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Figure 8: Demonstration of the Bioscrape process on its own. (a) Topology of the Bioscrape process, which models a
CRN with deterministic (ODE) and stochastic (Gillespie) simulators. Bioscrape has ports connected to "species”, "delta
species", "rates", and "global". (b) Simulation of the Bioscrape process configured with a lac operon model. On the

left — a deterministic simulation models the smooth dynamics of molecular concentrations. On the right — A stochastic
simulation models the discrete events with molecular counts.

sites. Each agent can uptake and secrete molecules at its position in the field. The implementation uses an adaptor
process called "local field", which converts exchanged molecules from the given agent to concentrations at the agent’s

location.

Fig[0b]shows the lattice composite simulated with minimal grow/divide agents. A single initial agent grows and divides
to form colonies of many minimal agents in the environment — as they grow, they push against each other via the
multibody process, and the colony increases in volume. The agents shown in this minimal simulation do not take up
molecules. Therefore, in order to demonstrate the diffusion process, we initialized the system with a concentration

gradient, which lessens over time.
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Figure 9: Demonstration of Lattice composite. (a) Topology of Lattice composite, with a diffusion process and a
multibody process, and ports connected to "fields", "dimensions", and "agents" stores. (b) Three grow/divide agents are
initialized in the lattice. As the agents grows and divide, the multibody process simulates volume exclusion, which
pushes their neighbors away and grows the colony. In this particular case, the agents do not exchange molecules with
the external field, but diffusion can be seen by the spread of molecular concentrations initialized at the top row of the

field.

4.4 Integration

The initial hierarchy and topology of the model are shown in[I0h. Each process described above focuses on a different
aspect of cellular physiology and behavior, applies a different mathematical representation, and formats its data by
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Figure 10: The full, integrated, stochastic version of the model in the Lattice environment. (a) Hierarchy and topology
of the full composite model. The processes and stores are colored by paradigm, with orange nodes associated with
COBRA, green nodes associated with Bioscrape, light blue with division, dark blue with the environment, and brown
nodes associated with the boundary between cell and environment. Main processes are highlighted with a thicker
outline. (b) Snapshots of the colony throughout a simulation. Cells colored according to phylogeny with similar colors
indicating more closely related cells. (¢) The external lactose and glucose concentration fields over the course of the
simulation. (d) Multi-generational timeseries, with variables from all cells shown over time. These colors correspond to
the phylogeny colors of (b). (e) Snapshots of the final simulation state (12.0hr) , with various cell states tagged.
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different standards. Integrating them requires data conversions, and complex mapping of assumptions about their shared
variables. This is achieved with a set of adaptor processes which convert between the expected units, reference frames,
name spaces, data formats, and other representations. Adaptor processes required for integrating the Bioscrape and

COBRA processes with the lattice composite include processes "local field", "mass deriver", "volume deriver"”, "flux
adaptor”, "biomass adaptor".

The COBRA process’ metabolism and Bioscrape process’ gene expression and transport are coupled through a "flux
bounds" store (Fig[IOp), with the Bioscrape process setting uptake rates with the flux adaptor process, and the COBRA
process using them as flux constraints on the FBA problem. The Bioscrape process calculates deltas for each reaction’s
substrates and products with its stochastic kinetic simulator. These deltas are then used by the flux adaptor to calculate
a time-averaged flux, which it passes to the flux bounds store. The COBRA process uses these values to constrain the
FBA problem’s fluxes bounds and thus shapes the resulting flux distribution and overall growth. The Bioscrape and
COBRA processes are also coupled through the transporter proteins and internal metabolite pools that are built up by
metabolism. Changes in the internal metabolite pools trigger the expression of genes (lac genes in this example), which
in turn influence the kinetic transport rates. Thus, a causal loop is implemented between the Bioscrape and COBRA
processes.

The stochastic versus deterministic versions of the composite require different adaptor processes for converting between
counts and concentrations — for example, a "field counts deriver" process was required for the stochastic Bioscrape
process to read external counts of glucose and lactose in a cell’s local environment based on the lattice resolution. The
deterministic model runs much faster and for a larger local environment volume — as the local environment volume
increases, this translates to many counts of glucose and lactose that the stochastic model has to simulate with the
Gillespie algorithm, which is a time-intensive method. Thus, on its own, the stochastic model is limited to very small
external environments and rapid depletion of nutrient. This challenge was overcome by partitioning the environment
with the spatial processes described below. The deterministic simulation has the CRN dilution rate parameter coupled
to the COBRA-determined growth rate with a process called "dilution rate adaptor" — this is not needed for stochastic
simulations, since dilution is handled upon division with the binomial division of molecular counts. Future work would
benefit from having two CRN process running in parallel — one with a stochastic simulators for reactions with small
molecular counts, and one with a deterministic simulator for large counts.

To model cell division, "division" and "divide condition" processes were added to read the agent’s individual cell mass,
and trigger division when it reaches 2000 f g. The mass deriver process takes the counts and molecular weights of these
molecules (produced by the COBRA process), and calculates the total cell mass. The volume deriver process then
calculates various cell shape properties of the cell from its mass, including volume, length, and width. These will be
used by the spatial environment. The divide condition process connects to the mass variable directly, and waits for it to
cross a configured threshold value. When this threshold is passed, a division = True flag is set, which division sees
and performs the hierarchy update that terminates the mother agent and generates two daughter agents — calling each
variable’s "divider" variable to do so.

The environment consists of 2D arrays of concentration values for glucose and lactose, which set the local external
environments for individual cell agents. The local field process converts COBRA process-generated molecular exchanges
into concentration changes in spatial fields. The diffusion process takes the resulting fields, diffuses them, and updates
the local external variables for each agent, so that the agent’s only experience the concentrations at their given location.
The agents grow, when they hit the division threshold they divide, their daughter cells are placed end-to-end, and their
growth pushes upon neighbors with the multibody process. Thus, cell growth and division lead to the emergence of a
colony with many individuals.

The full model (using the stochastic version of the glucose-lactose circuit), was used to simulate a glucose-lactose
diauxic shift (Fig[IOb-e). This simulation is configured with very little initial glucose, so that the onset of lactose
metabolism can be triggered within a few hours of simulation time. As the initial cell grows from a single agent through
multiple generations (Fig[I0p), it initially takes up glucose and not lactose (Fig[I0k,d). The glucose field sites occupied
by the cells are depleted by cellular uptake, but replenished by diffusion from neighboring lattice sites (Fig[I0, top).
The spatial variation in the environment leads to cells experiencing different local concentrations of glucose and lactose.
In response some lac operon RNA is expressed, both stochastically and in response to the local environment in certain
cells (Fig[IOd). Stochastic expression of the lac genes allows lactose to be taken into the cells (Fig[I0k, bottom), but
with different levels of the lac proteins, leading to heterogeneous uptake rates of glucose and lactose, as well as the
cellular growth rate (Fig[I0). By the end of the simulation, there is still slight glucose uptake; the colony is growing
very slowly and is still in lag phase of growth, but lactose-driven growth has become the main driver of colony growth.
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5 Discussion

This paper introduces Vivarium — a software tool for integrative multiscale modeling designed to make it as easy
as possible for users to access, modify, build upon, and integrate existing models. We demonstrated the integration
of several diverse frameworks including deterministic and stochastic models, constraint-based models, hierarchical
embedding, division, solid-body physics, and spatial diffusion. Each process was developed and tested independently,
and was then wired into a larger composite model that coupled the diverse mechanistic representations. We also
introduced the Vivarium Collective, a set of software libraries which include the multiscale engine, vivarium-core,
as well as separate process libraries vivarium-cobra, vivarium-bioscrape, and vivarium-multibody. When released as
a Python package, libraries can be imported into other projects, re-configured, combined with other processes, and
simulated in large experiments. This functional separation helps breaks up the model development methodology and
opens module development to a larger community of contributors.

Vivarium is general. This was demonstrated by the large number of different models representations applied at different
levels of granularity, including processes that interface existing off-the-shelf modeling libraries such as COBRA,
Bioscrape, and pymunk. Scientists and developers can continue working on their preferred modeling framework, yet
plug into broader integrative models with many potential contributors with each lending their own expertise. Its broad
applicability has the potential to unify the many diverse research efforts, and bring about a new integrative modeling
paradigm composed of many constituent modeling frameworks.

Vivarium is flexible. Its emphasis on the interface between models simplifies the incorporation of alternate sub-models,
which supports incremental, modular development. The keys to this feature are the smaller adaptor processes, which
help convert the units, reference frames, name spaces, data formats, and other representations that are expected by
the main mechanistic processes. We demonstrated Vivarium’s flexibility by substituting a stochastic model for a
deterministic one in Sections [3]and ] but Vivarium is capable of substituting a wide range of other modeling types. By
open-sourcing this project, we hope scientists will build upon existing models by adding new processes, making new
predictions, and testing against new data.

Finally, Vivarium is scalable. An integrated model can be built with arbitrary embedded hierarchies of compartments
that could represent mechanisms from the molecular to the ecological, and which can be simulated at multiple time
steps. Its processes can be distributed across a computer architecture with many CPUs, and so support many parallel
mechanisms running concurrently at their preferred timescales. At the time of this paper’s writing, modeling even
the most minimal cells remains a large-scale effort requiring many scientific contributors. Vivarium was originally
conceived and developed specifically to address the challenges associated with whole-cell modeling; namely, integrating
a large number of disparate models into one unified whole. However, it quickly became clear that Vivarium would
also facilitate even more ambitious goals, such as building the first "whole-colony" computational models that can
mechanistically link expression of individual proteins to a population-level phenotype [32].

As multi-scale models such as this one are further developed and expanded, we hope that Vivarium and its successors
will be used to model cell populations, tissues, organs, or even entire organisms and their environments — all of which
are based on a foundation of molecular and cellular interactions, represented using the most appropriate mathematics,
and integrated together in unified composite systems.
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Supplementary materials

Software availability

Vivarium-core, the interface classes and multiscale simulation engine:
https://github.com/vivarium-collective/vivarium-core

The Vivarium Collective Github organization is an online location for various vivarium libraries, including all libraries
used for this paper.
https://github.com/vivarium-collective

Vivarium-notebooks is the repository developed for this paper, with Jupyter notebooks and Python files.
https://github.com/vivarium-collective/vivarium-notebooks

Vivarium interface basics notebook.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/
Vivarium_interface_basics.ipynb

Multi-paradigm composites notebook.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/
Multi-Paradigm-Composites.ipynb

Notebook for constructing the deterministic and stochastic lac operon CRN models with BioCRNpyler.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/Lac_
Operon_CRN.ipynb

Tables

This section includes several tables. Table[2]covers the different types of schemas introduced in Section 3] Updater and
divider schema have their own tables (3|and[d) with methods provided by vivarium-core. In addition to these provided
methods, custom updaters and dividers can easily be defined by the user for any type of desired state. Table 5]includes
the vivarium libraries used for this paper — all of which are freely available at the Vivarium Collective, and on PyPI.

Table 2: Schema. A process’ ports_schema method declares the schemas for variables connected to each port. These
are used to construct the stores, which apply the declared methods during runtime.

Attribute Method

_default The default value of the state variable if no initial value is provided. This also sets the
data type of the variable, including units.

_updater How to apply state variable updates. Available updaters are listed in Table

_divider How to divide the state variable’s values between daughter cells. Available dividers are
listed in Table

_emit A Boolean value that sets whether to log this variable to the simulation database for later
analysis.

_properties User-defined properties such as molecular weight. These can be used for calculating

variables such as total system mass.

Table 3: Updaters available in vivarium-core. Updaters are schema methods by which an update from a process is
applied to a variable’s value.

Name Function

accumulate The default updater. Add the update value to the current value.

set The update value becomes the new current value.

merge Update an existing dictionary with new values, and add any newly declared keys.
null Do not apply the update.

nonnegative_accumulate Add the update value to the current value, and set to 0 if the result is negative.
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Table 4: Dividers available in vivarium-core. Dividers are schema methods by which a variable’s value is divided when
division is triggered.

Name Function

set The default divider. Daughters get the same value as the mother.

binomial Sample the first daughter’s value from a binomial distribution of the mother’s value, and
the second daughter gets the remainder.

split Divide the mother’s value in two. Odd integers will make one daughter receive 1 more
than the other daughter.

split_dict Splits a dictionary of key : value pairs, with each daughter receiving a dictionary with
the same keys, but with each value split.

Zero Daughter values are both set to 0.

no_divide Asserts that this value should not be divided.

Table 5: Vivarium libraries used in this project.

Library Description

vivarium-bioscrape For chemical reaction networks with SBML.

vivarium-cobra For constraint-based models of metabolism, with BiGG model interface.

vivarium-multibody Lattice composite model used for spatial multi-cell interactions.

vivarium-template A template library that can be cloned to get a new vivarium project started.

vivarium-scripts A collection of scripts to access and modify saved simulations from the
database.

Code examples

This supplementary subsection includes some code listings demonstrating more advanced methods for specifying
models with Vivarium.

Listing 3: Declaring custom updaters and dividers in port_schema. Updaters are functions that take a current_value
and a update_value, and return the new value. Dividers are functions that take a mother_value, and a state, and
return two values in a list — one for each daughter.

# updater that returns a random value
def random_updater(current_value, update_value):
return random.random()

# divider that returns a random value for each daughter
def random_divider(mother_value, state):
return [
random.random(),
random.random()]

def port_schema(self):

ports = {
‘portl": {
'variablel": {
' default: 1.0
"_updater”: {

'updater': random_updater

"_divider": {
'divider": random_divider

}
}

return ports
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Listing 4: Using glob (’*”) schema to declare expected sub-store structure. In this example, port1 is connected to
sub-stores specified by a glob schema. This allows the process to read anything that portl connects to which adheres to
its declared schema. Sub-stores can be added and removed during runtime, and the process will see it.

def port_schema(self):
ports = {
‘portl": {
I*V: {
'_default": 1.0
}

}
}

return ports

Listing 5: Declaring process-store connections with generate_topology. A topology is a Python dictionary with
keys for processes, and subkeys for their ports which map to paths at which they will connect to stores. A flat network
does not require a path, just a store name at the same level. There are three different syntaxes possible for declaring
paths — Multics string, Unix string, and Unix tuple. The default used within the engine is a Unix tuple, but the other
syntaxes can be used in a composer to simplify code readability, and are converted to Unix tuples.

def generate_topology(self, config):

topology = {
# Multics string example
'‘process1": {

‘portl": 'path>to>store', # connect port! to inner compartment
'port2': '<outer_store' # connect port2 to outer compartment

1

# Unix string example

'process2': {
‘portl': 'path/to/store’, # connect portl to inner compartment
‘port2': '../outer_store' # connect port2 to outer compartment

1,

# Unix tuple example

‘process3": {
‘portl": ('‘path','to','store"), # connect portl to inner compartment
‘port2': ('..",'outer_store') # connect port2 to outer compartment

}

}

return topology
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Listing 6: Splitting a port into multiple stores with generate_topology. Variables read through the same port can
come from different stores. To do this, the port is mapped to a dictionary with a _path key that specifies the path to the
default store. Variables that need to be read from different stores each get their own path in that same dictionary. This
same approach can be used to remap variable names, so different processes can use the same variable but see it with
different names.

def generate_topology(self, config):
topology = {
# split a port into multiple stores
'process1": {
‘port': {
'_path': (‘path_to','default_store"),
'rewired_variable": ('path_to','alternate_store')
}
}

# mapping variable names in process to different name in store
‘process2": {
‘port: {
'_path": (‘path_to','default_store'),
'variable_name': 'new_variable_name'

}
}

return topology
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