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Summary 23 

1. Matrix population models (MPMs) are an important tool for biologists seeking to 24 

understand the causes and consequences of variation in vital rates (e.g., survival, 25 

reproduction) across life cycles. Empirical MPMs describe the age- or stage-26 

structured demography of organisms and usually represent the life history of a 27 

population during a particular time frame at a specific geographic location. 28 

2. The COMPADRE Plant Matrix Database and COMADRE Animal Matrix Database 29 

are the most extensive resources for MPM data, collectively containing >12,000 30 

individual projection matrices for >1,100 species globally. Although these databases 31 

represent an unparalleled resource for researchers, land managers, and educators, the 32 

current computational tools available to answer questions with MPMs impose 33 

significant barriers to potential COM(P)ADRE database users by requiring advanced 34 

knowledge to handle diverse data structures and program custom analysis functions. 35 

3. To close this knowledge gap, we present two interrelated R packages designed to (i) 36 

facilitate the use of these databases by providing functions to acquire, quality control, 37 

and manage both the MPM data contained in COMPADRE and COMADRE, and a 38 

user’s own MPM data (Rcompadre), and (ii) present a range of functions to 39 

calculate life history traits from MPMs in support of ecological and evolutionary 40 

analyses (Rage). We provide examples to illustrate the use of both.  41 

4. Rcompadre and Rage will facilitate demographic analyses using MPM data and 42 

contribute to the improved replicability of studies using these data. We hope that this 43 

new functionality will allow researchers, land managers, and educators to unlock the 44 

potential behind the thousands of MPMs and ancillary metadata stored in the 45 

COMPADRE and COMADRE matrix databases, and in their own MPM data.  46 
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Introduction 50 

Matrix population models (MPMs, hereafter) have become a commonplace tool for 51 

ecologists, evolutionary biologists, and conservation biologists seeking to understand how 52 

variation in vital rates (e.g., survival, development, reproduction, recruitment, etc.) in the life 53 

cycle varies geographically and across species. MPMs describe population dynamics based 54 

on stage- or age-specific vital rates in the population of interest over their life cycle (Caswell, 55 

2001). Outputs derived from MPMs include population growth rates (Caswell, 2001), key 56 

life-history traits (Caswell, 2001), and vital rate sensitivities  (de Kroon, Plaisier, van 57 

Groenendael, & Caswell, 1986; de Kroon, van Groenendael, & Ehrlén, 2000). These outputs 58 

each have a well-understood biological interpretation, which allows comparison of MPM-59 

derived population and life history metrics, and thus demography across the diversity of life 60 

on Earth, from moss (e.g., Okland, 1995) to monkeys (e.g., Morris et al., 2011) to microbes 61 

(e.g., Jouvet, Rodríguez-Rojas, & Steiner, 2018), and in myriad ecoregions. 62 

Since the introduction of MPMs in the 1940s (Leslie, 1945, 1948), researchers have 63 

published thousands of MPMs for thousands of species. Our team has been digitising these 64 

MPMs into centralised databases for plants (the COMPADRE Plant Matrix Database: 65 

Salguero-Gómez et al., 2015) and animals (the COMADRE Animal Matrix Database: 66 

Salguero-Gómez et al., 2016).  These twin databases now contain more than 12,000 MPMs 67 

for more than 1,100 species (COMPADRE: 8,708 matrices for 757 species; COMADRE: 68 

3,317 matrices for 415 species, as of September 2021) and are regularly augmented with 69 

newly-published and newly-digitised records. The databases, their history, and the rationale 70 
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behind the data organisation are described in Salguero-Gómez et al. (2015) and Salguero-71 

Gómez et al. (2016), respectively.  72 

COMPADRE and COMADRE store and provide MPMs and their associated metadata in a 73 

hierarchical structure that, while efficient for distribution, can be both a barrier to use and an 74 

entry point for user errors.  The primary component of MPMs are the two-dimensional, 75 

square projection matrices, and the size of these matrices can vary widely across species and 76 

studies. Moreover, most projection matrices (A) in the databases are partitioned into their 77 

three constituent process-based submatrices such that A = U + F + C.  Here, submatrix U 78 

describes transitions related to survival and growth/development, submatrix F describes 79 

sexual reproduction, and submatrix C describes clonal reproduction. Thus, in most cases, 80 

each MPM is represented by these four matrices (A, the main projection matrix and the 81 

submatrices U, F and C) alongside information about the life cycle stages used in the MPM. 82 

In the majority of cases, the projection interval (time step) for the MPM is one year, but this 83 

can vary considerably depending on the life history of the organism concerned (for example, 84 

five year intervals are common in tree MPMs). Each MPM in the databases is also associated 85 

with over 40 metadata variables extracted from its parent original work(s) (e.g., stage 86 

definitions, projection time steps, citation, taxonomy, geography, etc., detailed in Salguero-87 

Gómez et al., 2015 & 2016). This nested structure allows for higher digitisation fidelity and 88 

distribution efficiency, but also means that the dataset cannot be imported by ordinary 89 

spreadsheet software, such as Excel, which accommodate only rectangular (or “flat”) data 90 

structures. Both of the most common tools for working with MPMs, the R statistical 91 

programming language (R Core Team, 2021) and Matlab (Matlab, 2010), readily accept 92 

hierarchical data structures. However, users must have a familiarity with handling a range of 93 

nested object classes to organise the databases to suit their needs (e.g., “subset to only 94 

primates” or “subset to only species from tropical ecoregions”). The higher dimensionality 95 
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can increase the risk of errors, such as using the wrong data dimension, even for experienced 96 

users. 97 

The R package ecosystem provides a wide range of tools for analysing population dynamics 98 

from MPMs within individual populations. For example, popdemo (Stott, Hodgson, & 99 

Townley, 2012) focuses on the calculation of metrics related to transient population dynamics 100 

and transfer function analyses; popbio (Stubben, Milligan, & Others, 2007) provides 101 

functions to accomplish many (but not all) of the analyses found in the textbooks of Caswell 102 

(2001) and Morris & Doak (2002), such as the calculation of eigen properties (i.e., the 103 

asymptotic population growth rate, stable stage structure and reproductive values) or 104 

sensitivities and elasticities; Rramas (de la Cruz Rot, 2019) provides tools for making 105 

population projections and conducting population viability analyses from MPM data; and 106 

lefko3 (Shefferson, Kurokawa, & Ehrlén, 2021) provides tools that allow the inclusion of 107 

information on individual histories, which could influence population dynamics, into MPM 108 

analyses (see Ehrlén, 2000). However, the tools for life history analysis provided by these 109 

existing packages are more limited, with among the most notable absence being important 110 

life history metrics based on age-from-stage calculations.  Researchers that wanted to make 111 

such calculations (e.g., measures of senescence, longevity, or age at maturity) have needed to 112 

write their own code based on published equations in mathematics-heavy work, which has 113 

been a barrier to the broader adoption of these methods. Moreover, these life history metrics 114 

are often most meaningful in analyses across many populations or species. The existing 115 

packages provide little support for the large hierarchical data structures needed to apply 116 

analyses to hundreds or thousands of MPMs that may underlie a single comparative or 117 

macroecological analysis. 118 
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Here, we introduce two R packages that enable users to construct robust MPM analysis 119 

workflows to answer questions from single populations to across the tree of life. The first 120 

package, Rcompadre, is designed to facilitate acquisition, quality control, and management 121 

of the rich, hierarchical MPM data in COMPADRE and COMADRE. For example, this 122 

package includes tools to filter (subset) the databases based on metadata archived in these 123 

resources (e.g., by ecoregion, by taxonomic group). In addition to “base” style R syntax for 124 

these tasks, Rcompadre integrates tidyverse (Wickham et al., 2019) functionality to 125 

improve usability. The second package, Rage, builds on the enhanced data accessibility 126 

provided by Rcompadre by providing analysis pipeline support for arbitrarily large 127 

numbers of MPMs and the calculation of life history traits needed to support comparative 128 

analyses on this scale. These life history traits include life tables, mean life expectancy, 129 

generation time, among several others.  130 

We showcase downloading, subsetting, and preparing MPM data for a broad comparative 131 

analysis using publicly-accessible data retrieved with Rcompadre (Box 1). We then 132 

illustrate an application of Rage to calculate ecologically and evolutionarily relevant metrics 133 

to test hypotheses related to life history theory at broad taxonomic scale. In doing so, we 134 

demonstrate the functional integration of Rcompadre and Rage and how investigators can 135 

use them in tandem to design workflows (Fig. 1) to answer their own questions in ecology, 136 

evolution and conservation biology. 137 

Rcompadre 138 

Rcompadre contains functions to facilitate downloading and using MPMs alongside their 139 

metadata from the COMPADRE and COMADRE databases (Fig. 1a). A central feature of 140 

this package is the definition of a new object class, CompadreDB, which allows R functions 141 

that are already familiar to users (e.g., head or tidyverse verbs) to be augmented with 142 
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‘methods’ that ensure that they appropriately handle the structure of MPM data from the 143 

COM(P)ADRE databases. In addition to improving user-friendliness, the class definition 144 

provides a pathway for extending the compatibility of COM(P)ADRE data to other existing 145 

or future R functions. Briefly, the structure of CompadreDB objects uses the S4 systems1 146 

with two slots: (1) the data slot, which contains a tibble-style data frame (Wickham & 147 

Grolemund, 2016) with a list-column of MPMs and vector columns of metadata, and (2) the 148 

version slot which contains database version information for reproducibility, including the 149 

version number, date created, and a link to the database user agreement. In addition, we have 150 

created the CompadreMat class, which formally defines how MPMs are represented in a 151 

CompadreDB object. Here too, the use of an explicit class definition has allowed us to 152 

define how the data contained in the object will respond to familiar R functions. For example, 153 

users can access and replace columns of data using the standard x$name and x$name <- 154 

value methods, respectively. In addition, we provide the functionality to access the matrix 155 

data directly, for example, using the functions matA or matU to access all A matrices or U 156 

submatrices in the database as a list. This functionality is particularly convenient if the user 157 

wishes to apply functions to a large set of MPMs, as one would do in comparative and 158 

macroecological analysis (for example, see recent studies by Coutts et al. (2016), Takada & 159 

Kawai (2020), James et al. (2020), Healy et al. (2019), Capdevila et al. (2020) and Jones et al. 160 

(2020)). In addition to ‘base’ R functions, many data analysis workflows make use of 161 

functions in the tidyverse family of packages (Wickham et al., 2019). Our package 162 

includes “tidy” methods for CompadreDB objects, allowing users to filter, arrange, 163 

mutate, select, summarise, rename and join COM(P)ADRE data to answer their 164 

                                                 
1 R includes significant support for object-oriented programming, and the S4 system is one of R’s systems for 
defining object classes. It is a stricter, less flexible system than R’s base system (S3) but has the advantage of 
enhancing consistency in how objects are defined and handled, and in the ease with which data can be accessed 
from nested objects. The details are far beyond the scope of this article, but see Wickham (2019) for fuller 
coverage. 
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study questions efficiently and at scale. The provision of these tidyverse methods also 165 

means that Rcompadre benefits from the piping (e.g., %>%) functionality of magrittr 166 

and more recently in base R (|>, in v.4.1.0 and later). Examples of how this functionality can 167 

streamline the human readability of workflows can be found in the vignettes at the package 168 

development pages. 169 

In addition to a wide range of method-based support of existing R functions, Rcompadre 170 

provides functions for additional workflow tasks that follow the naming pattern of cdb_ 171 

(pronounced “compadre database”) followed by a meaningful verb. For example, 172 

cdb_fetch retrieves COM(P)ADRE data of the current or any previous database version 173 

from the web as a CompadreDB object, and cdb_compare reports the differences between 174 

any pair of CompadreDB objects.  Table 1 summarises the most important Rcompadre 175 

functions, and full documentation of all functions is provided in the package manual.  176 

Data management and checking 177 

The COM(P)ADRE databases include metadata associated with each MPM including 178 

taxonomic information, geolocation, and details of the source publication (see the User Guide 179 

at www.compadre-db.org or Salguero-Gomez et al. 2015, 2016 for full metadata 180 

documentation). When working with these data via Rcompadre, we can see the richness of 181 

the metadata with R’s names function and users can use any of these metadata columns to 182 

filter the database prior to analysis. The projection matrices themselves are contained in a list 183 

column called mat, where each element includes a list of the four matrices: A and the 184 

submatrices U, F and C (see above). The list also provides information on matrix stage 185 

definitions. All other columns of the COMADRE database object are ordinary vectors. 186 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.04.26.441330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

Not all COM(P)ADRE data will meet the inclusion criteria for a particular analysis. 187 

Rcompadre includes several general functions for checking the data that use the quality 188 

control flags generated when MPMs are digitised and checked before addition to the 189 

databases. These data checks are accessed through Rcompadre using the cdb_flag 190 

function. This function, which can be implemented as a stand-alone function or during data 191 

retrieval by cdb_fetch, adds logical metadata columns to the provided CompadreDB 192 

object which can be used for data filtering (see ?cdb_flag for details of the available data 193 

property checks). For example, a minority of studies published only the main projection 194 

matrix, A, thereby preventing its decomposition into the U, F and C submatrices which may 195 

preclude certain demographic analyses. Matrices may also have missing (NA) values where a 196 

transition was not estimated. Other potential pitfalls flagged by this function include matrices 197 

that are singular (non-invertible), non-ergodic (where initial stage structure can influence 198 

asymptotic population growth rate), reducible (where the associated life cycle graph does not 199 

contain all necessary transition rates to enable pathways from all stages to all other stages) or 200 

non-primitive (Caswell, 2001; Stott, Townley, & Carslake, 2010).  Depending on the desired 201 

downstream analyses, researchers may need to filter the database based on one or more of 202 

these flag columns.   203 

The quality checks performed by cdb_flag cannot anticipate all potential inclusion criteria, 204 

and we strongly encourage investigators to perform additional checks that may be necessary 205 

to determine the suitability of a MPM record for their analysis. The existing metadata 206 

columns associated with each MPM contains a wealth of useful information to this end. For 207 

example, the interpretation of many metrics derived from MPMs depends on the projection 208 

interval (ProjectionInterval). We advise users to filter on this column to a 209 

common projection interval prior to analysis or to correct analysis outputs to the same 210 

temporal units. An analysis may also require delineating MPM records that use post- vs. pre-211 
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reproductive census models. Although both databases have a metadata field that reports this 212 

information (CensusType), it is often not reported in original publications and thus 213 

COM(P)ADRE includes records with incomplete metadata. Users may therefore need to 214 

carefully consider the source publication (e.g., retrieved using the DOI_ISBN and 215 

AdditionalSource column metadata) or contact the original authors to determine 216 

suitability.  217 

Finally, Rcompadre includes a function, cdb_build_cdb, which allows users to access 218 

the full functionality of Rcompadre for their own data by constructing valid CompadreDB 219 

objects from user-supplied lists of matrices, (optional) stage information, and an 220 

accompanying data frame of metadata. Furthermore, we provide a way for users to augment 221 

COM(P)ADRE with a CompadreDB object containing their own data using the function 222 

cdb_rbind. This nimble data extensibility ensures the continued utility of Rcompadre’s 223 

suite of workflow tools without dependency on externally-maintained data. 224 

In Box 1 we illustrate the use of Rcompadre to download, check, and filter the COMADRE 225 

database (animal MPMs) in preparation for a later analysis of mammal life span using Rage. 226 

Vignettes at the Rcompadre documentation website (https://jonesor.github.io/Rcompadre/) 227 

give further detailed coverage of the package’s capabilities. 228 

Rage 229 

The Rage package contains functions to facilitate the calculation of life history metrics 230 

(Table 2) from MPMs. The guiding philosophy of the package centres on (i) augmenting the 231 

suite of life history analyses that are implemented in R and (ii) providing support for 232 

analyses—whether new in Rage or previously implemented elsewhere—to be conducted in a 233 

standardised way across large numbers of MPMs. Other functions are novel, such as 234 
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estimates of the pace and shape of reproduction (Baudisch & Stott, 2019). Broadly, the 235 

functions fall into six categories (Fig 1B, Table 2): 236 

1) Transformation: reshape, resize, and reorder whole MPMs 237 

2) Life tables: convert MPMs to life tables and life table components 238 

3) Life history traits: calculate life history metrics 239 

4) Vital rates: extract and summarise the component vital rates of MPMs 240 

5) Visualisation: plot the life cycle graph 241 

6) Perturbation analyses: calculate sensitivity and (stochastic) elasticity of any demographic 242 

statistic to perturbations of MPM elements, vital rates, or transition types 243 

To illustrate the functionality and inter-compatibility of functions among these categories, we 244 

describe a workflow that reconciles a common problem in comparative life history analysis: 245 

the desired life history metric requires an age-structured life table, but the available data are 246 

stage-structured MPMs. Although the mathematical descriptions for each step have long been 247 

available in the demographic literature, Rage both implements these as R functions and does 248 

so in a way that enables interoperability of function inputs and outputs. We provide in-depth 249 

vignettes for each group of functions at the Rage documentation website 250 

(https://jonesor.github.io/Rage/). However, several Rage functions, such as 251 

mpm_to_table, entropy_... and shape_..., rest on the production of age-based 252 

life tables from stage-based matrices and thus it is pertinent to outline this important aspect of 253 

Rage here.  254 

To enable a broader range of life history analyses on data from MPMs, Rage implements 255 

conversions of stage-structured MPMs to age-specific mortality and fertility life tables using 256 
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methods developed by Cochran and Ellner (1992), Caswell (2001) and Caswell et al. (2018). 257 

These methods require that MPMs are decomposed into their constituent submatrices, U, and 258 

optionally F and/or C (see above) and the determination of the stage we consider to be the 259 

start of the life cycle (e.g., seed establishment, seed germination, etc.).  In a nutshell, the 260 

method works by an iterative procedure whereby a synthetic cohort starting at age zero is 261 

projected using the matrix model. At every iteration the cohort ages by one projection 262 

interval (often one year), and we can keep track of survivorship (lx), the proportion of the 263 

original cohort that have survived each iteration. Fecundity is calculated in an analogous way. 264 

The result is a full life table that is readily available for use in analyses that require age-, 265 

rather than stage-structured trajectories of demographic processes. We direct readers to 266 

Caswell (2001), Caswell et al. (2018) and in the supplementary information of Jones et al. 267 

(2014). 268 

Once an lx trajectory is calculated, the other quantities of standard life tables can be calculated 269 

using standard life table calculations (Preston, Heuveline, & Guillot, 2000). In Rage, the 270 

function mpm_to_table applies these calculations to produce a life table that includes 271 

standard life table columns including age, survivorship, age-specific probability of death, 272 

force of mortality, remaining life expectancy. In addition, Rage provides functionality to 273 

calculate age trajectories for individual variables (i.e., subsets of the full life table) using the 274 

mpm_to_... set of functions (e.g., mpm_to_lx; Box 1). 275 

Importantly, converting MPMs to life tables can introduce mathematical artefacts that 276 

compromise the resulting analyses. Rage provides functions to diagnose and, when possible, 277 

correct for these artefacts. All age-from-stage calculations produce age-trajectories that 278 

inevitably asymptote as a mathematical consequence of describing the vital rates as functions 279 

of discrete stages (Horvitz & Tuljapurkar, 2008). Regardless of how low the survival 280 
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probabilities are in an MPM, there will be a non-zero probability that an individual could 281 

reach ages of 100, 10,000, or >1 million years. The exponential rate that these probabilities 282 

decay with increasing age is determined by the dominant eigenvalue of U, but even rapid 283 

decay can bias some life history metrics (e.g., entropy and life span measures). Rage 284 

provides a convenient and principled way of correcting for this artefact by imposing a lower 285 

probability threshold defined by the degree of convergence to the quasi-stationary 286 

distribution (see also the Supplementary Information of Owen R. Jones et al., 2014). In Rage 287 

we do this by first scaling the right eigenvector (w) so that it sums to one and then, for each 288 

iteration of the age-from-stage calculations, we measure the convergence of the proportional 289 

cohort structure as Δx = 0.5 ||px - w||, where px is the proportional stage structure at the xth 290 

iteration of the age-from-stage calculations (i.e., at time x). When px eventually converges to 291 

equal w, Δx will equal 0. We can use this information to truncate the life tables produced from 292 

age-from-stage methods to, for example, ages where Δx> 0.05. Furthermore, we may judge 293 

the reliability of age-from-stage methods by comparing the lx trajectory with the Δx 294 

trajectory: If convergence is reached before lx declines to, for example, 0.05 (i.e., 5% of the 295 

cohort remaining alive) we suggest reconsidering the use of this approach for that particular 296 

model.  297 

In Box 2 we demonstrate the use of Rage via a global analysis of mammalian longevity 298 

introduced in Box 1. The life history metric of interest is calculated with Rage’s 299 

longevity function—a novel implementation in this package—by projecting a 300 

hypothetical cohort of individuals with an MPM until only a user-defined (default: 1%) 301 

fraction of individuals from the initial cohort remain alive. Since only a single cohort is 302 

tracked, the function requires only the U submatrix (stage-specific survival and transition 303 

rates) as the demographic process input, which may be supplied directly by the user or 304 

extracted from a CompadreDB object using the matU function from Rcompadre. 305 
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The longevity function also requires us to define which stage we consider to be the start 306 

of the life cycle. This is fairly clear for most mammals but may be more subjective in some 307 

groups depending on the goals of the analysis (e.g., seed maturation vs germination for plants 308 

with a persistent seed bank). The Rcompadre function mpm_first_active facilitates 309 

scaling this task across a large number of MPMs by returning an integer index for the first 310 

active stage class (i.e., non-dormant), as defined by the original study author of the MPM. 311 

Like the results of Rcompadre∷cdb_flag, we intend this to be used as a guide—not a 312 

replacement—for careful evaluation of suitability. It may be more appropriate to identify the 313 

start of life manually in some cases. Users may control the cohort survivorship threshold via 314 

the argument lx_crit. The default, 0.01 (=1%) may not be suitable for all organisms, and 315 

users may find that exploring other quantiles (e.g., 50%) offers a richer description of the 316 

age-at-death distribution. Finally, the function requires us to set a maximum age to consider 317 

(xmax, default = 1000) as a pragmatic matter of computational speed. This default can be 318 

increased for exceptionally long-lived organisms, and we remind users that all measures of 319 

age in the Rage package use the projection interval of the MPM provided (see the 320 

ProjectionInterval metadata column for COM(P)ADRE data retrieved using 321 

Rcompadre::cdb_fetch).  322 

Conclusions 323 

The tools provided by Rcompadre and Rage facilitate efficient and at-scale use of an 324 

unrivalled database of demographic process rates and the calculation of numerous life history 325 

and demographic metrics that are useful in ecology and evolution. In so doing, this pair of 326 

packages fills gaps and reduces overhead in the analytical workflow of comparative and 327 

macroecological demographic analysis. Although we designed the packages to operate 328 

together, Rage is also well-suited for general use with non-COM(P)ADRE matrix population 329 
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models, whether in support of the analysis of new empirical MPMs or simulation-based 330 

theoretical studies of life history. We showcase the use of these packages to illustrate how 331 

they may be particularly useful in comparative demographic studies, for example, to address 332 

topics related to the evolution of life histories or comparative population dynamics across 333 

many species. 334 

Users can obtain a complete index of the functions available in Rcompadre and Rage by 335 

running ?Rcompadre and ?Rage respectively in R, or by visiting the package 336 

documentation websites at https://jonesor.github.io/Rcompadre/ and 337 

https://jonesor.github.io/Rage/, respectively. Our ultimate hope is that democratising access 338 

to demographic data and analytic tools will empower a wide range of users to unlock the 339 

great potential of matrix population models. This will allow the community to further our 340 

basic understanding of life history, enable data-driven conservation management, and educate 341 

and inspire the next generation of population biologists. 342 
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Box 1: Using Rcompadre to download and prepare MPM data for analysis 365 

In the following example, we illustrate the use of Rcompadre to carry out typical data 366 

download and preparation tasks for an analysis relevant to comparative population dynamics 367 

research. Specifically, we aim towards an analysis of mammalian life span and its 368 

relationship with generation time (continued in Box 2). 369 

After loading the required packages, we download the COMADRE data and conduct some 370 

basic checks of the matrices. We then filter the data set to include only mammals, to include 371 

no missing values in the U matrix, and to ensure that the U and F matrices are not filled 372 

entirely with zero values, nor that columns of the U matrix sum to 0. We further filter the data 373 

to ensure that the projection interval is 1 year. Finally, we can plot the geographic distribution 374 

of these data using tools from the ggplot2 and maps packages (Fig. 2). 375 

# Load packages 376 
library(Rcompadre) 377 
library(tidyverse) 378 
 379 
# Fetch data, and conduct basic checks 380 
comadre <- cdb_fetch("comadre", flag = TRUE) 381 
 382 
# Filter for mammals, split matrices, NA/0 values in U and F 383 
matrices and a 384 
# projection interval of 1 385 
mammals <- comadre %>% 386 
  filter(Class == "Mammalia") %>% 387 
  filter(MatrixSplit == "Divided") %>% 388 
  filter( 389 
    check_NA_U == FALSE, check_zero_U == FALSE, 390 
    check_zero_F == FALSE, check_zero_U_colsum == FALSE 391 
  ) %>% 392 
  filter(ProjectionInterval == 1) 393 
 394 
# Plot geographic distribution 395 
ggplot(mammals, aes(x = Lon, y = Lat)) + 396 
  borders(database = "world", fill = "grey80", col = NA) + 397 
  geom_point(alpha = 0.4, color = "#E69F00") + 398 
  scale_x_continuous(breaks = seq(-180, 180, 90), expand = c(0, 0)) 399 
+ 400 
  scale_y_continuous(expand = c(0, 0)) + 401 
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  labs(x = "Longitude", y = "Latitude") + 402 
  theme_minimal() 403 

  404 
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Box 2: Using Rage to calculate and visualise longevity 405 

Here we demonstrate the use of Rage, focussing on the global analysis of mammalian 406 

longevity introduced in Box 1. We begin our mammal longevity analysis by adding columns 407 

to the data extracted from COMADRE (Box 1) that contain the two user-supplied arguments, 408 

matU and start_life, using the dplyr function mutate. We can then pair mutate with 409 

the base R function mapply to call the longevity function with each row’s matU and 410 

start_life arguments and return the estimated longevity in a new column. Then we check 411 

the age of convergence to the quasi-stationary stage distribution (QSD), and filter the data 412 

set so that it only includes matrices where the estimated longevity is less than or equal to the 413 

age at which QSD is reached. 414 

# Load package 415 
library(Rage) 416 
 417 
# Add columns for matU and matF, then calculate generation time, 418 
longevity and 419 
# convergence 420 
# Filter to ensure that QSD is not reached before estimated 421 
longevity. 422 
mammals <- mammals %>% 423 
  mutate( 424 
    matU = matU(.), 425 
    start_life = mpm_first_active(.) 426 
  ) %>% 427 
  mutate( 428 
    matF = matF(.), 429 
    start_life = mpm_first_active(.) 430 
  ) %>% 431 
  mutate(gentime = mapply(gen_time, matU, matF)) %>% 432 
  mutate(longevity = mapply(longevity, matU)) %>% 433 
  mutate(convage = mapply(qsd_converge, matU)) %>% 434 
  filter(longevity - convage <= 0) 435 

library(khroma) 436 
ggplot(mammals, aes(x = gentime, y = longevity)) + 437 
  geom_point(aes(colour = Order)) + 438 
  scale_color_manual(values = 439 
c(as.vector(colour("bright")(7)),"black")) + 440 
  scale_x_continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 441 
80)) + 442 
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  scale_y_continuous(trans = "log", breaks = c(2, 5, 10, 20, 40, 80, 443 
160)) + 444 
  labs(x = "Generation time (years)", y = "Longevity (years)") + 445 
  geom_smooth(method = "lm", colour = "grey50") + 446 
  theme_minimal() 447 
#> `geom_smooth()` using formula 'y ~ x' 448 

As one might expect, there is a strong association between generation time and our measure 449 

of life span (Fig. 3). It would of course be interesting to use more formal statistical methods 450 

to explore this (and similar relationships) further, for example to examine the variation in the 451 

scaling relationship across orders. When doing so it will be important to carefully consider 452 

taxonomic and geographic or ecoregion bias in the dataset. In addition, researchers should 453 

carefully vet the included data for suitability - including a consideration of whether the 454 

models are based on pre- or post-reproduction censuses. 455 

  456 
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 457 

Supplementary materials 458 

We provide several vignettes which guide users through most of the functionality of 459 

Rcompadre and Rage. These vignettes are available at the package development web pages at 460 

https://jonesor.github.io/Rcompadre/ and https://jonesor.github.io/Rage/, under “Articles”, in 461 

the dropdown menu. 462 

Rcompadre: 463 

1. Getting started with Rcompadre 464 

2. Using Rcompadre with the tidyverse 465 

3. Vectorising with Rcompadre 466 

4. Obtaining references 467 

5. Using your own matrix data 468 

Rage: 469 

1. Getting started with Rage 470 

2. Deriving vital rates from an MPM 471 

3. Deriving life history traits from an MPM 472 

4. Age-from-stage analyses 473 

5. Suggested quality control 474 

An additional piece of supplementary material is a version of the code in Boxes 1 and 2 that 475 

does not use pipes: non_piped_version.pdf  476 
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Figure captions 577 
 578 

Figure 1. Workflow of using Rcompadre and Rage for ecological and evolutionary 579 

analyses of matrix population model data. (A) Once the author(s) have identified the research 580 

question, demographic data in the format of MPMs can be accessed from the COMPADRE 581 

and/or COMADRE databases via the Rcompadre R package. This package allows for the 582 

online acquisition, checking (according to data needs) and management of the CompadreDB 583 

data object (e.g., using cdb_fetch to download the data and cdb_flag and 584 

filter/subset to produce a data set for analysis). (B) The filtered data (or other user-585 

provided MPM data) can be then migrated for calculations of life history traits with Rage 586 

(alternatively, these can be done directly on MPMs provided by the author). The families of 587 

functions archived in Rage include: transformation (e.g., mpm_collapse), creation of life 588 

tables (e.g., mpm_to_lx), derivation of life history traits (e.g., longevity), calculation of 589 

vital rates (e.g., using vital_rates to calculate average survival, reproduction, 590 

development, etc.), visualisation of life cycles (e.g., plot_life_cycle), and 591 

perturbation analyses (e.g., perturb_stochastic). 592 

 593 

 594 

Figure 2. The spatial extent of data in the subset of mammal data used in our example 595 

analysis. Note that 186 of the matrices for mammals in our set (~27%) lack associated spatial 596 

information. 597 

 598 

 599 

Figure 3. The relationship between estimated generation time and longevity (defined as the 600 

age that 1% of a synthetic cohort would reach, based on the MPM). The line represents the fit 601 

of an ordinary least-squared regression through the data. The slope is 1.28 (±0.07) and the 602 

intercept is 0.26 (±0.16); R2=0.90; F1,43= 379; p <0.001). 603 

 604 
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Table 1. The functions in Rcompadre are grouped into four categories: Data acquisition, Data 606 

checking, Data management and Accessor functions. We outline the most important 607 

functions here, with a brief description. Users should consult the package documentation for 608 

a full description of named functions (e.g., ?cdb_fetch) and to see a full list of functions. 609 

Category Function Description 

Data acquisition cdb_fetch() Downloads the current version of the 
COMPADRE or COMADRE databases, or 
loads a local database file. 

 
cdb_metadata() Extracts a tibble with only metadata from 

a CompadreDB object. 

Data checking cdb_collapse() Collapses a CompadreDB object by 
averaging projection matrices over levels of 
one or more grouping variables. 

 
cdb_compare() Compares two versions or subsets of 

CompadreDB objects 

 
cdb_flag() Flags potential problems with projection 

matrices within a CompadreDB object, 
such as missing values, singular U 
submatrices, non-ergodicity, non-
irreducibility, primitivity etc. (see Iain Stott 
et al., 2012). 

 
cdb_check_species() Checks for specific species in a 

CompadreDB object. 

Data 
management 

as_cdb() Generates an S4 CompadreDB object from 
S3 formatted data. 

 
cdb_flatten() Converts a CompadreDB object into a flat 

data frame with projection matrices and 
vectors stored in string representation. 

 
cdb_unflatten() Converts a flattened data frame back into a 

CompadreDB object. 

 
cdb_id() Creates a vector of integer identifiers 

corresponding to unique combinations of a 
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given set of columns. 

 
cdb_id_stages() Creates a vector of integer identifiers 

corresponding to unique combinations of a 
species and matrix stage class definitions. 

 
cdb_id_studies() Creates a vector of integer identifiers 

corresponding to unique combinations of 
publication metadata. 

 
cdb_mean_matF() Calculates a population specific mean 

fecundity submatrix (F) for each set of 
projection matrices in a CompadreDB 
object. 

 
cdb_rbind() Merges two CompadreDB objects using a 

row-bind of the data slots. 

 
cdb_unnest() Unnests a CompadreDB object by 

spreading the nested components of 
CompadreMat into separate columns. 

 
mat_mean(), 
mpm_mean() 

Calculates an element-wise mean over a list 
of projection matrices or CompadreMat 
objects. 

 
mat_to_string(), 
vec_to_string(), 
string_to_mat(), 
string_to_vec() 

Converts vectors or square numeric 
matrices to and from string representation. 

 
mpm_has_prop(), 
mpm_has_active(), 
mpm_has_dorm() 

Extracts stage-class information (e.g., 
propagule, dormant, and active stages) from 
a CompadreMat or CompadreDB object. 

 
mpm_first_active() Extracts the integer index of the first active 

(i.e., non-dormant, non-seedbank) stage 
class in a CompadreMat or 
CompadreDB object. 

Accessor 
functions 

matA(), matU(), 
matF(), matC()  

Extracts full projection matrix (A), or the 
survival (U), sexual reproduction (F), or 
clonal reproduction (C) submatrices from a 
CompadreMat or CompadreDB object. 

  610 
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Table 2. The functions in Rage are grouped into six categories: Life history traits, Life tables, 611 

Vital rates, Perturbation analyses, MPM transformation, and Visualisation. We outline the 612 

most important functions here with a brief description. Users should consult the package 613 

documentation for a full description of named functions (e.g., ?life_expect_mean) and 614 

to see a complete list of functions. 615 

Category Function Description 

Life history traits life_expect_mean(), 
life_expect_var() 

Applies Markov chain approaches to 
obtain the mean and/or variance of life 
expectancy from a matrix population 
model. 

 
longevity() Calculates the age at which survivorship 

falls below some critical proportion from a 
matrix population model (see SI in Owen 
R. Jones et al., 2014). 

 
net_repro_rate() Calculates net reproductive value (R0) 

from a matrix population model. 

 
gen_time() Calculates generation time from a matrix 

population model. 

 
mature_age(), 
mature_distrib(), 
mature_prob() 

Calculates the mean age at first 
reproduction, the stage distribution of 
individuals achieving reproductive 
maturity, and the probability of achieving 
reproductive maturity using Markov chain 
approaches. 

 
entropy_d() Calculates Demetrius' entropy (L. 

Demetrius, 1978) from vectors of age-
specific survivorship (lx) and fecundity 
(mx). 

 
entropy_k() Calculates Keyfitz's entropy (Keyfitz & 

Caswell, 2005) from a vector of age-
specific survivorship (lx). 
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shape_rep() Calculates a 'shape' value for distribution 

of reproduction over age (Baudisch & 
Stott, 2019). 

 
shape_surv() 

Calculates a 'shape' value for survival 
lifespan inequality (Baudisch, 2011). 

Life tables mpm_to_table() Generates a life table from a matrix 
population model using age-from-stage 
decomposition methods (Cochran & 
Ellner, 1992; Caswell, 2001). 

 
mpm_to_hx(), 
mpm_to_lx(), 
mpm_to_mx(), 
mpm_to_px() 

Calculates mortality hazard (hx), age-
specific survivorship (lx), reproduction 
(mx), and survival probability (px) from a 
matrix population model using age-from-
stage decomposition methods. 

 
lx_to_px(), 
lx_to_hx(), 
px_to_lx(), 
px_to_hx(), 
hx_to_lx(), 
hx_to_px() 

Converts between vectors of age-specific 
survivorship (lx), survival probability (px), 
and mortality hazard (hx). 

 
qsd_converge() Calculates the time for a cohort projected 

with a matrix population model to reach a 
defined quasi-stationary stage distribution 
(see SI in Owen R. Jones et al., 2014). 

Vital rates vitalRates() Derives the mean vital rates for a matrix 
population model. 

 

vr_dorm_enter(), 
vr_dorm_exit(), 
vr_fecundity(), 
vr_growth(), 
vr_shrinkage(), 
vr_stasis(), 
vr_survival() 

Derives mean vital rates of survival, 
growth (or development), shrinkage (or de-
development), stasis, dormancy, or 
reproduction from a matrix population 
model, by averaging across stage classes. 

 
vr_vec_dorm_enter(), 
vr_vec_dorm_exit(), 
vr_vec_growth(), 
vr_vec_reproduction(
), 
vr_vec_shrinkage(), 

Derives vectors of stage-specific vital rates 
of survival, growth, shrinkage, stasis, 
dormancy, or reproduction from a matrix 
population model. 
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vr_vec_stasis(), 
vr_vec_survival() 

 
vr_mat_R(), 
vr_mat_U() 

Derives survival-independent vital rates for 
growth, stasis, shrinkage, and 
reproduction. 

Perturbation 
analyses 

perturb_matrix() Perturbation analysis of an emerging 
demographic property (e.g., population 
growth rate, damping ratio) with respect to 
changes on matrix elements. 

 perturb_trans() Perturbation analysis of transition types 
within a matrix population model. 

 perturb_vr() Perturbation analysis of underlying vital 
rates (Franco & Silvertown, 2004) in a 
matrix population model. 

 perturb_stochastic(
) 

Perturbation analysis of an emerging 
demographic property (e.g., population 
growth rate, damping ratio) with respect to 
changes on matrix elements. 

MPM 
transformation 

mpm_collapse() Collapses a matrix population model to a 
smaller number of stages using weighted 
averages (Salguero-Gómez & Plotkin, 
2010). 

 
mpm_rearrange() Rearranges the stages of a matrix 

population model to segregate reproductive 
and non-reproductive stages. 

 
mpm_split() Converts a matrix population model into 

survival (U), fecundity (F), and clonal (C) 
matrices. 

 
mpm_standardize() Transforms a matrix population model to a 

standardized set of stage classes. 

 
repro_stages() Identifies which stages in a matrix 

population model are reproductive. 

 
standard_stages() Identifies the stages of a matrix population 

model that correspond to different parts of 
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the reproductive life cycle. 

Visualisation plot_life_cycle() Plots a life cycle diagram from a matrix 
population model. 

 616 

 617 
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