑉#∗)[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝑉#𝒆"$%,															(21) 

where the learning rates were given as 𝜀$+%(*) = 102<, 𝜀"$%(*) = 102<, and 𝜀"$%(') =
102=. 
 
The optimal learning rule for multi-dendrite neuron model 
For the multi-dendrite neuron model used in Fig. 7, the membrane potential of the k-th 
dendrite of the i-th neuron and the dynamics of the corresponding somatic potential 
were calculated as 

𝑉#,4(𝑡) = 	𝐰#
$+%(*) ∙ 𝒆$+%(𝑡),					(22) 

𝑈̇#(𝑡) = −
1
𝜏 𝑈#

(𝑡) +_𝜆#,4(t) A−𝑈#,4(𝑡) + 𝑉B#,4(𝑡)C
>

4?3

− 𝑮# ∙ 𝒆"$%(𝑡),				(23) 
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where 𝐾  is the number of dendrites in each neuron. In this study, 𝐾 = 3  for all 
neurons. We assumed that the dendritic compartments compete for the somatic activity 
of each neuron, governed by recurrent gating:  

𝜆#,4(t) =
exp A𝛽1𝑐#,4(𝑡)C

∑ exp A𝛽1𝑐#,@(𝑡)C@

,																					(24) 

where 𝑐#,4 is calculated as 

𝑐#,4(𝑡) = 	𝐰#,4
"$%(') ∙ 𝒆"$%(𝑡).																				(25)	

Since 𝑉#∗ = (𝑔8 + 1)23 ∑ 𝜆#,@@ 𝑉#,@ , it straightforward to derive the update rule for 
connections onto to the dendrites:  

∆𝐰#,4
$+%(*) = 𝜀$+%(*)𝜓*2𝜆#,4 , 𝑉#∗4[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝒆$+%,														(26) 

where 

𝜓*2𝜆#,4 , 𝑉#∗4 =
𝜆#,4

𝑔8 + 1
𝜙(𝑉#∗) r1 −

𝜙(𝑉#∗)
𝜙0

s.																	(27) 

Using the fact that 𝜕𝜆#,4 𝜕𝑐#,@ =	𝜆#,4(𝛿@,4 − 𝜆#,4),⁄  we can derive the update rule for 
recurrent gating as follows: 

∆𝐰#,4
"$%(') = 𝜀"$%(')_𝜓4,@- (𝝀# , 𝑉#∗)[𝜙(𝑈#) − 𝜙(𝑉#∗)]𝑉#,@𝒆"$%,

@
																		(28) 

where 
𝜓4,@- (𝝀# , 𝑉#∗) = 2𝛿@,4 − 𝜆#,44𝜓*2𝜆#,@ , 𝑉#∗4.																									(29) 

 
Normalized mutual information score 
In Supplementary Fig. 3, we determined the estimated labels of the output response by 
Affinity Propagation [46], and then calculated the normalized mutual information score 
between the estimated labels 𝑋 and the true label 𝑌 as 

NMI = 2
𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌),																												(30) 

where 𝐼(𝑋; 𝑌)  is the mutual information between 𝑋  and 𝑌  and 𝐻(𝑋)  is the 
entropy of 𝑋.  
 
The Spearman’s rank-order correlation 
In Fig. 5c, we quantified the extent to which the order of sequential responses was 
preserved in network activity. To this end, we calculated the Spearman’s rank-order 
correlation between network responses as 
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𝜌 = 1 −
6∑ 𝐷A.B

A?3

𝑁C − 𝑁 ,																																(31) 

where 𝑁 is the number of neurons in the network and 𝐷A  is the difference in the 
ranks of the n-th neuron between two datasets when sorted according to their onset 
response times. 
 
Neural sorting algorithms 
In all figures except Fig. 6e, neurons in the trained network were sorted according to the 
onset response times of these neurons. In Fig. 6e, we first grouped neurons such that all 
pairs in a group had a correlation coefficient greater than 0.2. We then sorted the 
resultant groups based on their onset response times. In Fig. 6c and 6f, we first sorted 
model neurons based on their peak response times. We then sorted the experimental 
data by associating each cortical neuron with a model neuron showing the highest 
correlation. 
  
Values of parameters 
The values of parameters used in the present simulations are as follows: in Figs. 2, 4, 5, 
8 and Supplementary Figs. 1, 3, and 5, 𝑁 = 500, 𝑁!" = 2000 and 𝛾 = 0.0003; in Fig. 
3 and Supplementary Fig. 2, 𝑁 = 1200, 𝑁!" = 2000 and 𝛾 = 0.0003; in Fig. 6a-c and 
Supplementary Fig.4a, 𝑁 = 600 , 𝑁!" = 452  and 𝛾 = 0.0003 ; in Fig. 6d-f and 
Supplementary Fig.4b and 4c, 𝑁 = 600 , 𝑁!" = 6,532  and 𝛾 = 0.00005 ; in Fig. 7, 
𝑁 = 200, 𝑁!" = 28 × 28 and 𝛾 = 0.0003. Usually, the network was trained for the 
duration of 1,000 seconds. In Fig. 6, the input spike trains constructed from experimental 
data were repeated 200 times during training. 
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Figure legends 
 
Figure 1. A recurrent gated network of compartmentalized neurons. a, A network of 
randomly connected compartmentalized neurons is considered. b, Each neuron model 
consists of a somatic compartment and a dendritic compartment. Unless otherwise 
specified, the dendrite only receives afferent inputs. The somatic compartment 
integrates the dendritic activity and inhibition from other neurons. Gating factor λ is 
determined by recurrent inputs and regulates the instantaneous fraction of dendritic 
activity propagated to the soma. c, The effect of gating factor on the somatic response 
is schematically illustrated (left). The relationship between the dendritic potential and 
somatic firing rate is shown for various values of gating factor (right). 
 
Figure 2. Learning of overlapping chunks. a, Two chunks “AEB” (orange shade) and “CED” 
(blue shade) were repeated in input Poisson spike trains (left). The chunks were 
separated by random spike trains with variable lengths of 50 to 400 ms (unshaded). All 
neurons had the same firing rate of 5 Hz. Example spike trains during the initial 3 seconds 
are shown (right). In each chunk, the component patterns “A”, “B”, “C”, and “D” were 
50 ms-long and the shared component “E” was 100 ms-long. b, Output spike trains of 
the trained network model. Neurons were sorted according to their onset response 
times, and only 160 out of the total 500 neurons are shown for the visualization purpose. 
A selective cell assembly emerged for each chunk. c, The average responses of “AEB”-
selective assembly to chunks “AEB” (left) and “CED” (right) are shown. The responses 
were averaged over 20 presentations of the chunks and normalized by the maximal 
response to the preferred chunk (i.e., chunk 1). d, Reponses of a “AEB”-selective neuron 
(left) and a “CED”-selective neuron in the trained network are shown. 
 
Figure 3. Learning of complex spike sequences with recurrent gating. a, Three chunks 
were presented, which consists of four identical component patterns with its specific 
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order (left). The example input spike train during first three seconds are shown (right). 
The regions filled in orange, blue and green represent the times when chunks "ABCD", 
"DCBA" and "BDAC" were presented, respectively. All neurons generate Poisson spike 
with the constant firing rate of 5Hz. Random spike sequences were presented in the 
unshaded areas. b, Output spike trains of the trained network are shown. Neurons were 
sorted according to their onset response times, and only 400 out of 1200 neurons are 
shown for the visualization purpose. c, d, e, The time evolution of dendritic activity, 
gating factor, and somatic response are shown in a neuron. Orange, blue and green 
traces represent the responses to its preferred component pattern "D" when the 
corresponding chunks were presented. The activities were averaged over 20 trials. 
 
 
Figure 4. Principal component analysis of the trained network. a, Cumulative variance 
explained of the PCs of the activities of before (blue), during (purple), and after (yellow) 
learning. Inset is an expanded view for major eigenstates. b, The PCA-projected 
trajectories of network activity before, during, and after training are shown in the space 
spanned by PC1 to PC3. The network was trained with the same task as in Figure 2. The 
black, orange, and blue trajectories represent the periods during which random spike 
input, chunk 1 and chunk 2 were presented, respectively. c, Recurrent gating was fixed 
in all neurons during the whole simulation. d, The gating factor was clamped after the 
network in b were trained. e, Recurrent connections were randomly shuffled after the 
network in b were trained. 
 
Figure 5. Context-dependent learning of sequence information. a, For testing on time-
warped patterns, the network was trained on random spike trains embedding a single 
pattern. b, The trained network responded sequentially to the original and stretched 
patterns with two untrained lengths (i.e., the relative durations RD of 1.5 and 2). c, 
Similarities of sequential order between the responses to the original and two untrained 
patterns were measured before (blue) and after (purple) learning. Independent 
simulations were performed 20 times, and p-values were calculated by two-sided 
Welch’s t-test. d, A time-inverted spike pattern (bottom) was generated from a original 
pattern (top). e, The network was exposed to the original pattern in d during learning, 
and its responses were tested after learning for both original and time-inverted patterns. 
Both patterns activated a single cell assembly. f, The network was exposed to both 
original and time-inverted patterns during learning as well as testing. Two assemblies 
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with different preferred patterns were formed. For the visualization purpose, only 160 
out of 500 neurons are shown in e and f.  
 
Figure 6. Detecting salient activity patterns in calcium imaging data. a, The positions of 
a mouse (top) on a linear track and calcium imaging data of activity of 452 hippocampal 
CA1 neurons (bottom) were obtained from previously recorded data [23]. b, The learned 
activities of model neurons were sorted according to their onset response times. c, Each 
CA1 neuron was associated with a model neuron having the highest mutual correlation 
with the CA1 neuron. Then, the CA1 neurons were sorted according to the serial order 
of model neurons shown in b. d, The time course of normalized pupil area (top) and 
simultaneously recorded activities of 6,532 visual cortical neurons (bottom) were 
calculated from previously recorded data [24,25]. e, Activity of a trained network model 
was sorted according to their onset response times (Methods). f, Activities of the cortical 
neurons were sorted as in c. g, Sorted recurrent connections are shown. The white 
dashed lines represent groups of neurons showing co-activation. h, Same as in g, but 
sorted feedforward connections are shown. i, Learning curves over 200 epochs for 
various size of input neurons are shown. Red, blue and green traces show learning 
curves with number of input neurons 1, 2/3, 1/3 times greater than original 6,532 
neurons. The weight change rate was calculated as the ratio of the sum of the absolute 
values of synaptic changes to the sum of the absolute values of all synapses. 
 
Figure 7. Redundant dendritic representations of preferred sensory features. a, A 
schematic illustration of the neuron model with three dendritic compartments. The 
dendritic branches have independent gating factors, which compete with each other by 
softmax. b, Somatic responses are shown for all neurons in the trained network. c, 
Trained weight matrices are displayed for afferent inputs to three dendritic branches of 
three example neurons. d, Somatic and dendritic activities of the three neurons in c are 
shown. 
 
Figure 8. Spontaneous completion of learned sequences. The two chunks shown in Fig. 
2 were used for training a network having both recurrent gating and additive recurrent 
inputs. a, In the testing phase, the first component pattern of each chunk (cue 1 or cue2; 
dark raster plots), but not the subsequent component patterns (light raster plots), was 
presented to the network. b, The raster plot of network activities in the testing phase is 
shown. Cue 1 and cue 2 were presented alternately every 5 seconds. Neurons were 
sorted according to their onset response times, and only 160 out of the total 500 
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neurons are shown for the visualization purpose. c, Sequential responses of the two 
assemblies were averaged over 20 trials. Vertical lines indicate the end of cue 
presentation. The sequential responses were evoked in the learned order. 
 
Supplementary Figure 1. Learning of overlapping patterns in a recurrent network 
without gating. a, Output spike trains of the trained recurrent network are shown. 
Neurons were sorted according to their onset response times. b, The responses to the 
two chunks were averaged over 20 trials. c, PCA was applied to obtain the low-
dimensional trajectories of the trained network. The black, orange, and blue portions 
indicate the periods of random spike input, chunk 1 and chunk 2, respectively. The two 
trajectories corresponding to the two chunks were inseparable and the network failed 
to learn the chunks. 
 
Supplementary Figure 2. Chunk-selective responses in the network trained in Fig. 3. a, 
The responses of the first cell assembly to its preferred (left) and non-preferred (middle, 
right) chunks are shown. These responses were averaged and normalized as in Fig. 2c. 
b, Preferred responses of two neurons are shown as examples. c, As in Fig. 3c-e, trial-
averaged responses of dendrite, gating factor and soma are shown for two other 
neurons.  
 
Supplementary Figure 3. Robustness against spike timing jitters. a, Responses of the 
networks trained on input spike trains with timing jitters of 70 ms (top) and 100 ms 
(bottom) are shown. Here, spike times within chunks were sifted by the amounts drawn 
by a Gaussian distribution with mean zero and s.d of jitter strength, and these jitters 
were present during learning and testing. Neurons were sorted according to the times 
of their response onsets during chunks, and only 160 out of the total 500 neurons are 
shown for the visualization purpose. b, The normalized average activities of the two 
assemblies with timing jitters of 70 ms (left) and 100 ms (right)are shown. c, Learning 
curves are shown when the average jitter was 0 ms (purple), 70 ms (green), and 100 ms 
(blue), respectively. The solid lines and shaded areas represent the averages and s.d over 
20 trials, respectively. Learning performance was measured by the normalized mutual 
information between network activity and target labels (Methods). d, The performance 
measures averaged over 20 trials are shown at various sizes of jitters. Error bars stand 
for the s.d. 
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Supplementary Figure 4. Analysis of calcium imaging data without recurrent gating. a, 
The positions of a mouse on a linear track [23] (top) and the activities of model neurons 
learned without recurrent gating (bottom) are shown. Model neurons were sorted 
according to their onset response times. Separations between the two sequences 
corresponding to forward and backward runs are invisible (c.f. Fig. 6b). b, Activities of 
model neurons trained on the neural data recorded from the mice visual cortex [24,25] 
without recurrent gating are shown. The model neurons were sorted according to their 
onset response times. c, We associated each cortical neuron with a model neuron having 
the highest correlation with the cortical neuron. Then, we sorted the cortical neurons 
according to the serial order of model neurons shown in b. 
 
Supplementary Figure 5. Sequence learning in the copresence of recurrent gating and 
recurrent input. Dendrites received additive recurrent inputs as well as afferent inputs 
and the dendritic activity underwent recurrent gating. a, As in Fig. 2, the trained network 
segmented two overlapping chunks in the presence of additive recurrent inputs. b, 
Normalized average responses of two emergent assemblies during the presentations of 
chunk 1 and chunk 2. c, PCA showed that the different chunks were distinguishable by 
different low-dimensional trajectories, of which the black, orange, and blue portions 
indicate the periods of random spike input, chunk 1 and chunk 2, respectively. 
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