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Abstract 13 

Progresses in agronomy rely on accurate measurement of the experimentations conducted to improve 14 

the yield component. Measurement of the plant density is required for a number of applications since 15 

it drives part of the crop fate. The standard manual measurements in the field could be efficiently 16 

replaced by high-throughput techniques based on high-spatial resolution images taken from UAVs. 17 

This study compares several automated detection of individual plants in the images from which the 18 

plant density can be estimated. It is based on a large dataset of high resolution Red/Green/Blue (RGB) 19 

images acquired from Unmanned Aerial Vehicules (UAVs) during several years and experiments over 20 

maize, sugar beet and sunflower crops at early stages. A total of 16247 plants have been labelled 21 

interactively on the images. Performances of handcrafted method (HC) were compared to those of deep 22 

learning (DL). The HC method consists in segmenting the image into green and background pixels, 23 

identifying rows, then objects corresponding to plants thanks to knowledge of the sowing pattern as 24 

prior information. The DL method is based on the Faster Region with Convolutional Neural Network 25 

(Faster RCNN) model trained over 2/3 of the images selected to represent a good balance between 26 

plant development stage and sessions. One model is trained for each crop. 27 

Results show that simple DL methods generally outperforms simple HC, particularly for maize and 28 

sunflower crops. A significant level of variability of plant detection performances is observed between 29 

the several experiments. This was explained by the variability of image acquisition conditions 30 

including illumination, plant development stage, background complexity and weed infestation. The 31 

image quality determines part of the performances for HC methods which makes the segmentation step 32 

more difficult. Performances of DL methods are limited mainly by the presence of weeds. A hybrid 33 

method (HY) was proposed to eliminate weeds between the rows using the rules developed for the HC 34 

method. HY improves slightly DL performances in the case of high weed infestation. When few images 35 

corresponding to the conditions of the testing dataset were complementing the training dataset for DL, 36 
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a drastic increase of performances for all the crops is observed, with relative RMSE below 5% for the 37 

estimation of the plant density.  38 

1 Introduction 39 

Measuring accurately traits is essential for numerous applications in agronomy, such as breeding or 40 

new farm management strategies evaluation. Plant density at emergence is a main yield component 41 

particularly for plants with reduced tillering or branching capacities such as maize, sugar beet and 42 

sunflower. The plant density at emergence is controlled by the seeding density and the emergence rate. 43 

Further, the seeding pattern defined by the distance between row and between plants influences the 44 

competition between plants and possibly with weeds. In addition to the estimation of plant density, the 45 

position of each plant can be documented to describe the local competitive environment (Godwin and 46 

Miller, 2003). For agronomical or phenotyping experiments, the plant density is mainly used to 47 

evaluate the quality of each microplot with consequences on the whole trial. It is also used by farmers 48 

to decide to stop spending resources to grow the crop in case of too low density or too much 49 

heterogeneity. Plant density is considered as an agronomical trait in some widely used ontology 50 

(Shrestha et al., 2012), despite not being directly governed by the genotype, as it results from the 51 

seeding density, seed vigor and the emergence conditions. 52 

Plant density is assessed manually in current breeding programs. Operators count plants in the field 53 

over a limited sampling area, usually less than 1 square meter, since this process is tedious, time-54 

consuming, and therefore expensive. Consequently, this traditional method can lead to significant 55 

uncertainties due to the limited representativeness of the sampled area and possible human errors. 56 

Further, the position of plants is generally not documented because it would be even more tedious to 57 

measure each plant location.  58 

Table 1: Comparison of the different approaches used for plant and organ counting referenced 59 

in the literature. 1 random selection of samples for training and testing; 2No proper calibration; 60 
3Calibrated with synthetic data; 4Testing is made on two sessions, one session being already 61 

used for training  62 

# Study UAV Crop Object Sessions Localiz
ation  

Method Test 
independency 

1 (Guo et al., 2018) Yes Sorghum Head 1 Yes ML No1 

2 (Fernandez-Gallego et al., 2020) yes Wheat Plant 5 yes ML No1 

3 (T. Liu et al., 2016) no Wheat Plant several yes HC Yes2 

4 (Gnädinger and Schmidhalter, 2017) yes Maize Plant 1 yes HC yes2 

5 (Jacopin et al., 2021) yes Sunflower Plant 1 yes HC Yes3 

6 (Calvario et al., 2020) yes Agave Plant 3 yes HC No 

7 (Torres-Sánchez et al., 2015) yes 
Maize 

Sunflower 
wheat 

Plant 6 no HC (OBIA) Yes2 

8 (Josue Nahun Leiva et al., 2017) yes Thuja Plant 3 yes HC (OBIA) Yes2 

9 (Varela et al., 2018) yes Maize Plant 2 yes HC (OBIA) No1 

10 (Zhao et al., 2018) yes Rapeseed Plant 2 yes HC (OBIA) No1 

11 (Koh et al., 2019) Yes Safflower Plant 2 Yes HC (OBIA) No4 

12 (Madec et al., 2019) No Wheat Head 2 yes DL Yes 

13 (Quan et al., 2019) No Maize Plant 10 yes DL No1 

14 (Ribera et al., 2017) Yes Sorhgum Plant 2 no DL No1 

15 (Xiong et al., 2019) Yes Wheat Head several no DL Yes 

16 (Valente et al., 2020) Yes Spinach Plant 1 no DL No1 

17 (Liu et al., 2020) Yes Maize Head 2 yes DL No1 

18 (Lin and Guo, 2020) Yes Sorghum Head 2 yes DL No1 

 This study 
Yes 

Maize 
Sugar beet 
Sunflower 

Plant 27 yes HC / DL Yes 
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The recent technological advances of plant phenotyping solutions including Unmanned Aerial Vehicles 63 

(UAV), sensors, computers, and image processing algorithms, offer potentials to develop alternative 64 

methods to the manual counting. Several authors already reported accurate estimates of plant or organ 65 

counting and density from RGB images (Table 1). Plants or organ can be characterized either with 66 

machine learning (ML) algorithms where standard local image features are extracted and a used in a 67 

supervised classification to identify the objects of interest (Guo et al., 2018; Fernandez-Gallego et al., 68 

2019). Handcrafted (HC) methods rely on expert knowledge to compute the pertinent features in a 69 

process known as “feature engineering” and use them to identify the objects of interest. Most of them 70 

belong to the Object Based Image Analysis (Josue Nahun Leiva et al., 2017; Koh et al., 2019; Torres-71 

Sánchez et al., 2015; Varela et al., 2018; Zhao et al., 2018). The identification process can be done 72 

based also on the expert knowledge (Gnädinger and Schmidhalter, 2017; Jacopin et al., 2021; T. Liu 73 

et al., 2016)  or by calibrating a statistical model over a training dataset (Calvario et al., 2020). More 74 

recently, approaches based on deep-learning (DL) have been proposed. The features are automatically 75 

extracted from the image and then used to identify and localize the individual objects of interest ((Lin 76 

and Guo, 2020; Liu et al., 2020; Madec et al., 2019; Quan et al., 2019)). However, these features can 77 

also be used to estimate directly the density of objects through a regression (Ribera et al., 2017; Valente 78 

et al., 2020; Xiong et al., 2019). Localization, is more popular (78% of the studies in Table 1) in plant 79 

phenotyping as it documents the sowing heterogeneity including missing plants, allowing to explore 80 

the competition between plants as outlined earlier. DL based methods are being common now to detect 81 

plant and organ and represent almost 30% of the localization studies (Table 1). Madec et al. (Madec et 82 

al., 2019) demonstrated that the Faster RCNN DL model (Ren et al., 2015) provides accurate localization 83 

of wheat ears with higher robustness than previous methods, including direct regression method. A 84 

higher heritability than that of manual counting was also reported. More recently, (Lin and Guo, 2020; 85 

Liu et al., 2020) applied similar strategies to locate plant and organ from UAV images. DL applications 86 

to plant phenotyping are supervised learning methods, requiring large and diverse labelled datasets to 87 

converge to a generic solution. The recent progress in DL applied to detection/localization tasks 88 

beneficiated from the availability of large image collections such as ImageNet (Deng et al., 2009) and 89 

COCO Dataset (Lin et al., 2014) that are used to pre-train the DL model. 90 

However, Geiros et al. (Geirhos et al., 2020) raised the overfitting risk and the resulting lack of 91 

robustness associated with most DL algorithms. They can reach excellent performances for datasets 92 

like those used for their calibration, while often failing when applied to cases different from the training 93 

dataset. In comparison, HC methods are based on expert knowledge which select the main features to 94 

identify the target objects. This reduces the risk of overfitting but can hardly account for all the specific 95 

cases. On the 11 methods listed (Table 1) that require a training dataset, only 3 (Koh et al., 2019; Madec 96 

et al., 2019; Xiong et al., 2019) proposed a proper evaluation framework where the training and the test 97 

datasets do not come from the same acquisition sessions. This questions the accuracy, scalability and 98 

robustness of HC and DL methods that was investigated in the case of liver disease (Lin et al., 2020), 99 

but not for the plant detection problem within phenotyping applications. 100 

The objective of this study is to compare a HC approach based on the knowledge of the sowing and 101 

plant patterns and a DL approach based on object detection to localize plants and count them. This 102 

study includes three species (maize, sugar beet and sunflower) observed with a RGB (Red Green Blue) 103 

camera aboard a UAV during 27 acquisition sessions with plants at different development stages few 104 

weeks after emergence. This study appears therefore to be the most comprehensive one on the subject 105 

(Table 1), while keeping always the training and test datasets as independent as possible. Further, we 106 

will also propose to combine the DL approach with expert knowledge from the HC one. 107 

2 Materials and methods 108 
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2.1 Dataset 109 

2.1.1 Experiments 110 

The dataset used was acquired over maize, sugar beet and sunflower experiments from 2016 to 2019 111 

in several experimental sites in France (Table 2). The sites cover a large diversity of agronomic 112 

conditions while managed with conventional tillage practices. However, some crop residues from the 113 

previous season can be observed on few microplots. Generally, few weeds were present in the 114 

microplots, except for some of them (Table 3). The sites include clay, brunisolic and limestone soil 115 

types (Table 2) with a variety of surface roughness and moisture. The soil color varies from gray to 116 

brown due to soil type, surface aspect and illumination conditions. Each site included an ensemble of 117 

microplots corresponding to many genotypes from which 3 to 12 were selected to get approximately 118 

600 plants (Table 3). Some sites were flown several times (Table 2), corresponding to several 119 

acquisition sessions. This allows to get a larger variation in the crop development stage during image 120 

acquisition (Table 3). For maize, a total of 51 microplots was available from 9 acquisition sessions 121 

(Table 3) with contrasted microplot size, row spacing (0.3-1.1m), and plant density (5.1-11.2 plt.m-2). 122 

For sugar beet, a total number of 60 microplots was available from 9 acquisition sessions with 123 

microplot size, row spacing and plant density varying within a small range (Table 2). For sunflower, a 124 

total of 78 microplots was available from 9 acquisition sessions with a large variability of microplot 125 

size, row spacing, and plant density.  126 

Table 2: Characteristics of the crops for the several sites considered. 127 

Crop Site Name Lat 

(°) 

Long 

(°) 

Year Nb. 

session

s 

Nb. 

micropl

ots 

Microplo

t width  

(m) 

Micropl

ot length 

(m) 

Row 

spacin

g (m) 

Plant 

density 

(plt.m-2) 

Soil type 

M
ai

ze
 

Menainville 47.9 1.4 2016 1 6 2.2 7.0 1.10 5.1 Clay 

Nerac 44.1 0.3 2016 1 8 1.6 7.0 0.80 8.5 Clay 

Villedieu 47.8 1.5 2016 1 6 0.9 11.0 0.30 19.9 Clay 

Thenay 47.3 1.2 2017 1 6 4.4 6.0 0.63 7.3 Clay / Flint 

Blois 47.7 1.2 2019 1 7 1.7 7.0 0.83 9.5 Brunisolic 

Castetis 43.4 -0.7 2019 1 5 2.8 4.0 0.70 11.2 Brunisolic 

Ermine 46.5 -1.0 2019 1 4 3.2 5.5 0.80 8.6 Limestone 

Selommes 47.7 1.2 2019 1 7 1.8 5.3 0.88 9.5 Brunisolic 

Pleinefougere

s 
48.5 -1.5 2020 1 

2 
3.2 11.0 0.80 7.7 

Brunisolic 

S
u

g
ar

 b
ee

t 

Bucy 49.6 3.9 2017 2 7 1.4 6.2 0.45 11.1 Loam 

Charmont 48.3 4.1 2017 1 7 1.4 5.5 0.45 11.1 Limestone 

Etienne 49.2 4.3 2017 1 6 1.2 7.6 0.40 15.6 Limestone 

Memmie 48.9 4.3 2017 2 6 1.4 7.6 0.48 10.8 Limestone 

Charmont 48.3 4.1 2018 2 8* 1.4 5.5 0.45 11.4 Limestone 

Memmie 48.9 4.3 2018 1 6 1.4 7.6 0.45 11.4 Limestone 

S
u

n
fl

o
w

er
 Rivière 43.5 1.5 2017 1 8 3.0 4.1 0.50 7.1 Clay 

Auzeville 43.5 1.5 2018 2 3 3.3 9.5 0.55 6.1 Clay 

Auzeville 43.5 1.5 2019 5 12 2.9 9.0 0.96 3.7 Clay 

Epoisses 47.2 5.1 2019 1 4 2.4 10.0 0.60 5.1 Limestone 

2.1.2 Acquisition and labelling details 128 

Image acquisition was carried out by UAVs embarking three different RGB cameras including the 129 

Sony Alpha 5100, Sony Alpha 6000, both with a resolution of 6024x4024 pixel, and the Zenmuse X7 130 
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(DJI) in the case of Epoisses site in 2019 with a resolution of 6016 x 4008 pixels. The cameras were 131 

fixed on a two axes gimbal to maintain the nadir view direction during the flight. The camera was set 132 

to speed priority of 1/1250 s to limit motion blur. The aperture and ISO were automatically adjusted 133 

by the camera. The camera was triggered by an intervalometer set at 1Hz frequency corresponding to 134 

the maximum value allowed to record the RGB images in JPG format on the memory card of the 135 

camera. Flight altitude above ground varied between 20 to 50m to get a ground sampling distance 136 

(GSD) between 2 mm and 5 mm per pixel (Table 3). The flight trajectory was designed to ensure more 137 

than 70% overlap between images across and along tracks. Ground control points were placed in the 138 

field and their coordinates were measured with a real-time kinetic GPS device ensuring an absolute 139 

centimetric accuracy of their position. 140 

Table 3: Characteristics of each measurement sessions. For sugar beet, microplots from one 141 

session to another are the same. For sunflower the microplots considered change between 142 

sessions. The typical size of the BB for one session is computed as the square root of the mean 143 

area of all the BBs. The typical bounding box (BB) size in pixels is computed after up sampling 144 

the images at 2.5 mm resolution. The plant stage at the time of the session is quantified as: 1: 145 

early, 2: intermediate, 3: late. The correspondence with BBCH scale is provided as a table in 146 

the supplementary material section. The weed infestation is scored from 0 (no weed), from 0 147 

(no weeds), 1 (less than 5% coverage), 2 (more than 5% coverage). The image blur is quantified 148 

by the average variance of the Laplacian: high blur results in low value of the variance of the 149 

Laplacian. 150 

 
Session_name 

plant 

number 

plot 

number 
Stage 

GSD 

(mm) 

typical BB 

size (cm) 

typical BB 

size (pixel) 

Weed 

infestation 
Blur 

M
A

IZ
E

 

Selommes_2019_1 510 7 1 3.5 6.5 26 2 233 

Hermine_2019_1 542 4 1 3.5 7.8 31 1 79 

Thenay_2017_1 617 6 1 2.5 8.5 34 1 1149 

Castetis_2019_1 575 5 2 3.3 10.0 40 1 121 

Pleinefougeres_2019_1 504 2 2 3.5 11.5 46 0 39 

Blois_2019_1 579 7 2 3.3 12.3 49 1 346 

Menainville_2016_1 620 6 3 3.4 12.3 49 1 78 

Villedieu_2016_1 629 6 3 2.7 13.3 53 0 261 

Nerac_2016_1 594 8 3 4.0 15.0 60 0 37 

Total 5170 51       

S
U

G
A

R
 B

E
E

T
 

Memmie_2017_1 667 6 1 4.5 8.0 32 0 26 

Charmont_2018_1 556 7 1 4.2 11.5 46 0 93 

Memmie_2018_1 602 6 1 4.3 11.5 46 0 77 

Bucy_2017_1 634 7 2 5.3 12.8 51 0 25 

Memmie_2017_2 679 6 2 5.7 14.8 57 0 72 

Etienne_2017_1 635 6 2 4.5 16.0 64 0 27 

Charmont_2017_1 669 8 3 3.4 20.5 82 0 191 

Charmont_2018_2 647 8 3 4.1 20.5 82 0 102 

Bucy_2017_2 558 6 3 4.5 23.0 92 0 31 

Total  5647 60       

S
U

N
F

L
O

W
E

R
 Auzeville_2019_1 579 12 1 5.0 8.5 34 1 28 

Auzeville_2019_2 640 12 1 5.0 13.5 54 1 510 

Epoisses_2019_1 596 4 1 2.5 14.3 57 1 10 

Auzeville_2018_1 596 3 2 2.3 14.3 57 1 488 

Auzeville_2019_3 657 12 2 5.0 19.3 77 0 350 

Auzeville_2019_4 603 12 2 5.0 24.5 98 0 221 
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Rivière_2017_1 634 8 3 5.2 25.0 100 2 42 

Auzeville_2018_2 560 3 3 2.6 27.5 110 1 1286 

Auzeville_2019_5 565 12 3 5 27.5 110 2 176 

Total 5430 78       

Agisoft Photoscan Professional software (Pasumansky, 2016) was used to align the images. The high 151 

overlap between the images and structure from motion algorithm permits to compute the position and 152 

orientation of the cameras. The pipeline described in Jin et al. (Jin et al., 2017) was then run to extract 153 

from each image the portion corresponding to the contained microplots, by extracting microplot thanks 154 

to a georeferenced plot map. Using the original images avoids the possible distortions and artefacts 155 

observed in the orthomosaic. Several extracts may represent the same microplot viewed from different 156 

positions of the UAV (Duan et al., 2016). For each microplot, the sharpest extract that contained the 157 

whole microplot is selected. For each session, a few microplots were selected for labelling (Table 2). 158 

Approximately 600 plants per session were labelled to ensure consistency across sessions which 159 

resulted in a total of 16247 labelled plants. Images were rescaled to match the best available GSD (2.5 160 

mm, Table 3). This was necessary to control the apparent size of object, which can make the Deep 161 

Learning methods fail. Then all images were labelled using the coco-annotator tool (Brooks, 2019), an 162 

open source platform which allow the collaborative drawing of bounding box (BB) around each plant, 163 

which will be used as label. Six different operators contributed to the labelling. The labelling from one 164 

operator was always reviewed at least once by a different operator. The typical size of the BB for one 165 

session (Table 3) was computed as the square root of the mean area of all the BBs.  166 

The plant development stage during the acquisition sessions was scored into three relative levels, where 167 

stages 1 ,2 and 3 correspond respectively to early (few days after emergence), intermediate, and late 168 

stages (leaves start to fill the gap between plants). The correspondence between the stages for each 169 

crop, and their BBCH scale is presented in Table S1. The level of weed infestation (Table 3) was also 170 

visually evaluated from 0 (no weeds), 1 (sparse presence of weeds), 2 (infestation). The level of 171 

blurriness for each session (Table 3) was evaluated by calculating the average variance of the discrete 172 

Laplacian (Bansal et al., 2016), which is implemented in python with OpenCV . 173 
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 174 

Figure 1: Samples of images for the three-development stage. All images were resampled to 175 

0.25mm.px-1. The bounding boxes were drawn interactively around the plants. 176 

2.2 Plant detection methods 177 

2.2.1 Handcrafted method 178 

The method developed here is based on several assumptions: (1) the plants are green and can be 179 

accurately separated from the background; (2) plants are sown in rows relatively evenly spaced and 180 

parallel; (3) the weeds are mainly located in between the rows and are not too dominant; (4) plants are 181 

relatively evenly spaced on the row and are not too variable in shape and size. The method first extracts 182 

each single row and then identifies each individual plant on the row. All the parameters of our HC 183 

method are expressed in relative value to the row or plant spacing, to allow adaptation to a larger 184 

number of sowing patterns. This makes our method scalable to all our experimental conditions across 185 

the three species (Table 2 and table 3). The values of the parameters were set based on reasonable 186 

assumptions and were not calibrated on a dataset. 187 

2.2.1.1 Row extraction 188 

The original RGB images are first transformed into a black and white one (BW) using the excess green 189 

index (Equation 1). Pixels are then assigned to the green (1) or background (0) classes using the ExG 190 

threshold value defined with the Otsu algorithm for each session (Otsu, 1975). Otsu algorithm is a 191 

method to perform automatic image thresholding based on the maximization of the class inter-variance. 192 

We used the implementation of python OpenCV library.  193 
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Equation 1: 𝑬𝒙𝑮 =  
𝟐𝑮−𝑩−𝑹

𝑮
 . R, G, B correspond respectively to the red, green and blue colours 194 

of the original image (Meyer and Neto, 2008) 195 

The Hough transform (Hough, 1962) is used to identify the main alignments corresponding to the rows 196 

and find their orientation. For each pixel assigned to green (1), several lines are drawn with different 197 

directions and for each line, the number of pixels it crosses is accumulated, allowing to find the 198 

orientation of the longest lines. We used Hough Transform implementation of python OpenCV library. 199 

The image is then rotated to display the rows horizontally (Figure 2). The number of green pixels in 200 

each line is computed to obtain a profile of green pixels across the rows. The peaks of the green pixel 201 

profiles are localized using the prior knowledge on row spacing (Row_spacing_prior) to prevent 202 

finding unexpected peaks between rows. The prior knowledge of the number of rows per microplot 203 

(Row_number_prior) is also used when identifying the peaks. The prior values of row and plant spacing 204 

are not always known precisely. Therefore, the row extraction pipeline (Figure 2) provides also updated 205 

and more accurate values of Row_spacing_prior for each session. Finally, each row is extracted using 206 

the fine-tuned value of the row width. 207 

 208 

Figure 2 Flowchart of the rows extraction process from the original RGB image. 209 

2.2.1.2 Plant identification with an object-based method 210 

After the row extraction, the algorithm individualizes the objects (groups of connected pixels) in the 211 

image and classifies them as plants or weeds. Weeds are eliminated based on the distance to the row 212 

center. If the centroid of an object is located at a distance larger than a threshold value 213 

(Minimum_distance_to_row), it is considered as a weed. The threshold value is expressed in relative 214 

value to the row spacing and set to 0.25 (Table S2). Objects with dimensions along the row direction 215 

larger than the Plant_spacing_prior value (Table 2) are expected to include several plants. The number 216 

of plants contained in these big objects is derived from the number of peaks observed when summing 217 

the green pixels along the row direction, where a peak may correspond to a plant position. Further, the 218 

number of plants found by the number of peaks is crosschecked with the expected number of plants 219 

computed by dividing the extension of the object by the Plant_spacing_prior value. Results are 220 

illustrated in Figure 3 for the two objects on the right of the bottom row.  221 

Finally, some objects may be located too close together to be considered as separate plants because 222 

these objects correspond to several parts of the same plant. Figure 3 illustrates it with the second plant 223 

starting from the left on the top row, where a leaf and the main plant are separated. If the distance 224 

between the centroids of the closest object is smaller than the maximum acceptable distance, 225 

Big_plants_tolerance x Plant_spacing_prior, the two objects are merged as a single plant. Table S2 in 226 

the supplementary materials presents the value used for each parameter. The centroid (center of mass 227 
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of the object), and the bounding box (smallest rectangle that contains all object’s pixels) of the objects 228 

are finally computed. 229 

 230 

Figure 3: Typical output of the HC algorithm illustrated for two sugar beet rows. The dashed 231 

white line indicates the row. The white curve represents the profile of number of green pixels 232 

perpendicular to the row, with peaks identified by a circle. The object-based method is illustrated 233 

by the colors assigned to each identified plant. Note that big objects have been split into 234 

individual plants (bottom row, the four last plants) and isolated plant parts have been 235 

reconnected to form a single plant (top row, fourth plant starting from the left). The white 236 

squares correspond to the position of missing plants 237 

2.2.2 Deep-learning method 238 

2.2.2.1 Model architecture  239 

An object detection method was selected to predict the bounding box around each plant. This 240 

information can then be used to derive more traits to characterize every individual plant. Object 241 

detection is a fast-growing area within DL techniques since the emergence of networks such as R-CNN 242 

(Regions with Convolutional Neural Network , (Girshick et al., 2013) ) or SSD (Single Shot Detector, 243 

(W. Liu et al., 2016) ). Most DL object detection models fall into one-stage or two-stage models. In 244 

the one-stage model, the object is localized and categorized in a single step. In the two-stage model, a 245 

first stage detects possible objects, and a second stage categorizes them. The Faster-RCNN two-stage 246 

model (Ren et al., 2015) is used because it performs well in the context of plant phenotyping. Madec 247 

et al. (Madec et al., 2019) used it successfully for counting wheat heads. It allows also to analyze the 248 

nature of the possible errors by visualizing them. 249 

Faster-RCNN can be implemented in many forms which can influence the final results. We use the 250 

implementation made by the mmdetection library (Chen et al., 2019) .It contains many detectors, and 251 

is written upon PyTorch (Paszke et al., 2019). The default implementation of the library is used and 252 

contains a Feature Pyramidal Network (FPN) (Lin et al., 2017), which differs from the original paper 253 

(Ren et al., 2015). It is used to provide object proposition at different scales. A ResNet-34 model (He 254 

et al., 2015) was used as the backbone network because it offers a good compromise between accuracy 255 

and speed of training. The backbone extracts the deep features which are used by the Region Proposal 256 

Network (RPN) to detect potential objects which are then classified as crop or background. All other 257 

architectural details are given in the code (https://github.com/EtienneDavid/plants-counting-detection) 258 

. We also choose to train one model by crop as preliminary tests show lower performances when mixing 259 

the three crops. 260 

2.2.2.2 Pre-processing and data augmentation 261 

The input image size of the network is set to 512 x 512 pixels to match memory constraints during 262 

training. However, images from the microplots are larger. A preprocessing step first splits them 263 

randomly into patches of 512 x 512 pixels. For each session in the training dataset, 100 patches were 264 
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randomly selected which results in a total of 900 patches to train the model for each crop over the nine 265 

available sessions. Randomly sampled patches provide more diversity than evenly sampled ones. 266 

During the training process, data augmentation is applied to extend the diversity of images. The 267 

complete data augmentation pipeline is a set of geometric distortions (Random rotation, Random 268 

Translation, Random Shear), blur (Gaussian Blur), noise (Gaussian noise) and colorimetric 269 

augmentation (Random hue value, Random contrast). At each iteration, a set of transformation is 270 

randomly drawn with random parameters so each batch is unique. The range of possible parameters 271 

were chosen so that the resulting image still look realistic. All data augmentation details are given in 272 

the code. Once trained, the model is applied to all the patches. Predictions from the overlapping patches 273 

are finally merged together by using the Non-Max-Suppression algorithm (Ghosal et al., 2019) with 274 

an Intersection over Union (IoU) threshold of 0.70. 275 

2.2.3 Hybrid method 276 

DL methods detect individual plants based on many features automatically extracted while HC 277 

methods exploit expert prior knowledge on the sowing pattern to eliminate plants located at a non-278 

expected position between rows. We propose therefore a hybrid method that combines the benefits of 279 

both HC and DL ones. The DL method is first applied to detect plants. Then, the HC method presented 280 

earlier is used to identify the row position and eliminate all remaining weeds corresponding to plants 281 

with centroids located at a larger distance to the row than a threshold value distance_to_row (Table 282 

S2). 283 

2.3 Evaluation strategy for plant detection 284 

2.3.1 Strategies for training and evaluation 285 

Detection models were developed and evaluated independently for each crop. DL method requires an 286 

extensive training dataset that should represent the expected diversity of situations. Due to the limited 287 

number of labelled images, two strategies are defined: “Out-Domain” and “In-Domain”. “Out-288 

Domain” is the more rigorous strategy where the performances of the DL method are evaluated over 289 

sessions not used during the training process. For each crop and each stage, two sessions were used for 290 

training and the remaining one for testing. This allows to balance the stages between the training and 291 

testing datasets. A three-fold cross-validation strategy that exploits all sessions while providing 292 

relatively independent test cases is used. Three different models were trained for each crop using six 293 

sessions, representing about 3800 plants, and tested on the remaining three sessions representing 294 

around 1900 plants. The “In-Domain” strategy is based on adding few images randomly selected in the 295 

testing datasets to the training dataset. It aims at reducing possible lack of representativeness in the 296 

training dataset. The same three-fold cross-validation process was used for each crop, except that 1/3 297 

of the 600 plants used previously as testing datasets were added to the training dataset. The remaining 298 

2/3 images (400 plants) are used to evaluate the performances of the models for each crop. The same 299 

test dataset (1200 plants corresponding to the 400 test plants for each of the three test sessions) is finally 300 

used to compare the Out-domain and In-domain approaches. The approach is summarized in Figure 4. 301 
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 302 

Figure 4: Presentation of the strategy for training and evaluation. For each fold, we select 6 303 

sessions as the training distribution and 3 as the target distribution. The test datset is made of 304 

66% of the target distribution. 305 

2.3.2 Evaluation metrics 306 

Detection 307 

The “Centroid matching strategy” (C_MS ) is used to evaluate whether a plant was correctly detected. 308 

The C_MS is based on the distance between the centroids of the plants. If the distance between 309 

centroids of a detected plant and the closest labelled one is smaller than Plant_distance_prior / 2 it is 310 

considered as true positive (TP). Otherwise, it is a false positive (FP). If a labelled plant has no detected 311 

plant within a distance smaller than Plant_distance_prior / 2, it is a false negative (FN). TP, FP and 312 

FN are used to construct the confusion matrix (Equation 2). 313 

Equation 2: Presentation of the confusion matrix. Please note that in detection, there is no True 314 

Negative (TN) 315 

Total population = Number of Ground 

Truth positive 

Prediction 

Predicted Positive (Box) Predicted Negative (No 

box) 

Ground truth Positive (Box) True Positive (TP) False Negative (FN) 

Negative (No box) False Positive (FP) True Negative (TN) 

 316 

The plant detection performance was quantified per session with the terms of the confusion matrix 317 

normalized by the number of labelled plants (TP+FN) for easier comparison between crops and stages, 318 

which correspond to rates of TP (TPR), FP (FPR) and FN (FNR). The accuracy is also used, defined 319 
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as TP/(TP+FN+FP). DL method produces a confidence score for each predicted BB. A box is 320 

considered as a prediction for the DL and HY methods if its score is above 0.5. 321 

Plant density 322 

Plant density (PD) was calculated by dividing the number of plants in the microplot by its area. The 323 

area is computed as the number of rows multiplied by the row spacing and the row length. The relative 324 

root mean square error (rRMSE) is used to compare the estimated and the reference PD values and 325 

assess the accuracy of the method. The accuracy levels were split into four classes to better assess the 326 

robustness of the method. A rRMSE<5% was considered as good, between 5%<rRMSE<10% as 327 

satisfactory, between 10%<rRMSE< 20% as poor, and rRMSE>20% as very poor. The percentile of 328 

microplots belonging to each class was therefore used to evaluate the robustness of the methods.  329 

Equation 3: Definition of the rRMSE for one session of acquisition 330 

𝑟𝑅𝑀𝑆𝐸 =  
√∑ (𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 )21

𝑛

∑ 𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑟𝑢𝑒,𝑖
1
𝑛

 331 

Influence of conditions 332 

Tests were further conducted to evaluate the impact of the four qualitative factors (crop type, 333 

development stages, weeds, and soil type) and the impact of the four quantitative factors (sowing 334 

density, plant size, original resolution, and blurriness). For the qualitative factors, an ANOVA study is 335 

conducted, and for the quantitative factors a Pearson test is conducted. Both modalities were 336 

implemented with the python statsmodel library. For both tests, the p-value is calculated to evaluate 337 

the impact of the agronomical conditions on the final results. 338 

 339 

3 Results  340 

3.1 Detection  341 

 342 

Table 4: Terms of the confusion matrix for the three methods the three crops, and the three 343 

stages. True Positive Rate (TPR), False Positive Rate (FPR), and False Negative Rate (FNR) are 344 

displayed. N is the true number of plants (N=TP+FN). Green color corresponds to good metrics 345 

values (high for TPR, low for FPR and FNR), and red for poor metrics values (low for TPR, high 346 

for FPR and FNR). 347 

Crop Stages N 
TPR FPR FNR Accuracy 

HC DL HY HC DL HY HC DL HY HC DL HY 

Maize 

1 1669 0.61 0.88 0.86 0.27 0.12 0.07 0.39 0.12 0.14 0.56 0.79 0.80 

2 1658 0.70 0.92 0.92 0.03 0.18 0.16 0.30 0.08 0.08 0.68 0.78 0.79 

3 1930 0.70 0.88 0.86 0.05 0.15 0.14 0.30 0.12 0.14 0.68 0.77 0.77 

Sugar 

beet 

1 1825 0.95 0.98 0.98 0.04 0.01 0.01 0.05 0.02 0.02 0.93 0.97 0.97 

2 1948 0.95 0.99 0.99 0.01 0.03 0.03 0.05 0.01 0.01 0.93 0.97 0.97 

3 1874 0.94 0.99 0.99 0.06 0.04 0.04 0.06 0.01 0.01 0.88 0.95 0.95 
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Sunflower 

1 1603 0.80 0.87 0.86 0.17 0.06 0.04 0.20 0.13 0.14 0.75 0.80 0.81 

2 1856 0.82 0.94 0.94 0.15 0.08 0.07 0.18 0.06 0.06 0.72 0.87 0.88 

3 1759 0.86 0.97 0.97 0.42 0.43 0.21 0.14 0.03 0.03 0.61 0.74 0.81 

 348 

 349 

Figure 5: Accuracy for all methods and crops. For each crop and method, the stages are 350 

represented by a specific color. Each point corresponds to a test session used in the three-fold 351 

validation process. The squares represent the average of the three points. 352 

Detection performances are very different depending on the crops (Table 4 and Figure 5). Detection of 353 

maize plants appears difficult for the three methods and particularly for HC with a low TPR and a high 354 

FNR (Table 4). However, a high FNR is also observed for the first development stage with the HC 355 

method. A large variability between the three instances of the three-fold cross validation is observed 356 

for this early stage (Figure 5), probably due to the variability in image quality. Marginal differences 357 

are observed between DL and HY methods. They both show relatively balanced FPR and FNR. This 358 

results into accuracy values between 0.77 to 0.80 with little variation between stages (Table 4). 359 

However, a larger variability across the three instances of the three-fold cross validation is observed 360 

for the late stage (Figure 5) 361 

 362 

3.2 Counting 363 
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 364 

Figure 6: rRMSE for plant density estimation for all methods crops, and stages. Results 365 

obtained over the testing dataset. For each crop, method and stage, the three instances 366 

(corresponding to three testing sessions) of the three-fold cross validation process are displayed 367 

as colored dio sks, while the corresponding average is represented by a colored square. Colors 368 

correspond to stages. The rRMSE threshold values to acceptable level of performance (green: 369 

very good, blue: good, orange: acceptable) 370 

The HC method provides the poorest performances for maize plant density estimation, with rRMSE 371 

generally higher than 0.2 (Figure 6), which is consistent with the poorer detection performances (Figure 372 

5). Image acquisition during the early stages tends to degrade the performances conversely to what was 373 

observed for the detection (Figure 5). This may be explained by the unbalance between false positives 374 

and negatives observed for the early stages (Table 4). Marginal differences are observed between DL 375 

and HY methods for maize where weeds were not the main issue.  376 

 377 

3.3 Out-Domain against In-Domain results 378 
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 379 

Figure 7:  Distribution of relative absolute error for each microplots for the Out-Domain and In-380 

Domain approaches for DL. Box-plot representation where the black horizontal bar represents 381 

the median, the box represents ±25%, the whiskers while the whiskers extend to the the lowest 382 

(highest) data point still within 1.5 interquantile range of the lower (upper) quartile. Diamonds 383 

are outliers. 1 outlier for Out-domain Maize and 3 outliers for Out-Domain Sunflower are above 384 

0.5 and are not presented on the graph. 385 

The “Out-domain” strategy used previously was compared here to the “In-domain” one where 1/3 of 386 

the images of the initial testing sessions were used to finetune the model. Performances are evaluated 387 

on the remaining 2/3 images of the initial testing sessions to keep some independence between the 388 

training and test datasets. Results show that the additional images used in the training process and 389 

having similar characteristics as those in the testing dataset decreased significantly the rRMSE for all 390 

crops (Figure 7). Training with the In-domain strategy reduces the variability of performances across 391 

sessions. The 5% rRMSE value is reached for all crops except maize, where performances are anyway 392 

close to this target. Plant overlapping and the small leaf size makes the DL method for maize more 393 

challenging. However, there are still some outliers for Maize and Sunflower, corresponding to 394 

Pleinefougeres_2019_1 and Epoisses_2019_1 sessions. The images of these two sessions are highly 395 

blurred (Table 3) explaining most of their poor detection performances. A large part of this 396 

performance can be attributed to the elimination of almost all weeds by the DL methods, without the 397 

need of the HY correction, which have learned the pattern of the weeds, instead of relying on the 398 

location, and a better recognition of the plants. 399 

 400 

4 Discussion 401 

4.1 DL and HY methods detect better plants than the HC one 402 

Several factor can explain the variability of the results: the small size of the plants that overlap, 403 

resulting into groups of overlapping plants that are interpreted as a single plant (Figure 5b), or to poor 404 

threshold values determined by the Otsu method for the green segmentation used in the first step to 405 

identity objects (Figure 5a) , due to the poor quality of the green segmentation where background 406 

artifacts such as small rocks or crop residues were interpreted as plants (Figure 5g). Also, in some case 407 

a high FPR is mostly explained by possible confusion between plants and their shadows or soil artifacts 408 
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(Figure 5c) while FNR is explained by the small size of the plants that are difficult to detect (Figure 409 

5d). 410 

Detection of sugar beet plants appears to be much easier, with performances similar between the three 411 

methods. The sugar beet crops better verify the assumptions described in 3.2.1. The plots were not 412 

infested by weeds (Table 4), which seems to be an important explanation for the success of all methods. 413 

A small FPR is observed for the three methods, particularly for the latest stage, which explains the 414 

decrease in accuracy (Table 4). This is due to difficulties when plants are overlapping (Figure 5e). 415 

Slightly higher FNR is observed for HC corresponding to non-detected plants in the case of small 416 

plants and image of poor quality. This is also observed with DL for the very early stages (Figure 5f). 417 

The variability across the three instances of the three-fold cross validation is also small (Figure 4). 418 

Marginal differences are observed between DL and HY methods mostly because of the good control 419 

of weeds. 420 

Detection of sunflower plants shows accuracy values intermediate between maize and sugar beet 421 

(Table 4 and Figure 4). The HC shows lower TPR and higher FPR and FNR as compared to DL and 422 

HY. In the late stage, the HC shows very high FPR corresponding to problems of plant separation when 423 

they are overlapping. Further, the weeds close to the row line are not well eliminated and confounded 424 

with plants (Figure 5g). Similar problems are observed for the DL method, with weeds confounded 425 

with the crop. However, the HY methods allows to eliminate part of the weeds that are located in 426 

between rows (Figure 5h). and HY shows high and similar TPR (Table 4). However, a high FPR is 427 

also observed for the first stage with the HC method, due to the poor quality of the green segmentation 428 

where background artifacts, such as small rocks or crop residues, were interpreted as plants (Figure 429 

4g). Conversely, high FPR are observed for the late stage where DL shows difficulty to detect plants 430 

in a group of overlapping ones and confounds weeds with the crop. A large variability between the 431 

three instances of the three-fold cross validation is observed for sunflower (Figure 4). It is explained 432 

by a high degree of heterogenety in the microplots and between them, as well as between sessions.  433 
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 434 

Figure 8: Possible detection errors for HC and DL methods. The green BBs correspond to the 435 

labelled plants. The red BBs correspond to the detected plants and yellow boxes correspond to 436 

weeds detected as crop. RGB images are displayed for the DL method. BW images are displayed 437 

for the HC method. a, b, c, d corresponds to maize, e, f, to sugar beet and g, h to sunflower. 438 

Image quality appears therefore mandatory for HC methods to get a good segmentation. The HC 439 

methods appears also limited to eliminate weeds on the rows and to separate efficiently the overlapping 440 

plants. DL methods are similarly limited in separating crops from weeds, with confusions made mostly 441 

on unseen type of weeds (Figure 5h). However, the HY methods allows to eliminate part of the weeds. 442 

The DL methods also show some difficulties in detecting plants when they are small or when their 443 

shadows or other soil artifacts such as cracks are present. Nevertheless, our DL methods seems to 444 

outperform the HC ones in most cases.  445 

 446 

Tests were further conducted to evaluate the impact of the four qualitative factors (crop type, 447 

development stages, weeds, and soil type) using the p-value computed from a variance analysis. Results 448 

show (Table 5) that crop-type is an important factor (p_value smaller than 0.05) for HC and HY, while 449 

weeds are important for HC and DL, and soil-type for HC. However, the low number of examples (27 450 

sessions in total), and the non-evenly distribution of the several factors (for instance most examples of 451 

high levels of weed infestation are found in sunflower sessions only) prevents from drawing final 452 

conclusions. The impact of the four quantitative factors (sowing density, plant size, original resolution, 453 

and blurriness) were also evaluated using a Pearson test. It reveals (Table 5) that no factors appear 454 

significant (p-value smaller than 0.05), while the lowest p-values are observed for the sowing density 455 

and plant size that are closely related to the crop type. 456 

Table 5: p-values computed from an ANOVA for the qualitative factors and Pearson test for the 457 

quantitative factors. 458 

 459 

Factors Type HC DL HY 
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Crop type qualitative 0.009130** 0.127550 0.032050** 

Development stage qualitative 0.857810 0.479530 0.643620 

Weed infestation  qualitative 0.032610** 0.001600** 0.074540 

Soil type qualitative 0.026430** 0.781090 0.830650 

Sowing density quantitative 0.067379 0.076542 0.091679 

Original resolution quantitative 0.905626 0.572383 0.616534 

Plant size quantitative 0.791437 0.064765 0.211019 

Blurriness quantitative 0.111743 0.562775 0.501980 

 460 

4.2 Plant density is better estimated with DL and HY methods 461 

All the methods reach good performances (rRMSE<0.05) for sugar beet, with even better performances 462 

for the two first stages when plants are easily identified and weeds not too developed (Figure 6). The 463 

poorer detection performances noticed earlier for HC (Figure 4) do not impact the density estimation 464 

because the FPR is well compensated by the FNR.  465 

Sunflower shows more variability between sessions and stages, with rRMSE around 0.1 for the 466 

intermediate development stage showing better performances than the early one and moreover than the 467 

late one (Figure 6). The models for sunflower are very poor for the session 3_auzeville_2019_5 (Figure 468 

6), mainly because of weed infestation. DL performs better than HC while HY improves marginally 469 

the performances for the two early stages, but significantly for the late stage where significant weed 470 

infestation was observed.  471 

Overall, our results show lower performances than those of the studies where the training and testing 472 

datasets were not independent. For maize detection accuracy between 0.93 and 0.96, and relative 473 

counting error around 1.5%, were reported (Quan et al., 2019; Varela et al., 2018) while none of our 474 

methods achieve such performances. Similar range of results are obtained on rapeseed (counting error 475 

of 6.83%) (Zhao et al., 2018), or safflower with rRMSE approximately under 5% (Koh et al., 2019). 476 

However, our results with DL and HY are comparable to studies keeping the training and test datasets 477 

independent; on maize Gnädinger and Schmidthalter (Gnädinger and Schmidhalter, 2017) reports a 478 

counting error of +/- 15%. The HC approach applied when its main assumptions are verified performs 479 

well and comparably to DL.  480 

4.3 Adding few images from the test domain improves drastically the DL performances 481 

The performances of DL methods are closely related to the number of images used in the training 482 

dataset and their representativity of the possible situations (Geirhos et al., 2020). DL method works 483 

very well for sugarbeet where all the images were relatively similar across sessions for each 484 

development stage. However, the acquisition conditions were quite different from the ones experienced 485 

in the other sessions for the sunflower on Epoisses_2019_1, explaining why the DL models had more 486 

difficulties to detect plants for this session. Note first that the plant density estimation performances 487 

(Figure 7) evaluated on a limited test data set (1200 images) are very consistent with the ones presented 488 

previously over the full test dataset including 1800 images (Figure 6). Overall, the addition of in-489 

domain data largely outperforms the marginal gain observed with the HY method on few sessions.  490 

Our results demonstrate that active learning techniques (Ghosal et al., 2019) could greatly improve DL 491 

model performances for these new sessions. A small sample of images coming from the new sessions 492 

to be processed have to be labelled to complement the training dataset, but more than quantity, it is 493 

uniquely due to the diversity: only 40m² of maize or sugarbeet, and between 50 and 100m² of sunflower 494 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2022. ; https://doi.org/10.1101/2021.04.27.441631doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441631
http://creativecommons.org/licenses/by/4.0/


 

 
19 

have been added to the training dataset, leading to a dramatic increase of the performances which 495 

cannot be attributed only to the dataset size increase. These results demonstrate the importance of 496 

having a proper design of DL training dataset when proposing a new trait to get robust estimates as 497 

required by agronomists, breeders, and farmers.  498 

 499 

Our results are consistent with those of previous studies: detection and density estimation performances 500 

are generally lower when the training and the test datasets are independent, i.e not coming from the 501 

same measurement sessions. Fernandez-Gallo (Fernandez-Gallego et al., 2020)report a rRMSE below 502 

5%, Madec et al. (Madec et al., 2019) report a rRMSE of 15% on an independent test set. Similar drop 503 

in performances seems to happen in maize when comparing the results of Varela et al. (counting error 504 

of 1.5%) to those of Gnädinger and Schmidhalter (counting error of +/- 15%). The generalization 505 

potential of DL methods is high, requiring including more diverse situations in the training dataset at 506 

the expense of the tedious and expensive interactive labelling process. However, alternative techniques 507 

could be used to bypass this limitation, including data sharing between several organizations as this 508 

was done for the head counting problem (David et al., 2020). Data augmentation (Kuznichov et al., 509 

2019) could also improve greatly the generalization performances of DL methods. It would consist in 510 

manipulating the quality of the images, while creating synthetic images where a wide diversity of plants 511 

and weeds would be placed over different backgrounds with variation in the development stages and 512 

sowing pattern.  513 

5 Conclusion 514 

This study was based on a comprehensive dataset covering three main crops, several growth stages and 515 

acquisition conditions. It will be open to the community on Zenodo 516 

(https://zenodo.org/record/4890370) to be possibly used as a benchmark for plant counting and 517 

detection from RGB images acquired from UAVs. Our results show that when the main assumptions 518 

on the sowing patterns are verified, simple HC methods can reach good enough performances to be 519 

used for applications as it was observed here for sugar beet. However, simple Deep Learning methods 520 

generally outperform the simple HC ones. Nevertheless, due to the large heterogeneity in terms of 521 

background, plant shape and phenological stages encountered across the wide collection of images 522 

considered, we demonstrated that the performances of the DL methods largely depend on the training 523 

and test datasets used. When the training domains used for the DL method are fully independent from 524 

the testing ones, the overall performances are reduced due to the failure of the model in a number of 525 

test cases poorly represented in the training dataset. Conversely, when adding few examples of images 526 

representative of the test domain, the performances increase drastically to reach those reported in most 527 

studies where training and test domains are not differentiated. Important gain in robustness could 528 

therefore be reached by including in the training dataset few images coming from the inference 529 

domains. Alternatively, a better understanding of the factors of variability between domains could 530 

constitute the basis to generate efficient data augmentation techniques that may even include synthetic 531 

images. An extended version of the dataset is needed to conclude on the main factors of error on plant 532 

counting with UAV. The hybrid method proposed to better eliminate weeds could be replaced 533 

efficiently by including images of the canopy where weeds were artificially incrusted. 534 
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8 Supplementary material (to put in an external file for submission) 674 

 675 

Crop Maize Sugarbeet Sunflower 

Early (1) 12 14-15 
14-16 or germination 

not over 

Intermediate 13 16 17-18 

Late 14-15 17-19 19 

 676 

Table S1. Correspondance between the “Early”, “Intermediate” and “Late stage” and the 677 

BBCH scale for each crop 678 

 679 

Rules 
Parameter 

name 
Operations Definition 

values 

Get BW 

mask 

Excess 

Green 

threshold 

Segmentation 
The threshold used to transform the image into a 

vegetation mask 

Determined by the otsu method 

Find 

row 

Row 

number 

spacing 

Row 

detection 
Expected number of rows 

Determined in Table 1 

Row 

spacing 

prior 

Row 

detection 

Prior value of the row spacing as defined in Table 

1 

Determined in Table 1 

 

Peak prior 
Row 

detection 

The fraction of the maximum height of the peaks 

used to consider a peak as corresponding to a row 

0.5 

Plant 

spacing 

prior 

Split object 
Prior value of the plant spacing as defined in Table 

1 

Determined in Table 1 
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Find 

plant 

Minimum 

distance to 

row 

Weed 

elimination 

Minimum distance from the row centre (expressed 

relatively to Row spacing prior) to consider the 

objects as weeds 

0.25 

Remove 

false 

positives 

Big Plants 

Tolerance 

Leaves 

detection 

All centroids under Big Plants Tolerance x Plant 

spacing prior are considered to belong to the same 

plant 

0.9 

Table S2. List of parameters used for row extraction and plant identification 680 

Figure S3: Justification of a centroid matching strategy Centroid matching strategy (C_MS) is preferred 681 

to the IoU one (IoU_MS) 682 

The C_MS was initially compared with an intersection over union matching strategy (IoU_MS), which 683 

is more commin The IoU_MS is based on the Intersection over Union between the detected and labelled 684 

BB with a standard threshold of 0.5. A detected plant is considered true positive (TP) if its IoU is larger 685 

than 0.5. Otherwise, it is a false positive (FP). If a labeled BB has no overlap with any detected BB,  it 686 

is classified as false negative (FN).  687 

The size of BB of plants detected by the HC method have different dimensions as compared to the 688 

labelled BB (Figure 4, left): The distribution of the size of BB for HC is gaussian, while that of labelled, 689 

DL and HY are very similar and skewed with significantly smaller BBs as well as larger ones. That 690 

means that the HC is missing small object with the IoU_MS. This resulted into lower values of accuracy 691 

computed with IoU_MS (Figure 4, right) because of a significant amount of mismatch between the 692 

predicted and reference BBs at IoU=0.5. Rather than adapting the IoU threshold level, the distance 693 

between centroids is preferred to evaluate the match between predicted and interactively labeled plants. 694 

The accuracy computed with C_MS (Figure 4, right) is significantly larger than that computed with 695 

IoU_MS, particularly for the low accuracy values as well as for the HC method for the reasons exposed 696 

above. Therefore, in the following, the centroid distance is used to compute the terms of the confusion 697 

matrix and the accuracy. Detailed metrics can be found in Table S2. 698 

 699 
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Figure S3: Left: distribution of the typical size of BB annotated and those defined around the 700 

plants identified by the HC method. Right: comparison of Accuracy computed either with 701 

IoU_MS, and with C_MS for HC (green discs), and DL methods (blue squares). 702 

 703 

Table S4. Complete results for the three methods on all sessions. Accuracy, precision and recall 704 

are presented with the IoU matching strategy. 705 

 706 

 707 

 708 

 709 
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