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Abstract 26 

In 2016 a whole genome sequence (WGS) based genotyping framework (GenoTyphi) was 27 

developed providing a phylogenetically informative nomenclature for lineages of Salmonella 28 

Typhi, the aetiological agent of typhoid fever. Subsequent surveillance studies have revealed 29 

additional epidemiologically important subpopulations, necessitating the definition of new 30 

genotypes and extension of associated software to facilitate the detection of antimicrobial 31 

resistance (AMR) mutations. Analysis of 4,632 WGS provide an updated overview of the 32 

global S. Typhi population structure and genotyping framework, revealing the widespread 33 

nature of H58 (4.3.1) genotypes and the diverse range of genotypes carrying AMR mutations. 34 

 35 

Key words: Typhoid fever, Salmonella Typhi, WGS, pathogen genotyping, AMR, 36 

Azithromycin, Fluoroquinolones, Surveillance 37 

 38 

 39 

Background 40 

Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium 41 

Salmonella Typhi (S. Typhi). Each year >10 million cases occur worldwide of which 42 

>100,000 are associated with mortalities1 making it a public health threat in many low- to 43 

middle-income countries with limited hygiene and sanitation infrastructure.  44 

 45 

S. Typhi is a genetically monomorphic pathogen with a slow mutation rate that infrequently 46 

recombines2. Whole genome sequencing (WGS) and core-genome phylogenetics have 47 

become the standard for typhoid molecular epidemiology in both research and public health 48 

settings, providing insights into population structure, transmission dynamics, AMR 49 

emergence and dissemination, as well as outbreak investigation and monitoring of 50 
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implemented intervention strategies. In 2016 a WGS based genotyping framework for S. 51 

Typhi was developed using a collection of ~2,000 genomes from >60 countries3, with the 52 

goal of stratifying the pathogen population and providing a phylogenetically informative 53 

nomenclature with which to refer to different lineages. The resulting scheme (known as 54 

GenoTyphi) utilised 68 marker single nucleotide variants (SNVs) to define, based on an 55 

inferred genome-wide phylogeny, four primary clades, 16 clades, and 49 subclades organised 56 

in a pseudo-hierarchical nomenclature whereby primary clade 1 is subdivided into clades 1.1 57 

and 1.2; clade 1.1 is further subdivided into subclades 1.1.1, 1.1.2, and 1.1.3. Haplotype 58 58 

(H58), which has previously been associated with antimicrobial resistance (AMR) and global 59 

dissemination via intercontinental transmission events2, was designated genotype 4.3.1 under 60 

the new scheme. A software tool for calling GenoTyphi genotypes from WGS data was 61 

implemented in Python (available at: https://github.com/katholt/genotyphi), facilitating 62 

integration of the scheme into bioinformatics pipelines. GenoTyphi is also available to non-63 

expert users via the online data analysis platform Typhi Pathogenwatch 64 

(https://pathogen.watch/)4. 65 

 66 

Following publication of the initial framework, regional surveillance studies identified 67 

additional epidemiologically important subpopulations of S. Typhi, necessitating definition of 68 

new genotypes5-9. Further, point mutations responsible for reduced susceptibility to 69 

fluoroquinolones and azithromycin have also emerged10,11, necessitating extension of the 70 

GenoTyphi software tool for their detection. Here we provide an overview of updates to both 71 

the GenoTyphi scheme and pipeline (summarised in Tables S1-S2), as well as the view it 72 

provides of the global pathogen population. 73 

 74 

 75 
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Materials and methods 76 

Phylogenetic and SNV analysis of S. Typhi isolates 77 

Reads from 4,632 S. Typhi genomes (Table S3) were mapped to the reference sequence of S. 78 

Typhi CT18 (accession number: AL513382) with RedDog (vbeta.11; available at: 79 

https://github.com/katholt/RedDog). Sequences were assigned to genotypes, and quinolone 80 

resistance determining region (QRDR) and acrB mutations associated with AMR identified 81 

detected, using GenoTyphi (v1.9.1; available at: https://github.com/katholt/genotyphi) which 82 

is permanently archived by Zenodo at doi: 10.5281/zenodo.4707614. Recombinant regions 83 

were removed from the whole genome Single Nucleotide Variant (SNV) alignment using 84 

Gubbins (v2.4.1; available at: https://github.com/sanger-pathogens/gubbins) and a maximum-85 

likelihood phylogeny inferred with RAxML (v8.2.9; available at 86 

https://github.com/stamatak/standard-RAxML). An interactive annotated phylogeny is 87 

available at https://microreact.org/project/vBoskUuenEVmfVzrcAMx8R. Further details are 88 

provided in supplementary methods. 89 

 90 

 91 

Results 92 

Global overview of S. Typhi genotypes 93 

Analysis of 4,632 published genomes demonstrate that H58 has now disseminated across 94 

most continents (Fig. 1a), with the distribution of genotypes differing per country (Fig. 1b). 95 

The 82 genotypes defined at present (Fig. 1c; Table S1) include those from the original 96 

publication, subdivision of 4.3.1 (H58) into three major lineages (4.3.1.1, 4.3.1.2, 4.3.1.3), 97 

genotypes designating newly identified subclades (e.g. 2.5.2, 3.3.2), and designations for 98 

AMR populations of epidemiological importance (e.g. 4.3.1.1.P1).  99 

 100 
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 101 

Figure 1. Global genotype distribution and population structure. (A) Global dissemination 102 

of genotype 4.3.1 (H58). Countries are coloured by total percentage of H58 genotypes 103 

amongst isolates in the genome collection, as per inset legend. (B) Dominant genotypes per 104 

location. Dominant genotypes (each accounting for >30% of sequenced isolates per country) 105 

and H58 genotypes are coloured as per the inset legend, with minor non-H58 genotypes in 106 

grey. Genotypes are shown for countries with at least 20 genome sequences. (C) 107 

Phylogenetic tree backbone showing the relationships between 16 clades and 63 108 

subclades/sublineages. Tree tips represent unique genotypes as labelled, background 109 

shading highlights clades (labelled in larger font). * indicates genotypes added to the 110 

scheme following its initial publication, brackets indicate undifferentiated clades and 111 

primary clades.  112 

 113 

 114 

Updated H58 (4.3.1) genotypes 115 

Genotype 4.3.1 is currently subdivided into three lineages (see Fig. 1c; Table S1). H58 116 

lineages I (genotype 4.3.1.1) and II (genotype 4.3.1.2) were originally defined in a study of 117 

paediatric patients attending Patan Hospital in Kathmandu, Nepal12. Later studies8 revealed 118 

the co-circulation of both lineages in this setting between 2008-2016, with a shift in 119 

dominance to 4.3.1.2 after 2010 (40% 4.3.1.2 pre-2010 and 74% post-2011, p=1.0x107), 120 

warranting more discriminant typing to capture such changes in population structure. H58 121 

lineage III (genotype 4.3.1.3), originally defined in an examination of 536 AMR sequences 122 

from Dhaka, Bangladesh6, is a monophyletic cluster of genotype 4.3.1 mostly from 123 

Bangladesh (99%). It was recently detected at a frequency of 9% in urban Dhaka between 124 

2004-20165. A monophyletic sublineage of genotype 4.3.1.3 was resistant to 125 
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fluoroquinolones (median minimal inhibitory concentration (MIC) of 4 μg/ml) and is here 126 

formally designated 4.3.1.3.Bdq based on previous studies6. 127 

 128 

A recent study of asymptomatic carriers and acute typhoid fever patients in Kenya detected 129 

the co-circulation of genotypes 4.3.1.1 and 4.3.1.29. Contextualisation with the global 130 

phylogeny attributed the presence of these lineages to two previously reported transmission 131 

waves originating in South Asia2,13, and a third more recent introduction of 4.3.1.2 from 132 

South Asia that has apparently also reached Uganda9. These three H58 sublineages were each 133 

comprised exclusively East African sequences and had different AMR profiles, and thus were 134 

designated as new genotypes in order to help monitor their spread: H58 lineage I sublineage 135 

East Africa I (4.3.1.1.EA1), H58 lineage II sublineage East Africa II (4.3.1.2.EA2) and H58 136 

lineage II sublineage East Africa III (4.3.1.2.EA3; Fig. 1c; Table S1)9. 137 

 138 

In 2016, outbreaks of the first widespread extensively drug resistant (XDR) clone occurred in 139 

Pakistan. This monophyletic outbreak cluster of genotype 4.3.1.1, resistant to 140 

chloramphenicol, ampicillin, and co-trimoxazole, fluroquinolones and third generation 141 

cephalosporins7,14, was designated genotype 4.3.1.1.P1 to aid its identification. 142 

 143 

Updated non-H58 genotypes 144 

Studies of S. Typhi in Bangladesh5 revealed 119 genomes (14.5% of sequences analysed) 145 

formed a monophyletic group of sequences typed only to clade level (genotype 3.3) that were 146 

related to sequences from Nepal (separated by ~70 SNVs, also typed as 3.3). These were 147 

collectively designated genotype 3.3.2. Within the Bangladesh 3.3.2, two sublineages 148 

carrying QRDR mutations were further defined to facilitate their detection in future 149 
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surveillance studies; 3.3.2.Bd1 (which typically carry gyrA-S83F), and 3.3.2.Bd2 (which 150 

typically carry gyrA-S87N) (see Fig. 1c; Table S1). 151 

 152 

Ongoing analysis of genomes from Madagascar and Papua New Guinea (to be described in 153 

detail elsewhere) have also identified localised variants. The Madagascar group belongs to 154 

clade 2.5, is distantly related to other 2.5 sequences from India (separated by ~122 SNVs) 155 

and has been designated 2.5.2. The PNG genotype 2.1.7 population is subdivided into two 156 

distinct sublineages designated genotypes 2.1.7.1 and 2.1.7.2, with 2.1.7.1 observed more 157 

frequently. 158 

 159 

 160 

Updated detection of resistance-associated mutations 161 

Aforementioned studies of paediatric typhoid in Kathmandu, Nepal revealed high levels 162 

(75.3%) of sequences carrying non-synonymous point mutations in the QRDR of genes gyrA, 163 

gyrB, and parC responsible for reduced susceptibility to fluoroquinolones from 2008-20168. 164 

Among these were sequences of genotype 4.3.1.2 carrying three such mutations (e.g. gyrA-165 

S83F, gyrA-D87N, parC-S80I – 7.6%; gyrA-S83F, gyrA-D87N, parC-E84K – 0.5%) the 166 

former of which was previously found to cause treatment failure among adult populations in 167 

the same setting11. More recent studies10 demonstrated that mutations at codon 717 of gene 168 

acrB, a component of the AcrAB-TolC drug efflux pump, mediate Azithromycin resistance  169 

(MIC ≥32 μg/ml) in S. Typhi and had been observed at low frequency in Dhaka, Bangladesh 170 

(~1.3% of all S. Typhi isolated from 2009-2016). Subsequently, the GenoTyphi pipeline has 171 

been extended to detect mutations in both the QRDR and codon 717 of gene acrB (see Table 172 

S2).  173 

 174 
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Figure 2. Global overview of AMR mutations. (A) Global distribution of QRDR mutations. 175 

Countries are coloured by the total percentage of sequences carrying QRDR mutations in the 176 

genome collection, as per inset legend. Locations where sequences also carrying acrB-177 

R717Q/L mutations have been isolated are indicated as labelled. (B) Distribution of QRDR 178 

mutations by genotype and region. Genotype/region combinations are included where >25 179 

isolates have been sequenced from the region and >5% of those carry QRDR mutations.  180 

Genotypes also carrying acrB-R717Q/L mutations are labelled as per the inset legend. 181 

 182 

 183 

Global overview of AMR associated mutations 184 

Analysis of published genomes demonstrates that sequences carrying QRDR mutations can 185 

now be found across most continents (Fig. 2a), with the diversity of genotypes carrying 186 

QRDR mutations varying by geographic region (Fig. 2b). The geographic distribution of 187 

sequences carrying acrB-R717Q/L mutations associated with azithromycin resistance are 188 

shown in Fig. 2a-b. These mutations have emerged independently in multiple S. Typhi 189 

genotypes in several different countries, mostly in South Asia at present, and are 190 

accompanied by QRDR mutations making them co-resistant to fluoroquinolones (see Fig. 191 

2b). Isolates from Dhaka10 have also been reported to be multi-drug resistant carrying genes 192 

conferring additional resistance to chloramphenicol, ampicillin and co-trimoxazole.  Recent 193 

studies15 has revealed that these mutations now appear to be emerging in more non-H58 194 

genotypes in Dhaka from 2016 onwards including genotypes 2.3.3, 3.2.2, and 3.3.2. 195 

 196 

 197 

Discussion  198 
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In the five years since the publication of the GenoTyphi framework several regional genomic 199 

surveillance studies have been carried out, providing further insight into transmission events 200 

on a regional and global scale (including the continued global spread of 4.3.1 genotypes, and 201 

the emergence, spread, and ongoing evolution of mutations responsible for AMR in a diverse 202 

range of H58 and non-H58 genotypes) and the identification of new genotypes (Tables S1-203 

S2).  204 

 205 

The GenoTyphi framework will continue to be developed as new data becomes available and 206 

as new variants emerge, providing up to date phylogenetically informative nomenclature for 207 

identifying and discussing trends in population structure and evolution of AMR in S. Typhi. 208 

This nomenclature remains critical in genetic epidemiology studies required for the 209 

successful implementation and monitoring of control strategies. Requests for the inclusion of 210 

new genotypes can be made via the GitHub repository (https://github.com/katholt/genotyphi), 211 

and will be overseen by the Global Typhoid Genomics Consortium steering committee 212 

(https://www.typhoidgenomics.org/). 213 

 214 

 215 

Supplementary data 216 

• Supplementary methods 217 

• Table S1 - Summary of S. Typhi genotypes  (Excel spreadsheet). ‘Reference allele’ 218 

indicates the allele in the CT18 reference sequence. ‘Alternative allele’ indicates an 219 

allele called against the CT18 reference sequence for the genotype called. ‘Derived 220 

allele’ indicates the subtree-defining allele, which resulted from mutation of the 221 

original (ancestral) allele at this position to generate a new (derived) allele that we 222 

use as the marker for the subtree that corresponds to this genotype. ‘Ancestral allele’ 223 
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indicates the allele present in the ancestor of S. Typhi, which is conserved by all 224 

members of the population outside of the subtree that corresponds to this genotype. 225 

• Table S2 - Summary of S. Typhi AMR mutations detected by GenoTyphi (Excel 226 

spreadsheet). ‘Reference allele’ indicates the allele in the CT18 reference sequence. 227 

‘Alternative allele’ indicates an allele called against the CT18 reference sequence for 228 

the genotype called. 229 

• Table S3 – Details of publicly available S. Typhi genome sequences analysed in this 230 

study (Excel spreadsheet) 231 

 232 
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