Abstract
Cryo-electron tomography (cryo-ET) allows for the high resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy regularized deconvolution (ER DC) to cryo-electron tomography data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied DC to several in situ cryo-ET data sets, and assess the results by Fourier analysis and subtomogram analysis (STA).
Competing Interest Statement
The authors have declared no competing interest.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.