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Abstract:  15 
Direct observation of evolution in response to natural environmental change can resolve fundamental 16 
questions about adaptation including its pace, temporal dynamics, and underlying phenotypic and 17 
genomic architecture. We tracked evolution of fitness-associated phenotypes and allele frequencies 18 
genome-wide in ten replicate field populations of Drosophila melanogaster over ten generations from 19 
summer to late fall. Adaptation was evident over each sampling interval (1-4 generations) with 20 
exceptionally rapid phenotypic adaptation and large allele frequency shifts at many independent loci. The 21 
direction and basis of the adaptive response shifted repeatedly over time, consistent with the action of 22 
strong and rapidly fluctuating selection. Overall, we find clear phenotypic and genomic evidence of 23 
adaptive tracking occurring contemporaneously with environmental change, demonstrating the temporally 24 
dynamic nature of adaptation.  25 
 26 
One sentence summary: Rapid environmental change drives continuous phenotypic and polygenic 27 
adaptation, demonstrating the temporal dynamism of adaptation.  28 

29 
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Main text:  30 
Continuous adaptation in response to rapidly changing environmental conditions, termed adaptive 31 
tracking, could be a crucial mechanism by which populations respond to environmental change. Adaptive 32 
tracking has historically received little study due to the impression that adaptive evolutionary change is 33 
too slow to track complex and rapidly changing selection pressures in the wild (1). Moreover, theory 34 
suggests that variable and complex selective pressures should in general lead to the evolution of 35 
phenotypic plasticity or bet-hedging (2, 3). Yet, evidence of adaptation on ecological timescales from 36 
multiple longitudinal field studies and experiments demonstrates that adaptation can indeed occur very 37 
rapidly at individual traits or loci in response to strong environmental perturbations (4–10). Whether this 38 
translates into populations undergoing adaptive tracking in response to multifarious ecological changes, 39 
when theory predicts that pleiotropy should constrain natural selection and prevent adaptive tracking (11, 40 
12), is unknown. If adaptive tracking does indeed occur in such situations, it would have broad 41 
implications for our understanding of the limits and pace of polygenic adaptation (13), the prevalence of 42 
fluctuating selection (14) and its role in the maintenance of genetic variation (15), and the importance of 43 
rapid adaptation in ecological outcomes (16).   44 
 45 
To identify adaptive tracking it is necessary to directly measure phenotypic and genotypic evolution 46 
across replicate field populations in response to ongoing natural environmental change. Ideally an 47 
experimental system would provide: 1) the means for highly accurate measurements of even subtle, 48 
heritable shifts in key independent fitness-related phenotypes and loci under selection, 2) the ability to 49 
assay multiple replicate populations exhibiting some degree of ecological and environmental realism to 50 
detect parallel genetic and phenotypic changes indicative of adaptation (17), and 3) high resolution 51 
temporal sampling to quantify rapid fluctuations in the magnitude and direction of selection as 52 
environmental changes occur.  53 

 54 
Here, we employ such an experimental system using field mesocosms to measure the extent, pace, 55 
repeatability, and genomic basis of adaptive tracking using Drosophila melanogaster in the naturally 56 
fluctuating, temperate environment of a single growing season in Pennsylvania, USA (10, 18, 19) (Fig. 1). 57 
The design precluded migration and allowed populations to expand to a large adult census size (on the 58 
order of 100,000 adults in each replicate at the maximum population size). To initiate the experiment, an 59 
outbred baseline population of D. melanogaster was derived from a set of 80 inbred strains originally 60 
collected in the spring from Pennsylvania (Table S1). Ten replicate cages were each founded on July 15th, 61 
2014, with 1,000 individuals from the baseline population. All populations were tracked until the first 62 
hard frost on November 7th, 2014 and assayed at monthly intervals. Specifically, at four timepoints we 63 
measured the evolution of six complex, fitness-associated phenotypes, focusing on a set associated with 64 
either reproductive output or stress tolerance (Fig. 1). We repeatedly collected and reared individuals from 65 
each field cage in standard laboratory conditions (i.e., multi-generation common garden) to distinguish 66 
evolution from phenotypic plasticity and measured all phenotypes in the F3 generation. We also tracked 67 
changes in allele frequencies genome-wide in each replicate using pooled sequencing at five timepoints, 68 
employing haplotype-based allele frequency estimation (20) in order to generate highly accurate allele 69 
frequency trajectories.  70 
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 71 
Figure 1: Experimental arena, design, and population dynamics  72 
The experiment was designed to reflect ecological and evolutionary realism while testing for adaptation using replicate 73 
populations. 80 inbred lines originally collected in spring from an orchard in Pennsylvania were recombined and expanded for 74 
four generations into a genetically diverse outbred population in the laboratory. 500 males and 500 females from this outbred 75 
population were used to found 10 independent outdoor cages (2m x 2m x 2m). We measured daily minimum and maximum 76 
temperatures (blue and red lines, respectively) and estimated adult population size of each replicate over four months of 77 
seasonal change (mean: black line; per-replicate: gray lines). To study adaptation, we tracked phenotypic evolution by 78 
collecting eggs from each replicate, rearing them in common garden laboratory conditions for three generations, and then 79 
measuring six fitness-associated phenotypes. We conducted this procedure on the founder population and at four subsequent 80 
time points to measure phenotypic evolution over time. To study adaptation at the genomic level we sequenced pools of 100 81 
females from each cage to >100x effective coverage at five time points using haplotype inference [20] and assessed changes in 82 
allele frequencies.  83 
 84 
Population dynamics were largely consistent among the replicates; population size increased sharply 85 
during summer, peaked in early fall, and then declined steadily as minimum daily temperatures declined 86 
in late fall (Fig. 1). These population dynamics mimic the patterns observed in D. melanogaster 87 
populations (21) and many other multivoltine organisms inhabiting temperate natural environments, with 88 
summer exponential growth, high densities in late summer to early fall, and late fall population declines. 89 
Egg production showed a similar pattern (Fig. S1), albeit at greater numbers, and overall recruitment from 90 
egg to adult was low (Fig. S2). Similarity in the ecological conditions among replicate populations, 91 
including abiotic factors (Fig. S3) and population dynamics (Fig. 1), suggests similar selective landscapes 92 
may have driven parallel evolution across replicates. 93 
 94 
Phenotypic evolution was rapid and parallel, but temporal patterns varied across traits. In order to 95 
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measure phenotypic evolution, we sampled individuals from the founding population and ~2,500 eggs 96 
from each cage at the first four time points (July 25, August 18, September 11, October 10), reared them 97 
in common garden laboratory condition for three generations, and assayed phenotypes in the F3 progeny 98 
(Fig. 1). For all six phenotypes, which are known to be polygenic and associated with fitness (22), we 99 
observed substantial trait evolution with an average of 23% change in the mean trait value for each cage 100 
across all phenotypes over each time interval. Variation in environmental parameters among cages did not 101 
implicate any individual factors as agents of selection (Fig. S4), perhaps due to the limited variation 102 
between cages or the complexity of the selective landscape. Prior experiments conducted in these 103 
mesocosms have found evidence of rapid adaptation in response to experimentally manipulated agents of 104 
divergent selection (10, 19). 105 
 106 
All six phenotypes showed evidence of parallel evolution, indicative of adaptation, over time. Four of six 107 
phenotypes evolved rapidly, repeatedly, and in a consistent direction across the duration of the experiment 108 
(Fecundity: F3,27=43.75, p<0.0001; Egg size: F3,27=11.5, p<0.0001; Starvation: F4,36=129.05, p<0.0001; 109 
Chill coma recovery: F4,36=197.75, p<0.0001) (Fig. 2). The magnitude of change was often substantial: 110 
for example, the average increase in fecundity was 61% over each monthly sampling interval across 111 
replicates, representing 1-4 overlapping generations. Desiccation tolerance and development rate also 112 
evolved rapidly and in parallel (F4,36 =86.66, p<0.0001 Fig. 2C; F4,36=98.70, p<0.0001, Fig. 2F), but the 113 
direction of evolution varied over time. Fluctuations in the direction of evolution for these phenotypes had 114 
considerable effects on phenotypic trajectories; for desiccation tolerance the amount of evolution 115 
measured over the whole experiment (founder to October 10th) was less than what was observed over the 116 
first interval (founder to July 25th). Identifying the fitness effects of any specific instance of phenotypic 117 
evolution is complicated by underlying correlations among traits, pleiotropy, and an unknown and 118 
potentially temporally variable phenotype-to-fitness map but the pace and parallelism of phenotypic 119 
evolution is suggestive of strong links to fitness.   120 
 121 
The pace of parallel trait evolution observed over the short timescales examined in this study was 122 
unusually fast. As expected, we observed rapid parallel evolution when outbred laboratory populations 123 
were introduced into the field enclosures and adapted to the field environment (Founder → T1). However, 124 
we also observed evidence of rapid adaptation between intervals in the enclosures for all six phenotypes, 125 
with some showing reversals in the direction of evolution across intervals (Fig. 2 C&F). The rate of 126 
phenotypic adaptation, calculated in Haldanes (phenotypic evolution in units of standard deviations of the 127 
trait per generation (23, 24)), was computed as a mean change across replicates for each phenotype over 128 
each interval and across the whole experiment (Fig. 2G). The rate of adaptation over the whole 129 
experiment ranged from moderate to extremely fast for different traits (0 - 0.8 Haldanes) (25). However, 130 
when calculated over each sampling interval, the rate of adaptation was often comparable or faster than 131 
the fastest known pace of phenotypic change measured in any prior field study or experiment (Fig. 2G).  132 
 133 
The pace, magnitude, and parallelism of the phenotypic evolution we observed is notable for three 134 
reasons. First, the evolutionary rates were calculated based on the phenotypic shifts of the F3 progeny in 135 
common garden conditions, thus excluding phenotypic plasticity as the driver of change. Second, because 136 
we focus only on the parallel phenotypic shifts across the cages, our estimates describe the rate of 137 
putatively adaptive phenotypic change. Third, these patterns of rapid adaptation were observed for 138 
multiple fitness-associated phenotypes, each with a complex and likely distinct genetic architecture (26). 139 
Overall, our results show that strong and temporally variable natural selection can consistently drive rapid 140 
and polygenic adaptation of multiple fitness associated phenotypes on the same timescale as the 141 
environmental change. 142 
 143 
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144 
 145 
Figure 2: Parallel evolution of stress tolerance traits, reproductive output traits, and comparison of the rate of 146 
adaptation.   147 
Trajectories of phenotypic evolution for reproductive-associated (A, B, C) and stress resistance traits (D, E, F) as measured 148 
after three generations of common garden rearing. Panel A: mean fecundity as number of eggs/female/day, Panel B: mean egg 149 
size, Panel C: development rate as the fraction of development to pupation completed in one day (1/(total hours/24)). Panel D: 150 
starvation tolerance as time to death by starvation, Panel E: recovery time following chill coma, Panel F: desiccation tolerance 151 
as the time to death from desiccation. Black points are the mean phenotypes of the founding population, grey lines represent 152 
mean phenotypic trajectories of individual populations, and red lines are the mean of all cage means. Panel G: a comparison of 153 
the rates of adaptation from this experiment over individual intervals (red) to rates of phenotypic change from a prior meta-154 
analysis (grey) [25].  155 
 156 
To investigate the genomic architecture underlying the observed rapid phenotypic adaptation, we 157 
performed whole-genome pooled sequencing of 100 randomly selected individuals from the baseline 158 
population and each replicate population at five timepoints across the experiment (Fig. 1). Allele 159 
frequencies at 1.9 M biallelic sites were inferred for each sample via haplotype inference using HAF-pipe 160 
[20] (Methods) at accuracy levels consistent with an ‘effective coverage’ of >100x (Supplementary 161 
Materials, Fig. S5, Table S2). This high-resolution dataset yielded strong evidence for rapid genome-wide 162 
evolution. Specifically, we observed that the genome-wide estimates of FST between the founder 163 
population and all five monthly timepoints (mean 3.0 ± 0.2 x 10-3 standard error) exceeded expected 164 
margins of error based on technical and biological replicates (2.6 ± 0.24 x 10-4 and 1.8 ± 0.048 x 10-3 165 
respectively, t-test p-values < 2x10-8, Fig. 3A). Furthermore, divergence from the founder population 166 
changed significantly over time both genome-wide (Kruskal-Wallace p-value for difference in means 167 
across timepoints: p < 2.3x10-5) and for individual chromosomes (p < 0.006, Fig. S6). Given the large 168 
population sizes (up to 105) it is unlikely that such substantial evolutionary change can be attributed solely 169 
to random genetic drift.  170 
 171 
Further examination of the magnitude and direction of evolution across the 10 replicate cages showed 172 
substantial genomic adaptation, as defined by parallel, and thus deterministic, allele frequency shifts 173 
across replicate cages. To test for parallel shifts, we used a leave-one-out cross validation approach. For 174 
each monthly time interval (Ti → Ti+1; i = 1,2,3,4), we used a generalized linear model (GLM) to identify 175 
sets of SNPs whose frequency shifted significantly across the 9 training cages, and then tested whether 176 
shifts at those SNPs in the 10th left-out cage exceeded shifts at randomly-chosen matched control sites. 177 
Using this test, we found widespread parallel genomic adaptation for the first 3 sampling intervals (in 29 178 
out of 30 leave one-out tests) (Fig.3C). The pattern of parallelism was muted and evolution was more 179 
idiosyncratic in T4→ T5. We also repeated the procedure for SNPs that shifted across the whole experiment 180 
(T1 → T5) and found a similarly strong signal of parallel adaptation (10 out of 10 tests). The magnitude of 181 
allele frequency shifts in each interval (2-8%) and over the whole experiment (2-5%) corresponds to very 182 
strong effective selection strength at the most parallel sites of ~10-50% per monthly interval (1-4 183 
generations) (Materials and Methods). This pattern was largely repeated when analyzing sites from each 184 
chromosome individually (Fig. S7). In simulated populations with the same demographics as the 185 
experimental populations, allele frequency shifts of this magnitude were consistently achieved with 186 
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selection coefficients <=50% on alleles spanning a wide range of initial frequencies over similar 187 
timescales (Supplementary Information; Table S3). The pronounced parallel shifts in allele frequency 188 
across independent populations demonstrate the strong action of natural selection.  189 
 190 
Our cross-validation analysis also yielded clear evidence of variation in the magnitude and direction of 191 
selection over time, consistent with the observed patterns of phenotypic evolution for some traits (Fig. 2). 192 
Specifically, the leave-one-out analysis and the time series genomic data allowed us to examine the full 193 
trajectory of alleles detected at any specific time interval (Tdet). We found that these alleles do often shift 194 
significantly more than alleles at control sites (Fig 3C) at other time intervals; however, the nature of these 195 
shifts varied over time. In some left-out cages and at some time intervals, alleles shifted in a direction 196 
consistent with their behavior during Tdet (orange points); however, in other cases the direction flipped, 197 
resulting in significant reverse shifts (green points). Reverse shifts were strongest for sites with Tdet = 198 
T3→T4 (Aug→Sept) during the time when populations expanded most rapidly and reached their 199 
maximum. These T3→T4 parallel sites showed consistent shifts in the opposite direction during the 200 
preceding interval (T2→T3, July→Aug) when the populations were still expanding. In many cages, these 201 
sites also shifted in the opposite direction during the subsequent (T4→T5, Oct→Nov) interval when 202 
population sizes were declining. These patterns likely reflect the action of rapidly fluctuating selection 203 
over the 4 months of the experiment.  204 
 205 
With a complex and rapidly fluctuating selective landscape adaptation occurs over multiple timescales 206 
simultaneously and inferred rates of adaptation are dependent on the timescale of sampling [13]. Our 207 
results clearly illustrate the extent to which lower-resolution temporal sampling would obscure the 208 
inference of adaptive tracking. While sites identified during individual time intervals often showed median 209 
shifts of >2% in a single month, the strongest parallel sites detected from lower-resolution sampling (i.e., 210 
sampling only at T1 and T5) showed smaller monotonic shifts at each interval (on average, 0.6% per 211 
month). Moreover, the magnitude of this discrepancy varied widely over time. Taken together, these 212 
results underscore the value of high-resolution temporal sampling in revealing the existence of both 213 
temporally variable and temporally consistent directional selective forces. 214 
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 215 
Figure 3: Using genomic data to test for evolutionary parallelism indicative of adaptation.  A) Distributions of genome-216 
wide mean pairwise Fst values between technical replicates (dark gray; same flies, different reads), biological replicates (light 217 
gray; different flies, same time point), and experimental samples from different timepoints compared to baseline (white). Note 218 
that negligible Fst values between pairs of technical replicates are consistent with extreme precision of HAFs, suggesting that 219 
the variance in allele frequency estimates for biological replicates is primarily driven by sampling of different individuals. 220 
Asterisks represent the significance of divergence over time compared to biological replicates (t-test). B) Graphical description 221 
of the leave-one out 10-fold cross-validation process for significant sites. In each round, significantly parallel sites (FDR 222 
<0.05, effect size>2%) at each time segment were identified using 9 of the 10 cages, then the shift at those sites in the 10th 223 
left-out cage was measured, after phasing such that positive values represent shifts in the same direction as the 9 assayed cages 224 
and negative values represent shifts in the reverse direction. The set of phased shifts at parallel sites was compared to phased 225 
shifts at background sites matched for chromosome and initial frequency and assigned to one of three significance bins: 226 
consistent (orange) or reverse (green), or no significant difference from background (gray). Shifts at these same sites over 227 
other time segments were also measured, phased, and assigned to significance bins. C) The median shift for each set of 228 
parallel sites (circles) and background sites (x marks) is plotted for each left-out cage. Each block of 5 panels represents shifts 229 
at the same sets of sites, those identified as parallel at the time segment labeled below the block. Shifts measured at that same 230 
time segment are highlighted in the panel with a dark shadowed outline.  231 
 232 
The number and genomic location of causal loci involved in adaptation is central to understanding the 233 
mechanics of the adaptive process [27]. To quantify the genomic architecture of adaptation we examined 234 
the distribution of parallel sites across the genome and developed an algorithm to differentiate putatively 235 
independent targets of selection from the sites whose shifts could largely be ascribed to linkage 236 
disequilibrium and genetic draft. We first fit allele frequencies from all 10 cages to a GLM and identified 237 
significantly parallel sites (Fig. S8) at each time segment (n=4,274) and across the whole experiment 238 
(n=5,036), yielding 9,310 significant shifts overall (Fig. 4A, Table S4; Materials and Methods). As 239 
expected from the leave one-out analysis, the sets were largely non-overlapping: the 9,310 detected 240 
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parallel shifts occurred at 9,000 unique SNPs. Moreover, at each time interval and across the whole 241 
experiment, parallel sites were both strongly clustered (empirical p<0.01; Fig. S9) and showed 242 
significantly higher average linkage values than the matched control sites (paired t-test p-value < 10-16; 243 
Fig. S10) (Material and Methods), suggesting that most parallel sites were only linked to causal loci 244 
rather than being causal themselves.  245 
 246 
We next identified the minimum number of independent genetic loci under selection using an algorithm that 247 
aggregated the parallel sites into clusters of linked sites (Materials and Methods, Fig. S10). This algorithm clustered 248 
8,214 parallel SNPs detected across all the time segments (~90% of all SNPs at FDR <0.05) into 165 unlinked 249 
independent clusters (Fig. 4A, Table S5). These clusters were found on every chromosome and at every time 250 
segment, with an average of 4.5 clusters per chromosome per month.  Simulations confirmed that while interference 251 
among multiple causal sites can temper shifts at any individual site, the number of clusters detected here still falls 252 
well within the realm of plausible selection landscapes. Specifically, when allele frequency trajectories for pairs, 253 
groups of 5, or groups of 10 selected loci were simulated simultaneously on the same chromosome, the majority 254 
(61.5%) of simulated selected sites required selection strengths no greater than s=0.5 to achieve a minimum shift of 255 
2% per monthly time segment, and the vast majority (80.2%) required selection strengths no greater than s=1. 256 
Furthermore, although inversions can drive patterns of adaptation in Drosophila [28,29], no inversion markers were 257 
found among the parallel sites, and only 3 of the 165 clusters were strongly linked to inversions with average R2 > 258 
0.1 (Table S7, Fig. S11). Combining clusters from all time segments, 61% of all assayed SNPs and 62% of the 259 
genome was contained in at least one cluster, highlighting the pervasive impact of short-term adaptive evolution at 260 
tens to hundreds of independent selected sites on allele frequencies genome-wide.  261 
 262 
The genomic distribution and frequency shifts of these clusters suggested rapid changes in the targets and 263 
direction of selection over time. Specifically, 36 of the 90 clusters (40%) identified at a specific monthly 264 
time interval did not overlap any clusters identified at other monthly intervals, suggesting that selection at 265 
these loci was limited to one month. Among the remaining 54 clusters, only 27 (50%) contained SNPs 266 
that were significantly linked to SNPs in the cluster they overlapped. These 27 clusters formed 9 distinct 267 
‘superclusters’ (Fig. 4) with high internal linkage, representing genomic regions in which allele 268 
frequencies shifted significantly in multiple monthly intervals. Strikingly, in 5 of the 6 superclusters 269 
involving a cluster from T3→T4 linked to a cluster from T4→T5, 90% of SNPs flipped direction between 270 
months, and in the 6th cluster >80% flipped direction, together totaling 10,464 SNPs that flipped 271 
direction (Fig. S12). A smaller majority of SNPs (67%) flipped in the supercluster formed by a cluster 272 
from T2→T3 linked to a cluster from T3→T4. Finally, in the two superclusters involving sets of linked 273 
clusters from 3 different time segments (T2→T3, T3→T4, T4→T5), together covering over 5Mb of 274 
chromosome arm 3L, most SNPs (72% and 85%, respectively) flipped direction twice. We further 275 
confirmed that similar dynamics characterized the full set of putatively causal SNPs by choosing the SNP 276 
with the strongest parallelism p-value in each cluster and examining its trajectory (Fig. 4B). While the 277 
initial frequencies of these marker SNPs (Fig. S13) and exact shape of their trajectories varied widely, we 278 
observed a consistent trend: markers for the clusters identified at an individual monthly time interval 279 
often changed little during other months or even moved in the opposite direction (especially clusters 280 
identified at T3→T4), whereas markers for clusters identified across the whole experiment tended to shift 281 
evenly and monotonically over time. The analysis of overlapping clusters and marker SNPs reveals 282 
similar patterns to individual SNP-based analyses, together supporting an oligogenic and rapid adaptive 283 
response to momentary selection pressures that often results in strong and rapidly fluctuating selection.  284 
 285 



 286 
Figure 4: The genomic architectures of parallel allele frequency change over time. A) Manhattan plot of sites with 287 
significant parallel allele frequency shifts over time in 10 replicate cages. Each dot shows the -log10 of the FDR-corrected p-288 
value (y-axis) corresponding to the significance of the allele frequency shift at a given SNP position (x-axis) over a given time 289 
segment of the experiment (rows). Only SNPs with an FDR <0.2 are shown, and dots are colored according to 3 significance 290 
bins (top legend). Shaded areas indicate regions of the genome that are likely driven by the same causal site, as defined by a 291 
clustering algorithm accounting for SNP linkage. Each clustered genome block is identified by a number marking the position 292 
of the top parallel SNP.  Clusters from different time segments that are significantly linked (‘superclusters’) are given the same 293 
number, labeled in blue. The position of seven common chromosomal inversions are indicated below. B) Allele frequency 294 
trajectories are shown for the top marker SNP from each cluster. Each trajectory is translated to show allele frequency change 295 
relative to initial frequency in the baseline population, and phased to show the frequency of the rising allele at the time 296 
segment in which the cluster was identified. The time segment over which the SNPs were identified as outliers is shaded in 297 
gray. 298 
 299 
We next tested whether the identified genomic targets of this rapidly fluctuating selection are associated 300 
with any specific phenotypic traits or pathways. We specifically investigated the set of 111 genes - one 301 
per cluster - that overlapped with the cluster’s top marker SNP. This set of genes is strongly enriched (P 302 
< 0.001 in all cases) for genes with a known phenotypic effect (85 genes), and more specifically for 303 
genes involved in behavior (27 genes), cell-to-cell signaling (34 genes), neuronal function (25 genes) - 304 
and even more specifically, synaptic function (14 genes), and the CNS (21 genes) (Table S6). Many of 305 
these genes are crucial to core developmental and signaling pathways including the Wnt signaling 306 
pathway (genes frizzled2 (the receptor of wingless), armadillo (beta-catenin), sgg (GSK3), flo2 (long 307 
range Wnt signaling), reck (regulation of Wnt signaling), huwe1 (negative regulation of Wnt signalling)), 308 
and dpp/BMP signaling (gene tkv). Strikingly, one cluster marker SNP is found in SNF4Aγ, the gamma 309 
subunit of the central metabolic switch kinase Adenosine 5’-monophosphate-activated protein kinase 310 
(AMPK). SNF4Aγ was one of two key genes found previously to be involved in adaptation to high 311 
temperature during experimental evolution of a sibling species, D. simulans (30). On balance these 312 
patterns suggest that the adaptive tracking in our outdoor mesocosms may be driven by the modulation of 313 
sensing and regulatory processes at the level of the nervous system, metabolism, and development that 314 
modify the way environmental cues are interpreted by the organism. 315 
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 316 
The phenotypic and genomic patterns observed in this study are consistent with a form of adaptive 317 
tracking in which (i) populations adapt in response to continuous environmental shifts, (ii) parallel 318 
evolution is driven by strong selection on multiple phenotypes and on a substantial number (tens to 319 
hundreds) of strongly selected genetic variants, (iii) the identity of the phenotypes and variants under 320 
selection changes considerably over short timescales, and (iv) selection operates at multiple timescales, 321 
acting in a consistent direction across the whole experiment on some variants and phenotypes, and 322 
rapidly fluctuating in direction and magnitude at others (31). This fluctuating selection leads to inferred 323 
rates of adaptation being slower when measured from the beginning to the end of the experiment as 324 
compared to single monthly intervals. The observed pattern that evolutionary rates are fastest when 325 
measured over shorter timescales may be driven by fluctuating selection (13, 32).  326 
 327 
The pace, complex architecture of adaptation, and temporal evolution of particular phenotypes in our 328 
field cages are generally consistent with prior observations of seasonal evolution in natural temperate 329 
populations of D. melanogaster (21, 33–35). However, with additional temporal resolution and 330 
replication we detect rapidly fluctuating patterns of adaptation that suggest that populations of D. 331 
melanogaster are continuously and adaptively tracking the environment; this is surprising, but as we 332 
show not implausible given the timescale of environmental change (36). These patterns also imply that 333 
segregating functional variation is abundant and that much of the segregating variation in fitness is likely 334 
due to balancing selection (37), including temporally fluctuating selection that maintains genetic 335 
variation (14, 38, 39). The functional analysis of the genomic regions under selection further suggests 336 
that the rapid adaptation detected here is likely driven by modulation of high-level signaling pathways 337 
that feed into developmental and neuronal functions capable of modifying multiple phenotypes in a 338 
coordinated fashion. This may explain how selection can rapidly modify so many ostensibly unrelated 339 
phenotypes at the same time.  340 
 341 
We show that it is possible to observe adaptive tracking in real time, providing a new lens to study the 342 
synchronous ecological and evolutionary dynamics of natural populations. We focus here on D. 343 
melanogaster, but the environmental and organismal features that gave rise to adaptive tracking, such as 344 
the presence of strongly shifting environmental pressures on generational time scales, are likely common 345 
(7, 8, 40, 41). Understanding the complex interplay among environmental change, population dynamics, 346 
standing genetic variation, and trait architecture that dictates the extent of adaptive tracking is a 347 
considerable challenge. Determining whether adaptive tracking is a general feature of natural populations 348 
and defining the factors that shape the extent of adaptive tracking could be transformative in 349 
understanding the generation and maintenance of biodiversity.  350 
 351 
  352 
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Materials and Methods  6 
Establishment of experimental populations  7 
To examine the pace, magnitude, parallelism, and genomic architecture of adaptation in 8 
response to a temporally variable environment we created a genetically diverse founder 9 
population that was seeded into each outdoor replicate. This outbred founder population 10 
was constructed from 80 fully sequenced Drosophila melanogaster inbred lines to 11 
facilitate the use of haplotype inference to attain high effective sequencing coverage. 12 
These inbred lines were derived from wild-caught individuals collected June 1, 2012 13 
from Linvilla Orchards, Media PA USA (1). Each line was subsequently inbred for 20 14 
generations by full-sib mating during which time they were maintained at 25 ˚C and fed 15 
‘Spradling Cornmeal Recipe’ media. Then, 30-50 individuals from each line were 16 
pooled for whole genome sequencing. Sequencing and variant calling were performed as 17 
described in (2), with the addition that genomic DNA from certain lines was resequenced 18 
on an Illumina HiSeq X to increase coverage to a minimum of 10x for all lines. Mapped 19 
and de-duplicated bam files from all original and resequencing runs can be found on 20 
SRA under BioProject PRJNA722305 (Table S1). To initiate the baseline population in 21 
this experiment, we combined 10 males and 10 females from each of the 80 lines into 22 
large cages in May 2014. We allowed 4 generations of unmanipulated recombination 23 
and population expansion to facilitate recombination between lines before using 500 24 
males and 500 female flies to found each of 10 field cages. Inbred lines have many 25 
deleterious alleles; purifying selection against deleterious alleles fixed during inbreeding 26 
was likely strong during lab outcrossing, and potentially, the early phase of the 27 
experiment. 28 
 29 
Each field cage is a 2m x 2m x 2m mesh enclosure around a dwarf peach tree located outdoors 30 
(Philadelphia, PA) and features a natural insect and microbial community. The ground was fresh 31 
soil with clover planted as ground cover in each cage. The only food source and egg-laying 32 
substrate was 400ml of Drosophila media (‘Spradling cornmeal recipe’) contained in 900cm3 33 
aluminum loaf pans that were added every second day for the duration of the experiment (July 34 
13th - November 7th, 2014). Loaf pans of media within experimental cages were protected from 35 
rain and direct sun on shelving units oriented away from direct sunlight. 36 

Measurement of population size and evolution of fitness associated phenotypes  37 

Census size of adults was estimated in each replicate over the course of the experiment by 38 
photographing an equal amount of the surface area (approximately 2.5%) of the ceiling in each 39 
cage at dusk (12 total census estimates per cage). The number of adult D. melanogaster in 40 
each of 8 standardized photographs in each estimate for each cage was counted and multiplied 41 
by 40 to correct for total surface area and obtain census estimates. Egg production was 42 
estimated every second day by counting the eggs present on a 1/24th portion of the exposed 43 
surface of the media.  44 



 45 
To assess the rate and direction of phenotypic evolution over the course of the experiment we 46 
collected ~2500 eggs from each cage, brought them to the laboratory, and reared them for an 47 
additional 2 generations in a common garden (25˚C, 12L:12D) while maintaining population 48 
sizes at ~2500 individuals. Fitness-associated phenotypes were measured on density and age-49 
controlled replicates in the F3 generation. Fecundity was measured as the total number of eggs 50 
laid by a group of five females, counted each day for a period of three days, with twenty replicate 51 
vials for each cage at each time. Egg length was measured using a microscope and image 52 
processing software (3) on at least 15 eggs (average of 27) from each cage at each time point. 53 
Larval development rate was tracked as the time from when eggs were laid until pupation in 54 
three replicate vials from each cage at each time point with 30 eggs in each vial. Starvation 55 
tolerance was measured as time to starvation in three replicate vials containing moist cotton (1.5 56 
ml water) (following (4)) and 10 female flies with three replicates for each cage at each time 57 
point. Desiccation tolerance was measured as time to death in desiccation chambers containing 58 
10 female flies with three replicates for each cage at each time point (4). Chill coma recovery 59 
was measured as the time it took for flies buried in ice and placed in a 4℃ incubator for 2h to 60 
resume an upright stance at 25℃ (1). This was measured using groups of 10 female flies for each 61 
cage at each time point that had been allowed at least 24hrs to recover from light CO2 anesthetic. 62 
We also attempted to measure evolution in heat knockdown. However, the assay temperature we 63 
used for the founder population, a stressor that caused 50% of flies to knockdown by 12 minutes, 64 
was not sufficiently hot to cause knockdown by the second sample period. Thus, although we 65 
cannot quantify it, heat tolerance evolved rapidly. We assayed each of the remaining phenotypes 66 
in the founding population (founder assays failed for fecundity and egg size) and at four times 67 
during the experiment: day 11 (7/25/14), day 38 (8/19/14), day 61 (9/11/14), and day 90 68 
(10/10/14). Census and phenotypic evolution data have been uploaded to Dryad.  69 

Calculation of evolutionary rates and statistical analysis of phenotypic data to test 70 
for evolutionary parallelism  71 
We calculated evolutionary rates in Haldanes by dividing the trait change over each interval by 72 
the pooled standard deviation and then by the number of generations elapsed (5,6). We 73 
calculated the rate of adaptation as the parallel change across replicates. To do so we took the 74 
average trait change across all 10 replicates and calculated a single rate in Haldanes. Haldanes 75 
were calculated for all six phenotypes for each experimental interval and over the whole 76 
experiment. We compared the rates of evolution measured in our experiment to those from a 77 
meta-analysis of evolutionary rates from field populations that focused on contemporary 78 
evolution (less than 200 generations) (7). The meta-analysis was focused on phenotypic change, 79 
which includes both genetic and environmental (plastic) effects, as few prior studies used 80 
common garden experiments to measure the rate of evolution.  81 

To test for parallel phenotypic evolution in each of the six phenotypes we carried out separate 82 
linear mixed effect models (e.g. lme(phenotype measured ~ time, random=~1|cage/time)) and 83 
tested for significance using an anova (nlme and R respectively).  84 

Genomic sequencing, SNP calls, and bioinformatic analysis  85 
100 female flies from each of the 10 field cages were sampled at 5 monthly time points. 86 
Individuals from each sample were pooled and libraries were prepped using a Covaris protocol, 87 



then size-selected using an e-gel. Two e-gel bands from each sample were sequenced separately 88 
(1 from the 450-500 band and 1 from the 500-550 band) on a HiSeq3000 with 150-bp paired-end 89 
reads. Truseq adapter sequences and bases with quality <20 were trimmed with skewer (8) and 90 
overlapping forward and reverse reads were merged using PEAR (9). Resulting reads were 91 
mapped to the Drosophila melanogaster reference genome v5.39 with BWA (default parameters) 92 
(10). Reads were deduplicated using Picardtools and realigned around indels using GATK v4 93 
(11). Pairs of bam files from the same sample were merged with samtools (12). Final average per-94 
sample read depth was 7.3x +/- standard deviation of 2.0x. Haplotype-derived allele frequencies 95 
(HAFs) were then calculated via local inference with HAF-pipe (2) using the 80 genotyped 96 
founder strains. Haplotype inference was conducted in sliding windows across the genome, using 97 
the adaptive window size option in HAF-pipe to reflect the expected length of un-recombined 98 
haplotype blocks given the estimated number of generations since population founding. 99 
Heterozygous calls in the founder lines were included in the inference calculation, and missing 100 
calls were imputed using HAF-pipe’s ‘npute’ option. HAFs from all samples were compiled and 101 
filtered to contain only sites at which at least one baseline sample and at least one evolved cage 102 
sample had a minor allele frequency >1%.  103 

High coverage sequencing  104 
4 biological replicate samples from the baseline population, each a random sample of 100 flies 105 
from the same baseline population, were sequenced at high coverage. Baseline library preps 106 
were created using a modified Nextera protocol (11) and sequenced on a HiSeq4000 with target 107 
100x coverage. Additionally, timepoint-5 evolved samples from 8 of the 10 cages were re-108 
sequenced at high coverage (in addition to separate sequencing at low coverage with the rest of 109 
the evolved samples) using a KAPA hyperprep and a HighSeq4000. Processing for both the 110 
baseline and high-coverage timepoint-5 samples followed the same workflow. All adapter 111 
sequences were trimmed with skewer (7) with default parameters and minimum quality Q=20. 112 
Overlapping forward and reverse reads were merged using PEAR (8). Resulting reads were 113 
mapped to the Drosophila melanogaster reference genome v5.39 with BWA (default 114 
parameters). Reads were deduplicated using Picardtools and realigned around indels using 115 
GATK v4. Raw allele frequencies at each SNP site were then calculated using Popoolation (12) 116 
and custom bash scripts.  117 

Analysis of HAF accuracy  118 
Our approach relies on a previously published expectation-maximization algorithm for inferring 119 
the frequency of individual founder haplotype blocks in each pooled sample, which we then 120 
translate to population allele frequency estimates using weighted sums of founder genotypes. 121 
This approach was described in detail in (2), where we demonstrated via simulations that HAFs 122 
calculated from read depths ~5x can be as accurate as raw allele frequencies calculated from 123 
read depths >100x, and that high accuracy is maintained for >50 generations in Drosophila, 124 
although recombination does impact accuracy over time. As our experiment lasted only 10-15 125 
generations, we expected that this approach would yield reliable allele frequencies suitable for 126 
downstream analysis. In fact, using the predictive tool described in (2) (https://ec-127 
calculator.shinyapps.io/shinyapp/) to predict the expected ‘effective coverage’ of our HAFs 128 
from experimental parameters, accuracy estimates ranged from 106x for the most shallowly 129 
sequenced sample on the X chromosome (where SNP density is lowest, leaving fewer 130 



discriminatory sites for haplotype inference) to 369x for the deepest sequenced sample on 131 
chromosome 3R (Table S2).  132 

However, to validate that HAF accuracy was sufficiently high with empirical (rather than 133 
simulated) data, and to confirm that this approach does not lead to biased estimates as 134 
recombination progresses, we re-sequenced 8 of the timepoint-5 samples at high-coverage and 135 
compared allele frequencies calculated from raw reads (‘raw AFs’; i.e., calculated from the 136 
proportion of alternate alleles at each site, without haplotype inference) to HAFs calculated from 137 
the same samples. Importantly the raw AFs and HAFs were calculated from distinct sets of reads 138 
(different aliquots of genomic DNA from the same individuals), and were thus independent 139 
estimates. Furthermore, while neither HAFs nor raw AFs represent ground truth allele 140 
frequencies for the sampled individuals, they each contain different sources of error. Thus, we 141 
would expect that the accuracy of HAFs would be reflected in a strong correlation with raw AFs 142 
at the highest read depths, since they are both faithful representations of the same signal, while if 143 
HAFs were systematically biased, increasing the raw AF read depth would not improve the 144 
correlation. To test this, sites in all 8 samples were binned by their read depth in the high 145 
coverage version of each sample, and then 50,000 sites were sampled randomly from each bin 146 
across all samples. Fig S1A shows density heatmaps of allele frequencies vs HAFs calculated at 147 
the same site in the same sample for sites in 4 different read depth bins. We observed that as raw 148 
read depth increased, raw allele frequencies more closely matched HAFs, as apparent from lower 149 
variance around the diagonal in the heatmap and a stronger correlation coefficient. To further 150 
confirm that there was no systematic bias in HAFs compared to raw allele frequencies, we 151 
plotted the smoothed line of best fit (using the function geom_smooth from the ggplot2 R 152 
package) separately for each read depth bin (Fig S1B). Indeed, for sites in the highest read depth 153 
bin, the line of best fit is almost exactly on the diagonal. Since our analysis relies not just on 154 
estimating allele frequencies correctly, but on detecting subtle shifts in allele frequency over 155 
time, we generated the same set of plots and correlations for the shift between baseline 156 
and timepoint 5 calculated from raw AFs vs HAFs (Fig. S1C-D). We observed the same pattern, 157 
in which concordance between raw AFs and HAFs improved with higher raw AF read depth, 158 
though the correlation coefficients overall were not as strong. These reduced correlation 159 
coefficients are expected given that the vast majority of shifts are very small and the dynamic 160 
range of values is reduced. Nevertheless, the consistent increase in correlation coefficient across 161 
read depth bins is consistent with HAF accuracy reaching effective coverages >115x (the highest 162 
read depths observed in the raw AFs). Finally, to assess the fine-scale resolution of HAFs, sites 163 
with raw read depth >115x and shifts <=10% were binned by raw AF shift to the nearest 1%, 164 
and boxplots were generated of HAF shifts at the sites in each bin (Fig S1E). The means of the 165 
HAF shifts in each bin rose significantly across each consecutive bin (all t-test p-values <.05), 166 
suggesting that HAFs provide the resolution necessary to distinguish shifts that differ by ~1%.  167 

Identifying significant parallel SNPs  168 
A generalized linear model (GLM) with a quasibinomial error model was fit to allele frequencies 169 
at each SNP to assess the parallelism of shifts in allele frequency across cages over each time 170 
interval. To account for sampling of chromosomes, all allele frequencies were first scaled and 171 
rounded to counts out of Neffective, where n is the number of individuals sampled from the 172 
population (100 for all samples), rd is the true read depth, and Neffective = 2n*rd−1 / 2n+rd. A site 173 
was considered significantly parallel if it showed 1) at least 2% average change in allele 174 



frequency over the time interval and 2) Benjamini-Hochberg false discovery rate corrected p-175 
value <.05 from the GLM test of parallelism. We also created an empirical false discovery rate 176 
correction by shuffling the sample time point labels and re-running GLMs, however this rate 177 
proved to be less stringent and therefore was not used in the analysis.  178 

Leave-one out cross validation analysis  179 
In each round, a GLM was fit using allele frequencies from 9 training cages, and parallel sites 180 
were identified at each time segment as described above. For each parallel site, a matched 181 
control site was identified on the same chromosome that had an initial frequency in the baseline 182 
population within 5% of the parallel site. At each parallel and control site, the allele frequency 183 
shift over each time segment in the 10th left-out cage was calculated and phased such that a shift 184 
in the same direction as the training cages was given a positive sign and a shift in the opposite 185 
direction was given a negative sign. A t-test was conducted for each time segment to determine 186 
if the set of phased shifts at parallel sites was significantly different than shifts across all control 187 
sites. In Figure 3, we plotted the median phased shift for each set of sites at each time segment, 188 
and colored the point for parallel sites if the t-test p-value was < 0.05 after false discovery rate 189 
correction.  190 
 191 
Forward simulation of selection in replicate populations 192 
Simulations of allele frequency dynamics associated with rapid adaptation were performed with 193 
the software tool forqs (13), which simulates recombination of haplotype chunks in the presence 194 
of zero or more selected alleles in a randomly mating population over a specified number of non-195 
overlapping generations. We first chose a set of 100 sites from across the allele frequency 196 
spectrum on which to focus our simulations. To do so, we divided all segregating sites in the 197 
experimental founder population into 100 equidistant bins according to their alternate allele 198 
frequency across the 80 founder lines, and then randomly selected 1 site from each bin. Then, 199 
separately for each site, we used forqs to simulate allele frequency trajectories from 10 200 
independent populations of 100,000 individuals over 3 generations of neutral ‘burn-in’ and 4 201 
generations of constant directed selection on one of these 100 sites. In each simulation, the 202 
100,000 individuals in each of the 10 populations were each assigned to carry the alleles of a 203 
randomly selected homozygous founder strain, which were supplied to forqs via an ms file. 204 
Simulations for each site were repeated with a range of selection coefficients between s=0.05 and 205 
s=1, in which homozygous reference, heterozygous, and homozygous alternate genotypes were 206 
assigned a selective advantage equal to 1, 1+s/2, or 1+s respectively. In each simulation we also 207 
tracked the frequency of neutral (ie s=0) marker sites located approximately 5kb away from each 208 
selected site. Environmental variance between populations was set to 0.05. To be conservative, in 209 
our simulations we referred to the female D. melanogaster recombination rate map (14) for all 210 
individuals, and simulated truncation selection in which the top 25% of individuals contribute to 211 
the next generation. After simulating selection on each site individually, we then randomly 212 
grouped the sites into pairs, sets of 5 sites, and sets of 10 sites, and repeated the simulations with 213 
multiple sites under selection with the same strength, each contributing independently to a single 214 
additive trait. After simulation for each site or set of sites, allele frequencies at each selected site 215 
and each marker site were averaged across the 10 replicate populations and the minimum 216 
selection coefficient was identified at which average allele frequency shifted by at least 2% over 217 
the course of the 4 generations of selection. Results are presented in Table S3.  218 



Defining SNP clusters  219 
A GLM model was fit to allele frequencies from all 10 cages at each site as described above, to 220 
assess the parallelism of the shift over each time interval. Each site was assigned a score for each 221 
time interval according to the following criteria: 0 = [FDR >0.2], 1 = [FDR<.2 or FDR>.2 and 222 
effect size <2%], 2 = [FDR<.05, effect size >2%], 3 = [FDR<.01, effect size >2%]. While only 223 
sites receiving a score of 2 or 3 were defined as ‘significant’ in the analysis, lower scoring sites 224 
were helpful in identifying large regions of elevated parallelism. Average SNP scores were 225 
calculated for sliding windows of 500 SNPs (offset=100 SNPs), and significantly enriched 226 
windows were defined as those with an empirical FDR <.05 compared to the distribution of 227 
window scores obtained by randomly shuffling sites across the genome. Overlapping enriched 228 
windows were then merged. Next, linkage was calculated between all pairs of significant SNPs 229 
less than 3 Mb apart from the same time interval. Linkage was defined as the squared correlation 230 
coefficient from a Pearson correlation of founder genotypes at the two sites, with genotypes 231 
coded as 0, 0.5, 1, or NA for missing data. Neighboring windows with average SNP-pair linkage 232 
>0.03 were merged into clusters, and the process was repeated iteratively until no neighboring 233 
clusters within 3Mb exceeded an average linkage of 0.03.  234 
 235 
Defining superclusters  236 
A list was generated of all pairs of clusters identified at different time segments that overlapped 237 
by at least one SNP. Clusters identified across the whole experiment (T1→T5) were excluded 238 
from this list, resulting in 44 pairs of overlapping clusters. For each pair of clusters, linkage (R2) 239 
values between all inter-cluster pairs of significant SNPs within 3Mb of each other were 240 
calculated and compared to linkage values for a set of randomly selected control SNP pairs 241 
matched for chromosome, initial frequencies, and inter-SNP distance. If linkage values for the 242 
cluster SNPs were significantly higher than linkage values for the matched control SNPs 243 
(Benjamini-Hochsburg FDR-corrected t-test p-value <.05), the clusters were considered 244 
significantly linked. Any individual pairs of linked clusters that shared a cluster in common were 245 
merged into linked cluster sets to form the final list of superclusters.  246 

Assessing the influence of inversions  247 
Inversion markers (15) were used to assess the linkage of each cluster to each inversion on the 248 
same chromosome. Markers were filtered to SNPs segregating in our baseline population. 249 
Because subsets of markers for the same inversion often showed disparate allele frequency 250 
trajectories in our data (and thus may not be reliable markers of the inversion among the inbred 251 
lines used to found our population), we filtered markers for each inversion to those that showed 252 
strong linkage (R2> 0.5) to at least half of the other markers for that inversion (see Table S7 for 253 
inversion marker counts before and after filtering). We then calculated the linkage between all 254 
significantly parallel SNPs and any inversion markers up to 3Mb away.  255 
 256 
 257 
  258 



Supplementary Tables 259 

Table S1. List of inbred Drosophila melanogaster lines and SRA accession numbers used in this 260 
study. 261 

(see excel spreadsheet) 262 

Table S2. Predicted effective coverage (‘ec’) calculated from the density of sites per 263 
chromosome, percent of founder genotype calls that were missing, and the minimum, maximum, 264 
and mean chromosome-wide average read depth across samples according to the model described 265 
in (Tilk et al. 2019). 266 

 267 
 268 
 269 
Table S3. Results of forward simulations of selection over 4 generations. For each selected site 270 
(left side) or marker site 5kb away (right side), the table lists the minimum selection coefficient 271 
required to shift allele frequency by 2% when the selected site was the only site under selection 272 
(first column), or was part of a multi-site selection regime (subsequent columns). NA indicates 273 
that no selection strengths tested resulted in a sufficient parallel shift. 274 

(see excel spreadsheet) 275 
 276 
 277 
 278 
  279 



Table S4. Counts of sites with significant (FDR<.05, effect size >2%) parallel allele frequency 280 
shift across 10 replicate cages at each time segment, on each chromosome. 281 

 282 
 283 
 284 
Table S5. Counts of clusters identified at each time segment on each chromosome.  285 
 286 

 287 

 288 
 289 
Table S6. Gene associations and annotations for the single marker SNP in each cluster with the 290 
strongest parallelism score. Columns marked with an asterisk represent phenotypic associations 291 
of marker genes obtained from http://evol.nhri.org.tw/phenome2/ (Weng et al 2017). 292 

(see excel spreadsheet) 293 



Table S7. Table of inversion marker counts. Segregating markers could be detected as bi-allelic 294 
SNPs in the baseline population, while filtered markers showed high correlation (R2>0.5) with 295 
each other across all sampled cages during the course of the experiment. 296 

 297 

 298 

 299 
  300 



Supplementary Figures 301 

 302 

 303 

 304 
Fig. S1: Eggs were estimated by counting the number on 1/24th of the food loaf pan every second 305 
day during the experiment. Plotted here are the means (orange line) and individual cage value for 306 
egg production for each 2 day period. 307 
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 310 

 311 

Figure S2: To visualize recruitment from egg to adult we have plotted: A) The total number of 312 
eggs that could have matured to adulthood between each adult census estimate B) The change in 313 
adult population size between each census estimate. For both A and B means with standard errors 314 
are plotted.  315 
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 317 

 318 
Figure S3: Panels A-C show cage by cage variation in daily relative humidity (A=maximum, 319 
B=average, C=minimum). Panels D-F show cage by cage variation in daily temperature 320 
(D=maximum, E=average, F=minimum). Temperature and humidity loggers in 8 of 10 cages 321 
collected complete data and are included here. Cage level variation is modest overall, 322 
maintaining the expectation that independent replicate populations may show parallel 323 
evolutionary trajectories. 324 
 325 
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 327 
Figure S4: We assessed associations between cage to cage variation in environmental parameters 328 
and the pace of phenotypic evolution. Panels A, B, and C show the relationship between the 329 
average temperature in each cage (measured in 8 cages) over the 10 days preceding phenotyping 330 
and the change in genetic chill coma recovery time. Panels D, E, and F show the correlation 331 
between the average egg count and the change in genetic larval development rate. Panels G, H, 332 
and I show the correlation between the minimum humidity (measured in 8 cages) over the 10 333 
days preceding phenotyping and the change in genetic desiccation tolerance. Overall, these 334 
associations did not uncover clear evidence of a specific environmental factor that drove cage to 335 
cage variation in evolutionary trajectories, suggesting that the agent of selection was something 336 
that did not vary strongly across cages, was not measured, or was shaped by several 337 
environmental factors over each time interval.  338 
 339 
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 341 
Fig. S5. Haplotype-derived allele frequencies (HAFs; y-axis) obtained via low-coverage (~5x) 342 
sequencing of timepoint-5 samples followed by inference from founder haplotypes were 343 
compared to raw allele frequencies (x-axis) from deep re-sequencing of the same samples. Sites 344 
were binned by read depth in the deeply sequenced samples (separate panels). In all panels, 345 
concordance between HAFs and raw AFs increases as read depth of raw AFs increase, 346 
suggesting HAFs are effectively as accurate as raw AFs at >100x. A) Heatmaps of HAFs vs raw 347 
AFs for the same sample and site. B) Line of best fit (blue) for correlation between HAFs and 348 
raw AFs compared to line of perfect correlation (gray). C) Heatmaps of the shift between 349 
baseline and timepoint-5 calculated via HAFs vs raw AFs for the same sample and site D) Line 350 
of best fit (blue) for correlation between shifts from baseline calculated from HAFs vs raw AFs 351 
compared to line of perfect correlation (gray). E) Boxplots of HAF shifts binned by raw AF shift, 352 
at sites with raw read depth >=115x. All boxplots represent distributions with significantly 353 
different means (t-test p-values<.05).  354 
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 356 

357 
Fig. S6. Distributions of chromosome-wide mean Fst between biological replicates from the 358 
baseline population (gray) or between experimental samples from each sampling timepoint and 359 
baseline samples (coral).  360 
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362 
Figure S7. Per-chromosome leave-one out 10-fold cross-validation of significant sites. In each 363 
round, significantly parallel sites at each time-segment were identified using 9 of the 10 cages, 364 
then the shift at those sites in the 10th left-out cage was measured at the same time segment. In 365 
each case, the set of shifts at parallel sites was compared to shifts at control sites matched for 366 
chromosome and initial frequency to determine whether shifts in the left-out cage at parallel sites 367 
were also significantly parallel (orange) or significantly anti-parallel (green). Median shift for each 368 
set of parallel sites (circles) and control sites (x marks) on each chromosome (rows) at each time 369 
segment (columns) are plotted for each left-out cage. 370 
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 372 
Fig S8. QQ plots for per-SNP GLM p-values giving the significance of a parallel shift across 10 373 
replicate cages for true data (y-axis) and null model (x-axis) where timepoint labels for each site 374 
were shuffled across samples before fitting the GLM. Color of each point indicates whether the 375 
p-value for the true quantile passes various FDR thresholds.  376 
  377 



 378 

379 
Figure S9. QQ plots of the distribution of significant sites in various equi-SNP sized sliding 380 
windows. Each SNP was scored (0, 1, 2, or 3) according to significance of parallelism at each 381 
time segment (see Methods). SNP-scores were averaged across consecutive SNPs to generate a 382 
window score. True window score quantiles (y-axis) were compared to quantiles from a null 383 
distribution generated by randomly shuffling SNP labels. 384 
  385 



 386 
 387 
 388 

389 
Figure S10. Smoothed average of linkage values as a function of distance between SNPs, 390 
measured between A) all pairs of significant (FDR<.05) SNPs on the same chromosome 391 
identified at the same time segment, B) pairs of SNPs on the same chromosome identified at the 392 
same time segment that were assigned to different clusters, and C) pairs of SNPs on the same 393 
chromosome identified at the same time segment that were assigned to the same cluster.  394 
 395 
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 397 

398 
Figure S11. A) Distribution of the allele frequencies of inversion markers in the founder lines, 399 
baseline population, and across cages at each timepoint. B) Linkage between clusters (x-axis) and 400 
inversions (y-axis). Dots are colored by time segment of cluster identification and shading 401 
indicates whether clusters are unlinked, weakly linked (average R-squared between significant 402 
parallel SNPs and inversion markers is > 0.03) or strongly linked (average R-squared > 0.1). 403 
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407 
Figure S12. Proportion of SNPs in the intersection of linked clusters from different time segments 408 
(aka superclusters) that continue shifting in the same direction across months (gray) or flip 409 
direction (orange). Two superclusters involve linked clusters from three different time segments 410 
(T2→ T3, T3→ T4, and T4→ T5); for these superclusters, color indicates the consistency of direction 411 
between T2à T3 and T3→ T4, followed by the consistency of direction between T3→ T4 and T4→ 412 
T5 (i.e., flips, same).  413 
!414 
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!416 

!417 
Figure S13. Distribution of the initial minor allele frequencies of marker SNPs for clusters 418 
identified at each time segment. 419 
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