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ABSTRACT 
Chromosomal instability (CIN) — persistent chromosome gain or loss through abnormal 

karyokinesis — is a hallmark of cancer that drives aneuploidy. Intrinsic chromosome mis-

segregation rates, a measure of CIN, can inform prognosis and are a likely biomarker for 

response to anti-microtubule agents. However, existing methodologies to measure this rate are 

labor intensive, indirect, and confounded by karyotype selection reducing observable diversity. 

We developed a framework to simulate and measure CIN, accounting for karyotype selection, 

and recapitulated karyotype-level clonality in simulated populations. We leveraged approximate 

Bayesian computation using phylogenetic topology and diversity to infer mis-segregation rates 

and karyotype selection from single-cell DNA sequencing data. Experimental validation of this 

approach revealed extensive chromosome mis-segregation rates caused by the chemotherapy 

paclitaxel (17.5±0.14/division). Extending this approach to clinical samples revealed the inferred 
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rates fell within direct observations of cancer cell lines. This work provides the necessary 

framework to quantify CIN in human tumors and develop it as a predictive biomarker. 

 

INTRODUCTION 
Chromosomal instability (CIN) is characterized by persistent whole-chromosome gain 

and loss through mis-segregation during cell division. Genome instability is a hallmark of cancer 

(Hanahan and Weinberg, 2011) and CIN is the principal driver of aneuploidy, a feature found in 

~80% of solid tumors (Hancock et al., 2004; Knouse et al., 2017; Weaver and Cleveland, 2006). 

Importantly, CIN potentiates tumorigenesis (Foijer et al., 2017; Levine et al., 2017; Silk et al., 

2013) and associates with therapeutic resistance (Ippolito et al., 2020; Lee et al., 2011; Lukow 

et al., 2020; Pavelka et al., 2010), metastasis (Bakhoum et al., 2018) and poor survival outcomes 

(Bakhoum et al., 2011; Denu et al., 2016; Jamal-Hanjani et al., 2017). Thus, CIN is an important 

characteristic of cancer biology. Despite its importance, CIN has not emerged as a clinical 

biomarker, in part because it is challenging to quantify.  

Although CIN has classically been characterized as a binary variable—tumors either have 

it or not—recent evidence highlights the importance of  the rate of chromosome mis-segregation 

and the specific aneuploidies it produces. For example, clinical outcomes partially depend on 

aneuploidy of specific chromosomes (Davoli et al., 2013; Sheltzer et al., 2017; Vasudevan et al., 

2020). Further, higher levels of CIN suppress tumor growth when they surpass a critical 

threshold, thought to be due to lethal loss of essential genes and aberrant gene dosage 

stoichiometry (Funk et al., 2021; Silk et al., 2013; Weaver and Cleveland, 2008; Zasadil et al., 

2014). Moreover, baseline CIN is thought to predict chemotherapeutic response to paclitaxel 

(Janssen et al., 2009; Swanton et al., 2009) and is predicted to promote detection or evasion 

from the immune system (Davoli et al., 2017; Santaguida et al., 2017). Clinical determination of 

a tumor’s intrinsic rate of chromosome mis-segregation will enable validation of CIN as a 

biomarker for cancer progression and treatment response.  

Many approaches have been used to characterize CIN, but struggle to quantify its rate. 

These include histologic analysis of mitotic defects (Bakhoum et al., 2011; Jin et al., 2020), 

fluorescence in-situ hybridization (FISH) with probes to detect individual chromosomes 

(Thompson and Compton, 2008), and gene-expression methodologies like CIN scores (Carter 

et al., 2006). While these methods are readily accessible, they have significant drawbacks for 
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clinical application. FISH and mitotic visualization approaches are laborious. Direct visualization 

of mitotic defects to measure CIN is only possible in the most proliferative tumors where a 

sufficient number of cells are captured in short-lived mitosis. For FISH, a subset of chromosomes 

is quantified, which will be misleading if there is bias toward specific chromosome gains/losses 

(Dumont et al., 2019). While gene expression scores are proposed as an indirect measure of 

CIN, they are not specific to CIN and are known to also correlate highly with proliferation 

signatures and structural aneuploidy (Carter et al., 2006; Sheltzer, 2014).  

By contrast, single-cell sequencing promises major advances in quantitative measures of 

CIN by displaying cell-cell variation for each chromosome across hundreds of cells (Navin et al., 

2011; Wang et al., 2014). However, selection poses another complication. Previous single-cell 

analyses have identified surprisingly low cell-cell karyotype variation, even when mitotic errors 

are readily observable via microscopy (Bolhaqueiro et al., 2019; Gao et al., 2016; Kim et al., 

2018; Nelson et al., 2020; Wang et al., 2014). These observations highlight the confounding role 

of karyotype selection in measuring CIN in human tumors. Indeed, karyotype selection reduces 

karyotype variance in cancer cell populations, even after exhibiting mitotic errors (Gerstung et 

al., 2020; Ippolito et al., 2020; Lukow et al., 2020). It may be possible to overcome this limitation 

by modeling chromosomal instability and explicitly considering the evolutionary selection of 

aneuploid cells.  

We developed a quantitative framework to measure CIN by sampling population structure 

and cell-cell karyotypic variance in human tumors, accounting for selection on aneuploid 

karyotypes. We built our framework on the use of phylogenetic topology measures to quantify 

underlying evolutionary processes (Mooers and Heard, 1997); in this case to quantify CIN from 

both the diversity and the aneuploid phylogeny within a tumor. Using an agent-based model of 

CIN, we determined how distinct types and degrees of selective pressure shape the karyotype 

distribution and population structure of tumor cells at different rates of chromosome mis-

segregation. We then used this in silico model as a foundation for parameter inference to provide 

a quantitative estimate of CIN as a numerical rate of chromosome mis-segregation per cell 

division. We applied this model to quantify CIN caused by the chemotherapeutic paclitaxel in 

culture, then, using existing single-cell whole-genome sequencing data (scDNAseq), we 

quantified CIN in cancer biopsy and organoid samples. As a whole, this work provides the 
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necessary framework to quantify CIN in human tumors as a scalar, and to develop it as a 

prognostic and predictive biomarker.  

 

RESULTS  
A framework for modeling CIN and karyotype selection  

To assess intratumoral CIN via cell-cell karyotype heterogeneity, we considered how 

selection on aneuploid karyotypes impacts observed chromosomal heterogeneity within a tumor. 

By modeling fitness of aneuploid cells, we can observe chromosomal variation in a population 

of surviving cells. The selective pressure of diverse specific aneuploidies on human cells has 

not been, to our knowledge, directly measured. Therefore, we employ previously developed 

models of selection 

In transient CIN models, fit karyotypes are selected while unfit karyotypes are eliminated 

over time (Ippolito et al., 2020; Ravichandran et al., 2018; Sheltzer et al., 2017; Vasudevan et 

al., 2020). We use two previously proposed models of aneuploidy-associated cellular fitness, as 

well as a hybrid model, to an agent-based mitosis and mis-segregation framework. The Gene 

Abundance model is based on the relatively low incidence of aneuploidy in normal tissues and 

assumes cellular fitness declines as the cell’s karyotype diverges from a balanced euploid 

karyotype (i.e. 2N, 3N, 4N)(Sheltzer and Amon, 2011; Zhu et al., 2012). When an individual 

chromosome diverges from euploid balance, its contribution to cellular fitness is weighted by its 

abundance of genes (Supplemental Figure 1A, left). Alternatively, the Driver Density model 

assumes that each chromosome contributes to cellular fitness, weighted by its ratio of 

Oncogenes and Essential genes to Tumor suppressor genes (TOEs)(Davoli et al., 2013; 

Laughney et al., 2015). For example, selection will favor loss of chromosomes with tumor 

suppressors and favor gain of chromosomes replete with oncogenes and essential genes 

(Supplemental Figure 1A, right). The hybrid averaged model accounts for both karyotypic 

balance and TOE densities (Supplemental Figure 1A, middle). Using these fitness models, we 

assigned chromosome scores to reflect each chromosome’s value to cellular fitness under each 

model (Figure 1A), the sum of which represent the total fitness value for the cell, relative to a 

value of 1 for a euploid cell (Figure 1A). Further, we scaled the impact of selective pressure in 

these models with an exponent, S, ranging from 0 (no selection) to 200 (high selection). While 
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Figure 1 – A framework for modeling CIN and karyotype selection  
(A) Chromosome scores for each model of karyotype selection. Gene Abundance scores are derived from the number of 

genes per chromosome normalized to the number of all genes (Materials & Methods). Driver Density scores come 
from the pan-cancer chromosome scores derived in Davoli et al. (2013), and normalized to the sum of scores for 
chromosomes 1-22. The X chromosome did not have a score and was set to 0. Hybrid model scores are set to the 
average of the Driver and Abundance models.  

(B) Framework for the simulation of and selection on cellular populations with CIN. Cells probabilistically divide (Pdivision = 
0.5) and probabilistically mis-segregate chromosomes (Pmisseg = [0.001… 0.5]). After, cells experience selection under 
one of the selection models, altering cellular fitness and the probability (Pdivision) a cell will divide again (green check). 
Additionally, cells wherein the copy number of any chromosome falls to zero or surpasses 6 are removed (red x). 
After this, the cycle repeats.  
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we recognize these models are approximations, they are nevertheless useful to estimate how 

mis-segregation and selective pressure cooperate to mold karyotypes in the cell population.  

 Next, we developed an agent-based model of population growth with each cell having its 

own karyotype. For 40 generations—80 time steps, each being about ½ generation we simulated 

population growth under a range of selective pressure exponents (S) and rates of chromosome 

mis-segregation (Pmisseg). Each of the 100 euploid founder cells have a 50% chance of dividing 

per time step (to partially mimic the asynchrony of cell division; initial Pdivision = 0.5; Figure 1B, 

Supplemental Figure 1C). When a cell undergoes division, each of the original 46 chromosomes 

segregate or mis-segregate probabilistically (Pmisseg). After division, the new karyotype of each 

daughter cell is assessed, and fitness (F) is recalculated according to the fitness model prior to 

scaling by the selection exponent (S). Further, aneuploidy is lethal if a daughter completely lacks 

any one chromosome, or exceeds 6 copies of any chromosome, and the cell ‘dies’ and is 

removed from the population. Any remaining viable cell has its Pdivision adjusted by the cell’s 

fitness under selection (FS), such that more fit cells are more likely to divide again, contributing 

more greatly to the cell population. Due to computational limits, cell populations are capped at 

4800; when the population surpasses this limit, half are removed at random. In this manner, the 

model replicates the process by which CIN creates karyotypic heterogeneity in a tumor. Further, 

it allows random sampling of karyotypes, mimicking single-cell sequencing of a tumor, to study 

how these dynamics contribute to karyotype evolution and to determine the necessary number 

of single cells that need to be sampled for a clinical biomarker. 

 

Evolutionary dynamics imparted by CIN 

To understand the interplay between CIN and selection on the cell population, we 

simulated populations with CIN under each model of karyotype selection for 80 time steps. To 

reproduce diverse circumstances, we varied the rate of mis-segregation (Pmisseg,c ∈ {0.001-0.5 

per chromosome}; or 0.046 – 23 mis-segregations per cell division) and levels of the selection 

pressure exponent (S ∈ {0-200}; ranging from no selection to any aneuploidy heavily selected 

for/against). The probability of division (Pdivision) is adjusted by selection for aneuploid cells but 

starts at 0.5 for the euploid founder population, allowing euploid cells to divide once every 2 time 

steps on average (Figure 2A). Over time, the simulated cell number rapidly increases to the cap 

of 4800, whereupon a random half of the population will be deleted. Thus, a population with FS 
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 Figure 2 – Evolutionary dynamics imparted by CIN 
(A) Parameters used to control simulation of populations with CIN. All simulations were performed with an initial Pdivision = 

0.5. Thus, 2 steps ~ 1 generation. 
(B) Population growth curve in the absence of selective pressure (Pmisseg = 0.001, S = 0, n = 5 simulations). The steady 

state population in null selection conditions is 4500 cells.  
(C) Heatmaps depicting dynamics of karyotype diversity as a function of time (steps), mis-segregation rate (Pmisseg), and 

selection (S) under each model of selection. Columns represent the same model; rows represent the same selection 
level. Mean karyotype diversity (MKV) is measured as the variance of each chromosome averaged across all 
chromosomes 1-22, and chromosome X. Low and high MKV are shown in blue and yellow respectively. White space 
indicates simulations with populations < 5 cells (n = 5 simulations for every combination of parameters).  

(D) Population growth under each model, varying Pmisseg and S. Pmisseg = [0.001, 0.022, 0.065] translate to about 0.046, 1, 
and 3 mis-segregations per division respectively. 

(E) Dynamics of the average ploidy (total # chromosomes / 23) of a population while varying Pmisseg and S. 
(F) Dynamics of ploidy under each model for diploid and tetraploid founding populations. Pmisseg = [0.043, 0.0.087] translate 

to about 2 and 4 mis-segregations per division respectively. 
(G) (Top) Fitness (log2 FS) over time for diploid and tetraploid founding populations evolved under each model. (Bottom) 

Karyotype diversity dynamics for diploid and tetraploid founding populations. MKV is normalized to the mean ploidy of 
the population at each time step. Plotted lines in D-G are local regressions of n=5 simulations. 

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80
Steps

Pl
oi

dy

2 4

0 20 40 60 80 0 20 40 60 80
−5.0

−2.5

0.0

2.5

Steps

 lo
g 2

 M
ea

n
Fi

tn
es

s 
(F

S)

2 4

0 20 40 60 80 0 20 40 60 80
0.0
0.2
0.4
0.6

Steps

M
KV

(n
or

m
'd 

to
 p

lo
id

y)

0 20 40 60 80

0

2

4

6

0

2

4

6

0

2

4

6

Steps

N
um

be
r o

f C
el

ls
 x

 1
00

0
0 20 40 60 80

0

2

4

6

0

2

4

6

0

2

4

6

Steps
0 20 40 60 80

0

2

4

6

0

2

4

6

0

2

4

6

Steps

S
=
0

S
=
10

S
=
200

S
=
0

S
=
10

S
=
200

Abundance Driver Hybrid

0 20 40 60 800 20 40 60 800 20 40 60 80

0.5
0.413
0.326
0.239
0.152
0.065
0.007
0.001

0.5
0.413
0.326
0.239
0.152
0.065
0.007
0.001

0.5
0.413
0.326
0.239
0.152
0.065
0.007
0.001

Steps

M
is
-s
eg

re
ga

tio
n
R
at
e
(
P m

is
se
g
)

S=0

S=10

S=200

S=0

S=10

S=200

S=0

S=10

S=200

0

0.25

0.50

0.75

1

MKV

F GE

B

C

S=10

D

A

Parameter

Pmisseg probability of mis-segregation per chromosome per division; [0.001..0.5]

magnitude of selective pressure on aneuploid karyotypes; [0..200]

probability of cellular division per time step; Pdivision = P(FM > R~U[0..2])

S

Pdivision

Description

0

1000

2000

3000

4000

0 20 40 60 80
Steps

n = 5 simulations

N
um

be
ro

fC
el
ls

Abundance

Model

Pmisseg

Driver
Hybrid

0.043
0.087

Abundance Driver Hybrid

Abundance Driver Hybrid

0 20 40 60 80

2.00

2.25

2.50

2.75

3.00

2.00

2.25

2.50

2.75

3.00

2.00

2.25

2.50

2.75

3.00

Steps

Pl
oi
dy

0 20 40 60 80

2.00

2.25

2.50

2.75

3.00

2.00

2.25

2.50

2.75

3.00

2.00

2.25

2.50

2.75

3.00

Steps
0 20 40 60 80

2.00
2.25
2.50
2.75
3.00

2.00
2.25
2.50
2.75
3.00

2.00
2.25
2.50
2.75
3.00

Steps

Pmisseg
0.001
0.022
0.065

Pmisseg
0.001
0.022
0.065

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


 6 

= 1 will remain at about 4800 cells over time (Figure 2B). We measured diversity as the mean of 

variances for each chromosome across the population and normalized this to the mean ploidy 

of the population (mean karyotypic variance, MKV). We then plotted heatmaps showing the 

dynamics of diversity across time, mis-segregation rate, and selection levels (Figure 2C). When 

mis-segregation rate is increased (y-axis), MKV tends to increase over time (x-axis). Extremely 

high mis-segregation rates in the absence of selection (S=0) can result in complete population 

collapse (white area) due to the high incidence of death-triggering copy number states (1>nc>6). 

The three selection models (Abundance, Driver, Hybrid) are displayed as three columns (Figure 

2C). As expected, when selection is zero (S=0) the three selection models returned comparable 

MKV profiles over time. When selective pressure is applied (S>0), the diversity profiles diverge. 

As expected, the abundance model negatively selects against all aneuploid karyotypes and 

yields low heterogeneity at all time steps, though it does scale to a low degree with mis-

segregation rate. With the Driver model, there is a sharp increase in heterogeneity at moderate 

mis-segregation rates and the model was more tolerant of high degrees of aneuploidy, to the 

point where the cell population collapsed due to nullisomy even under moderate selection 

(S=10). As expected, the Hybrid model fell between that of the Abundance and Driver models 

because selection only partly favors some aneuploid karyotypes while selecting against most 

others. Under heavy selection (S=200), the ability for any model to remain significantly diverse 

is dampened except for a moderate range of mis-segregation rates in the Driver model (Figure 

2C). 

We also quantified the population of viable cells (Figure 2D, Supplemental Figures 2B,D). 

Using the Abundance model at increased levels of selection, the population of cells took longer 

to grow compared with other models. By contrast, those grown under the Driver model 

proliferated more rapidly. Under selection, cells grown under the Hybrid model proliferated 

rapidly at low rates of mis-segregation, while higher rates still limited growth. Additionally, while 

a random half of any population that reaches 4800 cells is deleted, populations with an average 

fitness > 1 will proliferate more rapidly than they are deleted, thus these fit populations will 

exceed the population cap (Figure 2D, Supplemental Figures 2B,D). We noted that in some 

cases, the mean ploidy of the populations would increase over time (Figure 2E). Without 

selection (S=0; top), total ploidy increased over time in all models, likely due to chromosome 

gains being permitted more than losses in our model (since cells ‘die’ with nullisomy or any 
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chromosome > 6, the optimum is 3.0). Once selection is applied (S>0), the models diverge. As 

proliferation decreases under the abundance model, there is less increase in average ploidy. 

Alternatively, under the Driver model, the population mean a triploid more rapidly than under 

selection-null conditions. This is consistent with previous findings using models built on 

chromosome-specific driver densities (Davoli et al., 2013; Laughney et al., 2015). Under the 

Hybrid model, with high selection (S=200), the mean ploidy of the population increased only with 

moderate mis-segregation. This indicates that there is an optimum mis-segregation rate to 

enable favorable selection of the TOE drivers, balanced against the adverse effects of high mis-

segregation rates on the population. Taken together these data demonstrate how selection and 

mis-segregation rate interact in a complex manner to shape the array of aneuploidy karyotypes 

found in a population of cells, or a human tumor. Further, they demonstrate that sampling cells 

and measuring karyotypic diversity in a tumor does not allow direct determination of mis-

segregation rates, as diversity is influenced by other factors.  

Genome doubling is an event that is thought to occur early, relative to other copy number 

changes, in the genesis of some tumors (Bielski et al., 2018; Gerstung et al., 2020). Tumors are 

hypothesized to leverage genome doubling to buffer against loss of chromosomes and thereby 

favor aneuploidy. To determine how genome doubling impacts evolution in our model, we 

repeated these models, comparing diploid and tetraploid founders (Figure 2F). Both tend to 

converge towards the near-triploid state (ploidy ~ 3.0), as observed in many human cancers 

(Carter et al., 2012), though this occurs most rapidly with the Driver model. As predicted, average 

fitness (FS) of diploid and tetraploid founding populations differs, with tetraploid cells being 

buffered against the negative effects of aneuploidy (higher FS values), particularly in the 

Abundance model (green) (Figure 2G, top row; Supplemental Figures 2A,C). This is consistent 

with the idea that tetraploidy serves as an intermediate enabling a near-triploid karyotype that is 

common in many cancers (Bielski et al., 2018; Lopez et al., 2020). With regard to MKV, diploid 

populations overall, and the Driver model in particular, tend to exhibit increased MKV in fewer 

steps, suggesting a more rapid increase in diversity (Figure 2G, bottom row). This is explained 

by the model assumption that a maximum of one of any particular chromosome mis-segregates 

per division, and one mis-segregation is a greater fraction relative to diploidy than triploidy. 

Taken together, these models recapitulate key aspects of prior characteristics of aneuploidy and 

ploidy status on tumor evolution, lending credence to our model. Further, they illustrate that it 
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may not be possible to directly infer mis-segregation rates, a measure of CIN, solely by sampling 

karyotypes in a human tumor without accounting for selection. However, this model serves as a 

framework for quantitative inference of mis-segregation rates form the diversity in tumor-derived 

single-cell DNA sequencing. 

 

Karyotype diversity depends profoundly on selection modality 
Some current measures of CIN are derived from the aneuploidy diversity in the 

population. Yet, our model suggests that selection may profoundly shape the karyotype variance 

in a population. To evaluate this further, we considered the case where CIN is a property of an 

incipient tumor, but then is turned off (Pmisseg = 0) after 200 steps (Figure 3A). Over an additional 

800 steps of selection, tumors could retain high aneuploidy (top arrow), revert to a small number 

of distinct clones (middle arrow), or return to a near-diploid state (bottom arrow). For 200 steps, 

we simulated the karyotypic evolution of populations at low rates of chromosome mis-

segregation, akin to what has been observed microscopically (Pmisseg = 0.022 per chromosome; 

~ 1 chromosome per division) (Bakhoum et al., 2009; Weaver et al., 2007), and continued 

selection for the remaining timescale (1000 steps) with moderate selective pressure (S=5). This 

early CIN mimics the chromosomal instability in early tumor evolution as reported to occur in 

breast cancer (Gao et al., 2016) (Figure 3A). 

We visualized the karyotype profiles of individual cells as heatmaps over time (Figure 3B). 

Under the Abundance selection model (left), the cell population indeed diversified over 200 

steps, but then became more uniform, with selection markedly reducing the number of unique 

clones and, hence, karyotypic variance. The population generated but did not maintain a high 

degree of aneuploidy (mean intra-karyotype variance; Supplemental Figure 5A) as a result of 

decreased fitness over the entire population. By contrast, the Driver Density model (middle) 

maintained karyotypic diversity at later time steps. Accordingly, the number of unique clones did 

not decrease over time. This indicates that the model does not strongly select against the 

karyotypically distinct clones that have FS>2, thus a Pdivision = 1 (where cells will divide at every 

time step). The Hybrid model (right) exhibited an intermediate level of aneuploidy and MKV 

generated during the first 200 steps; after which, many, but not all clones were removed over 

time (Figures 3B,C). These data indicate that the development and maintenance of karyotype 

diversity over time depends profoundly on the modality of karyotype selection.  
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Figure 3 – Karyotype diversity depends profoundly on selection modality 
(A) Scheme for simulation experiment to observe the emergence of unique clones. Early CIN simulations were run with 

CIN for 200 steps and a further 800 without. 
(B) Heatmaps depicting the chromosome copy number profiles of a subset (n = 20 out of 300 sampled cells) of the 

simulated population with early CIN over time under each model of karyotype selection. Pmisseg = 0.022; S = 5. 
(C) Time lapse analysis of a subset (n=20 out of 300) of the simulated population. Grey box depicts time with CIN. 

Aneuploidy is measured as the mean of the variances taken within each cell’s karyotype (Supplemental Figure 5A). 
Unique clones are any cell with a unique karyotype. Lines depict the mean of n=3 simulations. 
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Topological features of simulated phylogenies delineate CIN rate and karyotype selection 
Given a model capable of recapitulating diversity and selective pressures, how is it 

possible to account for selection to infer Pmisseg as a measure of CIN from an observed population 

of cells? Phylogenetic trees are a useful tool to infer evolutionary processes of genetic 

diversification and selection. Moreover, the topology of the phylogenetic tree has been used as 

a quantitative measure of the underlying evolutionary processes they result from (Colijn and 

Plazzotta, 2018; Dayarian and Shraiman, 2014; Manceau et al., 2015; Neher et al., 2014; Scott 

et al., 2019).  

Here, chromosome mis-segregation gives rise to variable levels of karyotypic 

heterogeneity within a population, which is then shaped—and confounded—by selection. We 

sought to understand how we can utilize chromosome copy number-based phylogenic 

reconstruction to disambiguate these factors by quantifying the topological features of these 

simulated phylogenetic trees. These include discrete features such as ‘cherries’—two tips that 

share a direct ancestor—and ‘pitchforks—a clade with three tips. Additionally, we considered a 

broader metric of topology, the Colless index, which measures the imbalance or asymmetry of 

the entire tree (Figure 4A). To understand how these measures are affected by selection in our 

model, we looked explicitly at the phylogenetic reconstructions of 300 random cells from each 

simulation performed over a full range of selective pressures taken at 60 time steps (~30 

divisions)(Figure 4B). As seen previously, aneuploidy and MKV decreased with selective 

pressure in a trend that becomes more robust as mis-segregation rate increases. As expected, 

the Colless indices for these simulations appear to increase with selective pressure, which tends 

to generate asymmetry through selection on early aneuploid karyotypes (Figure 4C). 

Accordingly, this imbalance is apparent in phylogenetic reconstructions of simulated populations 

(Figure 4D). Cherries and pitchforks also vary, though less consistently. Yet cherries tend to 

diminish with very high selective pressure, probably due to selection against variation in 

aneuploidies even in the latest generations prior to sampling (Figure 4C, 4th row).  

To characterize how well these measures retain information about the simulation 

parameters, we performed dimensionality reduction with measures of karyotype heterogeneity 

alone (MKV and aneuploidy) and with both measures of karyotype heterogeneity and 

phylogenetic topology (Figure 4E). This analysis indicates that when considering heterogeneity 
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Figure 4 – Topological features of simulated phylogenies delineate CIN rate and karyotype selection 
(A) Quantifiable features of karyotypically diverse populations. Heterogeneity between and within karyotypes is described 

by MKV and aneuploidy (inter- and intra-karyotype variance, see Materials & Methods). We also quantify discrete 
topological features of phylogenetic trees, such as cherries (tip pairs) and pitchforks (3-tip groups), and a whole-tree 
measure of imbalance (or asymmetry), the Colless index. 

(B) Scheme to test how CIN and selection influence the phylogenetic topology of simulated populations.  
(C) Computed heterogeneity (aneuploidy and MKV) and topology (Colless index, cherries, pitchforks) summary statistics 

under varying Pmisseg and S values. MKV is normalized to the average ploidy of the population. Topological measures 
are normalized to population size. Spearman rank correlation coefficients and p-values are displayed (n = 5 
simulations).  

(D) Representative phylogenies for each hi/low CIN, hi/low selection parameter combination and their computed summary 
statistics. Each phylogeny represents n = 50 out of 300 cells for each simulation.  

(E) Dimensionality reduction of all simulations for each hi/low CIN, hi/low selection parameter combination using measures 
of karyotype heterogeneity only (left; MKV and aneuploidy) or measures of karyotype heterogeneity and phylogenetic 
topology (right; MKV, aneuploidy, Colless index, cherries, and pitchforks).  
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alone simulations performed under high CIN/high selection (yellow) and low CIN/low selection 

(red) associate closely, meaning these measures of heterogeneity are not sufficient to 

distinguish these disparate conditions (Figure 4E, left). These similarities arise because high 

selection can mask the heterogeneity expected from high CIN. By contrast, combining measures 

of heterogeneity with those of phylogenetic topology can better discriminate between simulations 

with disparate levels of CIN and selection (Figure 4E, right). This provides further evidence that 

measures of heterogeneity alone are not sufficient to infer CIN due to the confounding effects of 

selection, particularly when the nature of selection is unclear or can vary. Together these results 

indicate that phylogenetic topology is able to delineate the levels of selective pressure and rates 

of chromosome mis-segregation under which these simulations were performed. Further, they 

indicate that considering phylogenetic topology in single-cell populations may be a suitable 

method for correcting for selective pressure when estimating the rate of chromosome mis-

segregation from measures of karyotype diversity.   

 

Experimental chromosome mis-segregation measured by Bayesian inference 
To experimentally validate quantitative measures of CIN, we generated a high rate of 

chromosome mis-segregation with a clinically relevant concentration of paclitaxel (Taxol) over 

48 hours (Figure 5A). We treated CAL51 breast cancer cells with either a DMSO control or 20 

nM paclitaxel, which is expected to generate widespread aneuploidy due to chromosome mis-

segregation on multipolar mitotic spindles (Zasadil et al., 2014), which we verified in this 

experiment (Supplemental Figure 4A). At this short timescale we assume cells have undergone 

only 1-2 mitoses and we observe broadened DNA content distributions by flow cytometry 

(Supplemental Figure 4B). Using low-coverage scDNAseq data, we characterized the 

karyotypes of 38 DMSO- and 134 paclitaxel-treated cells. As expected, we observe a high 

penetrance and extensive degree of aneuploidy generated via paclitaxel, which contrasts with 

low variance in the control (Figure 5B). Additionally, the mean of the resultant aneuploid 

karyotypes for each chromosome still resembled those of bulk-sequenced cells, highlighting that 

bulk-sequencing is an ensemble average, and does not detect the true variation in the 

population, particularly with balanced mis-segregation events (Figure 5B, single-cell mean and 

bulk). In quantifying the absolute deviation from the modal control karyotype in each cell, and 

assuming a single mitosis, we found that cells that undergo mitosis in the presence of 20 nM 
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Figure 5 – Experimental chromosome mis-segregation measured by Bayesian inference 
 
(A) Experimental scheme. Cal51 cells were treated with either DMSO or 20 nM paclitaxel for 48 hours prior to 

further analysis by time lapse imaging, bulk DNA sequencing, and scDNAseq. 
(B) Heatmaps showing copy number profiles derived from scDNAseq data, single cell copy number averages, 

and bulk DNA sequencing. 
(C) Observed mis-segregations calculated as the absolute sum of deviations from the observed modal 

karyotype of the control.   
(D) Observed incidence of nullisomy (fraction~0.5) in paclitaxel-treated cells plotted against the observed mis-

segregation rate (Pmisseg,true = 18.5/44 = 0.42) overlaid on simulated data from the first 3 time steps (~1.5 
generations) under the Hybrid model.  

(E) Dimensionality reduction analysis of population summary statistics (aneuploidy, MKV, Colless index, 
cherries, and pitchforks) from the first 3 time steps of all simulations performed under the Hybrid model.  

(F) Prior (grey) and posterior (gold) distributions from Approximate Bayesian computation analysis using 
population summary statistics computed from the paclitaxel-treated cells. Only the first 3 time steps of 
simulation data were used. Dashed line represents the experimentally observed mis-segregation rate.   

 

0 50 100 150 200 0.1 0.2 0.3 0.4 0.5
Selective Pressure (S) Mis-segregation Rate (Pmisseg)

0
1
2
3
4

Copy #

DM
SO

(n
=3

8)
20

nM
Pt
x
(n
=1

34
)

B
ul
k
Si
ng
le
-c
el
l

m
ea
n

DMSO

Ptx

DMSO

Chromosome
1 3 5 7 9 11 13 15 17 19 21 X

Chromosome
1 3 5 7 9 11 13 15 17 19 21 X

Ptx

0 50 100 150 200 0.0 0.1 0.2 0.3 0.4 0.5
Mis-segregation Rate (Pmisseg)Selective Pressure (S)

True rate
(18.5 / 44)

Prior
Posterior

D
en
si
ty

20 nM paclitaxel (Ptx)

time lapse imaging
+

bulk seq (1000 cells)
+

single cell seq

48 hr

DMSO
A B C E

FD

4.5 ± 0.5

18.5 ± 0.5

0

20

40

60

DMSO 20 nM Ptx

M
is-
se
gr
eg

at
io
ns

(d
ev
ia
tio
ns

fro
m
m
od

al
ka
ry
ot
yp
e)

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Mis-segregation Rate (Pmisseg)

Fr
ac
.p

op
ul
at
io
n
w/

nu
llis

om
y

(m
os
tr
ec
en

ts
te
p)

S = 0
Steps = [1..3]
Experimental (Ptx)
Sim mean & range

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


 11 

paclitaxel mis-segregate 18.5 ± 0.5—a Pmisseg of ~0.42 (Figure 5C). Moreover, we observe a 

close association between the incidence of nullisomy observed experimentally to simulations 

carried out under this mis-segregation rate over 1-2 divisions (Figure 5D).  

In this instance, while we were able to estimate mis-segregation rate by calculating 

absolute deviation from the modal karyotype after a single aberrant cell division. However, such 

an analysis would be inappropriate for long term experiments, or real tumors, where new 

aneuploid cells may be subject to selection. Accordingly, we sought to infer the parameters of 

this experiment—the mis-segregation rate of 18.5 chromosomes per division and low selection—

using only measures of aneuploidy, variance, and phylogenetic topology as shown previously. 

To display this, we used dimensionality reduction to ensure that observed measures from the 

paclitaxel-treated Cal51 population fell within the space of those observed from simulated 

populations over 1-3 steps (0.5-1.5 generations). Indeed, the experimental data mapped to those 

from simulations using high mis-segregation rates and simulated selection pressures were 

poorly separated, indicating karyotype selection is not a major factor within this time frame (red 

point, Figure 5E). However, this comparison does not provide a quantitative measure of CIN. 

Instead, parameter inference via approximate Bayesian computation (ABC) is well suited for this 

purpose.  

By providing these same metrics derived from simulated populations evolved under wide-

ranging, uniform distributions of evolutionary parameters (a prior distribution), ABC can 

determine the most likely evolutionary parameters that produce the observed pattern without 

biased a priori estimations (the posterior distribution). We utilized an ABC framework (Csillery et 

al., 2012) on our simulated dataset to infer the chromosome mis-segregation rate and selective 

pressure observed in the paclitaxel-treated cells (see Materials and Methods). We then used the 

experimentally observed mis-segregation rate as a benchmark to optimally select a panel of 

measures for parameter inference (Supplemental Figure 5) and selected the following five 

metrics to use concurrently in our ABC analysis: mean aneuploidy, MKV, the Colless index (a 

phylogenetic balance index) and the population size-normalized number of cherries and 

pitchforks (discrete topological features of phylogenetic trees). In doing so, this analysis inferred 

a chromosome mis-segregation rate of 17.5±0.14 chromosomes (mean ± SE) , an estimate that 

compares favorably with the experimentally observed rate of 18.5±0.5. The range and density 

of accepted values for selective pressure spanned the entire posterior distribution, meaning that 
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selection had little bearing on the result, regardless of the magnitude, at this time point (Figure 

5F). This is consistent with the absence of selection in a 48-hour experiment. In short, this 

experimental case allowed us to validate ABC-derived mis-segregation rate as a measure of 

CIN, using an experimentally determined mis-segregation rate as confirmation. Importantly, prior 

estimations of mis-segregation rate selective pressure were not required to develop this 

quantitative measure of CIN. 

Together, these data indicate that combining simulated and observed metrics of 

population diversity and structure with a Bayesian framework for parameter inference may be a 

flexible method of quantifying the evolutionary forces associated with CIN. Moreover, using this 

method has revealed the hitherto unreported potential extent of chromosome mis-segregation 

induced by a clinically relevant concentration of the successful chemotherapeutic paclitaxel. 

 

Minimum sampling of karyotype heterogeneity 
 The cost of high-throughput DNA sequencing of single cells is often cited as a limitation 

to clinical implementation. In part, the cost can be limited by low-coverage sequencing which is 

sufficient to estimate the density of reads across the genome. Further, it may be possible to 

minimize the number of cells that are sampled to get a robust estimate of CIN, though sampling 

too few cells may result in inaccurate measurements. Accordingly, we sought to understand how 

sampling impacts measurement of mis-segregation rates using approximate Bayesian 

computation. We first took 5 random samples from the population of paclitaxel-treated cells each 

at various sample sizes (Supplemental Figure 6A). We then inferred the mis-segregation rate in 

each sample and identified the sample size that surpasses an average of 90% accuracy and a 

low standard error of measurement. We found the low sample sizes (n=[10..40]) suffer 

underestimation of the known mis-segregation rate in paclitaxel-treated cells (Supplemental 

Figure 6B). While the mean percent accuracy levels off above 90% at about 50 cells 

(Supplemental Figure 6C), the standard error of measurements stabilizes around 70 cells 

(Supplemental Figure 6D). Random samples of 70 paclitaxel-treated cells had a percent 

accuracy of 95.1% and a standard error of 0.03 (±1.3 chromosomes per division). We repeated 

this analysis using simulated data from the Hybrid selection model and a range of mis-

segregation rates spanning what is observed in cancer and non-cancer cultures (Pmisseg ≤ 0.022; 

Figure 6E). We again found a range of sample sizes whose inferred mis-segregation rates 
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underestimate the known value from those simulations (n=[20..160]; Supplemental Figures 

6E,F). Across all mis-segregation rates and selective pressures, random samples of 180 cells 

had a median percent accuracy of 92% and median standard error of 0.0002 (± 0.0092 

chromosomes per division). The difference in optimal sample sizes between the paclitaxel-

treated population and the simulated population is notable and likely due to the presence of 

‘clonal’ structures in the simulated population. While the paclitaxel treatment resulted in a 

uniformly high degree of aneuploidy and little evidence of karyotype selection, the simulated 

populations after 60 steps (~30 generations) have discrete copy number clusters that may not 

be captured in each random sample. To verify this, we repeated the analysis using only data 

from the first time step, prior to the onset of karyotype selection (Supplemental Figure 6H). In 

this case, we found that the sample size needed to achieve a median 90% accuracy over all 

simulations in this context is 100 cells, at which point the standard error for Pmisseg is 0.0068 

(placing measures within ± 0.31 chromosomes per division; Supplemental Figures 6I,J). Thus, 

a larger number of cells is required in the context of long-term karyotype selection than a more 

acute time scale, such as we see with paclitaxel.  

In conclusion, we recommend using 180 cells from a single sampled site which, at 

biologically relevant time scales and rates of mis-segregation, provides ≥90% accuracy. These 

data represent, to our knowledge, the first analysis of how sample size for single-cell sequencing 

affects the accuracy and measurement of chromosome mis-segregation rates.  

 

Inferring chromosome mis-segregation rates in tumors and organoids 
To determine if this framework is clinically applicable, we sought out previously published 

scDNAseq datasets derived from tumor samples and patient-derived organoids (PDO) 

(Bolhaqueiro et al., 2019; Navin et al., 2011). Importantly, the data from Bolhaqueiro et al. include 

sample-matched live cell imaging data in colorectal cancer PDOs, with direct observation of 

chromosome mis-segregation events to compare with inferred measures. We established our 

panel of measurements on these populations (Figure 6A) then constrained our prior distribution 

of simulated data to those with chromosome mis-segregation rates below 0.25, because above 

this threshold populations were unstable and typically died off after ~20 time steps (Figure 2C). 

We then confirmed these datasets were within the space of simulation data from the Hybrid 

model (Figure 6B). Next, we performed ABC analysis on these datasets to infer rates of 
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Figure 6 – Inferring chromosome mis-segregation rates in tumors and organoids 
(A) Computed population summary statistics for colorectal cancer (CRC) patient-derived organoids (PDOs) and breast 

biopsy scDNAseq datasets from Bolhaqueiro et al., (2019) (gold) and Navin et al., (2011) (pink).  
(B) Dimensionality reduction analysis of population summary statistics showing biological observations overlaid on, and 

found within, the space of simulated observations. Point colors show the distributions of simulation parameters and 
summary statistics for all simulations with Pmisseg ≤ 0.3.  
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(C) Plots showing the prior (grey) and posterior (gold) distributions of Pmisseg and S values from the approximate Bayesian 
computation analysis of the breast biopsy sample from Navin et al., 2011. ABC analyses were performed using a 
tolerance threshold of 0.05 to reject dissimilar simulated observations (see Materials and Methods). Only simulations 
with Pmisseg ≤ 0.3 were used for parameter inference.  

(D) Inferred selective pressures and mis-segregation rates from each scDNAseq dataset (mean and SEM of accepted 
values).   

(E) Pearson correlation of predicted mis-segregation rates and predicted selective pressures in CRC PDOs.  
(F) Pearson correlation of predicted mis-segregation rates and the incidence of observed segregation errors in CRC PDOs 

from Bolhaqueiro et al., 2019. Error bars represent SEM values.  
(G) Pearson correlation of observed incidence of segregation errors to ploidy-corrected prediction of the observed 

incidence of segregation errors. These values assume the involvement of 1 chromosome per observed error and are 
calculated as the (predicted mis-segregation rate) x (mean number of chromosomes observed per cell) x 100. Dotted 
line = 1:1 reference.  

(H) Predicted mis-segregation rates in CRC PDOs and a breast biopsy plotted with approximated mis-segregation rates 
observed in cancer (blue triangle) and non-cancer (red circle) models (primarily cell lines) from previous studies 
(Supplemental Table 2; see Materials and Methods). The predicted mis-segregation rates in these cancer-derived 
samples fall within those observed in cancer cell lines and above those of non-cancer cell lines.  
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chromosome mis-segregation and levels of selection pressure (Figure 6C; Supplemental Figure 

7). Figure 6C illustrates the results for the biopsied breast tumor from Navin et al., 2011, 

illustrating the distribution of parameters used for simulations that gave the most similar results. 

When applying ABC to infer paramters for various samples (Figure 6D), we find these fall within 

rates of mis-segregation of about 0.001 to 0.007. Applied to a near-diploid cell, this would 

translate to a range of about 5-36% of cell divisions having one chromosome mis-segregation. 

Importantly, these putative rates of chromosome mis-segregation fall within the range of 

approximated per chromosome rates experimentally observed in cancer cell lines and human 

tumors (Bakhoum et al., 2014, 2011, 2009; Dewhurst et al., 2014; Nicholson et al., 2015; Orr et 

al., 2016; Thompson and Compton, 2008; Worrall et al., 2018; Zasadil et al., 2014). Higher 

inferred mis-segregation rates significantly correlated with lower inferred selection experienced 

in these samples (Figure 6F). Notable examples are the sample from normal colon tissue (26N) 

and a near-triploid sample (24Tb), which were inferred to be experiencing one of the highest and 

lowest levels of selection respectively. This is consistent with the idea that normal tissue does 

not well tolerate aneuploidy whereas high-ploidy tumors better tolerate CIN (Dewhurst et al., 

2014; Knouse et al., 2014; Lopez et al., 2020; Pfau et al., 2016). Additionally, by estimating the 

number of generations experienced by these populations, we found that the breast biopsy 

sample spent more time diversifying prior to sampling than the CRC PDOs (Supplemental 

Figures 8A,B). This seems appropriate as the CRC PDOs began as single cell clones with 

relatively little time in culture. However, these values were estimated using a post-hoc calculation 

of the average Pdiv of each population. This is only accurate insofar as the chromosome scores 

for each model truly represent aneuploid fitness in these samples but may serve as a relative 

time scale for each sample. As further validation, we compared these inferred mis-segregation 

rates from CRC PDOs with those directly measured in live imaging. There was a strong 

correlation but for two outliers—9T and 24Ta (Figure 6G). In fact, when adjusting to the same 

scale and correcting for cell ploidy, these data follow a strong positive linear trend, excepting the 

outliers (Figure 6H). Overall, these results indicate that the inferred measures using approximate 

Bayesian computation and scDNAseq account for selection and provide a quantitative measure 

of CIN.   

 

DISCUSSION 
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The clinical assessment of mutations, short indels, and microsatellite instability in human 

cancer determined by short-read sequencing currently guide clinical care. By contrast, CIN is 

highly prevalent, yet has remained largely intractable to clinical measures. Single-cell DNA 

sequencing now promises detailed karyotypic analysis across hundreds of cells, yet selective 

pressure is expected to suppress the observed karyotype heterogeneity within a tumor. We 

therefor conclude that optimal clinical measures of CIN require an approach that employs 

scDNAseq data, yet account for selective pressure to infer the underlying rates of chromosome 

mis-segregation events. 

Despite the existing major limitations with quantitative measures of CIN, emerging 

evidence hits at its utility as a biomarker to predict benefit to cancer therapy. For example, 

preliminary data suggests that CIN measures can predict therapeutic response to paclitaxel 

(Janssen et al., 2009; Swanton et al., 2009). However, these have not been implemented in the 

clinic, in part because existing measures of CIN have had significant limitations. FISH and 

histological analysis of mitotic abnormalities are limited in quantifying specific chromosomes or 

requiring highly proliferative tumor types, such as lymphomas and leukemia. Gene expression 

profiles have been proposed to correlate with CIN among populations of tumor samples (Carter 

et al., 2006), though they happen to correlate better with tumor proliferation (Sheltzer, 2014); in 

any case, they are correlations across populations of tumors, not suitable as an individualized 

diagnostic. Computational modeling has been used to explore evolution in the context of 

numerical CIN and karyotype selection (Elizalde et al., 2018; Gao et al., 2016; Gusev et al., 

2001, 2000; Laughney et al., 2015). However, no prior study, to our knowledge, has developed 

quantitative approaches to measure CIN while accounting for cellular selection. 

Previous studies using single-cell sequencing identified surprisingly low karyotypic 

variance in human tumors including breast cancer (Gao et al., 2016; Kim et al., 2018; Wang et 

al., 2014) and colorectal and ovarian cancer organoids (Bolhaqueiro et al., 2019; Nelson et al., 

2020). It has been difficult to understand these findings in the light of widespread CIN in human 

cancer (Sheltzer and Amon, 2011; Silk et al., 2013; Vasudevan et al., 2020; Weaver et al., 2007; 

Weaver and Cleveland, 2009). The best explanation of this apparent paradox is selection, which 

moderates karyotypic variance. Accounting for this, we are able to infer rates of chromosome 

mis-segregation in tumors or PDOs well within the range of rates observed microscopically in 
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cancer cell lines. Additionally, no previous work, to our knowledge, has estimated the required 

sample size to infer CIN from scDNAseq data.  

As described by others (Dewhurst et al., 2014; Lopez et al., 2020), and consistent with 

our findings, early emergence of polyploid cells can markedly reduce apparent selection, leading 

to an elevated karyotype diversity over time. While we do not explicitly induce whole genome 

doubling (WGD) in these simulations, populations that begin either diploid or tetraploid converge 

on near-triploid karyotypes over time, supporting the notion that WGD can act as an evolutionary 

bridge to highly aneuploid karyotypes. Notably, our analysis indicates the only sample with 

apparent polyploidy experienced among the lowest levels of karyotype selection. 

In some early studies, CIN is considered a binary process—present or absent. We 

assumed that CIN measures are scalar, not binary, and measure this by rate of chromosome 

mis-segregation per division. A scalar is appropriate if for example there was a consistent 

probability of chromosome mis segregation per division. However, we recognize that some 

mechanisms may not well adhere to this simplified model of CIN. For example, tumors with 

centrosome amplification undergo bipolar division without mis-segregation, or a multipolar 

division with extensive mis-segregation. Another possibility is that CIN could result in the 

misregulation of genes that further modify the rate of CIN. Our model does not yet account for 

punctuated behavior or changing rates of CIN.  

Another limitation of our model and inference of mis-segregation rates is the possibility of 

structural chromosomal instability—some mechanisms of instability such as breakage-fusion-

breakage can result in structural aberrations that may differ cell-by-cell and result in the formation 

of ‘pseudo-‘ or ‘derivative-chromosomes’ through trans-chromosomal rearrangement. Our 

current model is limited to whole-chromosome measures. Additional measures, such as 

homologous recombination deficiency (HRD) scores, which correlate with various measures of 

genomic instability (Marquard et al., 2015), would be better suited to quantifying structural 

variation and could feasibly be integrated with this framework in a more genetically granular 

iteration. However, we note that our approach could be used to quantify CIN even in the setting 

of structural variation.  

A final limitation of our approach is we used previous estimates of cellular selection in our 

agent-based model and used these selection models to infer quantitative measures of CIN. 

While this approach seems to perform well in estimates of mis-segregation rates, we recognize 
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that the selection models do not necessarily represent the real selective pressures on distinct 

aneuploidies. Future investigations are necessary to directly measure the selective pressure of 

distinct aneuploidies—a project that is now within technological reach. It is also a possibility that 

the selective pressures could be influenced by cell type (Auslander et al., 2019; Dürrbaum et al., 

2014; Sack et al., 2018; Starostik et al., 2020), tumor cell genetics (Foijer et al., 2014; Grim et 

al., 2012; López-García et al., 2017; Simoes-Sousa et al., 2018; Soto et al., 2017), and the 

microenvironment (Hoevenaar et al., 2020). 

In summation, we developed a theoretical and experimental framework for quantitative 

measure of chromosomal instability in human cancer. This framework accounts for selective 

pressure within tumors and employs Approximate Bayesian Computation, a commonly used 

analysis in evolutionary biology. Additionally, we determined that low-coverage single-cell DNA 

sequencing of at least 180 cells from a human tumor sample is sufficient to get an accurate 

(>90% accuracy) and reproducible measure of CIN. In conclusion, this work sets the stage for 

standardized quantitative measures of CIN that promise to clarify the underlying causes, 

consequences, and clinical utility of this nearly universal form of genomic instability. 

 

METHODS 
Underlying assumptions for models of CIN and selective pressure 

1) Chromosome mis-segregation rate is defined as the number of chromosome mis-

segregation events that occur per cellular division.  

2) Cell division always results in 2 daughter cells. 

3) Pmisseg,c is assigned uniformly for each cell in a population and for each chromosome. 

4) Cells die when the copy number of any chromosome is equal to 0 or exceeding 6. 

5) Steps are based on the rate of division of euploid cells. We assume a probability of 

division (Pdivision) of 0.5, or half of the population divides every step, for euploid 

populations. This probabilistic division is to mimic the asynchrony of cellular proliferation 

and to allow for positive selection, where some cells may divide more rapidly than their 

euploid ancestors. 

6) No chromosome is more likely to mis-segregate than any other. 
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7) Each parental chromosome may only be mis-segregated once per division. For example, 

for a tetraploid cell, the two maternal chromosomes are never simultaneously mis-

segregated. 

 

Modeling chromosome mis-segregation 
In each model, numerical scores are assigned to each chromosome, the sum of which 

represents the fitness of the karyotype (Figure 1B). Founder populations of 100 individual 

‘agents’ or cells are grown probabilistically over 60 time steps where each cells probability of 

mitosis (Pmitosis) is equal one half its fitness score. For example, a euploid cell with perfect fitness 

will undergo mitosis every other time step. Chromosomes are assigned fitness contribution (fc) 

scores based on their estimated gene abundance (normalized to the estimated total number of 

genes) or driver density (normalized to the sum of all chromosome scores) In this way, 

chromosomes with higher baseline fitness values contribute more to cellular fitness (Figure 1B). 

Cells are then passed through an iterative framework as follows:  

1) Chromosomes’ fc values are modified to generate a Contextual Fitness Score (CFS) 

according to the model used. In the Gene Abundance model (Figure 1, upper-left), fc 

values are modified such that these values decrease if the copy number of that 

chromosome deviates from the average ploidy of the population. In the model of TOE 

densities (Figure 1, lower-left), the CFS is only dependent on the copy number of that 

chromosome, irrespective of ploidy. In the hybrid model, these two processes are 

weighted equally and averaged. With these chromosome scores assigned, the fitness 

of each cell in the starting population is equal to one (F = 1) as each starting cell is 

euploid 

2) A cell’s probability of entering mitosis is dependent on its fitness (F) which is the sum 

of all CFS values.  

3) Fitness can be modified (FM) by applying selective pressure (FM = FS).  

4) If a cell has a copy number of 0 or greater than 6 for any chromosome as a result of 

the most recent mitosis, the cell is killed. Additionally, to reduce computational 

constraints, populations are limited to ~4500 cells using a process wherein, when this 

limit is reached, a random half of all cells are deleted (Figure 2B). This process does 

not impact the results of long-term experiments as each cell uniformly has the same 
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probability of being removed and the same probability of experiencing a chromosome 

mis-segregation event (Supplemental Figure 3).  

5) Cells undergo mitosis probabilistically based on their FM values. Cells with larger FM 

values will divide more rapidly.  

6) If a cell enters mitosis, chromosomes are mis-segregated probabilistically by choosing 

a random integer (R) from a uniform distribution of length L and determining if this 

number is less than 100. This is done for each parental chromosome such that Pmisseg,c  

= P(R < 100) where L is predetermined.  

7) The model stops when 60 time steps have been reached.  

 
Models were coded in the agent-based platform, NetLogo 6.0.4 (Wilensky, 1999). In 

general, a euploid population of cells (agents) are initialized in space with integer values 

assigned to each chromosome, with respect to ‘maternal’ and ‘paternal’ chromosomes (i.e. for 

diploid cells, chromosome copy number states = 1). At each step, the fitness (F) is modified (FM) 

by the selective pressure (S) such that (FM = FS). Thus, when S = 0, FM = 1.  

 

Each cell probabilistically determines if it undergoes mitosis based on its fitness value. A 

random number is drawn from R ~ U([0..200]) and cells are made to divide when R ≤ FM x 100 

such that P(mitosis) = P(R ≤ FM x 100) = FM / 2. 

 

If a cell is determined to divide, chromosomes are similarly probabilistically determined to 

be retained or mis-segregated. Where L is defined by the pre-selected probability of 

chromosome mis-segregation, R ~ U([0..L]) is assessed for each chromosome (C). Thus, 

chromosomes are mis-segregated when Pmisseg,c = P(R < 100). For example, when L = 4600, 

Pmisseg,c = 1/46 and a single chromosome from a cell’s karyotype will be mis-segregated on 

average. The probability that a cell gains or loses a chromosome are equal (P=0.5). When mis-

segregation is completed, a copy of that cell will be generated with the opposite result of the 

previous mis-segregations. 

 

At this point, cells with any chromosome copy number (nc) equaling 0 or exceeding 6 are 

deleted and remaining cells recalculate their fitness values under the selected selection 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


 20 

modality. The simulation ends when the number of time steps reaches the pre-selected 

timeframe. Populations were limited to ~4500 cells by randomly removing half of the population 

at each time step once this number is reached. 

 

Modeling karyotypic selection modalities 

At each simulation time step, fitness is re-calculated based on their updated karyotype. 

These fitness values determine if they undergo mitosis in the next round. However, the modality 

of selection changes how those karyotypes are assessed. We implement 3 separate selection 

modalities based on the chromosomal features of 1) gene abundance, 2) driver density, or 3) a 

hybrid of both. The scores that are generated in each produce a fitness value (F) that can then 

be subjected to pressure (S) as described above. 

 

1. Selection on Gene Abundance 

The Gene Abundance modality relies on the concept of gene dosage stoichiometry where 

the aneuploid karyotypes are selected against and that the extent of negative selection 

scales with the severity of aneuploidy and the identity and gene abundance on the aneuploid 

chromosomes (Sheltzer and Amon, 2011). Gene abundance values for each chromosome 

were retrieved from GRCh38.p13 (https://www.ncbi.nlm.nih.gov/genome/51). Chromosome 

fitness contribution scores (fc) were generated by normalizing their gene abundance to the 

total number of genes in the genome. Thus, the sum of all based normalized gene abundance 

scores is 1. These base values are then modified under the gene abundance model to 

generate a contextual fitness score (CFSGA,c) at each time step such that… 

 

CFSGA,c= fc-
fc×|nc-x#p|

x#p
 

F = $ CFSGA,c

23

c=1

 

 

… where x#p is the average ploidy of the population and nc is the chromosome copy number. 

This modality then dictates that the fitness contribution of a chromosome declines as its 
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distance from the average ploidy increases and that the magnitude of this effect is dependent 

on the size of the chromosome. 

 

2. Selection on Driver Densities 

The Driver Density modality relies on assigned fitness values to chromosomes based on 

their relative density of tumor suppressor genes, essential genes, and oncogenes. These 

values were derived from a pan-cancer analysis (TCGA) of the frequency of mutation of 

these genes and their location in the genome (Davoli et al., 2013). These so-called 

‘chrom-scores’ correlate with the frequency with which chromosomes are found to be 

amplified in the genome. Thus, this selection modality benefits cells that have maximized 

the density of oncogenes and essential genes to tumor suppressors through chromosome 

mis-segregation. Chrom-scores were normalized to the sum of their values and assigned 

to their respective chromosomes. Chromosome X did not receive a chrom-score, thus its 

assigned score was 0. These base scores (TOEc)were then modified to generate a 

contextual fitness score such that…  

 

CFSTOE,c=
nc×TOEc

x#p
 

F = $ CFSTOE,c

23

c=1

 

 

3. Selection on Gene Abundance and Driver Densities (Hybrid) 

The hybrid model relies on selection on both gene abundance and driver densities. 

CFSTOE,c and CFSGA,c are both calculated and averaged such that…  

 

F = $ CFSGA,c + CFSTOE,c
2

23

c=1

 

	
 
Analysis of population diversity and topological features of phylogenetic trees 
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Phylogenetic trees were reconstructed from chromosome copy number profiles from live 

and simulated cells by calculating pairwise Euclidean distance matrices and performing 

complete-linkage clustering in R (R Core Team, 2013). Phylogenetic tree topology 

measurements were performed in R using the package phyloTop v2.1.1 (Kendall et al., 2018). 

Sackin and Colless indices of tree imbalance were calculated, normalizing to the number of tree 

tips. Cherry and pitchfork number were also normalized to the size of the tree. MKV is taken as 

the variance of individual chromosomes taken across the population, averaged across all 

chromosomes, then normalized to the average ploidy of the population. Average aneuploidy is 

calculated as the variance within a single cell’s karyotype averaged across the population. 

 

Approximate Bayesian computation 
Approximate Bayesian computation was used for parameter inference of experimental 

data from simulated data. For this we employed the R package abc v2.1 (Csillery et al., 2010). 

In short, a set of simulation parameters, θi, is sampled from the prior distribution. This set of 

parameters corresponds to a set of simulated summary statistics, S(yi), in this case phylogenetic 

tree shapes, which can be compared to the set of experimental summary statistics, S(yo). The 

Euclidean distance between the experimental and simulated summary statistics can then be 

calculated (d(S(yi),S(yo)). A threshold, T, is then selected—0.05 in our case—which rejects the 

lower 1-T sets of simulation parameters that correspond. The remaining parameters represent 

those that gave summary statistics with the highest similarity to the experimental summary 

statistics. These represent the posterior distribution of accepted parameters.  

 

Cell cultivation procedures 
Cal51 cells expressing stably integrated RFP-tagged histone H2B and GFP-tagged a-

tubulin were generated as previously described (Zasadil et al., 2014). Cells were maintained at 

37ºC and 5% CO2 in a humidified, water-jacketed incubator and propagated in Dulbecco’s 

Modified Eagle’s Medium (DMEM) – High Glucose formulation (Cat #: 11965118) supplemented 

with 10% fetal bovine serum and 100 units/mL penicillin-streptomycin. Paclitaxel (Tocris 

Bioscience, Cat #: 1097/10) used for cell culture experiments was dissolved in DMSO.  

 
Time-lapse fluorescence microscopy 
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Cal51 cells were transduced with lentivirus expressing mNeonGreen-tubulin-P2A-H2B-

FusionRed. A monoclonal line was treated with 20 nM paclitaxel for 24, 48, or 72 hours before 

timelapse analysis at 37oC and 10% CO2. Five 2 µm z-plane images were acquired using a 

Nikon Ti-E inverted microscope with a cMos camera at 3-minute intervals using a 40X/0.75 NA 

objective lens and Nikon Elements software. 

 

Flow cytometric analysis and cell sorting 
Cells were harvested with trypsin, passed through a 35 μm mesh filter, and rinsed with PBS prior 

to fixation in ice cold 80% methanol. Fixed cells were stored at -80ºC until analysis and sorting 

at which point fixed cells were resuspended in PBS containing 10 μg/ml DAPI for cell cycle 

analysis  

Flow cytometric analysis. Initial DNA content and cell cycle analyses were performed on a 5 

laser BD LSR II. Doublets were excluded from analysis via standard FSC/SSC gating 

procedures. DNA content was analyzed via DAPI excitation at 355 nm and 450/50 emission 

using a 410 nm long pass dichroic filter. 

Fluorescence activated cell sorting. Cell sorting was performed using the same analysis 

procedures described above on a BD FACS AriaII cell sorter. In general, single cells were sorted 

through a 130-μm low-pressure deposition nozzle into each well of a 96-well PCR plate 

containing 10 μl Lysis and Fragmentation Buffer cooled to 4ºC on a Eppendorf PCR plate cooler. 

Immediately after sorting PCR plates were centrifuged at 300 x g for 60 seconds. For comparison 

of single-cell sequencing to bulk sequencing, 1000 cells were sorted into each ‘bulk’ well. The 

index of sorted cells was retained allowing for the post-hoc estimation of DNA content for each 

cell. 

 

Low-coverage single-cell whole genome sequencing  
Initial library preparation for low-coverage scDNAseq was performed as previously described 

(Leung et al., 2016) and adapted for low coverage whole genome sequencing instead of high 

coverage targeted sequencing. Initial genome amplification was performed using the 

GenomePlex® Single Cell Whole Genome Amplification Kit and protocol (Sigma Aldrich, Cat #: 

WGA4). Cells were sorted into 10 μl pre-prepared Lysis and Fragmentation buffer containing 

Proteinase K. DNA was fragmented to an average of 1 kb in length prior to amplification. Single 
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cell libraries were purified on a 96-well column plate (Promega, Cat #: A2271). Library fragment 

distribution was assessed via agarose gel electrophoresis and concentrations were measured 

on a Nanodrop 2000. Sequencing libraries were prepared using the QuantaBio sparQ DNA Frag 

and Library Prep Kit. Amplified single-cell DNA was enzymatically fragmented to ~250 bp, 5’-

phosphorylated, and 3’-dA-tailed. Custom Illumina adapters with 96 unique 8 bp P7 index 

barcodes were ligated to individual libraries to enable multiplexed sequencing (Leung et al., 

2016). Barcoded libraries were amplified following size selection via Axygen™AxyPrep Mag™ 

beads (Cat #: 14-223-152). Amplified library DNA concentration was quantified using the Quant-

iT™ Broad-Range dsDNA Assay Kit (Thermo, Cat #: Q33130). Single-cell libraries were pooled 

to 15 nM and final concentration was measured via qPCR. Single-end 100bp sequencing was 

performed on an Illumina HiSeq2500. 

 

Single-cell copy number sequencing data processing 
Single-cell DNA sequence reads were demultiplexed using unique barcode index sequences 

and trimmed to remove adapter sequences. Reads were aligned to GRCh38 using Bowtie2. 

Aligned BAM files were then processed using Ginkgo to make binned copy number calls. Reads 

are aligned within 500kb bins and estimated DNA content for each cell, obtained by flow 

cytometric analysis, was used to calculate bin copy numbers based on the relative ratio of reads 

per bin (Garvin et al., 2015). We modified and ran Ginkgo locally to allow for the analysis of 

highly variable karyotypes with low ploidy values (see Code and Data Availability). Whole-

chromosome copy number calls were calculated as the modal binned copy number across an 

individual chromosome. Cells with fewer than 100,000 reads were filtered out to ensure accurate 

copy number calls (Baslan et al., 2015). Cells whose predicted ploidy deviated more than 32% 

from the observed ploidy by FACS were also filtered out. The final coverage for the filtered 

dataset was 0.03 (Supplemental Figure 9). 

 

Review and approximation of mis-segregation rates from published studies 
We reviewed the literature to extract per chromosome rates of mis-segregation for cell lines and 

clinical samples. Some studies publish these rates. For those that did not, we estimated these 

rates by approximating the plotted incidence of segregation errors thusly: 
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Approximate	missegregration	rate	per	chromosome	 = 	Observed	%	frequency	of	errors	per	division/100
Total	#	modal	chromosomes	in	sample 		 

 

Modal chromosome numbers were either taken from ATCC where available or were assumed 

to equal 46. Observed % frequencies were approximated from published plots. Approximated 

rates assume that 1 chromosome is mis-segregated at a time.  

 
ABBREVIATIONS 
ABC: approximate Bayesian computation 

CIN: chromosomal instability 
CFS: contextual chromosome fitness score 

scDNAseq: single cell DNA sequencing 

TOE scores: Tumor-Oncogene-Essential gene scores 

WGD: whole genome doubling 
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SUPPLEMENTAL FIGURE LEGENDS 
 
Supplemental Figure 1 – Expanded model of chromosome mis-segregation and karyotypic selection 
(A) Models of selection on aneuploid karyotypes. Left. The Gene Abundance model dictates that chromosomes 

that encode a larger number of genes contribute more to cellular fitness (F). Thus, large chromosomes 
have a higher fitness score (fc). Deviation from the average ploidy of the population results in a reduced 
Contextual Fitness Score (CFS) for each chromosome, the sum of which represents the fitness of the cell. 
Right. The Driver Density Model dictates that the fitness contribution of a chromosome depends on the 
ratio of oncogenes and essential genes to tumor suppressors (OG-ESG:TSG). Gaining chromosomes with 
a higher OG-ESG:TSG ratio provides a fitness advantage while gaining more suppressive chromosomes 
invokes a fitness cost. These scores are still normalized to the ploidy of the average ploidy of the population 
to ensure that higher ploidy populations are not arbitrarily more fit. Middle. The Hybrid model takes the 
average of the fitness scores calculated in the other models.  

(B) Base chromosome fitness scores for each model. Only the Hybrid and Driver Density model have negatively 
scored chromosomes, meaning their loss provides a fitness benefit. 

(C) Populations are founded by 100 founder cells, unless otherwise stated, and the simulation is initiated. 1. 
CFS values are calculated for each chromosome in a cell according to the chosen model. 2. Cellular fitness 
is calculated based on CFS values. 3. Selective pressure (S) is applied on cellular fitness values (F). 4. 
Cells are checked to see if any death conditions are met and if the population limit is met. 5. Cells 
probabilistically enter mitosis if their fitness value exceeds a random float (R) between 0 and 2. Thus Pmitosis 
= P(FM > R). If a cell does not enter mitosis, it skips the next step. 6. If a cell enters mitosis, each 
chromosome has an opportunity to mis-segregate probabilistically. For each chromosome, a mis-
segregation occurs if a random number (R), from 0 to some limit (L), falls below 100. Thus, Pmisseg,c = 
P(R<100). After chromosomes are mis-segregated, the cycle repeats and new CFS values are calculated, 
unless (7) stop conditions are met.   

 
Supplemental Figure 2 – Fitness of diploid and tetraploid CIN+ populations 
(A) Fitness landscape of simulations founded by diploid cells. 
(B) Size of simulated populations founded by diploid cells.  
(C) Fitness landscape of simulations founded by tetraploid cells. 
(D) Size of simulated populations founded by tetraploid cells.  
 
Supplemental Figure 3 – Population growth limits do not bias population measures 
(A) Growth curves of populations simulated under the Hybrid model with S = [0,1] and Pmisseg = 0.022 and limited 

to 3000, 6000, and 24000 cells (n = 4 simulations each).  
(B) MKV (normalized to mean ploidy of the population) values steadily increase over time. Loess regression 

curves show no significant deviations based on the population threshold, regardless of selection. 
(C) Sackin-Yule index values for each population over time. No significant deviations based on the population 

threshold, regardless of selection. 
 
Supplemental Figure 4 – Induction of extensive chromosome mis-segregation via paclitaxel 
(A) Immunofluorescence time lapse montage of control Cal51 cells undergoing normal mitosis (top) and 

paclitaxel-treated treated cells undergoing a multipolar anaphase (middle) and partial cytokinesis failure 
(bottom).  

(B) Cell cycle profiles from flow cytometric analysis of Cal51 cells treated with either DMSO (72 hours) or 20 
nM paclitaxel for 24, 48, or 72 hours. For FACS, cells treated for 48 hours were sorted into individual wells 
of 96 well plates. Sorting gate is shown by the red, dotted line.  

 
Supplemental Figure 5 – Summary statistic optimization for ABC 
(A) Example scheme for calculating aneuploidy and MKV.  
(B) Examples of phylogenetic topology metrics.  
(C) Phylogenetic reconstruction of a population of Cal51 cells treated with 20 nM paclitaxel for 48 hours and 

associated heterogeneity and topology metrics. Normalized and non-normalized summary statistics are 
displayed (see Materials & Methods).  

(D) Analytical scheme to identify most accurate and least variable combinations of heterogeneity and topology 
metrics. For each combination of 2-9 metrics, we iteratively re-sampled and remeasured the rate of mis-
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segregation in 100 random cells, 20 times, from our original dataset of paclitaxel-treated Cal51 cells. The 
red data point denotes our chosen combination for future analyses—average aneuploidy, MKV, Colless 
Index, Cherries, and Pitchforks. This combination contains both limits redundant measures (i.e. Colless and 
Sackin indices) and contains both heterogeneity and topology metrics. 

(E) Percent accuracy and standard error of the mean for 50 sampled measurements of 100 paclitaxel-treated 
cells from the original population, repeated for each combination of heterogeneity and topology measures. 

 
Supplemental Figure 6 – Minimum sampling of karyotype heterogeneity 
(A) Analytical scheme to optimize the number of cells to sample for measuring mis-segregation rates from 

karyotype heterogeneity. We iteratively re-sampled and remeasured the rate of mis-segregation for a range 
of sample sizes (n=5 random samples). 

(B) Predicted mis-segregation rates over a range of sample sizes (n=5 samples). Points and error bars are the 
mean ± standard error. Black solid line denotes the mean observed rate of mis-segregation induced by 20 
nM paclitaxel. Black dashed lines are half the standard deviation of observed mis-segregation rates per 
cell.  

(C) Mean percent accuracy of ABC-inferred rates of mis-segregation due to paclitaxel taken from each set of 5 
random samples using the observed rate of mis-segregation as the ‘true value’. Calculated as 
Mean	%	Accuracy = 100− %true!mean	inferred

true
× 100'. Dashed lines represent 80% and 90% accuracy.  

(D) Standard error of ABC-inferred rates of mis-segregation for each set of random samples from paclitaxel-
treated cells.  

(E) ABC-inferred mis-segregation rates by sample size from simulations with known parameters (n = 5 
samples). Points represent mean ± standard error across 5 samples for each of 9 selective pressure (S) 
values. Solid line represents a perfect correlation. Inner dashed line represent ± 10% margin. Outer dashed 
line represents ± 20% margin. Simulation parameters: Pmisseg £ 0.022; steps = 60; Hybrid model. 

(F) Mean percent accuracy of ABC-inferred rates of mis-segregation in simulations (parameters in E) taken at 
various sample sizes. Grey lines represent the mean percent accuracy of 5 random samples for each 
sample size for the same simulated population (n = 63 simulations). The dashed line represents 90% 
accuracy. Calculated as described above but taking the known simulation parameter as the ‘true’ value.  

(G) Standard error of ABC-inferred rates of mis-segregation in simulations (parameters in E) taken at various 
sample sizes. Grey lines represent the standard error of 5 random samples for each sample size for the 
same simulated population (n = 63 simulations).  

(H) ABC-inferred mis-segregation rates by sample size from simulations with known parameters (n = 5 
samples). Points represent mean ± standard error across 5 samples for each of 9 selective pressure (S) 
values. Solid line represents a perfect correlation. Inner dashed line represent ± 10% margin. Outer dashed 
line represents ± 20% margin. Simulation parameters: Pmisseg = [0.001..0.5]; steps = 1; Hybrid model. 

(I) Mean percent accuracy of ABC-inferred rates of mis-segregation in simulations (parameters in H) taken at 
various sample sizes. Grey lines represent the mean percent accuracy of 5 random samples for each 
sample size for the same simulated population (n = 261 simulations). The dashed line represents 90% 
accuracy.  

(J) Standard error of ABC-inferred rates of mis-segregation in simulations (parameters in H) taken at various 
sample sizes. Grey lines represent the standard error of 5 random samples for each sample size for the 
same simulated population (n = 261 simulations). Note: Red lines in F, G, I, and J represent the median.  

 
Supplemental Figure 7 – ABC-inferred mis-segregation rates and selective pressures in patient-derived 
samples 
Distributions of mis-segregation rates and selective pressures in patient-derived CRC organoids and a breast biopsy 
from Bolhaqueiro et al., 2019 and Navin et al., 2011 respectively. The prior (grey) distribution represents the 
parameters used for simulation while the posterior (yellow) distribution represents the parameters from simulations 
whose observed measurements were similar to the measurements taken from the patient-derived sample.  
 
Supplemental Figure 8 – ABC-inferred step count in patient-derived samples 
(A) Number of steps experienced in each patient-derived sample, inferred via approximate Bayesian 

computation. 
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(B) Inferred average number of generations experienced by cells in each patient-derived sample. The average 
Pdivision was calculated for each sample and then used to calculate the average number of generations using 
estimated	generations = steps	 × 	Pdiv 

 
Supplemental Figure 9 – Single-cell sequencing QC 
(A) Read count for all sequencing samples and filtering threshold (red line and bins) of 100,000 reads. 
(B) Observed ploidy (FACS) vs predicted ploidy (scDNAseq). Predicted ploidy was calculated as the sum of 

copy number calls for each cell. Red dotted lines depict the 32% deviation threshold for filtering out poorly 
correlated cells. 

(C) Sequencing coverage for the final filtered dataset. The mean coverage (red line) was 0.03. 
 
SUPPLEMENTAL TABLES 
Supplemental Table 1 – Base chromosome-specific fitness scores for individual models  

 Model 

CHR Gene 
Abundance 

Driver 
Density 

Hybrid 

1 0.095 0.026 0.0605 

2 0.072 0.066 0.069 

3 0.056 0.082 0.069 

4 0.046 0.047 0.0465 

5 0.048 0.043 0.0455 

6 0.056 0.028 0.042 

7 0.052 0.147 0.0995 

8 0.040 0.087 0.0635 

9 0.042 0.063 0.0525 

10 0.041 0.002 0.0215 

11 0.055 0.052 0.0535 

12 0.047 0.113 0.08 

13 0.026 -0.019 0.0035 

14 0.039 0.048 0.0435 

15 0.034 0.038 0.036 

16 0.036 0.037 0.0365 

17 0.046 0.053 0.0495 

18 0.018 -0.034 -0.008 

19 0.047 0.049 0.048 

20 0.025 0.089 0.057 

21 0.015 -0.006 0.0045 

22 0.022 -0.010 0.006 

X 0.041 0 0.0205 
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Supplemental Table 2 – Approximate reported per chromosome mis-segregation rates 

1st Author DOI Model Tumor? Statistic Assessment 
Approximate 

observed 
frequency % 

Aprrox 
modal 

chromosome 
# (ATCC) 

Approximate mis-
segregation rate 

(per chromosome) 

Bakhoum https://doi.org/10.1158/1078-0432.CCR-11-2049   Tumor-TMA Tumor Reported Lagging/Bridging 31.3 46 0.00680 

Orr https://doi.org/10.1016/j.celrep.2016.10.030   U2OS Tumor 

Approx. 

Mean Lagging 32.5 46 0.00707 

Orr https://doi.org/10.1016/j.celrep.2016.10.030 HeLa Tumor 

Approx. 

Mean Lagging 22 82 0.00268 

Orr https://doi.org/10.1016/j.celrep.2016.10.030 SW-620 Tumor 

Approx. 

Mean Lagging 22.5 50 0.00450 

Orr https://doi.org/10.1016/j.celrep.2016.10.030 RPE1 Non-tumor 

Approx. 

Mean Lagging 2.5 46 0.00054 

Orr https://doi.org/10.1016/j.celrep.2016.10.030 BJ Non-tumor 

Approx. 

Mean Lagging 8 46 0.00174 

Nicholson https://doi.org/10.7554/eLife.05068  Amniocyte Non-tumor 

Approx. 

Mean Lagging 0 46 0.00000 

Nicholson https://doi.org/10.7554/eLife.05068  DLD1 Tumor 

Approx. 

Mean Lagging 1 46 0.00022 

Dewhurst https://doi.org/10.1158/2159-8290.CD-13-0285 HCT116-Diploid Tumor 

Approx. 

Mean Lagging/Bridging 23 45 0.00511 

Dewhurst https://doi.org/10.1158/2159-8290.CD-13-0285 HCT116-Tetraploid Tumor 

Approx. 

Mean Lagging/Bridging 50 90 0.00556 

Bakhoum https://doi.org/10.1038/ncb1809  U2OS Tumor Reported Lagging   46 0.01000 

Zasadil https://doi.org/10.1126/scitranslmed.3007965 CAL51 Tumor 

Approx. 

Mean Lagging 0.5 44 0.00011 

Thompson https://doi.org/10.1083/jcb.200712029   RPE1 Non-tumor 

Approx. 

Mean Acute aneuploidy via FISH 46 0.00025 

Thompson https://doi.org/10.1083/jcb.200712029   HCT116-Diploid Tumor 

Approx. 

Mean Acute aneuploidy via FISH 45 0.00025 

Thompson https://doi.org/10.1083/jcb.200712029   HT29 Tumor 

Approx. 

Mean Acute aneuploidy via FISH 71 0.00250 

Thompson https://doi.org/10.1083/jcb.200712029   Caco2 Tumor 

Approx. 

Mean Acute aneuploidy via FISH 96 0.00900 

Thompson https://doi.org/10.1083/jcb.200712029   MCF-7 Tumor 

Approx. 

Mean Acute aneuploidy via FISH 82 0.00700 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

HCT116-Diploid Tumor 

Approx. 

Mean Lagging 6 45 0.00133 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

DLD1 Tumor 

Approx. 

Mean Lagging 2 46 0.00043 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

HT29 Tumor 

Approx. 

Mean Lagging 14 71 0.00197 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

SW-620 Tumor 

Approx. 

Mean Lagging 12 50 0.00240 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

MCF-7 Tumor 

Approx. 

Mean Lagging 17 82 0.00207 

Bakhoum 
https://doi.org/10.1016/j.cub.2014.01.019 

HeLa Tumor 

Approx. 

Mean Lagging 13 82 0.00159 

Worrall 
https://doi.org/10.1016/j.celrep.2018.05.047   
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Supplemental Figure 1: Model of chromosome mis-segregation and karyotypic selection.
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Supplemental Figure 2: Fitness of diploid and tetraploid CIN+ populations
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Supplemental Figure 3: Population growth limits do not bias population measures

Population Limit 3000 6000 24000

S=0 S=1

0

5

10

15

20

25
Ce

llc
ou

nt
(x
10

00
)

0.0

0.1

0.2

0.3

0.4

M
KV

0 10 20 30 40 0 10 20 30 40

−1

0

1

2

Step

Sa
ck
in

A

B

C

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


B

A

Unstained

24hr DMSO

24hr

48hr

72hr

96hr

+2
0
nM

pa
cl
ita
xe
l

Supplemental Figure 4: Induction of extensive chromosome missegregation via paclitaxel

DM
SO

No
rm
al
Di
vis
io
n

H2B
aTub

20
nM

Pa
cli
ta
xe
l

M
ul
tip
ol
ar
Di
vis
io
n

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


6 7 8 9

2 3 4 5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

40

60

80

100

40

60

80

100

Standard Error of Predictions (n=20)

Ac
cu

ra
cy

10
0 
− 

|m
ea

n 
pr

ed
ic

te
d 
− 

m
ea

n 
ob

se
rv

ed
| /

 m
ea

n 
ob

se
rv

ed
 x

 1
00

Aneuploidy
Mean Karyo Variance

Sackin
Colless
Cherries

Pitchforks
Mean Ladder Length

Stairs 1
Stairs 2

Summary Stats non
-no

rm'
d

nor
m'd

0.573
0.973
1147
427
43
21
2.7
0.632
0.621

0.540
0.127
0.049
0.321
0.157
0.02

Sample 1 Combo 1 0.002 2
Sample 2 Combo 1 0.003 2

. . . .

. . . .
Sample 20 Combo 1 0.001 2

. . . .

. . . .
Sample 1 Combo 502 0.004 9
Sample 2 Combo 502 0.005 9

. . . .

. . . .
Sample 20 Combo 502 0.003 9

Sample Combo Inferred Rate # Sum Stats

...

Compute summary stats and infer
missegregation rate via ABC

For each combination of 2-9 sum stats

Supplemental Figure 5: Summary statistic optimization for ABC

Karyotype Heterogeneity

Aneuploidy

MKVx

Intra-karyo S²
0.5
0.27
0.29
0.29
0.57
0.57

In
tr
a-
ch

ro
m
o
S²

0.
27

0.
17

0.
27 0

0.
27

1.
07

1.
07

1.
07 0.27

0.27

Chromosome

C
el
l

1 2 3 4 5 6 7 8 . .
1 3 1 2 2 3 2 3 2 . .
2 3 2 2 2 3 2 3 2 . .
3 2 2 3 2 2 2 1 2 . .
4 2 2 3 2 2 2 1 2 . .
5 3 2 3 2 3 4 3 4 . .
6 3 2 3 2 3 4 3 4 . .

.

.
x

Topology

# Summary Statistics in Combination

A

C D

B

E

Imbalance
Colless Index
Sackin Index
Staircase-ness

# Cherries # P
itc
hfo
rks

Me
an
La
dd
er
Siz
e

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


Simulations
Hybrid model, Step = 60
Pmisseg ≤ 0.022, n=[20..40..300]

0.000

0.022

0.011

0.007
0.005
0.004
0.002
0.001

0.
00

0

0.
02

2

0.
01

1

0.
00

7

0.
00

5
0.
00

4

0.
00

2
0.
00

1

Actual Rate (Pmisseg)

In
fe
rre

d
Ra

te
(P
m
iss

eg
)

Sample Size 20 60 100 200 300

Supplemental Figure 6: Minimum sampling of karyotype heterogeneity

A

Paclitaxel-treated cells
n = [10..20..140]

B C D

G

E

F

...

...

...

... ... ...

C
om

pute
sum

m
ary

stats
and

inferm
issegregation

rate
via

A
B
C

0

25

50

75

100

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Sample Size

%
Ac

cu
ra
cy

0.000

0.001

0.002

0.003

0.004
20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Sample Size

St
an

da
rd

Er
ro
r(
n
=
5
sa
m
pl
es
)

0.500

0.391

0.282

0.174

0.065

0.005

0.
50

0

0.
39

1

0.
28

2

0.
17

4

0.
06

5

0.
00

5

Actual Missegregation Rate

In
fe
rre

d
M
iss

eg
re
ga

tio
n
Ra

te

Sample Size 10
20

40
80

100
120

−100

−50

0

50

100

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Sample Size

M
ea

n
%

Ac
cu
ra
cy

0.000

0.025

0.050

0.075

0.100

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Sample Size

St
an

da
rd

Er
ro
r(
n
=
5
sa
m
pl
es
)

Simulations
Hybrid model, Step = 1
Pmisseg = [0.001..0.5], n=[10..20..130]

J

H

I

0.
0

0.
2

0.
4

0.
6

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Sample Size

Pr
ed

ict
ed

M
iss

eg
re
ga

tio
n
Ra

te

0
25

50
75

10
0

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Sample Size

%
Ac

cu
ra
cy

0.
00

0
0.
02

5
0.
05

0
0.
07

5

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Sample Size

St
an

da
rd

Er
ro
r(
n
=
5
sa
m
pl
es
)

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2021. ; https://doi.org/10.1101/2021.04.26.441466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441466
http://creativecommons.org/licenses/by-nc/4.0/


0.00 0.05 0.10 0.15 0.20 0.25

0
50

10
0

15
0

20
0

25
0

30
0 Prior

Posterior

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.00 0.05 0.10 0.15 0.20 0.25

0
10
0

20
0

30
0

40
0 Prior

Posterior

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Supplemental Figure 7: ABC-predicted missegregation rates and selective pressures in
patient-derived samples
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Supplemental Figure 8: ABC-inferred steps in patient-derived samples
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Supplemental Figure 9: Single-cell sequencing QC
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