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ABSTRACT

Motivation: This paper introduces Vivarium – software born of the idea that it should be as easy as
possible for computational biologists to define any imaginable mechanistic model, combine it with
existing models, and execute them together as an integrated multiscale model. Integrative multiscale
modeling confronts the complexity of molecular and cellular biology by combining heterogeneous
datasets and diverse mechanistic modeling strategies into unified representations. These integrated
models are then run to simulate how the hypothesized mechanisms operate as a whole. But building
such models has been a labor-intensive process that requires many contributors, and they are still
primarily developed on a case-by-case basis with each project starting anew. New software tools that
streamline the integrative modeling effort and facilitate collaboration are therefore essential for future
computational biologists.
Results: Vivarium is a software tool for building integrative multiscale models. It provides an
interface that can make any mechanistic model into a module that can be wired together into larger
composite models and then parallelized and run across multiple CPUs with Vivarium’s simulation
engine. The utility of this software is demonstrated by building multi-paradigm composite models that
combine several popular modeling frameworks: agent based models, ordinary differential equations,
stochastic reaction systems, constraint-based models, solid-body physics, and spatial diffusion. This
demonstration shows just the beginning of what is possible – future efforts can integrate many more
types of models and at many more biological scales.
Availability: The simulations and output used for this paper are available as Jupyter notebooks
at https://github.com/vivarium-collective/vivarium-notebooks. The vivarium-core
multiscale engine has been released as a PyPI library and can be installed with pip install
vivarium-core. Additionally, vivarium-core is open-sourced for development at https://github.
com/vivarium-collective/vivarium-core. Vivarium libraries used for this paper are listed in
the Supplementary materials.
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1 Introduction

Our understanding of biological phenomena stands to be dramatically improved if we can adequately represent
the underlying systems, mechanisms, and interactions that influence their behavior over time. Generating these
representations, most commonly via mathematical and computational modeling, is made challenging by the complex
nature of such systems. We have seen a proliferation of diverse observational data on the molecular composition, spatial
organization, and dynamics of thousands of cell types [1]. The most common modeling approaches today that use
such data sets are statistical, extracting meaning by fitting functions such as regression, cluster analysis, and neural
networks. Although these models have been successful at approximating correlations among observed variables, the
structures of the models are not easily interpretable, making it difficult to derive biological mechanism from their
predictions. In contrast, mechanistic models are designed to reproduce observed data by representing causality [2]. Thus,
the mathematical form and parameters of mechanistic models are testable hypotheses about the system’s underlying
interactions. In other words, mechanistic models can provide unique insights that can confirm or refute hypotheses,
suggest new experiments, and identify refinements to the models. Some exciting progress has recently been made in
combining both strategies [3, 4].

Mechanistic models in computational biology have deepened our understanding of diverse domains of biological
function, from the macromolecular structure and dynamics of a bacterial cytoplasm with atomistic models [5], the ly-
sis/lysogeny switch of bacteriophage lambda with a stochastic kinetic model [6], bacterial growth in different conditions
with constraint-based models of metabolism [7], and cell-based models of quorum sensing in bacterial populations [8].
However, such models generally target a mechanism in isolation, with a single class of mathematical representation,
and focus on a narrow range of resulting behavior. A logical next step in the development of computational biology is to
combine these components and build upon their insights, so we can better understand how their represented mechanisms
operate together as integrated wholes. Organisms are fundamentally multi-modal and multiscale, driven by mechanisms
ranging from individual molecular binding events or conformational changes, to the growth and development of
ecosystems over evolutionary time. To accurately represent such systems, our models must also be multi-modal and
multiscale.

Integrative models combine diverse mechanistic representations with heterogeneous data to represent the complexity
of biological systems. There have been several such efforts including the integrative modeling of whole-cells [9, 10],
macro-molecular assemblies [11], microbial populations [12], and even some work towards whole-organisms [13].
They have shown some success in capturing the emergence of complex phenotypes – but many challenges remain to the
extensibility of the resulting models and to their widespread adoption. This results in a loss of research momentum and
an apparent ceiling on model complexity. The ideal model would be not only be integrative in terms of incorporating
diverse mathematical approaches and biological functions, but also in terms of bringing together the vast scientific
expertise across the globe. What is therefore required is a methodology that brings molecules and equations, as well as
labs and scientists, together in this effort.

In this regard, software infrastructure can greatly facilitate the development of integrative models. Two major areas
of development in this space are standard formats and modeling frameworks. Standard formats allow models to be
shared and distributed between different software tools – just as HTML allows web pages to be viewed across multiple
browsers and devices. Popular formats for systems biology include FASTA for sequence encoding [14], the Systems
Biology Markup Language (SBML) for chemical reaction network (CRN) models [15], and Synthetic Biology Open
Language (SBOL) for structural and functional information [16]. Model frameworks provide generic functions and
objects that can be selectively changed by users to write and simulate custom models within that framework. These
include COPASI for stochastic simulations [17], Smoldyn for particle-based reaction-diffusion models [18], COBRA
for constraint-based models [19], MCell for Monte Carlo models [20], ECell for stochastic reaction-diffusion models
[21], cellPack for spatial packing of molecular shapes [22], CompuCell3D for cellular Potts models [23], PhysiCell for
3D physical models of multicellular systems [24], and BioNetGen for rule-based models [25]. However, standards and
frameworks often come with significant constraints, and trying to build a model of novel phenomena almost always
comes upon the limitations of what the standards can specify. Committing to one approach can exclude insights that
could be gained from others, and to date there is no established method to connect different approaches.

What we therefore need is a software solution for heterogeneous model integration, which allows many modeling efforts
to be extended, combined, and simulated together. If standard modeling formats are like an HTML for systems biology,
we need an "interface protocol" – analogous to TCP/IP for the Internet – which allows diverse pieces of software to
connect, communicate, and synchronize seamlessly into large, complex, and open-ended networks that anyone can
contribute to. This software should adopt design principles that free contributors to develop whatever model they want,
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yet still integrate with and build upon prior work. With this software, collective effort will be more efficiently harnessed
to build models with a far wider scope.

This paper introduces Vivarium – software born of the idea that it should be as easy as possible for computational
biologists to define any imaginable mechanistic model, combine it with existing models, and execute them together as
an integrated multiscale model. Similar approaches have been developed for computer modeling of cyber-physical
systems with Ptolemy II [26] and Modelica’s Functional Mock-up Interface [27]. Recently, related methods have
also begun to be applied to plant modeling with yggdrasil [28], and to synthetic and systems biology with modular
environments such as Tellurium [29] and Simbiotics [30].

Our efforts were catalyzed by the needs we had related to whole-cell modeling – flexible integration of diverse
frameworks, large simulations, hierarchical embedding, division (to support one model instance becoming two), and
parallel execution. We found the solution could be useful more generally, for example with the incorporation of motility
and chemotaxis [31], and other functionality we had not even considered before [32]. By explicitly separating the
interface that connects models from the frameworks that implement them, Vivarium establishes a modular design
methodology that supports flexible model development. The Vivarium interface is applicable to any type of dynamical
model – ordinary differential equations (ODEs), stochastic processes, Boolean networks, spatial models, and more –
and allows users to plug these models together in integrative, multiscale representations. Here, we describe a multiscale
simulation engine, vivarium-core, that combines and runs these models as systems evolving over time. We also present
the Vivarium Collective, a GitHub organization of open-source software libraries, with modular models that can be
imported into new projects, reconfigured, and recombined to generate entirely new models. The software has been
designed to make it straightforward to publish Vivarium models as Python libraries on the Python Package Index (PyPI)
to share with the community to plug into existing public or private models.

This paper is organized as follows. Section 2 provides a high-level overview of Vivarium’s features and introduces
its terminology. Section 3 goes into greater detail as it builds an example system, starting with a deterministic model
of unregulated gene expression, and then adding complexity through stochastic multi-time stepping, division, and
hierarchical embedding in a shared environment. This example is built up incrementally, highlighting key features
of the methodology that enable incremental construction of complex models. Next, Section 4 combines several
modeling paradigms into a composite model by interfacing popular modeling frameworks, with a flux-balance model of
metabolism simulated with COBRA [19], a stochastic CRN simulated with Bioscrape [33], and a solid-body physics
engine for spatial multi-cell interactions simulated with pymunk [34]. All of the examples are available in Jupyter
notebooks, designed so that readers can follow along in the code and execute the examples that are described in this
paper.

2 Vivarium overview

Vivarium was developed as a synthesis of integrative "whole-cell" modeling and multiscale "agent-based" modeling,
implemented in Python with modular software libraries. Vivarium does not include any specific modeling frameworks,
but instead focuses on the interface between such frameworks, and provides a powerful multiscale simulation engine
that combines and runs them. Users of Vivarium can therefore implement any type of model module they prefer –
whether it is a custom module of a specific biophysical system, a configurable model with its own standard format, or a
wrapper for an off-the-shelf library. The multiscale engine supports complex agents operating at multiple timescales,
and facilitates parallelization across multiple CPUs.

Vivarium’s basic elements are processes and stores (Fig 1a,b; see Table 1 for a list of key definitions), which can be
thought of as software implementations of the update functions and state variables of dynamical systems. Consider
the difference equation ∆x = f(r, x) ·∆t. A Vivarium store is a computational object that holds the system’s state
variables x. A Vivarium process is a computational object that contains the update function f , which describes the
inter-dependencies between the variables and how they map from one time (t) to the next (t + ∆t). Processes are
configured by parameters r, which give the update functions a distinct shape of mapping from input values to output
values

Processes include ports, which allow users to wire processes together through variables in shared stores. Variables
in a store each have a schema, which declare the data type and methods by which updates to the variable are handled
(schema types are listed in Supplementary materials, Table 2) – this includes methods such as updater, for applying
updates to the variables (Supplementary materials, Table 3), and divider, for generate daughter states from a mother state
(Supplementary materials, Table 4). A topology (short for "process-store interaction topology") is a bipartite network
that declares the connections between processes and stores, and which is compiled to make a composite model with
multiple coupled processes. Ideal processes do not have hidden private states, and expose their states by externalizing
them in stores. But sometimes private states are unavoidable, and could actually be used to improve performance since
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Table 1: Elements of the Vivarium framework. The first use of these terms in the text are shown in italics. Some of
these elements have software analogs, which are referenced in monospaced code format.

Term Definition
Process A modular sub-model that encodes a biological mechanism and can be composed with other

processes to create a larger composite model. Particular process instances are created as
subclasses of the Process class.

Store A collection of state variables read by the processes, which contains methods for applying the
processes’ updates. State variables in stores that are shared by multiple processes are the only
means of communication between those processes. A Store class instance is automatically
constructed based on the processes’ declared variables and their schema.

Port A named connector on a process that gets connected to a store. Processes can declare one or
more port, and the state variables they want to receive through these ports.

Schema A state variable’s declared data type, default value, and methods such as updaters and dividers,
by which updates to the variable are handled. Schemas are declared by the processes’ and are
used to initialize stores at the start of a simulation.

Topology Short for "process-store interaction topology", this is a bipartite network that declares how to
connect processes to stores. It is declared as a Python dictionary for each process, with port
names mapped to paths where stores are expected.

Composite An integrated model with multiple initialized processes, and whose connections to stores are
specified by a topology. A Composite class has processes and a topology; it is passed to the
engine to create the required stores.

Composer A composer (an instance of the Composer class) generates composites by initializing a set of
processes and specifying the topology for how they are wired together.

Deriver Deriver is a subclass of Process. Deriver instances runs after the other processes and calculate
additional state values from other available state variables – for example, concentrations from
molecular counts. These are used to offload complexity from the dynamical processes.

Compartment A store that contains inner stores and processes, rather than the standard store with state variables.
Processes can connect to other compartments through boundary stores.

Hierarchy Short for "compartment hierarchy" – a hierarchical network with nested stores, like a directory
structure. A hierarchy’s structure can be updated during simulation runtime with update methods
such as divide, move, and add.

Engine vivarium-core’s engine is the Experiment class. It accepts processes and a topology, creates
the stores and connects processes to it, and runs the integrated model forward in time.

they do not have to synchronize. Externalizing state variables in stores allows other processes to wire to the same
variables, which couples those processes – they read from and update these same variables as the simulation runs
forward in time.

Processes can be connect to stores across a hierarchical representation of nested compartments. Vivarium uses a bigraph
formalism [35] – a network with embeddable nodes that can be placed within other nodes, and which can be dynamically
restructured. This contrasts with the standard "flat" network that has all nodes at a single level, and usually with fixed
connectivity. A compartment is a store node with internal nodes, which can include its own internal processes and
the standard variable-containing stores (Fig 1d). A hierarchy is a place graph, or directory structure, which defines
inner/outer nesting relations between compartments (Fig 1e). Boundary stores connect processes across compartments
in a hierarchy – these make compartments themselves into pluggable models that can be embedded in a hierarchy. Just
as with biological systems, compartments are the key to a model’s complexity – they organize systems into hierarchies
of compartments within compartments, with modules that can be reconfigured and recombined.

The Vivarium engine (vivarium-core’s Experiment class) is provided with the processes and a topology, it constructs
the stores based on the processes’ declared schemas for each port, assembles the processes and stores into a hierarchy,
and executes their interactions in time. Processes can declare their own required time step, and can update their time
steps during runtime based on the state of the system. The engine advances the simulation forward by tracking the
global time, triggering each process at its respective time step, retrieving updates at the end of each process’ time step,
and passing these updates to the connected stores (Fig 4c). The structure of a hierarchy is also dynamic and allows for
stores, processes, and entire compartments to be created, destroyed, or moved during runtime. This allows for modeling
important biological mechanisms that include forming, destroying, merging, division, engulfing, expelling, etc (Fig 4d).

Whereas agents in typical agent-based models follow a minimal set of simple behaviors, Vivarium aims to support
large models with thousands of integrated mathematical equations. To accommodate these demands, Vivarium can
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Figure 1: Vivarium’s model interface, illustrating the terms in Table 1. (a) A Process, shown as a rectangular flowchart
symbol, is a modular models that contain the parameters, an update function, and ports. (b) A Store, shown as the
flowchart symbol for a database, holds the state variables and schemas that determines how to handle updates. (c)
Composites are bundles of processes and stores wired together by a bipartite network called a topology, with processes
connecting to stores through their ports. (d) Compartments are processes and stores connected across a single level.
Processes can be wired across compartments through boundary stores. (e) Compartments are embedded in a hierarchy –
depicted as a hierarchical network with discrete layers. Outer compartments are shown above and inner compartments
below.

distribute processes onto different OS processes – which we call threads to avoid confusion with Vivarium processes
(Fig 4b). Communication between parallel processes on separate threads is mediated by message passing with Python’s
multiprocessing library. Simulations have run on Google Compute Engine node with hundreds of CPUs [32].

To facilitate collaborative model development, Vivarium provides a modular system that simplifies the incorporation of
alternate sub-models. This allows users to 1) write their own processes, composites, and update methods, 2) import
libraries with processes developed for different projects, 3) reconfigure and recombine existing processes, and 4) make
incremental changes (add, remove, swap, reconfigure) and iterate on model designs that build upon previous work.
Auxiliary processes are provided to offload complexity from the main processes. As a Python library, Vivarium is
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simple to install and import into existing workflows – including Jupyter notebooks, as will be demonstrated in Section 3
and Section 4.

Thus, Vivarium enables us to tackle unprecedented challenges in the modeling of biological systems, bridging method-
ologies such as whole-cell modeling and agent-based modeling. The plug-in system lowers the barrier to contribution,
so that new users can more easily encode new processes and plug them into existing systems. Finally, the vivarium-core
code base has been released under the MIT license, permitting open development and re-use. Users can freely build
upon existing models by adding new processes, making new predictions, and testing against new data.

3 Interface basics

This section introduces the elements and methodology of Vivarium by working through an example system of unregu-
lated gene expression. We provide supplementary Jupyter notebooks (the links are provided in Supplementary materials
section 5) that implement each of the examples in executable code – technical readers are encouraged to have these
notebooks open as they read through this section.

The guiding example separates gene expression into two processes: transcription – in which a gene is transcribed to
form mRNA, and translation – in which the mRNA is translated to form a protein. We start by representing each of
these functions as simply as possible with difference equations, and run them on their own. We then integrate them
in a composite model and simulate them together. Next, we replace the deterministic transcription process with a
stochastic process, and run a hybrid deterministic/stochastic simulation of gene expression that includes variable time
steps. Finally, processes for cell growth and division are added, which allow the system to split into many separate
agents that run in parallel in the simulation.

3.1 Transcription process

The transcription process used here is called "Tx", and models mRNA synthesis from DNA. We define a system with a
single mRNA species, C, transcribed from a single gene, G. The chemical reaction network (CRN) – which specifies
reactants, products, and a set of reactions – takes the form:

G
ktx−−→ G+ C,

C
kdeg−−−→ ∅.

This CRN can be simulated with the difference equation

∆C = (ktxG− kdegC)∆t,

with C expressed from G at rate ktx, and degraded at rate kdeg . Quantities are in concentrations (mg/mL) – this comes
in useful later when converting to concentrations from counts. For pedagogical reasons, this model ignores gene copy
number, RNA polymerase abundance, strength of gene promoters, and availability of nucleotides – features that could
potentially be added later to improve the model’s realism.

Ports. An illustration of Tx is shown in Fig 2a. G and C are read through different ports, "DNA" and "mRNA", which
are connected to two different stores, also called "DNA" and "mRNA". By default, a process’s ports connect to stores
that have the same name – the next subsection demonstrates more complex mappings. For a small model with only two
variables splitting the variables into separate ports might seem excessive, but for larger models this is a useful design
principle. Generally, port design should be used to organize variables by useful categories: locations such as cytoplasm,
membrane, chromosome; molecule groups such as metabolites, proteins, chromosomes; or by other categories such as
global variables, fluxes, concentrations.

Process interface. Listing 1 shows Python code for the Tx process – an instance of the Process class. Making a
process requires implementing the process interface, which involves the following constant and methods: 1) defaults:
This class constant declares expected parameter names and values – even if only with empty values that get replaced
upon initialization. The process constructor (__init__) accepts a list of parameters when a process is initialized, which
override the defaults. 2) ports_schema: This method declares a process’ ports ("RNA" and "DNA"), the variables
that are accessed through those ports (C and G), and their required schemas (Supplementary materials, Table 2). Any
type of value can be used in the schema, such as integers, arrays, or more complex data structures. For novel data
types, new schema methods such as updaters and dividers might be required – these are modular and can be defined by
users. Updaters and dividers available with vivarium-core are listed in (Supplementary materials, Tables 3 and 4). 3)
next_update(): This method contains the dynamical model. The steps of this method involves retrieving the variables
through the ports, applying the encoded mechanism for the time step’s duration, and returning the update for each port.
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class Tx(Process):
defaults = {

'ktx': 1e−2,
'kdeg': 1e−3}

def ports_schema(self):
return {

'mRNA': {
'C': {

'_default': 100 * units.mg/units.mL,
'_updater': 'accumulate',
'_emit': True}},

'DNA': {
'G': {

'_default': 10 * units.mg/units.mL,
'_emit': True}}}

def next_update(self, time step, state):
# Retrieve the state variables
G = state['DNA']['G']
C = state['mRNA']['C']

# Run the model
dC = (self.parameters['ktx']*G −

self.parameters['kdeg']*C) * time step

# Return an update
return {

'mRNA': {
'C': dC}}

Listing 1: Python implementation of the minimal transcription process, Tx. This demonstrates the Vivarium process
interface. Defaults correspond to default parameter values which can be overwritten in the Process constructor. Unit
conversions are supported by the pint library [36]. States are Python dictionaries which encode the file structure of a
Vivarium model. Updates are similarly returned as in the same hierarchical dictionary format.

Simulating a process. The output of Tx is shown in Fig 2b. Individual processes can be run on their own by the
simulation engine, which initializes the stores, runs the simulation, and saves the output. A simple process uses a basic
simulation loop, shown in Fig 4a. Each experiment is configured with an emitter, which logs the state of variables
marked to emit during runtime – marking a variable to emit can be declared in the process’ port_schema. If the emitter
is connected a database (we use mongoDB), the saved data can be retrieved from the database for visualization and
analysis at any time during or after a simulation run.

3.2 Transcription/Translation composite

Next, we integrate the Tx transcription process with a translation process called "Tl", whose implementation is not
shown here but is available in the supplementary notebook. Tl takes a similar form to Tx, but with protein X translated
from mRNA C and degraded:

∆X = (ktlC − kdeg,XX)∆t.

As before, units are in concentrations (mg/mL). As a simplifying assumption, translation rate considers ribosome
availability, strength of ribosome binding to mRNA, availability of tRNAs and free amino acids to all be part of one
lumped constant.

Fig 3a illustrates the composite model called "TxTl", with Tx and Tl both wired to a shared store called mRNA. This
couples the two processes, so that mRNAs synthesized by Tx impacts the expression of proteins by Tl.

Composer interface. Composer is a class that generates composites. A given composer’s inherited generate()
method calls generate_processes() to construct the processes and generate _topology() to wire the processes
to the stores. Then, it returns a composite that is ready for execution. Making a composer involves the following three
class attributes: 1) Composers have their own defaults for parameters, which can override the default parameters
for individual processes, thus providing easy access for parameter scans and learning algorithms to adjust the full

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441657
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - APRIL 27, 2021

(a)

DNA

mRNATx

DNA

mRNA

(b)

0

50

100
mRNA: C (milligram / milliliter)

0 2000 4000 6000 8000 10000
time (s)

9.5

10.0

10.5
DNA: G (milligram / milliliter)

Figure 2: Tx – a transcription process. (a) The system’s topology, with process Tx wired to two stores – DNA and
mRNA – through ports of the same name. (b) Simulation output. The DNA G remains fixed at its initial value, and the
mRNA C increases up to a steady state.

class TxTl(Composer):
defaults = {

'Tx': {},
'Tl': {}}

def generate_processes(self, config):
return {

'Tx': Tx(config['Tx']),
'Tl': Tl(config['Tl'])}

def generate_topology(self, config):
return {

'Tx': {
'DNA': 'DNA',
'mRNA': 'mRNA'},

'Tl': {
'mRNA': 'mRNA',
'Protein': 'Protein'}}

Listing 2: Python code for the TxTl Composer. This demonstrates the composer constants and interface
methods. Processes are initialized in generate_processes and their ports are wired to stores by declaring a
topology in generate_topology. Listing 5 in the Supplementary materials includes more advanced examples of
generate_topology, including connecting ports to stores at different levels of the hierarchy, splitting a port into
multiple stores, and connecting variables with different names.

composite’s behavior. 2) The generate_processes() method constructs a composite’s processes in a dictionary,
which maps each of their names to the instantiated process objects. 3) The generate_topology() method returns a
topology dictionary that declares how each process’s ports connect to stores in the hierarchy. The TxTl composite is
specified in listing 2. Default parameters are empty so the processes will use their own defaults if none are supplied.
Each process is constructed in generate_processes(), and wired together in generate_topology(). Tx’s DNA
port maps to a store called "DNA", Tl’s protein port maps to a store called "Protein", and both Tx and Tl get wired to
the same "mRNA" store containing the state variable "C", thus coupling the two processes together.

Simulating a composite. The Vivarium engine runs TxTl to produce the simulation output shown in Fig 3b, where the
mRNA reaches a steady-state as before while the protein concentration increases over time following a logistic-like
curve.

3.3 Swapping processes for added complexity

Importantly, Vivarium enables users to compare competing models of a given process, simply by exchanging one for
the other and simulating the resulting behaviors. The interface introduced above makes it easier to define and integrate
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Figure 3: The TxTl composite with Tx transcription and Tl translation. (a) The model’s topology and process declaration.
Tx is the same as in Fig 2, and Tl is a new process with ports for mRNA and protein. Both processes are wired to
the same mRNA store, thus coupling them together. (b) The simulation output of this model is the same as in Fig 2
showing DNA G and mRNA C, but with added protein X also being expressed.

process modules – now we demonstrate how changes in the sub-models, building off prior model design, can provide
additional model functionality.

We begin by replacing the deterministic transcription process, Tx, with a stochastic process called "stochastic Tx". The
biological reasoning for this might be that in individual cells many genes are transcribed at low expression rates and
synthesize small counts of mRNA, which leads to stochastic behavior. We use the Gillespie algorithm [37] – a discrete
and stochastic method for systems with few reactants – to simulate individual reactions. The Gillespie algorithm can be
broken into two steps – one for calculating the time which elapses before an event occurs, and the other for determining
the nature of that event. Stochastic simulations require variable time steps; for example, the distribution of time steps in
a simulation using stochastic Tx is shown in Fig 5c.

The Gillespie algorithm operates on molecular counts – every reaction event increases the counts of the products and
decreases the counts of the substrates. Thus, the model needs to convert the molecular counts from the stochastic Tx
process to concentrations for input to the Tl process. To perform this conversion, we add an auxiliary deriver process.
Deriver is a subclass of Process, whose instances run after the dynamic processes, and derives some state variables
from others. The vivarium-core library provides several general-purpose derivers. In the current example we instantiate
a deriver called "counts to mg/mL" in Fig 5 – this deriver calculates new concentrations from counts after every step.

Simulating multiple timescales. For processes to operate at different timescales, the simulation engine handles updates
on a per-process basis (Fig 4c). At the start of each process’ time step, the engine retrieves the process’ required time
step by calling its calculate_timestep method with the current state of the system. By default, the process returns
a fixed time step that can be declared in their parameters, but stochastic Tx calculates a new time step by using the
Gillespie algorithm. After retrieving the time step, the engine calls the process’ next_update method with the current
state of the system. When the system time reaches the end of the process’ time step, it retrieves the update and applies
it to the system state. This way, all processes can run at their preferred timescales. With the current version of the
engine, the user needs to make sure the time steps of the processes are synchronized with each other to avoid numerical
issues. Future versions can introduce a specialized adaptor process to handle the processes’ time steps in a way that
automatically ensures coordination.

3.4 Hierarchical embedding

Up to this point, each model had a fixed number of processes and stores, with a fixed topology. In contrast, cell division
requires a hierarchy with agents embedded in a shared environment, within which the cell agents can grow and divide.
The hierarchy needs to launch new processes and stores for each agent created during runtime.
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Figure 4: The engine takes the system and runs it forward in time. (a) A basic simulation cycle has processes view
the states through their ports, run their update function for a given time step, and return an update. (b) Any process
can run in an OS process, which is placed on a long-running CPU thread, with state views and updates handled by
message-passing. This allows for scalable simulation on computers with many CPUs. (c) Processes can run at different
time scales, and using variable time steps. Here, Tl is shown operating at fixed time steps, and stochastic Tx is operating
at variable time steps determined based on the state of the system at each time step’s start. (d) A series of hierarchy
updates depicts a compartment added by a divide update, then a compartment subsumed into a neighbor by an engulf
update, then the engulfed compartment is deleted with a burst update. Other hierarchy updates include merge, add, or
delete.

Agents and environments. When one compartment is nested in another, the inner compartment can be considered an
agent and the outer compartment its environment. Coupling between an agent and an environment is supported by their
processes sharing variables in boundary stores. For example, agent processes can update boundary variables required by
environmental process such as agent volume, shape, motile forces, and uptake of molecules. Environmental processes
can update the boundary conditions of agents’ internal processes; for example, local molecular concentrations, and
temperature. In the current example, a process called "colony volume" is added to the environment to calculate the
volume of all the agents together (Fig 6a). This derived population-level state variable could in principle be used to
drive other mechanisms – for example if simulated in a gut microenvironment, bacterial colony volume variable could
be used to impact the host’s digestion.
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Figure 5: Stochastic transcription with deterministic translation. The stochastic process adjusts its time step based on
the total propensity of the system, which is recalculated at every step. (a) The topology, showing the stochastic Tx
process, the counts to mg/mL concentration deriver, and the deterministic Tl process. Counts to mg/mL is connected to
a "global" store, which holds the volume variable required to calculate concentrations. (b) The simulation output shows
stochastic dynamics of mRNA, and the impact of this stochasticity on the protein concentration. (c) Histogram shows
the variable time steps resulting from running stochastic Tx on its own for 10, 000 seconds. Tl on its own runs at fixed 1
second intervals.

Advanced process-store topology. Up to this point, the system comprised a single compartment (i.e., a single cell).
Accordingly, each topology specified a simple path from each port to a store in the same compartment – a "flat" network.
Now, we model the environment as an outer compartment which can contain one or more cells. This requires advanced
specifications in a composer’s generate_topology that connect a processes’ ports to stores further up or down the
hierarchy. A port connects to a store in the hierarchy by specifying a path, which could go up the hierarchy to stores
in outer compartments; or down the hierarchy to stores contained in inner compartments. generate_topology also
supports splitting ports to draw from variables in separate stores, merging ports to draw from the same store, and
aliasing names to variables to connect models with different variable names. Some of these additional techniques
are used in Section 4. A few technical examples of these advanced topology methods are included in Supplementary
materials section 5.

In the current example, the colony volume process reads the counts of all molecules through an "agents" store, which
contains all of the individual agent instances – each with its own DNA, mRNA, and Protein, and global stores. Colony
volume is configured to read the volumes in the individual global stores, and calculates total colony volume.

Division. To enable a compartment to divide during runtime, Vivarium provides a division process that is configured
with a divide condition, which when true triggers division. A configurable condition means the process could be reused
for more sophisticated cell models, for example based on the completion of chromosome segregation or the formation
of a septum. Upon division, the mother’s variables’ states are divided between daughter agents based on those variables’
’divider’ schema methods (Table 4).

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441657
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - APRIL 27, 2021

(a)

stochastic
Tx Tl

counts
to

mg/mL
division stochastic

Tx Tl
counts

to
mg/mL

division

Colony
Volumeagents

1

DNA RNA Protein global

2

DNA RNA Protein global

(b)

# make txtl composite with agent id "0"
agent_id = '0'
txtl_composer = TxTlDivision(agent_config)
agent0 = txtl_composer.generate(

{'agents': agent_id})

# make a colony composite
colony_composer = ColonyVolume()
colony_composite = colony_composer.generate()

# perform merge
# agent0 in store "0", under "agents"
colony_composite.merge(

composite=agent0,
path=('agents', agent_id))
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Figure 6: Hierarchical embedding and division. (a) Topology plot of the embedded hierarchy, with two cell agents.
This plot was generated after one division event occurred, to illustrate how embedding works in Vivarium. Solid edges
reflect hierarchy’s directory structure, with "agents" at the top level. Dashed edges are topology connections between
processes and the stores. (b) A script for making a composite model from a TxTl agent and a colony-level process
to measure total colony volume. Agent 0 agent is placed within an ‘agents‘ store, while Colony Volume is placed
at the top level. The simplicity of the merge operation provides a flexible API for combining different models. (c)
Simulation output of model over multiple generations of growth and division. Many instances run in parallel by the end
of the simulation. The bottom plot shows the total colony volume, calculated from the full set of cell models within the
environmental compartment.

For our example system, we initialize agents at 1000 fg, and trigger division when they double that mass. Fig 6c shows
how the output over four generations of growth and division, starting off with a single stochastic TxTl instance that
splits into two independent instances and then four and then eight – each of which exhibits its own distinctive behavior.

Compartment hierarchy updates. In biological systems, the nesting of compartments can be rearranged over time
with behaviors such as engulfing, merging, and division. To support these behaviors, hierarchies in Vivarium can also
be restructured during runtime (Fig 4d). There are several built-in hierarchy update methods including move, add,
delete, divide, and generate. Processes can trigger these in different combinations to generate a wide range of possible
behaviors including merge, two neighboring compartments combine into one; burst, a compartment combines with
its environment; engulf, one compartment is moved inside of a neighboring compartment; and expel, a compartment
moves to be a neighbor of its outer compartment. All of these are available in vivarium-core.
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Fig 6a shows the hierarchy after one division event, with two agents embedded in the top-level "agents" store. This
requires the simulation to instantiate new agents – remove the mother agent, and generate two daughter agents with the
mother’s composer, and an inherited state.

4 Multi-paradigm composites

In the previous section, we were able to introduce many of the core functionalities supported by Vivarium using a simple
example. In this section, we demonstrate the power of Vivarium by applying it to much more complex, real-world
examples. Specifically, we use Vivarium to integrate several modeling paradigms, building wrapper processes around
existing libraries and wiring them together in a large composite simulation. COBRA is used for flux-balance analysis
[19], Bioscrape is used to simulate chemical reaction networks [33], and pymunk is used as a solid-body physics engine
for spatial multi-cell physics [34]. The result is a multi-paradigm model of an E. coli colony with many individual cells
in a spatial environment, that collectively undergo a lactose shift in response to glucose depletion. This section describes
each process and the integration approach briefly, and then focuses on the final integrated product. For interested
readers, we strongly recommend the supplementary Jupyter notebook, which shows the incremental development steps,
describes strategies for their integration, and displays the resulting emergent behavior.

When grown in media containing the two sugars glucose and lactose, a colony of E. coli will first consume only the
glucose until it is depleted; the colony will then enter a lag phase of reduced growth, which is followed by a second
phase of growth from lactose uptake. During the glucose growth phase, the expression of the lac operon is inhibited
while glucose transporters GalP and PTS are expressed. When external glucose is depleted, cells at first do not have
the capacity to import lactose. The lac operon controls three genes: lacY (Lactose Permease) which allows lactose
to enter the cell, lacZ (β-Galactosidase) which degrades the lactose, and lacA (Galactoside acetyltransferase) which
enables downstream lactose metabolism. Once the operon is activated and proteins are expressed, the metabolism shifts
to lactose and growth resumes. See [38] for a more comprehensive overview.

For this example, a flux-balance model of E. coli is used to model overall cellular metabolism, while the details of the
glucose-lactose regulatory, transport and metabolic circuit are represented by a chemical reaction network model.

4.1 Flux-balance analysis with COBRA

Flux balance analysis (FBA) is an optimization-based metabolic modeling approach that takes network reconstructions
of biochemical systems, represented as a matrix of stoichiometric coefficients and a set of flux constraints, and applies
linear programming to determine flux distributions, for example those that maximize the production of biomass based
on the known composition of metabolic end-products [39]. A strength of FBA is its capacity to simulate whole-network
flux distributions using a minimal set of parameters. FBA is made dynamic (called dFBA) by iteratively re-optimizing
the objective with updated constraints at every time step [40]; these constraints change with environmental nutrient
availability, gene regulation, or enzyme kinetics. Many useful tools related to building and simulating FBA models have
been developed and made freely available in the COBRA toolbox, which is also available in python as COBRApy [19].

For this work, we developed a Vivarium process that provides a wrapper around COBRApy, and is located in the
vivarium-cobra library (Fig 7a). This process, called "COBRA", can be initialized with a BiGG model from the BiGG
model database [41]. BiGG models are genome-scale metabolic models, which are available for dozens of E. coli
strains, as well as many other cell types. The model used here is iAF1260b, which includes 2382 reactions, controlled
by 1261 genes, and with an objective that includes the production of 67 molecules.

For purposes of integration with Vivarium, we pass the COBRApy results into internal metabolite pools that are available
for other processes to utilize. The COBRA process includes a "flux bounds" port, which allows other processes to
dynamically modify the flux constraints on the FBA problem. Accordingly, some additional processes were developed
so that the COBRA process could support dFBA (shown in Fig 7a). These processes include "local field" to model the
external environment with dynamic molecular concentrations, and "mass deriver" to convert the internal metabolite
counts into a total mass.

Thus, when COBRA is run as a composite with the local field and mass deriver processes (Fig 7b), it takes up metabolites
from the environment and grows its internal pools of metabolites, exponentially increasing in mass and reproducing the
expected 40 minute doubling time in minimal glucose media.

4.2 Chemical reaction networks with Bioscrape

To add a CRN network model of transcription, translation, regulation, and the enzymatic activity of the lac operon and
its resulting proteins, we turned to a published model [42], with many parameters from [43]. Our model includes all the
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Figure 7: Demonstration of the COBRA composite’s dynamic FBA. (a) Topology of the COBRA composite, which
models metabolism with the COBRA process, and additional processes "local field" and "mass deriver" and help
make the system into a dynamic FBA with an external environment, and total compartment mass based on individual
metabolite pools and their molecular weights. The COBRA process has ports connected to "reactions", "internal counts",
"external" (which are in concentrations), "flux bounds", and "global". (b) Simulation of a COBRA composite model,
configured with BiGG model iAF1260b. Environmental concentrations (top) and internal molecule counts (middle) are
plotted in log-scale due to the wide range across molecular species. The internal metabolites are multiplied by their
molecular weight and summed to get total biomass (bottom).

same features, except for the addition of different combinatorial conformations of the lacR repressor binding to the lac
operon. We converted this model to an SBML format using BioCRNpyler – an open source tool for specifying CRNs
[44]. With the model in SBML, we were ran simulations with a Vivarium process built with Bioscrape (Bio-circuit
Stochastic Single-cell Reaction Analysis and Parameter Estimation) [33] – a Python package that supports deterministic
and stochastic simulations. The "Bioscrape" process is available at the vivarium-bioscrape library. Its topology can be
seen in Fig 8a.

Running the lac operon CRN model in isolation shows expected behavior (Fig 8b), with glucose initially being taken up
from the environment while lactose is not. Once external glucose is depleted, the lac genes are expressed, concentrations
of β-Galactosidase and lactose permease rise, and lactose is brought into the cell and degraded. This is all done
smoothly, with continuous dynamics (Fig 8b, left). Using the Bioscrape process also facilitates a stochastic simulation
of this CRN (Fig 8b, right) the results of which show lac operon RNA expressed via a randomly-occurring transcription
event, followed by expression of the lac proteins, and enabling subsequent import of lactose. For the stochastic model,
external nutrients can only exist in a small external environmental volumes – large environments make for large nutrient
counts, which slows the stochastic simulator drastically and makes simulations unfeasible. This limitation is corrected
by the integrated model, which introduces many separate external locations for nutrients.

4.3 Multicell physics with pymunk and field diffusion

With individual cells being represented by the Bioscrape and COBRA processes, our final step was to model a spatial
environment in which these cells can grow, divide, and interact – through physical forces as well as by uptake and
secretion of molecules in a shared chemical milieu. The environment is implemented using a composite from the
vivarium-multibody library called "lattice", which consists of two processes: "multibody" and "diffusion" (Fig 9a).

The multibody process is a wrapper around the physics engine pymunk [34], which can model individual cell agents as
capsule-shaped rigid bodies that can move, grow, and collide. Multibody tracks the following boundary variables for
each agent: location, length, width, angle, mass, thrust, and torque. The physics engine applies these variables for the
update time step, and returns a new location for each agent. Agents can update volume, mass, and motile forces, thus
impacting their movement in the environment. Upon division, the daughter_location divider (Table 4) is applied
to the location of agents, so that when they divide the daughters are placed end-to-end in the same orientation as the
mother.

The diffusion process simulates bounded two-dimensional fields of molecular concentrations. Each lattice site (x, y)
holds the local concentrations of any number of molecules, and diffusion simulates how they homogenize across local

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441657
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - APRIL 27, 2021

(a)

bioscrape

species delta
species rates globals

(b)

deterministic stochastic

0

10
external glucose (mM)

0

20
external lactose (mM)

0

1
1e 6 lac operon RNA (mM)

0

2
1e 7 -galactosidase (mM)

0 5000 10000 15000 20000
time (s)

0

5

1e 4 lactose permease (mM)

0

5
1e7 external glucose  (counts)

0

1
1e8 external lactose (counts)

0

2

lac operon RNA (counts)

0

100
-galactosidase (counts)

0 5000 10000 15000 20000
time (s)

0

500

lactose permease (counts)

Figure 8: Demonstration of the Bioscrape process on its own. (a) Topology of the Bioscrape process, which models a
CRN with deterministic (ODE) and stochastic (Gillespie) simulators. Bioscrape has ports connected to "species", "delta
species", "rates", and "global". (b) Simulation of the Bioscrape process configured with a lac operon model. On the
left – a deterministic simulation models the smooth dynamics of molecular concentrations. On the right – A stochastic
simulation models the discrete events with molecular counts.

sites. Each agent can uptake and secrete molecules at its position in the field. The implementation uses an adaptor
process called "local field", which converts exchanged molecules from the given agent to concentrations at the agent’s
location.

Fig 9b shows the lattice composite simulated with minimal grow/divide agents. A single initial agent grows and divides
to form colonies of many minimal agents in the environment – as they grow, they push against each other via the
multibody process, and the colony increases in volume. The agents shown in this minimal simulation do not take up
molecules. Therefore, in order to demonstrate the diffusion process, we initialized the system with a concentration
gradient, which lessens over time.

(a)

multibodydiffusion

fields dimensions agents

(b)

Figure 9: Demonstration of Lattice composite. (a) Topology of Lattice composite, with a diffusion process and a
multibody process, and ports connected to "fields", "dimensions", and "agents" stores. (b) Three grow/divide agents are
initialized in the lattice. As the agents grows and divide, the multibody process simulates volume exclusion, which
pushes their neighbors away and grows the colony. In this particular case, the agents do not exchange molecules with
the external field, but diffusion can be seen by the spread of molecular concentrations initialized at the top row of the
field.

4.4 Integration

The initial hierarchy and topology of the model are shown in 10a. Each process described above focuses on a different
aspect of cellular physiology and behavior, applies a different mathematical representation, and formats its data by
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Figure 10: The full, integrated, stochastic version of the model in the Lattice environment. (a) Hierarchy and topology
of the full composite model. The processes and stores are colored by paradigm, with orange nodes associated with
COBRA, green nodes associated with Bioscrape, light blue with division, dark blue with the environment, and brown
nodes associated with the boundary between cell and environment. Main processes are highlighted with a thicker
outline. (b) Snapshots of the colony throughout a simulation. Cells colored according to phylogeny with similar colors
indicating more closely related cells. (c) The external lactose and glucose concentration fields over the course of the
simulation. (d) Multi-generational timeseries, with variables from all cells shown over time. These colors correspond to
the phylogeny colors of (b). (e) Snapshots of the final simulation state (12.0hr) , with various cell states tagged.
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different standards. Integrating them requires data conversions, and complex mapping of assumptions about their shared
variables. This is achieved with a set of adaptor processes which convert between the expected units, reference frames,
name spaces, data formats, and other representations. Adaptor processes required for integrating the Bioscrape and
COBRA processes with the lattice composite include processes "local field", "mass deriver", "volume deriver", "flux
adaptor", "biomass adaptor".

The COBRA process’ metabolism and Bioscrape process’ gene expression and transport are coupled through a "flux
bounds" store (Fig 10a), with the Bioscrape process setting uptake rates with the flux adaptor process, and the COBRA
process using them as flux constraints on the FBA problem. The Bioscrape process calculates deltas for each reaction’s
substrates and products with its stochastic kinetic simulator. These deltas are then used by the flux adaptor to calculate
a time-averaged flux, which it passes to the flux bounds store. The COBRA process uses these values to constrain the
FBA problem’s fluxes bounds and thus shapes the resulting flux distribution and overall growth. The Bioscrape and
COBRA processes are also coupled through the transporter proteins and internal metabolite pools that are built up by
metabolism. Changes in the internal metabolite pools trigger the expression of genes (lac genes in this example), which
in turn influence the kinetic transport rates. Thus, a causal loop is implemented between the Bioscrape and COBRA
processes.

The stochastic versus deterministic versions of the composite require different adaptor processes for converting between
counts and concentrations – for example, a "field counts deriver" process was required for the stochastic Bioscrape
process to read external counts of glucose and lactose in a cell’s local environment based on the lattice resolution. The
deterministic model runs much faster and for a larger local environment volume – as the local environment volume
increases, this translates to many counts of glucose and lactose that the stochastic model has to simulate with the
Gillespie algorithm, which is a time-intensive method. Thus, on its own, the stochastic model is limited to very small
external environments and rapid depletion of nutrient. This challenge was overcome by partitioning the environment
with the spatial processes described below. The deterministic simulation has the CRN dilution rate parameter coupled
to the COBRA-determined growth rate with a process called "dilution rate adaptor" – this is not needed for stochastic
simulations, since dilution is handled upon division with the binomial division of molecular counts. Future work would
benefit from having two CRN process running in parallel – one with a stochastic simulators for reactions with small
molecular counts, and one with a deterministic simulator for large counts.

To model cell division, "division" and "divide condition" processes were added to read the agent’s individual cell mass,
and trigger division when it reaches 2000fg. The mass deriver process takes the counts and molecular weights of these
molecules (produced by the COBRA process), and calculates the total cell mass. The volume deriver process then
calculates various cell shape properties of the cell from its mass, including volume, length, and width. These will be
used by the spatial environment. The divide condition process connects to the mass variable directly, and waits for it to
cross a configured threshold value. When this threshold is passed, a division = True flag is set, which division sees
and performs the hierarchy update that terminates the mother agent and generates two daughter agents – calling each
variable’s "divider" variable to do so.

The environment consists of 2D arrays of concentration values for glucose and lactose, which set the local external
environments for individual cell agents. The local field process converts COBRA process-generated molecular exchanges
into concentration changes in spatial fields. The diffusion process takes the resulting fields, diffuses them, and updates
the local external variables for each agent, so that the agent’s only experience the concentrations at their given location.
The agents grow, when they hit the division threshold they divide, their daughter cells are placed end-to-end, and their
growth pushes upon neighbors with the multibody process. Thus, cell growth and division lead to the emergence of a
colony with many individuals.

The full model (using the stochastic version of the glucose-lactose circuit), was used to simulate a glucose-lactose
diauxic shift (Fig 10b-e). This simulation is configured with very little initial glucose, so that the onset of lactose
metabolism can be triggered within a few hours of simulation time. As the initial cell grows from a single agent through
multiple generations (Fig 10b), it initially takes up glucose and not lactose (Fig 10c,d). The glucose field sites occupied
by the cells are depleted by cellular uptake, but replenished by diffusion from neighboring lattice sites (Fig 10c, top).
The spatial variation in the environment leads to cells experiencing different local concentrations of glucose and lactose.
In response some lac operon RNA is expressed, both stochastically and in response to the local environment in certain
cells (Fig 10d). Stochastic expression of the lac genes allows lactose to be taken into the cells (Fig 10c, bottom), but
with different levels of the lac proteins, leading to heterogeneous uptake rates of glucose and lactose, as well as the
cellular growth rate (Fig 10e). By the end of the simulation, there is still slight glucose uptake; the colony is growing
very slowly and is still in lag phase of growth, but lactose-driven growth has become the main driver of colony growth.
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5 Discussion

This paper introduces Vivarium – a software tool for integrative multiscale modeling designed to make it as easy
as possible for users to access, modify, build upon, and integrate existing models. We demonstrated the integration
of several diverse frameworks including deterministic and stochastic models, constraint-based models, hierarchical
embedding, division, solid-body physics, and spatial diffusion. Each process was developed and tested independently,
and was then wired into a larger composite model that coupled the diverse mechanistic representations. We also
introduced the Vivarium Collective, a set of software libraries which include the multiscale engine, vivarium-core,
as well as separate process libraries vivarium-cobra, vivarium-bioscrape, and vivarium-multibody. When released as
a Python package, libraries can be imported into other projects, re-configured, combined with other processes, and
simulated in large experiments. This functional separation helps breaks up the model development methodology and
opens module development to a larger community of contributors.

Vivarium is general. This was demonstrated by the large number of different models representations applied at different
levels of granularity, including processes that interface existing off-the-shelf modeling libraries such as COBRA,
Bioscrape, and pymunk. Scientists and developers can continue working on their preferred modeling framework, yet
plug into broader integrative models with many potential contributors with each lending their own expertise. Its broad
applicability has the potential to unify the many diverse research efforts, and bring about a new integrative modeling
paradigm composed of many constituent modeling frameworks.

Vivarium is flexible. Its emphasis on the interface between models simplifies the incorporation of alternate sub-models,
which supports incremental, modular development. The keys to this feature are the smaller adaptor processes, which
help convert the units, reference frames, name spaces, data formats, and other representations that are expected by
the main mechanistic processes. We demonstrated Vivarium’s flexibility by substituting a stochastic model for a
deterministic one in Sections 3 and 4, but Vivarium is capable of substituting a wide range of other modeling types. By
open-sourcing this project, we hope scientists will build upon existing models by adding new processes, making new
predictions, and testing against new data.

Finally, Vivarium is scalable. An integrated model can be built with arbitrary embedded hierarchies of compartments
that could represent mechanisms from the molecular to the ecological, and which can be simulated at multiple time
steps. Its processes can be distributed across a computer architecture with many CPUs, and so support many parallel
mechanisms running concurrently at their preferred timescales. At the time of this paper’s writing, modeling even
the most minimal cells remains a large-scale effort requiring many scientific contributors. Vivarium was originally
conceived and developed specifically to address the challenges associated with whole-cell modeling; namely, integrating
a large number of disparate models into one unified whole. However, it quickly became clear that Vivarium would
also facilitate even more ambitious goals, such as building the first "whole-colony" computational models that can
mechanistically link expression of individual proteins to a population-level phenotype [32].

As multi-scale models such as this one are further developed and expanded, we hope that Vivarium and its successors
will be used to model cell populations, tissues, organs, or even entire organisms and their environments – all of which
are based on a foundation of molecular and cellular interactions, represented using the most appropriate mathematics,
and integrated together in unified composite systems.
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Supplementary materials

Software availability

Vivarium-core, the interface classes and multiscale simulation engine:
https://github.com/vivarium-collective/vivarium-core

The Vivarium Collective Github organization is an online location for various vivarium libraries, including all libraries
used for this paper.

https://github.com/vivarium-collective

Vivarium-notebooks is the repository developed for this paper, with Jupyter notebooks and Python files.
https://github.com/vivarium-collective/vivarium-notebooks

Vivarium interface basics notebook.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/

Vivarium_interface_basics.ipynb

Multi-paradigm composites notebook.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/

Multi-Paradigm-Composites.ipynb

Notebook for constructing the deterministic and stochastic lac operon CRN models with BioCRNpyler.
https://github.com/vivarium-collective/vivarium-notebooks/blob/main/notebooks/Lac_

Operon_CRN.ipynb

Tables

This section includes several tables. Table 2 covers the different types of schemas introduced in Section 3. Updater and
divider schema have their own tables (3 and 4) with methods provided by vivarium-core. In addition to these provided
methods, custom updaters and dividers can easily be defined by the user for any type of desired state. Table 5 includes
the vivarium libraries used for this paper – all of which are freely available at the Vivarium Collective, and on PyPI.

Table 2: Schema. A process’ ports_schema method declares the schemas for variables connected to each port. These
are used to construct the stores, which apply the declared methods during runtime.

Attribute Method
_default The default value of the state variable if no initial value is provided. This also sets the

data type of the variable, including units.
_updater How to apply state variable updates. Available updaters are listed in Table 3.
_divider How to divide the state variable’s values between daughter cells. Available dividers are

listed in Table 4.
_emit A Boolean value that sets whether to log this variable to the simulation database for later

analysis.
_properties User-defined properties such as molecular weight. These can be used for calculating

variables such as total system mass.

Table 3: Updaters available in vivarium-core. Updaters are schema methods by which an update from a process is
applied to a variable’s value.

Name Function
accumulate The default updater. Add the update value to the current value.
set The update value becomes the new current value.
merge Update an existing dictionary with new values, and add any newly declared keys.
null Do not apply the update.
nonnegative_accumulate Add the update value to the current value, and set to 0 if the result is negative.
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Table 4: Dividers available in vivarium-core. Dividers are schema methods by which a variable’s value is divided when
division is triggered.

Name Function
set The default divider. Daughters get the same value as the mother.
binomial Sample the first daughter’s value from a binomial distribution of the mother’s value, and

the second daughter gets the remainder.
split Divide the mother’s value in two. Odd integers will make one daughter receive 1 more

than the other daughter.
split_dict Splits a dictionary of key : value pairs, with each daughter receiving a dictionary with

the same keys, but with each value split.
zero Daughter values are both set to 0.
no_divide Asserts that this value should not be divided.

Table 5: Vivarium libraries used in this project.
Library Description
vivarium-bioscrape For chemical reaction networks with SBML.
vivarium-cobra For constraint-based models of metabolism, with BiGG model interface.
vivarium-multibody Lattice composite model used for spatial multi-cell interactions.
vivarium-template A template library that can be cloned to get a new vivarium project started.
vivarium-scripts A collection of scripts to access and modify saved simulations from the

database.

Code examples

This supplementary subsection includes some code listings demonstrating more advanced methods for specifying
models with Vivarium.

Listing 3: Declaring custom updaters and dividers in port_schema. Updaters are functions that take a current_value
and a update_value, and return the new value. Dividers are functions that take a mother_value, and a state, and
return two values in a list – one for each daughter.
# updater that returns a random value
def random_updater(current_value, update_value):

return random.random()

# divider that returns a random value for each daughter
def random_divider(mother_value, state):

return [
random.random(),
random.random()]

def port_schema(self):
ports = {

'port1': {
'variable1': {

'_default': 1.0
'_updater': {

'updater': random_updater
}

'_divider': {
'divider': random_divider

}
}

}
return ports
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Listing 4: Using glob (’*’) schema to declare expected sub-store structure. In this example, port1 is connected to
sub-stores specified by a glob schema. This allows the process to read anything that port1 connects to which adheres to
its declared schema. Sub-stores can be added and removed during runtime, and the process will see it.
def port_schema(self):

ports = {
'port1': {

'*': {
'_default': 1.0

}
}

}
return ports

Listing 5: Declaring process-store connections with generate_topology. A topology is a Python dictionary with
keys for processes, and subkeys for their ports which map to paths at which they will connect to stores. A flat network
does not require a path, just a store name at the same level. There are three different syntaxes possible for declaring
paths – Multics string, Unix string, and Unix tuple. The default used within the engine is a Unix tuple, but the other
syntaxes can be used in a composer to simplify code readability, and are converted to Unix tuples.
def generate_topology(self, config):

topology = {
# Multics string example
'process1': {

'port1': 'path>to>store', # connect port1 to inner compartment
'port2': '<outer_store' # connect port2 to outer compartment

},
# Unix string example
'process2': {

'port1': 'path/to/store', # connect port1 to inner compartment
'port2': '../outer_store' # connect port2 to outer compartment

},
# Unix tuple example
'process3': {

'port1': ('path','to','store'), # connect port1 to inner compartment
'port2': ('..','outer_store') # connect port2 to outer compartment

}
}
return topology
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Listing 6: Splitting a port into multiple stores with generate_topology. Variables read through the same port can
come from different stores. To do this, the port is mapped to a dictionary with a _path key that specifies the path to the
default store. Variables that need to be read from different stores each get their own path in that same dictionary. This
same approach can be used to remap variable names, so different processes can use the same variable but see it with
different names.
def generate_topology(self, config):

topology = {
# split a port into multiple stores
'process1': {

'port': {
'_path': ('path_to','default_store'),
'rewired_variable': ('path_to','alternate_store')

}
}
# mapping variable names in process to different name in store
'process2': {

'port': {
'_path': ('path to','default_store'),
'variable_name': 'new_variable_name'

}
}

}
return topology
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