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ABSTRACT2

Availability of highly parallelized immunoassays has renewed interest in the discovery of3
serology biomarkers for infectious diseases. Protein and peptide microarrays now provide a4
rapid, high-throughput platform for immunological testing and validation of potential antigens5
and B-cell epitopes. However, there is still a need for tools to prioritize and select relevant6
probes when designing these arrays. In this work we describe a computational method called7
APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple molecular features8
to prioritize antigenic targets in a given pathogen proteome. These features include subcellular9
localization, presence of repetitive motifs, natively disordered regions, secondary structure,10
transmembrane spans and predicted interaction with the immune system. We applied this method11
to prioritize potentially antigenic proteins and peptides in a number of bacteria and protozoa12
causing human diseases: Borrelia burgdorferi (Lyme disease), Brucella melitensis (Brucellosis),13
Coxiella burnetii (Q fever), Escherichia coli (Gastroenteritis), Francisella tularensis (Tularemia),14
Leishmania braziliensis (Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium15
leprae (Leprae), Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria),16
Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia), Streptococcus17
pyogenes (Group A Streptococcal infections), Toxoplasma gondii (Toxoplasmosis) and Trypanosoma18
cruzi (Chagas Disease). We have tested this integrative method using non-parametric ROC-19
curves and made an unbiased validation using an independent data set. We found that APRANK20
is successful in predicting antigenicity for all pathogen species tested, facilitating the production21
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of antigen-enriched protein subsets. We make APRANK available to facilitate the identification of22
novel diagnostic antigens in infectious diseases.23

Keywords: antigens, linear epitopes, antigenicity, prediction, human pathogens24

1 INTRODUCTION
Infectious diseases are one of the first causes of death worldwide, disproportionately affecting poor25
and young people in developing countries. Several epidemiological and medical strategies exist to deal26
with these diseases, most of which rely on robust and accurate diagnostic tests. These tests are used to27
demonstrate infection (presence of the pathogen), to follow up treatments and to monitor the evolution or28
cure of the disease or the success of field interventions (Peeling and Nwaka, 2011).29

One of the preferred methods to diagnose infections relies on the detection of pathogen-specific antibodies30
in the fluids of infected patients (most often serum obtained from blood) (Washington, 1996; Vainionpää31
and Leinikki, 2008). However, knowledge of B-cell antigens and epitopes is scarce for many species. For32
this reason, there is a big interest in developing reliable methods able to improve the fast and sensitive33
identification of potential specific antigens.34

With the advent of peptide microarray platforms it is now possible to perform high-throughput serological35
screening of short peptides, which allows for faster discovery of linear antigenic determinants with good36
potential for diagnostic applications (Pellois et al., 2002). Taking advantage of complete genome sequences37
from pathogens, it is theoretically possible to scan every encoded protein with short peptides against38
sera from infected hosts. However, while this is straightforwardly achieved for viral pathogens and small39
bacteria, it gets more difficult when dealing with larger bacteria or eukaryotic parasites, since they can40
reach thousands of proteins with millions of peptides, exceeding the average capacity of standard protein41
or peptide microarrays (Sutandy et al., 2013). Besides, it is now becoming common to fit in the arrays42
additional sequence variants obtained from the pathogen population (from diverse strains and clinical43
isolates). One example are serological strain typing strategies (Balouz et al., 2021), which would stress the44
capacity of these platforms.45

Recently, ultrahigh-density peptide microarrays had been used successfully to map linear epitopes, having46
an upper theoretical limit of ∼ 2-3 million unique peptides per array (Buus et al., 2012). While these47
ultrahigh-density peptide microarrays do enable a lot of possibilities, they do not yet have the capacity to48
analyze whole proteomes of larger pathogens without some preprocessing. It is also worth noting that they49
are not widely available as lower density arrays and they require substantial processing and downstream50
work to deal with large proteomes (Carmona et al., 2015; Durante et al., 2017; Mucci et al., 2017).51

There are several ways to deal with the problem of not having enough space when accommodating large52
proteomes in a peptide array, each with their own advantages and disadvantages. The most common are:53
decreasing the overlap between peptides, dividing the proteome among different microarray slides, and54
using computational methods to prioritize antigens. In this paper we will focus on the latter. We and others55
have previously shown that a number of protein features can be used to validate and prioritize candidate56
antigens and epitopes for human pathogens (Carmona et al., 2012, 2015; Liu et al., 2018; Liang and Felgner,57
2012). Similar approaches have also been developed into a number of reverse vaccinology programs for58
bacteria (reviewed recently in Dalsass et al. (2019)).59

In a previous work, we developed a method that integrates information from a number of calculated60
molecular and structural features to compute an antigenicity score for proteins and peptides in61
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Trypanosoma cruzi (Carmona et al., 2012, 2015). In this paper, we use machine learning techniques62
to extend and generalize this concept so that it can be applied to other pathogens. We call this method63
APRANK (Antigenic Protein and Peptide Ranker) and show how it can be used as a strategy to predict and64
prioritize diagnostic antigens for several human pathogens.65

2 MATERIALS AND METHODS
2.1 Bioinformatic analysis66

FASTA files containing proteins of the species used to train APRANK (see Table 1) were downloaded67
from publicly available database resources (from complete proteomes). To comply with requirements68
of downstream predictors, unusual amino acid characters were replaced by the character ‘X’ and a few69
proteins with more than 9,999 amino acids were truncated to that size. To obtain information at peptide70
level, proteins were split into peptides of 15 residues with an overlap of 14 residues between them (meaning71
an offset of 1 residue between peptides).72

Validated FASTA files were analyzed with BepiPred (Larsen et al., 2006), EMBOSS pepstats, Iupred73
(Dosztányi, 2018), NetMHCIIpan (Nielsen et al., 2010), NetOglyc (Julenius et al., 2005), NetSurfp74
(Klausen et al., 2019), Paircoil2 (McDonnell et al., 2006), PredGPI (Pierleoni et al., 2008), SignalP75
(Petersen et al., 2011), TMHMM (Krogh et al., 2001), Xstream (Newman and Cooper, 2007) and two76
custom perl scripts that analyzed similarity of short peptides against the human genome (NCBI BioProject77
PRJNA178030). The reasoning of choosing each predictor, what they predict and which version was used78
can be found in Table 2. The full console call for each predictor can be seen in Supplementary Table S2.79
NetMHCIIpan was run multiple times for different human alleles (DRB1*0101, DRB3*0101, DRB4*010180
and DRB5*0101). The only predictor that needed an extra preprocessing step was PredGPI, which required81
removing sequences shorter than 41 amino acids and those with an ‘X’ in their sequence. For all purposes,82
these filtered sequences were assumed to not have a GPI anchor signal. The versions of Linux, R, Perl,83
packages and modules used to create the computational method are listed in Supplementary Table S1.84

2.2 Compiling a dataset of curated antigens85

To obtain antigenic proteins and peptides, we extracted information from the immune epitope database86
(IEDB), as well as information from several papers, most of which relied on data from protein or peptide87
microarrays combined with sera of infected patients to find new antigens (Carmona et al., 2012; Vita et al.,88
2019; Martini et al., 2020; Xu et al., 2008; Barbour et al., 2008; Richer et al., 2015; Lawrenz et al., 1999;89
Eyles et al., 2007; Lu et al., 2007; Kilmury and Twine, 2010; Beare et al., 2008; Wang et al., 2013; Xiong90
et al., 2012; Vigil et al., 2011; Chen et al., 2009; Liang et al., 2010; Lessa-Aquino et al., 2013).91

Because different protein identifiers are used across papers, we used either the Uniprot ID mapping tool,92
the blastp suite of BLAST or a manual mapping to find the corresponding ID or IDs that a given antigen93
had in our proteomes. The exhaustive list of all antigenic proteins and peptides used, their source and their94
mapping methods can be found in the Supplementary Data accompanying this article.95

For the antigenic peptides, though, mapping the original protein ID to our pathogen proteomes was96
not enough; we also had to assign the antigenicity to the corresponding peptide or location within each97
antigenic protein, which meant dealing with the fact that the curated antigenic sequences varied in size. To98
do this, we developed our own mapping method that we called ‘kmer expansion’. This method marked as99
antigenic any peptide that shared a kmer of at least 8 amino acids with a curated antigenic sequence for the100
same protein. The amount of total and antigenic peptides, before and after the ‘kmer expansion’, are listed101
in Table 3.102
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In the case of Onchocerca volvulus, the method we used to derive antigenic proteins and peptides was103
based on experimental proteome-wide data on antibody-binding to short peptides (Lagatie et al., 2017).104
We followed the same rules used by these authors and assigned as antigenic all peptides they called105
‘immunoreactive’. Because in this work we are using an offset of 1 between overlapped peptides (maximum106
overlap), we also considered as antigenic the neighboring peptides that shared at least a kmer of length 8107
with any immunoreactive peptide.108

2.3 Clustering by sequence similarity109

It is common practice in the literature to report antigenicity for a single or a few reference proteins or110
accession numbers. This information is then passed on to databases such as IEDB (Vita et al., 2019;111
Martini et al., 2020). Nevertheless, when dealing with complete proteomes, there are usually other paralogs112
with high sequence similarity to those labeled as antigenic. Since they have similar sequences, these113
proteins would then have similar properties which would likely result in similar outputs when running114
the predictors. However, because only one of those proteins is labeled as antigenic, this would hinder the115
learning capabilities of any models trained or tested with these data.116

To improve the learning process of APRANK, and to account for unlabeled proteins, we calculated117
sequence similarity for all proteins in the 15 analyzed proteomes using blastp from the NCBI BLAST suite118
(Camacho et al., 2009) (console call in Supplementary Table S2). We then wanted to filter the BLAST119
output keeping only the good matches, which meant selecting a similarity threshold. After analyzing120
different matches, we arrived at a sensible compromise: trying to be as strict as possible without losing121
much data. For this we kept matches with a percentage of identical amino acids (pident) of at least 0.75, an122
expected value (evalue) less than or equal to 1 x 10−12 and a match length of at least half of the length of123
the shortest protein in the match.124

Using these matches, we created a distance matrix where distance = 1− pident and applied a single-125
linkage hierarchical clustering method. We then cut this tree using a cutoff of 0.25 (1− pidentThreshold),126
resulting in a set of clusters of similar proteins.127

For the species-specific models, proteins in a given cluster were kept together in the training process,128
meaning they would all be either in the training set or in the test set.129

For the generic models, any protein in the training set which belonged to a cluster with at least one other130
antigenic protein was also tagged as antigenic, even across species (obviously excluding the species being131
tested). As for the test set in the generic models, this would also occur, but only inside that same species.132
The amount of total and antigenic proteins, before and after using BLAST to find similar proteins inside133
each species, can be see in Table 3.134

2.4 Data normalization135

Each predictor used by APRANK varied on how they returned their values. Not only they had different136
value ranges, but while some of them returned their values per protein, others did so per peptide, kmer, or137
amino acid. For this reason, we needed to parse and normalize all outputs before feeding their data into our138
model.139

Values returned by each predictor were normalized to fit a numeric range between 0 and 1. Different140
methods were used to normalize the data depending on each predictor, ranging from linear or sigmoid141
normalizations to a simple binary indicator of presence or absence of a given feature (such as signal peptide).142
The detailed steps for the normalization at protein and peptide level for each predictor are described in143
Supplementary Table S3 and the formulas used for these operations can be found in Supplementary144
Article S1. The methods used to normalize the output for each predictor were the result of analyzing the145
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distribution and spread of these outputs across all of our species for each predictor individually, coupled146
with biological knowledge of what each predictor was analyzing.147

2.5 Fitting the species-specific models148

Species-specific models were created to test the method and compare between balanced and unbalanced149
training sets. In this case a separate model was created for each species, using only train/test data from that150
organism alone. A schematic flowchart showing the logic of this procedure is shown in Figure 1. To fit151
each protein species-specific model, clusters for that species were divided in training and test sets in a 1:1152
ratio due to the low number of recorded antigens for some species. For this same reason, the training set153
was balanced with ROSE (Lunardon et al., 2014), generating an artificial training set with a similar number154
of antigenic and non-antigenic artificial proteins. This process, as well as all other described below, was155
repeated 50 times by re-sampling the clusters in the training and test sets.156

A binomial logistic regression model was fitted for both the balanced and the unbalanced training sets157
using the generalized linear models in R (function glm). We chose this model for two reasons: because it158
allowed us to see a direct relationship between the models and our predictors via the coefficients of the159
model, and because it was not as affected as other more complex models by the existence of false negatives160
(which we knew existed because they were the novel antigens we wanted to find). Once the balanced161
and the unbalanced protein models were trained, we used them to predict the scores for the test set. The162
performance for each model, measured by the area under the ROC curve (AUC), was then calculated using163
the R package pROC (Robin et al., 2011). Additionally, two pseudo random set of scores were created164
by shuffling the scores achieved by both models. These random protein models were used to test if the165
performance of our models differed significantly from a random prediction.166

For the peptide species-specific models, we divided the peptides into training and test sets by simply167
following the division of the proteins clusters, meaning that if a protein was in the training set for the protein168
model, its peptides would be in the training set for the peptide model for that iteration. The models were169
fitted and random scores calculated in a similar manner to the protein models. However, when we attempted170
to calculate the performance of the peptide models, our test set was too large to calculate performance171
based on AUC values in a reasonable time. We decided then to sample a subset of 50,000 peptides from172
the test set in a pseudo-random manner, making sure that the positive peptides were found in the subset173
and that the fraction of positive vs indeterminate/negative antigens was similar to the one in the test set174
(but never below 1% unless we ran out of antigens). All AUC values for the different peptide models were175
calculated using the same subset, and this process was repeated 5 times in each iteration, changing the176
subset each time.177

Once all iterations were finished, we compared the AUCs obtained by the balanced and unbalanced178
models using a Student’s t-test. Another set of t-tests were used to analyze the difference between each179
of those models and their relative random model. If the model had a significantly higher AUC than the180
corresponding random model, we considered the model achieved a successful prediction (p < 0.05).181

2.6 Creating the generic models182

The generic (pan-species) models are the actual models used by APRANK. The objective of these models183
is to predict antigenic proteins and peptides for new species (which APRANK have never seen before). In184
a broad sense, they have to understand what makes a protein or a peptide antigenic. We achieved this by185
training the models with a large set of antigenic proteins and peptides from 15 different species, including186
gram-positive bacteria, gram-negative bacteria and eukaryotic protozoans.187
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To create the protein generic models, we used ROSE (Lunardon et al., 2014) to create a balanced training188
set of 3,000 proteins for each species and then merged all those balanced training sets together. With these189
data, a linear model was created following the same steps as for the species-specific models. Next, these190
models were used to predict the scores for the species being analyzed and the performance of the prediction191
was calculated the same way as for the species-specific protein models. A schematic visualization of this192
procedure is shown in Figure 2.193

We created the peptide generic models in a similar manner, with balanced training sets from each of the194
species that contained 100,000 peptides each. In addition to the regular score calculated by using the model195
to predict the antigenicity of the test data, we also calculated a combined score, which was simply the196
mean of the protein and peptide scores for that peptide. The performance of the peptide generic models197
was calculated the same way as for the species-specific peptide models.198

When testing these generic models, we created temporary leave-one-out generic models, where we used199
14 of the species to generate the model, and then tested the model in the 15th species. We then generated200
the final protein and peptide generic models using all 15 species and tested them by predicting antigenicity201
in Onchocerca volvulus, a novel species with experimental proteome-wide data (Lagatie et al., 2017).202

2.7 Comparative performance203

To discard the possibility that our model was simply detecting sequence similarity, we created a ‘BLAST204
model’, where we assigned to each protein a score based solely on how similar they were to a known205
antigenic protein from another organism. The score used was −log10(evalue) and then performance was206
calculated for each species.207

We also wanted to make sure our model was combining information from several predictors. To rule out208
that performance was mainly driven by one predictor, we compared our prediction capabilities against209
the individual predictor with best AUC, which was BepiPred 1.0. To do this, the BepiPred score for each210
protein and peptide was obtained from the individual amino acid scores following the same steps we used in211
APRANK as detailed in Supplementary Table S3, but without normalizing it. The AUCs for the BepiPred212
peptide scores were calculated the same way as for the peptide species-specific models.213

2.8 Availability214

The code for running or modifying APRANK is available at GitHub (Ricci and Agüero, 2021), released215
under a BSD 2-Clause ‘Simplified License’, which is a permissive free software license. The repository216
also holds documentation on how to configure, and install dependencies (users are responsible for obtaining217
the corresponding licenses or permissions for some required predictors); as well as the trained generic218
models for proteins and peptides (in R files of type .rda containing compressed data structures).219

3 RESULTS
Our aim in this work was to develop a computational method and associated pipeline capable of prioritizing220
candidate antigenic proteins and antigenic determinants (epitopes) from complete pathogen proteomes for221
downstream experimental evaluation. We have previously shown for Trypanosoma cruzi (Chagas Disease)222
that different criteria can be integrated and exploited in a computational strategy to further guide the223
process of diagnostic peptide discovery (Carmona et al., 2012). Here we extend this work to other human224
pathogens and improve the way in which features are weighted, hence providing a tool for the prioritization225
of candidate linear B-cell epitopes for a wide range of pathogens.226
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Species and Features227

We selected human pathogens from a phylogenetically diverse set of taxa with experimentally validated228
antigen and/or epitope data to train and test our method. This included gram negative bacteria, gram229
positive bacteria and eukaryotic protozoans. The species and the diseases they cause are shown in Table 1.230

We obtained the proteomes of these species (see Methods) and split each protein into peptides of 15231
residues. Once this was done, we used information from the immune epitope database (IEDB) along232
with manually extracted information from several papers to tag each protein and peptide as antigenic or233
non-antigenic. The ‘non-antigenic’ tag in this paper should be understood in the sense of proteins with no234
prior information on their antigenicity. The amount of total and antigenic proteins and peptides can be see235
in Table 3.236

To develop a tool that can help identify candidate antigenic proteins and peptides, we used several237
predictors that focused on different properties of the proteins (Table 2). On a broad sense, these predictors238
assess: the antigenicity and/or immunogenicity of proteins (Larsen et al., 2006; Nielsen et al., 2010); the239
structural and post-translational features that can be predicted from the protein sequence, some of which240
may suggest the protein enters the secretory route or is anchored at the membrane (Julenius et al., 2005;241
Pierleoni et al., 2008; Petersen et al., 2011); the presence of internal tandem repeats in proteins, which have242
been described to modulate immunogenicity of proteins (Newman and Cooper, 2007) together with other243
structural features such as the presence of intrinsically unstructured or exposed regions in proteins which244
may effect their presentation in the context of an immune response (Dosztányi et al., 2005; McDonnell245
et al., 2006; Petersen et al., 2009; Krogh et al., 2001).246

We have also implemented in APRANK a number of custom Perl and R scripts that measure sequence247
similarity between each pathogen protein and the human host (CrossReactivity), or itself (SelfSimilarity).248
The idea behind these measurements was to obtain additional information on highly conserved sequences249
that may result in e.g. potential lack of immune response (tolerance) if the pathogen sequence is highly250
similar to a human protein; or cross-reactivity of antigens and epitopes in other proteins from the same251
pathogen (self-similarity). These predictors provide information on desirable and undesirable properties252
that then need to be weighted accordingly to achieve good performance at the task of antigen and epitope253
prediction.254

Testing APRANK and ROSE on species-specific models255

Species-specific models were created to test the method and to compare between unbalanced training sets256
and training sets balanced using ROSE (see Methods). As the name implies, these models worked with257
only one species at a time, using a fraction of its proteins to predict antigenicity for the rest. After running258
the predictors for all proteins in the selected genome, we parsed and processed the different outputs and259
applied a normalization process to have them in a common scale.260

We needed to divide our data into training and test sets. Often, training sets represent ∼ 80% of the data;261
however, in our case some species had a low number of validated antigens (see Table 3), which meant that262
choosing a 80/20 training/test set split would result in test sets having only a few antigenic proteins. This263
kind of imbalance tends to compromise the training process, making the model to focus on the prevalent264
class (non-antigenic) and ignore the rare class (antigenic) (Menardi and Torelli, 2014). For this reason,265
when training a model using data from a single species, we chose to split the training and test set 50/50,266
re-sampling proteins and peptides multiple times (see Methods). To improve the training process, we also267
used ROSE to balance our training sets, which works by generating artificial balanced samples from the268
existing classes, according to a smoothed bootstrap approach (Lunardon et al., 2014). Furthermore, we used269
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the similarity-based clustering of sequences to avoid placing highly similar sequences into both training270
and test sets.271

We used these balanced training sets to fit a binomial logistic regression model, resulting in one model272
for proteins and one for peptides. These models, which we denominated species-specific models, were then273
used to predict the antigenicity of their respective test sets. The performance of APRANK was assessed by274
measuring the area under the ROC curve (AUC), using known antigens and epitopes in the protein and275
peptide test sets. This whole process was repeated 50 times, re-sampling which proteins were in the training276
set and which in the test set. A final APRANK AUC score for each species was calculated as the mean of277
all AUC scores for these iterations (see Figure 3). To assess the effect of balancing the data on our models278
using ROSE, we also assessed the performance of APRANK repeating the procedure described above using279
the unbalanced training sets instead, resulting in a set of AUC scores corresponding to species-specific280
models trained with unbalanced data.281

These calculations were done for each of the 15 species, although for 3 of them there was no antigenicity282
information at the peptide level, and only protein models were calculated. The results are presented in283
Table 4. Our testing showed that APRANK was able to predict antigenicity for proteins and peptides in284
most cases, with good performance. The only species that did not have a successful prediction were E. coli285
for the protein model, and M. tuberculosis and S. aureus for the peptide model. In these cases, the final286
AUC corresponding to the species-specific model was not significantly different than a random prediction.287
As for the balancing of the data using ROSE, it seemed to have mostly positive or neutral effects in the288
predicting capabilities of our models, which meant we could safely use it in training our pan-species289
models.290

Development of APRANK as a pan-species ranker of antigens and epitopes291

In the previous section we used protein and peptide data from a given pathogen species to train a model292
that successfully predicted antigenicity for that same organism; however, our end goal was to have a model293
that was able to predict antigenicity for any pathogen. To achieve this, we created models trained with all294
species, which we called protein generic models and peptide generic models.295

For these models, we used ROSE (Lunardon et al., 2014) to generate similar sized partitions of balanced296
data for each of the species, and then we merged this data and fitted a binomial logistic regression model,297
using the same as described before. When using the models to predict the peptide antigenicity scores, we298
also analyzed the predicting capabilities of what we called the combined score, which was a combination299
of the protein and peptide scores for a given peptide.300

To validate these models we performed a leave-one-out cross-validation method (LOOCV), hence creating301
15 different protein generic models, each time leaving out one species (which was the one being used as302
test set). For the peptide generic models we followed a similar route, but we ended up with 12 models due303
to the lack of antigenicity information at peptide level for 3 of the 15 species.304

The performance results for these models are presented in Table 5. The generic protein models were305
successful in predicting antigenicity for all species, and similar results were obtained also at the peptide306
level, achieving successful predictions even for E. coli, M. tuberculosis and S. aureus, which were the307
three species where the species-specific models performed poorly before. This observation suggests that308
performance is related to the amount and diversity of recorded antigens. As for the performance of these309
generic models, the observed AUC scores obtained similar values to the ones obtained in the species-specific310
models trained with balanced data, indicating that while these generic models did not have information311
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about the species being tested, the data obtained from all the other 14 species was enough to learn the312
generic rules that made a protein antigenic.313

This is also evident when comparing the coefficients obtained in the different protein models. In the case314
of individual (species-specific) models, coefficients were less robust across iterations when there were few315
positive cases, and more robust with larger validated training examples, as expected (see Supplementary316
Figures S1 and S2). For the pan-species models, we found the coefficients to be very robust across all 15317
models, indicating that the different leave-one-out generic models reached a similar conclusion on what318
makes a protein ‘antigenic’ (see Supplementary Figure S3). This reinforces the idea that better performance319
is the result of more extensive training with diverse positive and negative examples.320

Using APRANK to obtain antigen-enriched sets321

Our generic models allowed us to rank proteins and peptides in a given species based on a model trained322
from other pathogens. Now, we wanted to use these scores to select a subset of proteins or peptides with an323
increased chance of being antigenic when compared to the whole proteome.324

For this, we focused on T. cruzi, as this was the species with the largest number of recorded antigens325
within our collection. To obtain fair antigenicity scores for this protein we used the corresponding leave-326
one-out models created when testing the generic models. We analyzed the distribution of the normalized327
scores returned by these models, distinguishing between antigenic and non-antigenic proteins and peptides328
(see Figure 4). As was expected, the peak of the scores for the antigens is found to the right of the one for329
the non-antigens, indicating that the average score is higher for the antigenic proteins and peptides. Also,330
the amount of overlapping can be related to the corresponding AUC, where the higher the AUC, the less331
the overlapping.332

Once we had our score distributions, we used them to select an antigen-enriched subset of proteins and333
peptides. This could be done in one of two ways: either by setting a score threshold or by simply selecting334
a fixed number of proteins and peptides within the top scores. After analyzing the distribution of score335
values, we decided to use the first option and selected those proteins and peptides with a normalized score336
of at least 0.6. We next calculated what we called enrichment score (ES), which was the proportion of337
antigens in the selected subset relative to the proportion of antigens in the whole proteome (for example,338
ES = 2 meant you were twice as likely to find an antigen in the subset than in the whole proteome, or in a339
random subset). In Figure 4 we show the enrichment scores for the different normalized scores and the340
number of proteins and peptides that fall inside or outside those subsets. While the subsets were usually a341
small fraction of the whole proteome (close to 10% in most cases), this represents a 4 – 6 fold increase in342
the chances of finding antigens in those subsets.343

As an example, suppose a microarray with a capacity of 200,000 unique peptides. Based on the current344
antigenic data we possess, a random sampling of the T. cruzi proteome would lead to the inclusion of345
∼ 140 antigenic peptides in that microarray. However, using APRANK to select the top 200,000 peptides346
with the highest normalized combined score, we would end up including almost 1,600 antigenic peptides in347
the array (an enrichment score of 11.35). This demonstrates the utility of tools like APRANK for selection348
of antigenic peptides for screening platforms.349

Assessing the validity of the computational method350

Now that we had a working pan-species model, we next analyzed the contribution of each predictor to the351
overall predicting capabilities of APRANK. This was done to confirm that the performance achieved by352
APRANK came from combining information from different predictors, and not from just one or a few of353
them. For this, we calculated the predicting capabilities of each individual predictor using their output as354
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score (data not shown). We found that the predictor with best solo predicting capabilities was BepiPred 1.0,355
so we compared its predictions against APRANK’s for both the protein and peptide generic models for356
each species, which can be seen in Table 6.357

We focused on those cases where the AUC changed at least 5% between BepiPred 1.0 and APRANK’s358
generic models. APRANK showed increased predicting capabilities for 11 out of the 15 analyzed proteomes359
at the level of complete proteins and/or peptides, while showing a decrease in performance only in M. leprae360
at protein level. These results provide validation support to the approach built into APRANK by combining361
information from many predictors.362

As an additional test, we also assessed the performance of APRANK after removing BepiPred 1.0363
predictions from our model. This can be seen in Supplementary Table S4. In this simulation we observed364
that even without BepiPred 1.0, our model reached similar predicting capabilities in most cases, hence365
suggesting that other predictors and features included in APRANK were able to replace BepiPred when366
training the model (this is further discussed in the Conclusions).367

To ensure that our model was doing more than simply detecting sequence similarity, we also compared368
our performance against a ‘BLAST model’, meaning a model that was based solely on how similar a369
given protein was to a known antigenic protein. The comparison between the performance of this model370
and APRANK can be seen in Supplementary Table S5. As expected, APRANK achieved a larger AUC371
for most for the species; however we observed that for M. leprae and L. braziliensis the ‘BLAST model’372
actually resulted in a better prediction. We believe this was due to them being species with a small amount373
of antigens and a high similarity to other of our selected species. To test this, we repeated this analysis for374
these two species, but now removing from the BLAST results (and so, from the ‘model’) the species that375
was the most similar to the one being analyzed. These new predictions indeed resulted in a considerable376
lower AUC, matching or falling behind APRANK.377

Applying our method on a novel species378

As a final step, we wanted to test APRANK on a new species that was not included in our initial training379
and that had an extensive amount of information on the antigenicity of its proteins and peptides. For this, we380
searched for publications containing proteome-wide linear epitope screenings using high-density peptide381
microarrays and selected a recent dataset produced by scanning the complete Onchocerca volvulus proteome382
with more than 800,000 short peptides (mostly 15mers) (Lagatie et al., 2017). Onchocerca volvulus is a383
nematode and it is the causative agent of Onchocerciasis in humans (also called river blindness), a disease384
that is on the list of Neglected Tropical Diseases (NTDs) of the World Health Organization (Holmes, 2014).385

To obtain a list of antigens in O. volvulus, we followed the same rules applied by the authors to find the386
peptides they called ‘immunoreactive’ (see Methods in Lagatie et al.), resulting in a set of almost 1,100387
antigenic peptides. We tagged a protein as antigenic if it had at least one of these peptides; however, we388
also kept information on how many ‘immunoreactive’ peptides each protein had for later analysis. Once389
this was done, we also tagged as antigenic any neighboring peptide that shared at least 8 amino acids with390
one of these ‘immunoreactive’ peptides.391

We next trained APRANK with all our 15 species and then used this model to predict the antigenicity392
scores for both the proteins and the peptides of O. volvulus. An AUC score was calculated for each393
prediction, comparing the score given by APRANK against the antigenic tag for each protein and peptide.394
We also calculated the enrichment scores for these scenarios using a score threshold of 0.6 in a similar way395
that we did for T. cruzi.396
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Our method was successful in predicting the antigenicity of proteins and peptides for O. volvulus, as397
shown in Table 7. We observed that if we were more strict when tagging a protein as antigenic, meaning398
requiring at least 2 or 3 ‘immunoreactive’ peptides before doing so, we obtained better performance. When399
considering as antigenic any protein with 1 ‘immunoreactive’ peptide we had an enrichment score of 2.28,400
whereas when we increased this requirement to 3 ‘immunoreactive’ peptides the enrichment score was 5.29401
(see Table 7, Figure 5). Besides validating the performance of APRANK on a new pathogen, this suggests402
that either our method is better in predicting proteins with many antigenic regions, or that a single reactive403
peptide from a peptide array screening may provide only weak support for calling of antigens.404

For peptides, APRANK obtained an enrichment score of 3.29 – 3.80, also showing an additive effect405
when combined with the protein score, suggesting that these are effective in predicting antigenicity for406
O. volvulus. Similar to before, we tried being more strict and only considering antigenic peptides in407
proteins with at least 2 or 3 ‘immunoreactive’ peptides; however this did not seem to affect the predictive408
performance as much as for whole proteins.409

4 DISCUSSION
We present APRANK, a novel method to prioritize and predict the best antigen candidates in a complete410
pathogen proteome. APRANK relies on a number of protein features that can be calculated for any protein411
sequence which are then integrated in a pan-species model. Our benchmarks show that by integrating412
multiple predictors, pooling antigen data from multiple species across a wide phylogenetic selection,413
and balancing training datasets, APRANK matches or outperforms a state-of-the-art predictor such as414
BepiPred 1.0 in most scenarios.415

We have tested this integrative method using non-parametric ROC-curves and made an unbiased416
validation using and independent data set (O. volvulus) containing recent proteome-wide antigenicity417
data. In summary, we found APRANK to be successful in predicting antigenicity for all pathogen species418
tested, hence providing a new and improved method to obtain antigen-enriched protein and peptide subsets419
for a number of downstream applications.420

4.1 Conclusions: looking forward421

While we are satisfied by APRANK’s performance, there are still ways to further improve it. The main422
issue we had when training our models is the current lack or sparsity of validated epitope and antigen423
information. Particularly, well validated non-antigenic sets are currently hard to find in the literature,424
forcing us to count as non-antigenic all proteins and peptides that do not currently have experimental425
evidence of antigenicity or were not tagged as antigenic in databases (which we know is hardly true).426

We also observed that the performance of APRANK was not considerably affected by removing some427
individual features. This might indicate that, as we observed previously (Carmona et al., 2012), each428
individual predictor contributes only slightly to the overall performance. Another alternative explanation is429
that there might be redundancy between some of the predictors. For example the features being used for430
training of BepiPred 1.0 HMMs (propensity scales for secondary structure preference and hydrophilicity431
of amino acid residues (Larsen et al., 2006)) may overlap others used internally by some of the predictors432
in APRANK. Future versions of APRANK will review these overlaps, analyzing the pros and cons of433
adding novel predictors or removing existing ones.434

Regarding the computing performance of APRANK, the majority of the time is dedicated to run the435
predictors used internally, most of which run in a reasonable time in a commodity server. However,436
there are a few bottlenecks (most notably predictions by NetSurfP). This should be improved in a future437
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version in order to offer APRANK e.g. as a web-service. Future work will also explore the possibility to438
extend APRANK to also use data from other experimental (non-computable) sources, such as evidence of439
expression derived from proteomic or transcriptomic experiments.440

4.2 Equations441

See Supplementary Materials.442

CONTRIBUTION TO THE FIELD
The ability to predict which pathogen molecules elicit an immune response and are the target of antibodies443
during an infection is key for many diagnostic and clinical applications. Over time a number of predictors444
have been developed that seek to identify likely antigenic proteins and the portion of their structures that445
are recognized by antibodies (their epitopes). However this is a complex task which needs to be improved.446
Here we extend previous work and provide a new generalized method that succeeds in computing and447
extracting additional information from protein sequences, and use this information to train a model448
that can be used to prioritize candidate antigenic proteins from complete proteomes. Our integrative449
method –called APRANK– matches or outperforms existing predictors at the task of reducing the number450
of candidates down to a manageable and actionable number of likely antigenic proteins and epitopes. This451
is important for a number of downstream experimental assays. Using the described method and available452
software code, a complete pathogen proteome can be reduced to an enriched set of antigenic candidates for453
further evaluation.454
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4.3 Tables610

Table 1. List of pathogen species used in this paper.
Pathogen Species Disease Group Phylogenetic Lineage

Borrelia burgdorferi Lyme disease Spirochaetes
Brucella melitensis Brucellosis Alpha-proteobacteria
Coxiella burnetii Q fever Gamma-proteobacteria
Escherichia coli Gastroenteritis Enterobacteria
Francisella tularensis Tularemia Gamma-proteobacteria
Leptospira interrogans Leptospirosis Spirochaetes
Porphyromonas gingivalis Periodontal disease

Gram Negative Bacteria

Sphingobacteria

Mycobacterium leprae Leprosy Actinobacteria
Mycobacterium tuberculosis Tuberculosis Actinobacteria
Staphylococcus aureus Bacteremia Firmicutes
Streptococcus pyogenes GAS infections

Gram Positive Bacteria

Firmicutes

Leishmania braziliensis Leishmaniasis Kinetoplastida
Plasmodium falciparum Malaria Apicomplexa
Toxoplasma gondii Toxoplasmosis Apicomplexa
Trypanosoma cruzi Chagas Disease

Eukaryotic Protozoa

Kinetoplastida
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Table 2. Predictors used to analyze different features of proteins and peptides. CrossReactivity and
SelfSimilarity are custom Perl scripts. Acronyms used: ANN (Artificial Neural Network), HMM (Hidden
Markov Model), SE (Seed Extension), SVM (Support Vector Machine).

Focus Feature Predictor Basis

Stimulation of
an immune
response

B-cell epitopes BepiPred 1.0 Antigenicity by HMM
Binding to MHC
Class II molecules NetMHCIIpan 2.0 ANN trained with peptide and MHC Class

II sequence information

Peculiarities in
the protein
sequence

Glycosylation sites NetOglyc 3.1d ANN trained with mucin type GalNAc O-
glycosylation sites in mammalian proteins

GPI-anchored
proteins PredGPI 1.4.3

Discrimination of the anchoring signal by
SVM and prediction of the most probable
omega-site by HMM

Signal peptide
cleavage sites SignalP 4.0

Prediction of cleavage sites and a signal
peptide/non-signal peptide prediction
based on a combination of several ANN

Tandem repeats Xstream 1.71
SE algorithm to explicitly locate exact
and degenerate tandem repeats TRs of all
periods in protein sequences

Three
dimensional
structure

Disorder Iupred 1.0 Aminoacids favorable interactions
potential

Parallel coiled coil
fold Paircoil2

Uses pairwise residue probabilities with
the Paircoil algorithm and an updated
coiled coil database

Secondary Structure NetSurfp 1.0 ANN trained with sequence profiles and
predicted secondary structure

Surface access NetSurfp 1.0
ANN trained to predict the relative surface
exposure of the individual amino acid
residues

Transmembrane
helices in proteins TMHMM 2.0c Membrane protein topology prediction

method based on a HMM

Molecular
properties

Isoelectric point Pepstats (EMBOSS
6.6.0.0) Amino acids pK values

Molecular Weight Pepstats (EMBOSS
6.6.0.0) Amino acids weights

Similarities
within itself
and with the
host

Sequence similarity
(pathogen / host) CrossReactivity Shared kmers between pathogen and host

proteins
Sequence similarity
(pathogen proteins) SelfSimilarity Shared kmers between pathogen proteins
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Table 3. Amount of antigenic proteins and peptides for each species. This table shows the amount
of antigenic proteins and sequences extracted from bibliography (to the left of the arrow) and the final
amount after processing (to the right of the arrow). For proteins, BLAST was used to also tag as antigenic
other proteins of the same species that were similar to the antigenic ones. For peptides, a custom mapping
method named ‘kmer expansion’ was used to tag peptides as antigenic based on the antigenic sequences in
bibliography (see Methods). We did not have information at peptide level for three of the species.

Species Group Proteins Peptides
Total Antigenic Total Antigenic

B. burgdorferi Gram - 1,390 137 → 152 386,683 117 → 863

B. melitensis Gram - 3,178 13 → 13 - -

C. burnetii Gram - 1,853 102 → 104 - -

E. coli Gram - 4,778 7 → 7 1,428,744 9 → 158

F. tularensis Gram - 1,556 27 → 27 - -

L. interrogans Gram - 3,683 10 → 10 1,113,309 19 → 342

P. gingivalis Gram - 1,881 10 → 11 626,536 165 → 1,181

M. leprae Gram + 1,605 7 → 8 515,942 76 → 633

M. tuberculosis Gram + 3,940 81 → 89 1,268,272 416 → 4,369

S. aureus Gram + 2,607 16 → 16 758,970 55 → 575

S. pyogenes Gram + 1,690 13 → 13 491,619 263 → 985

L. braziliensis Eukaryote 8,084 8 → 12 4,964,396 14 → 182

P. falciparum Eukaryote 5,337 106 → 131 4,009,580 562 → 9,120

T. gondii Eukaryote 8,322 15 → 16 6,535,220 94 → 457

T. cruzi Eukaryote 21,170 242 → 2,480 10,408,841 4,025 → 7,317
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Table 4. Prediction results for the specific models. The prediction was considered to be successful if it
was significantly Better Than a Random set of scores (BTR). Each specific model was calculated 50 times
using different, but overlapping, subsets of data as training and test sets. In bold we show the model with
the significantly higher AUC when comparing training with unbalanced or balanced data (Student’s t-test,
* < 0.05, ** < 0.01, *** < 0.001).

Species

Proteins Peptides

BTR
Trained with

unbalanced data
Trained with
balanced data BTR

Trained with
unbalanced data

Trained with
balanced data

Mean AUC Mean AUC Mean AUC Mean AUC
B. burgdorferi Yes 0.809 ± 0.014 0.799 ± 0.017 Yes 0.767 ± 0.021 0.773 ± 0.020
B. melitensis Yes 0.710 ± 0.037 0.700 ± 0.033 - - -
C. burnetii Yes 0.611 ± 0.011 0.620 ± 0.010 - - -
E. coli No 0.511 ± 0.034 0.515 ± 0.039 Yes 0.584 ± 0.056 0.633 ± 0.047
F. tularensis Yes 0.783 ± 0.018 0.807 ± 0.014* - - -
L. interrogans Yes 0.827 ± 0.033 0.867 ± 0.023 Yes 0.559 ± 0.015 0.565 ± 0.011
P. gingivalis Yes 0.785 ± 0.031 0.879 ± 0.015*** Yes 0.690 ± 0.019 0.698 ± 0.020
M. leprae Yes 0.633 ± 0.018 0.652 ± 0.018 Yes 0.557 ± 0.029 0.585 ± 0.023
M. tuberculosis Yes 0.635 ± 0.010 0.647 ± 0.011 No 0.508 ± 0.010 0.502 ± 0.010
S. aureus Yes 0.765 ± 0.032 0.772 ± 0.023 No 0.438 ± 0.054 0.420 ± 0.057
S. pyogenes Yes 0.884 ± 0.039 0.984 ± 0.003*** Yes 0.832 ± 0.021 0.844 ± 0.019
L. braziliensis Yes 0.719 ± 0.021** 0.673 ± 0.020 Yes 0.778 ± 0.029 0.867 ± 0.025***

P. falciparum Yes 0.821 ± 0.009 0.826 ± 0.007 Yes 0.758 ± 0.016 0.779 ± 0.012*

T. gondii Yes 0.656 ± 0.032 0.744 ± 0.032*** Yes 0.646 ± 0.035** 0.584 ± 0.020
T. cruzi Yes 0.803 ± 0.029 0.850 ± 0.022* Yes 0.838 ± 0.019 0.854 ± 0.016
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Table 5. Prediction results for the leave-one-out generic models. The prediction was considered
successful if it was significantly Better Than a Random set of scores (BTR). For peptides, we show
both the performance of the model alone, and the performance obtained by combining the protein and
peptide scores. In bold we show any difference greater than 5% between the peptide score and the combined
score for a given species. LOO Model = Leave-One-Out Model.

Species

Proteins Peptides

BTR LOO model BTR LOO model LOO model +
protein scores

Combined
score relative

AUC gain
B. burgdorferi Yes 0.786 Yes 0.768 0.950 23.60%
B. melitensis Yes 0.774 - - - -
C. burnetii Yes 0.620 - - - -
E. coli Yes 0.754 Yes 0.742 0.780 5.12%
F. tularensis Yes 0.698 - - - -
L. interrogans Yes 0.947 Yes 0.679 0.948 39.57%
P. gingivalis Yes 0.854 Yes 0.665 0.871 30.91%
M. leprae Yes 0.758 Yes 0.692 0.731 5.68%
M. tuberculosis Yes 0.702 Yes 0.586 0.711 21.17%
S. aureus Yes 0.737 Yes 0.752 0.790 5.03%
S. pyogenes Yes 0.983 Yes 0.838 0.970 15.81%
L. braziliensis Yes 0.709 Yes 0.946 0.878 -7.20%
P. falciparum Yes 0.807 Yes 0.748 0.835 11.66%
T. gondii Yes 0.837 Yes 0.583 0.720 23.51%
T. cruzi Yes 0.867 Yes 0.843 0.857 1.58%
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Table 6. Comparison between APRANK and the predictor with highest solo AUC (BepiPred 1.0).
The relative AUC gain shows the increase or decrease of the AUC obtained by our method relative to the
one obtained by BepiPred. Differences greater than 5% are shown in bold.

Species

Proteins Peptides
BepiPred

score
AUC

APRANK
score
AUC

APRANK
relative

AUC gain

BepiPred
score
AUC

APRANK
score
AUC

APRANK
relative

AUC gain
B. burgdorferi 0.729 0.786 7.94% 0.796 0.768 -3.46%
B. melitensis 0.710 0.774 8.93% - - -
C. burnetii 0.558 0.620 11.13% - - -
E. coli 0.587 0.754 28.39% 0.662 0.742 12.21%
F. tularensis 0.570 0.698 22.40% - - -
L. interrogans 0.839 0.947 12.87% 0.676 0.679 0.42%
P. gingivalis 0.852 0.854 0.25% 0.674 0.665 -1.36%
M. leprae 0.868 0.758 -12.67% 0.689 0.692 0.51%
M. tuberculosis 0.666 0.702 5.29% 0.561 0.586 4.58%
S. aureus 0.723 0.737 1.86% 0.767 0.752 -1.93%
S. pyogenes 0.970 0.983 1.33% 0.8 0.838 4.73%
L. braziliensis 0.549 0.709 29.00% 0.905 0.946 4.48%
P. falciparum 0.793 0.807 1.84% 0.642 0.748 16.42%
T. gondii 0.579 0.837 44.59% 0.584 0.583 -0.21%
T. cruzi 0.814 0.867 6.54% 0.819 0.843 3.03%

Table 7. Performance of APRANK on Onchocerca volvulus. Proteins and peptides were tagged as
antigenic based on the number of Minimum Immunoreactive Peptides (#MIP). For proteins, we considered
as antigenic those with at least #MIP immunoreactive peptides. For peptides, we considered as antigenic
any immunoreactive peptide found inside proteins with at least #MIP immunoreactive peptides, and their
neighboring peptides. The rule to define an ‘immunoreactive peptide’ was extracted from Lagatie et al. 2017
(see Methods). The enrichment score represents the proportion of antigens in the selected subset relative to
the proportion of antigens in the whole proteome.

Total Score #MIP Antigenic AUC Antigens with
score > 0.6

Enrichment
score for 0.6

Proteins 12,994 Protein score
1 886 0.677 150 2.28
2 177 0.713 38 2.89
3 28 0.828 11 5.29

Peptides 4,872,082

Peptide score
1 1,097 → 12,917 0.800 5,520 3.29
2 397 → 4,145 0.798 1,779 3.30
3 104 → 1,107 0.836 547 3.80

Combined score
1 1,097 → 12,917 0.750 3,035 3.05
2 397 → 4,145 0.774 1,189 3.73
3 104 → 1,107 0.871 478 5.61
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FIGURE CAPTIONS

Figure 1. Schematic flowchart used to obtain APRANK’s species-specific models. With the aim of
testing and tuning our method, training and prioritization was performed for both proteins and peptides
using data from a single proteome of interest. This process was repeated for all of our 15 species.
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Figure 2. Schematic flowchart used to obtain APRANK’s generic models. With the aim of creating a
model that could make predictions for a wide range of species, training and prioritization was performed
for both proteins and peptides using combined data from all of our 15 species. When testing these models,
leave-one-out models were used, where 14 species were used to train the model and the 15th species to test
it. This process was repeated for all of our 15 species.
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Figure 3. Performance of APRANK training using balanced or unbalanced data. Performance of
APRANK’s species-specific models for B. burgdorferi and P. gingivalis. ROC curves for each iteration of
training and testing are shown in light gray, and the average curves are shown in green (dashed lines).

Figure 4. Density analysis for the antigenicity scores of T. cruzi. Plots were obtained by analyzing the
proteome of T. cruzi with the leave-one-out generic models, and then distinguishing between antigens and
non-antigens. The figure shows the enrichment score obtained by keeping only the proteins and peptides
with a score greater than 0.6, as well as the amount of antigens and non-antigens that would be inside or
outside that subset.
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Figure 5. Density analysis for the antigenicity scores of Onchocerca volvulus. Plots were obtained by
analyzing the proteome of O. volvulus with the final generic models, and then distinguishing between
antigens and non-antigens. The figure shows the enrichment score obtained by keeping only the proteins
and peptides with a score greater than 0.6, as well as the amount of antigens and non-antigens that would
be inside or outside that subset. The plots correspond to the case where a protein was tagged as antigenic if
it had at least 3 ‘immunoreactive’ peptides (see Results).
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Supplementary Material

1 SUPPLEMENTARY DATA
Antigenic Proteins and Peptides used in this study were submitted separately as Supplementary Material.
The corresponding file is an Excel spreadsheet containing complete listing of antigenic sources (proteins,
peptides), their Uniprot and/or RefSeq identifiers and the corresponding mapping to our input sources
(complete proteomes). File: ricci-aprank-supplementary-data.xlsx.

2 SUPPLEMENTARY TABLES AND FIGURES
2.1 Figures

Figure S1. Coefficient values for the species-specific models for Streptococcus pyogenes serotype M1.
Plots were obtained by recording the coefficient of each predictor in the binomial logistic regression models.
These protein models correspond to the different species-specific models created when re-sampling training
and test sets. One of the 50 models didn’t converge before reaching the maximum iteration limit when
training, and so wasn’t considered.
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Figure S2. Coefficient values for the species-specific models for Trypanosoma cruzi. Plots were
obtained by recording the coefficient of each predictor in the binomial logistic regression models. Different
protein models correspond to the species-specific models created in each iteration when re-sampling
training and test sets. All 50 models converged before reaching the maximum iteration limit when training.
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Figure S3. Coefficient values for the leave-one-out generic models. Plots were obtained by recording
the coefficient of each predictor in the binomial logistic regression models. The different protein models
correspond to each of the 15 leave-out-out generic models used to test APRANK. All 15 models converged
before reaching the maximum iteration limit when training.
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2.2 Tables

Table S1. Versions testing things of the software, packages and modules used to create our
computational method.

Software Version

Ubuntu 16.04

R 3.4.3

ROSE (R package) 0.0.3

pROC (R package) 1.12.1

Perl 5.22.1

BioPerl (Perl module) 1.007002
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Table S2. Third-party software used to retrieve information about the proteins and peptides. The
call being shown corresponds to those to use under Ubuntu 16.04. Words starting with $ symbolize variables
to be replaced by their corresponding values.

Predictor Call Data extracted

BepiPred 1.0 bepipred $fasta file -k >$output file Score per amino acid

BLAST+ 2.2.31
blastp -query $query file -db $db file
-outfmt 6 -out $output file
-max target seqs 2000

Similarity between proteins (used to assign
protein antigenicity)

EMBOSS
6.6.0.0

pepstats -sequence $sequence file
-sprotein1 -aadata Eamino.dat -mwdata
Emolwt.dat -termini -nomono -auto
-outfile $output file

Isoelectric Point and Molecular Weight per
protein

Iupred 1.0 iupred $sequence file short >$output file Score per amino acid

NetMHCIIpan
2.0

netMHCIIpan -a $allele -f $sequence file
-l $peptide length >$output file

%Rank per peptide per MHC II allele used

NetOglyc 3.1d netOglyc $sequence file >$output file Glycosilation presence per amino acid

NetSurfp 1.0 NetSurfp $sequence file -a >$output file
Relative Surface Accessibility, Probability
for Alpha-Helix and Probability for Beta-
strand per amino acid

Paircoil2 paircoil2 $fasta file $output file $error file P-score per amino acid

PredGPI 1.4.3
PredGPI.py $filtered fasta file
>$output file

Presence and start of GPI per protein

SignalP 4.0
signalp -f long -t $organism group
$fasta file $output file

Presence and start of signal peptide per
protein and C and S score per amino acid

TMHMM 2.0c tmhmm $fasta file >$output file
Presence of transmembrane helix per
protein and amino acid participation in it
per amino acid

Xstream 1.71
java -jar $Xstream path/xstream.jar
$sequence file -d$output path/

Start, end, period, copy number and
consensus error per repeat per protein
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Table S4. Comparison between APRANK and a version of APRANK without the the predictor with
highest solo AUC (BepiPred 1.0). The relative AUC gain shows the increase or decrease of the AUC
obtained by APRANK relative to the version of APRANK without BepiPred. In bold we show differences
greater than 5%. Due to the large number of peptides, each individual peptide AUC was calculated as the
mean of 5 pseudo-random subsets of 50,000 peptides (see Methods).

Species Group

Proteins APRANK score Peptides APRANK score
without
BepiPred

AUC

with
BepiPred

AUC

Relative
AUC gain

without
BepiPred

AUC

with
BepiPred

AUC

Relative
AUC gain

B. burgdorferi Gram - 0.777 0.786 1.18% 0.726 0.768 5.78%

B. melitensis Gram - 0.749 0.774 3.39% - - -

C. burnetii Gram - 0.616 0.620 0.61% - - -

E. coli Gram - 0.751 0.754 0.42% 0.743 0.742 -0.07%

F. tularensis Gram - 0.714 0.698 -2.15% - - -

L. interrogans Gram - 0.938 0.947 0.96% 0.646 0.679 5.15%

P. gingivalis Gram - 0.847 0.854 0.75% 0.626 0.665 6.19%

M. leprae Gram + 0.750 0.758 1.04% 0.657 0.692 5.37%

M. tuberculosis Gram + 0.697 0.702 0.66% 0.586 0.586 0.00%

S. aureus Gram + 0.762 0.737 -3.31% 0.751 0.752 0.19%

S. pyogenes Gram + 0.983 0.983 0.04% 0.826 0.838 1.47%

L. braziliensis Eukaryote 0.687 0.709 3.20% 0.928 0.946 1.88%

P. falciparum Eukaryote 0.801 0.807 0.84% 0.753 0.748 -0.73%

T. gondii Eukaryote 0.835 0.837 0.27% 0.585 0.583 -0.47%

T. cruzi Eukaryote 0.869 0.867 -0.29% 0.833 0.843 1.26%
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Table S5. Comparison between APRANK and a ‘BLAST model’. The ‘BLAST model’ worked by
assigning to each protein a score related to how similar they were to a recorded antigenic protein. For the
two species that resulted in a better prediction when using the ‘BLAST model’, we also tested removing
from the BLAST results (and so, from the ‘model’) the species that was the most similar to the one being
analyzed. In bold we show differences greater than 5%.

Species
Proteins

BLAST
AUC

APRANK
AUC

Relative
AUC gain

B. burgdorferi 0.502 0.786 56.60%

B. melitensis 0.637 0.774 21.49%

C. burnetii 0.579 0.620 7.14%

E. coli 0.677 0.754 11.44%

F. tularensis 0.629 0.698 10.92%

L. interrogans 0.499 0.947 89.86%

P. gingivalis 0.544 0.854 57.04%

M. leprae 0.893 0.758 -15.10%

M. tuberculosis 0.591 0.702 18.78%

S. aureus 0.622 0.737 18.56%

S. pyogenes 0.542 0.983 81.26%

L. braziliensis 0.951 0.709 -25.42%

P. falciparum 0.594 0.807 35.77%

T. gondii 0.443 0.837 88.98%

T. cruzi 0.501 0.867 72.95%

M. Leprae (without M. tuberculosis in BLAST) 0.650 - 16.63%

L. braziliensis (without T. cruzi in BLAST) 0.744 - -4.74%

3 FORMULAS

fixedLinearNormalization(x,m,M) =


0 for x ≤ m

x−m
M−m for m < x < M

1 for x ≥ M

 (S1)

sigmoidNormalization05(x, b) = −1 +
2

1 + 3−
x
b

(S2)

sigmoidNormalization09(x, b) = −1 +
2

1 + 20−
x
b

(S3)
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