1 Five years of GenoTyphi: updates to the global Salmonella Typhi genotyping

- 2 <u>framework</u>
- 3
- 4 Zoe A. Dyson^{1,2,3,4,*} and Kathryn E. Holt^{1,2}
- 5

6 **Affiliations:**

- 7 1. London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- 8 2. Department of Infectious Diseases, Central Clinical School, Monash University,
- 9 Melbourne, Victoria 3004, Australia
- 10 3. Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID),
- 11 Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.
- 12 4. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1RQ,
- 13 UK.
- 14

15 Correspondence:

- 16 * indicates corresponding author
- 17 E-mail: <u>zoe.dyson@lshtm.ac.uk</u>
- 18 Tel: +44 (0) 20 7636 8636
- 19 Fax: +44 (0)20 7436 5389
- 20
- 21
- 22 Running title: GenoTyphi genotyping framework update

- 24 Abstract word count: 93
- **25 Text word count:** 1449

26 Abstract

27	In 2016 a whole genome sequence (WGS) based genotyping framework (GenoTyphi) was
28	developed providing a phylogenetically informative nomenclature for lineages of Salmonella
29	Typhi, the aetiological agent of typhoid fever. Subsequent surveillance studies have revealed
30	additional epidemiologically important subpopulations, necessitating the definition of new
31	genotypes and extension of associated software to facilitate the detection of antimicrobial
32	resistance (AMR) mutations. Analysis of 4,632 WGS provide an updated overview of the
33	global S. Typhi population structure and genotyping framework, revealing the widespread
34	nature of H58 (4.3.1) genotypes and the diverse range of genotypes carrying AMR mutations.
35	
36	Key words: Typhoid fever, Salmonella Typhi, WGS, pathogen genotyping, AMR,
37	Azithromycin, Fluoroquinolones, Surveillance
38	
39	
	Background
39 40 41	Background Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium
40	
40 41	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium
40 41 42	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S.</i> Typhi). Each year >10 million cases occur worldwide of which
40 41 42 43	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S</i> . Typhi). Each year >10 million cases occur worldwide of which >100,000 are associated with mortalities ¹ making it a public health threat in many low- to
40 41 42 43 44	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S</i> . Typhi). Each year >10 million cases occur worldwide of which >100,000 are associated with mortalities ¹ making it a public health threat in many low- to
40 41 42 43 44 45	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S</i> . Typhi). Each year >10 million cases occur worldwide of which >100,000 are associated with mortalities ¹ making it a public health threat in many low- to middle-income countries with limited hygiene and sanitation infrastructure.
40 41 42 43 44 45 46	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S</i> . Typhi). Each year >10 million cases occur worldwide of which >100,000 are associated with mortalities ¹ making it a public health threat in many low- to middle-income countries with limited hygiene and sanitation infrastructure.
40 41 42 43 44 45 46 47	Typhoid fever is a faeco-orally transmitted systemic infection caused by the bacterium <i>Salmonella</i> Typhi (<i>S</i> . Typhi). Each year >10 million cases occur worldwide of which >100,000 are associated with mortalities ¹ making it a public health threat in many low- to middle-income countries with limited hygiene and sanitation infrastructure.

50 emergence and dissemination, as well as outbreak investigation and monitoring of

51	implemented intervention strategies. In 2016 a WGS based genotyping framework for S.
52	Typhi was developed using a collection of $\sim 2,000$ genomes from >60 countries ³ , with the
53	goal of stratifying the pathogen population and providing a phylogenetically informative
54	nomenclature with which to refer to different lineages. The resulting scheme (known as
55	GenoTyphi) utilised 68 marker single nucleotide variants (SNVs) to define, based on an
56	inferred genome-wide phylogeny, four primary clades, 16 clades, and 49 subclades organised
57	in a pseudo-hierarchical nomenclature whereby primary clade 1 is subdivided into clades 1.1
58	and 1.2; clade 1.1 is further subdivided into subclades 1.1.1, 1.1.2, and 1.1.3. Haplotype 58
59	(H58), which has previously been associated with antimicrobial resistance (AMR) and global
60	dissemination via intercontinental transmission events ² , was designated genotype 4.3.1 under
61	the new scheme. A software tool for calling GenoTyphi genotypes from WGS data was
62	implemented in Python (available at: https://github.com/katholt/genotyphi), facilitating
63	integration of the scheme into bioinformatics pipelines. GenoTyphi is also available to non-
64	expert users via the online data analysis platform Typhi Pathogenwatch
65	(<u>https://pathogen.watch/</u>) ⁴ .
66	
67	Following publication of the initial framework, regional surveillance studies identified
68	additional epidemiologically important subpopulations of S. Typhi, necessitating definition of
69	new genotypes ⁵⁻⁹ . Further, point mutations responsible for reduced susceptibility to
70	fluoroquinolones and azithromycin have also emerged ^{10,11} , necessitating extension of the
71	GenoTyphi software tool for their detection. Here we provide an overview of updates to both
72	the GenoTyphi scheme and pipeline (summarised in Tables S1-S2), as well as the view it
73	provides of the global pathogen population.
74	

76 Materials and methods

- 77 Phylogenetic and SNV analysis of S. Typhi isolates
- 78 Reads from 4,632 S. Typhi genomes (**Table S3**) were mapped to the reference sequence of S.
- 79 Typhi CT18 (accession number: AL513382) with RedDog (vbeta.11; available at:
- 80 <u>https://github.com/katholt/RedDog</u>). Sequences were assigned to genotypes, and quinolone
- 81 resistance determining region (QRDR) and *acrB* mutations associated with AMR identified
- 82 detected, using GenoTyphi (v1.9.1; available at: <u>https://github.com/katholt/genotyphi</u>) which
- is permanently archived by Zenodo at doi: 10.5281/zenodo.4707614. Recombinant regions
- 84 were removed from the whole genome Single Nucleotide Variant (SNV) alignment using
- 85 Gubbins (v2.4.1; available at: <u>https://github.com/sanger-pathogens/gubbins</u>) and a maximum-
- 86 likelihood phylogeny inferred with RAxML (v8.2.9; available at
- 87 <u>https://github.com/stamatak/standard-RAxML</u>). An interactive annotated phylogeny is
- 88 available at https://microreact.org/project/vBoskUuenEVmfVzrcAMx8R. Further details are
- 89 provided in **supplementary methods**.
- 90
- 91

92 **Results**

- 93 Global overview of S. Typhi genotypes
- Analysis of 4,632 published genomes demonstrate that H58 has now disseminated across
- 95 most continents (Fig. 1a), with the distribution of genotypes differing per country (Fig. 1b).
- 96 The 82 genotypes defined at present (Fig. 1c; Table S1) include those from the original
- publication, subdivision of 4.3.1 (H58) into three major lineages (4.3.1.1, 4.3.1.2, 4.3.1.3),
- 98 genotypes designating newly identified subclades (e.g. 2.5.2, 3.3.2), and designations for
- 99 AMR populations of epidemiological importance (e.g. 4.3.1.1.P1).
- 100

101

102	Figure 1. Global genotype distribution and population structure. (A) Global dissemination
103	of genotype 4.3.1 (H58). Countries are coloured by total percentage of H58 genotypes
104	amongst isolates in the genome collection, as per inset legend. (B) Dominant genotypes per
105	<i>location.</i> Dominant genotypes (each accounting for $>30\%$ of sequenced isolates per country)
106	and H58 genotypes are coloured as per the inset legend, with minor non-H58 genotypes in
107	grey. Genotypes are shown for countries with at least 20 genome sequences. (C)
108	Phylogenetic tree backbone showing the relationships between 16 clades and 63
109	subclades/sublineages. Tree tips represent unique genotypes as labelled, background
110	shading highlights clades (labelled in larger font). * indicates genotypes added to the
111	scheme following its initial publication, brackets indicate undifferentiated clades and
112	primary clades.
113	
114	
115	Updated H58 (4.3.1) genotypes
116	Genotype 4.3.1 is currently subdivided into three lineages (see Fig. 1c; Table S1). H58

lineages I (genotype 4.3.1.1) and II (genotype 4.3.1.2) were originally defined in a study of

118 paediatric patients attending Patan Hospital in Kathmandu, Nepal¹². Later studies⁸ revealed

the co-circulation of both lineages in this setting between 2008-2016, with a shift in

dominance to 4.3.1.2 after 2010 (40% 4.3.1.2 pre-2010 and 74% post-2011, p=1.0x10⁷),

121 warranting more discriminant typing to capture such changes in population structure. H58

lineage III (genotype 4.3.1.3), originally defined in an examination of 536 AMR sequences

123 from Dhaka, Bangladesh⁶, is a monophyletic cluster of genotype 4.3.1 mostly from

124 Bangladesh (99%). It was recently detected at a frequency of 9% in urban Dhaka between

125 2004-2016⁵. A monophyletic sublineage of genotype 4.3.1.3 was resistant to

126 fluoroquinolones (median minimal inhibitory concentration (MIC) of 4 μ g/ml) and is here 127 formally designated 4.3.1.3.Bdq based on previous studies⁶.

129	A recent study of asymptomatic carriers and acute typhoid fever patients in Kenya detected
130	the co-circulation of genotypes 4.3.1.1 and 4.3.1.2 ⁹ . Contextualisation with the global
131	phylogeny attributed the presence of these lineages to two previously reported transmission
132	waves originating in South Asia ^{2,13,} and a third more recent introduction of 4.3.1.2 from
133	South Asia that has apparently also reached Uganda ⁹ . These three H58 sublineages were each
134	comprised exclusively East African sequences and had different AMR profiles, and thus were
135	designated as new genotypes in order to help monitor their spread: H58 lineage I sublineage
136	East Africa I (4.3.1.1.EA1), H58 lineage II sublineage East Africa II (4.3.1.2.EA2) and H58
137	lineage II sublineage East Africa III (4.3.1.2.EA3; Fig. 1c; Table S1) ⁹ .
138	
139	In 2016, outbreaks of the first widespread extensively drug resistant (XDR) clone occurred in
140	Pakistan. This monophyletic outbreak cluster of genotype 4.3.1.1, resistant to
141	chloramphenicol, ampicillin, and co-trimoxazole, fluroquinolones and third generation
142	cephalosporins ^{7,14} , was designated genotype 4.3.1.1.P1 to aid its identification.
143	
144	Updated non-H58 genotypes
145	Studies of S. Typhi in Bangladesh ⁵ revealed 119 genomes (14.5% of sequences analysed)
146	
	formed a monophyletic group of sequences typed only to clade level (genotype 3.3) that were
147	formed a monophyletic group of sequences typed only to clade level (genotype 3.3) that were related to sequences from Nepal (separated by ~70 SNVs, also typed as 3.3). These were

- 148 collectively designated genotype 3.3.2. Within the Bangladesh 3.3.2, two sublineages
- 149 carrying QRDR mutations were further defined to facilitate their detection in future

150	surveillance studies; 3.3.2.Bd1	(which typically carry	<i>gyrA</i> -S83F),	and 3.3.2.Bd2	(which
-----	---------------------------------	------------------------	---------------------	---------------	--------

- 151 typically carry *gyrA*-S87N) (see **Fig. 1c**; **Table S1**).
- 152

153	Ongoing analysis of genomes from Madagascar and Papua New Guinea (to be described in
154	detail elsewhere) have also identified localised variants. The Madagascar group belongs to
155	clade 2.5, is distantly related to other 2.5 sequences from India (separated by ~122 SNVs)
156	and has been designated 2.5.2. The PNG genotype 2.1.7 population is subdivided into two
157	distinct sublineages designated genotypes 2.1.7.1 and 2.1.7.2, with 2.1.7.1 observed more
158	frequently.
159	
160	

161 Updated detection of resistance-associated mutations

162 Aforementioned studies of paediatric typhoid in Kathmandu, Nepal revealed high levels

163 (75.3%) of sequences carrying non-synonymous point mutations in the QRDR of genes gyrA,

164 gyrB, and parC responsible for reduced susceptibility to fluoroquinolones from $2008-2016^8$.

Among these were sequences of genotype 4.3.1.2 carrying three such mutations (e.g. gyrA-

166 S83F, gyrA-D87N, parC-S80I – 7.6%; gyrA-S83F, gyrA-D87N, parC-E84K – 0.5%) the

167 former of which was previously found to cause treatment failure among adult populations in

168 the same setting¹¹. More recent studies¹⁰ demonstrated that mutations at codon 717 of gene

acrB, a component of the AcrAB-TolC drug efflux pump, mediate Azithromycin resistance

170 (MIC \ge 32 µg/ml) in S. Typhi and had been observed at low frequency in Dhaka, Bangladesh

171 (~1.3% of all *S*. Typhi isolated from 2009-2016). Subsequently, the GenoTyphi pipeline has

been extended to detect mutations in both the QRDR and codon 717 of gene *acrB* (see **Table**

173 **S2**).

175 Figure 2. Global overview of AMR mutations. (A) Global distribution of QRDR mutations.

- 176 *Countries are coloured by the total percentage of sequences carrying QRDR mutations in the*
- 177 genome collection, as per inset legend. Locations where sequences also carrying acrB-
- 178 R717Q/L mutations have been isolated are indicated as labelled. (B) Distribution of QRDR
- 179 *mutations by genotype and region.* Genotype/region combinations are included where >25
- isolates have been sequenced from the region and >5% of those carry QRDR mutations.
- 181 *Genotypes also carrying acrB-R717Q/L mutations are labelled as per the inset legend.*

182

183

184 Global overview of AMR associated mutations

185 Analysis of published genomes demonstrates that sequences carrying QRDR mutations can

186 now be found across most continents (Fig. 2a), with the diversity of genotypes carrying

187 QRDR mutations varying by geographic region (Fig. 2b). The geographic distribution of

188 sequences carrying *acrB*-R717Q/L mutations associated with azithromycin resistance are

189 shown in Fig. 2a-b. These mutations have emerged independently in multiple S. Typhi

190 genotypes in several different countries, mostly in South Asia at present, and are

191 accompanied by QRDR mutations making them co-resistant to fluoroquinolones (see Fig.

2b). Isolates from Dhaka¹⁰ have also been reported to be multi-drug resistant carrying genes

- 193 conferring additional resistance to chloramphenicol, ampicillin and co-trimoxazole. Recent
- 194 studies¹⁵ has revealed that these mutations now appear to be emerging in more non-H58
- 195 genotypes in Dhaka from 2016 onwards including genotypes 2.3.3, 3.2.2, and 3.3.2.

196

197

198 Discussion

199	In the five years since the publication of the GenoTyphi framework several regional genomic
200	surveillance studies have been carried out, providing further insight into transmission events
201	on a regional and global scale (including the continued global spread of 4.3.1 genotypes, and
202	the emergence, spread, and ongoing evolution of mutations responsible for AMR in a diverse
203	range of H58 and non-H58 genotypes) and the identification of new genotypes (Tables S1-
204	S2).
205	
206	The GenoTyphi framework will continue to be developed as new data becomes available and
207	as new variants emerge, providing up to date phylogenetically informative nomenclature for
208	identifying and discussing trends in population structure and evolution of AMR in S. Typhi.
209	This nomenclature remains critical in genetic epidemiology studies required for the
210	successful implementation and monitoring of control strategies. Requests for the inclusion of
211	new genotypes can be made via the GitHub repository (https://github.com/katholt/genotyphi),
212	and will be overseen by the Global Typhoid Genomics Consortium steering committee
213	(<u>https://www.typhoidgenomics.org/</u>).
214	
215	
216	Supplementary data
217	• Supplementary methods
218	• Table S1 - Summary of S. Typhi genotypes (Excel spreadsheet). 'Reference allele'
219	indicates the allele in the CT18 reference sequence. 'Alternative allele' indicates an
220	allele called against the CT18 reference sequence for the genotype called. 'Derived
221	allele' indicates the subtree-defining allele, which resulted from mutation of the
222	original (ancestral) allele at this position to generate a new (derived) allele that we
223	use as the marker for the subtree that corresponds to this genotype. 'Ancestral allele'

224	indicates the allele present in the ancestor of S. Typhi, which is conserved by all
225	members of the population outside of the subtree that corresponds to this genotype.
226	• Table S2 - Summary of S. Typhi AMR mutations detected by GenoTyphi (Excel
227	spreadsheet). 'Reference allele' indicates the allele in the CT18 reference sequence.
228	'Alternative allele' indicates an allele called against the CT18 reference sequence for
229	the genotype called.
230	• Table S3 – Details of publicly available S. Typhi genome sequences analysed in this
231	study (Excel spreadsheet)
232	
233	Conflict of interest statement
234	The authors declare that they do not have a conflict of interest.
235	
236	Presentation statement
237	This work was carried out for an invited presentation 'A global genomic perspective on
238	Typhoid and AMR' by Zoe Anne Dyson at the 15 th Asian Conference On Diarrhoeal Disease
239	and Nutrition (ASCODD) on the 30 th of January 2020 in Dhaka, Bangladesh.
240	
241	Funding statement
242	ZAD was supported by a grant funded by the Wellcome Trust (STRATAA; 106158/Z/14/Z),
243	and received funding from the European Union's Horizon 2020 research and innovation
244	programme under the Marie Skłodowska-Curie grant agreement TyphiNET (#845681). KEH
245	was supported by a Senior Medical Research Fellowship from the Viertel Foundation of
246	Australia, and the Bill and Melinda Gates Foundation, Seattle (grant #OPP1175797).
247	

248 Affiliation changes

249 The authors have not changed affiliations since this study was completed.

250

- 251 Corresponding author contact details
- 252 Dr Zoe Anne Dyson
- 253 London School of Hygiene & Tropical Medicine
- 254 Keppel Street
- 255 London WC1E 7HT
- 256 United Kingdom
- 257 E-mail: zoe.dyson@lshtm.ac.uk
- 258 Tel: +44 (0) 20 7636 8636
- 259 Fax: +44 (0)20 7436 5389
- 260

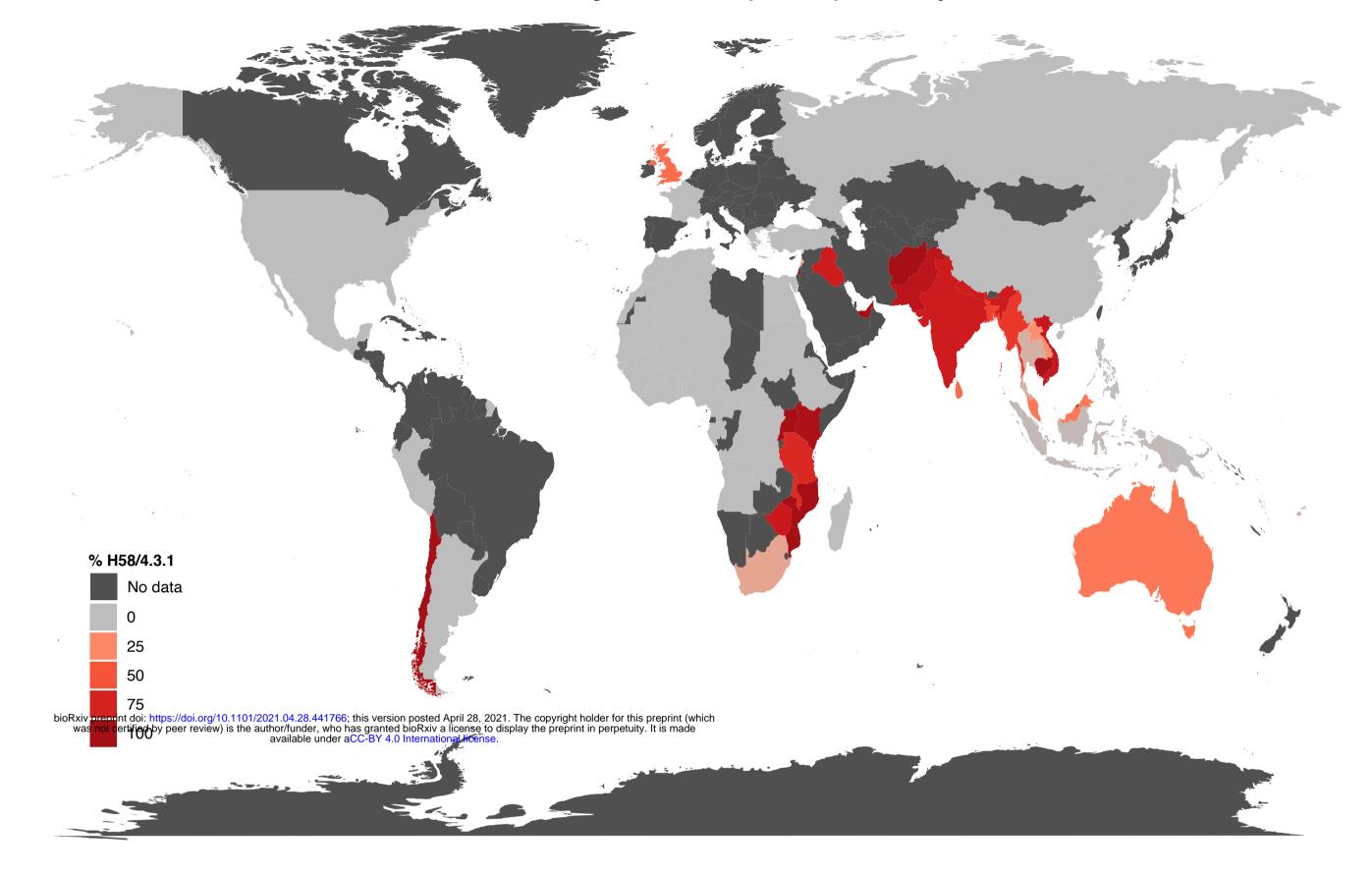
261 **References**

- 262 1 GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and
- 263 paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017.
- 264 The Lancet Infectious Diseases 2019;**19**(4):369–81. Doi: 10.1016/S1473-
- 265 3099(18)30685-6.
- 266 2 Wong Vanessa K, Baker Stephen, Pickard Derek J, Parkhill Julian, Page Andrew J,
- 267 Feasey Nicholas A, et al. Phylogeographical analysis of the dominant multidrug-
- 268 resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental
- 269 transmission events. *Nat Genet* 2015;**47**(6):632–9. Doi: 10.1038/ng.3281.
- 270 3 Wong Vanessa K, Baker Stephen, Connor Thomas R, Pickard Derek, Page Andrew J,
- 271 Dave Jayshree, et al. An extended genotyping framework for Salmonella enterica
- serovar Typhi, the cause of human typhoid. *Nat Commun* 2016;**7**:12827. Doi:
- 273 10.1038/ncomms12827.

- 274 4 Argimon Silvia, Yeats Corin A, Goater Richard J, Abudahab Khalil, Taylor Benjamin,
- 275 Underwood Anthony, et al. A global resource for genomic predictions of antimicrobial
- 276 resistance and surveillance of Salmonella Typhi at Pathogenwatch. *bioRxiv*

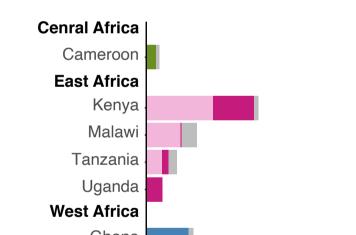
277 2020:2020.07.03.186692. Doi: 10.1101/2020.07.03.186692.

- 278 5 Rahman Sadia Isfat Ara, Dyson Zoe A, Klemm Elizabeth J, Khanam Farhana, Holt
- 279 Kathryn E, Chowdhury Emran Kabir, et al. Population structure and antimicrobial
- resistance patterns of Salmonella Typhi isolates in urban Dhaka, Bangladesh from 2004
- to 2016. *PLoS Negl Trop Dis* 2020;**14**(2):e0008036. Doi: 10.1371/journal.pntd.0008036.
- 282 6 Tanmoy Arif M, Westeel Emilie, De Bruyne Katrien, Goris Johan, Rajoharison Alain,
- 283 Sajib Mohammad S I, et al. Salmonella enterica Serovar Typhi in Bangladesh:
- 284 Exploration of Genomic Diversity and Antimicrobial Resistance. *mBio* 2018;9(6). Doi:
- 285 10.1128/mBio.02112-18.
- 286 7 Klemm Elizabeth J, Shakoor Sadia, Page Andrew J, Qamar Farah Naz, Judge Kim,
- 287 Saeed Dania K, et al. Emergence of an Extensively Drug-Resistant Salmonella enterica
- 288 Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to
- Fluoroquinolones and Third-Generation Cephalosporins. *mBio* 2018;**9**(1):346. Doi:
- 290 10.1128/mBio.00105-18.
- 8 Britto Carl D, Dyson Zoe A, Duchene Sebastian, Carter Michael J, Gurung Meeru, Kelly
- 292 Dominic F, et al. Laboratory and molecular surveillance of paediatric typhoidal
- 293 Salmonella in Nepal: Antimicrobial resistance and implications for vaccine policy. *PLoS*
- 294 *Negl Trop Dis* 2018;**12**(4):e0006408. Doi: 10.1371/journal.pntd.0006408.
- 295 9 Kariuki Samuel, Dyson Zoe A, Mbae Cecilia, Ngetich Ronald, Kavai Susan M, Wairimu
- 296 Celestine, et al. Multiple introductions of multidrug-resistant typhoid associated with
- acute infection and asymptomatic carriage, Kenya. *bioRxiv* 2021:2021.03.10.434750.
- 298 Doi: 10.1101/2021.03.10.434750.


299 10 Hooda Yogesh, Sajib Mohammad S I, Rahman Hafizur, Luby Stephen P, Bo	299	10 Hooda	ooda Yogesh, Sajib	Mohammad S I.	Rahman Hafizur,	Luby Step	phen P, Bond	ly-
---	-----	----------	--------------------	---------------	-----------------	-----------	--------------	-----

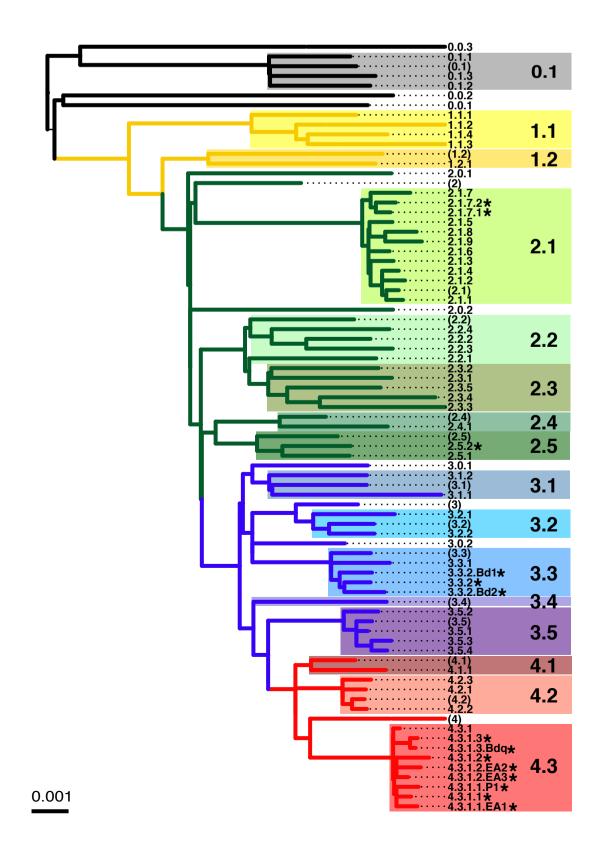
- 300 Denomy Joseph, Santosham Mathuram, et al. Molecular mechanism of azithromycin
- 301 resistance among typhoidal Salmonella strains in Bangladesh identified through passive
- 302 pediatric surveillance. *PLoS Negl Trop Dis* 2019;**13**(11):e0007868. Doi:
- 303 10.1371/journal.pntd.0007868.
- 304 11 Pham Thanh Duy, Karkey Abhilasha, Dongol Sabina, Ho Thi Nhan, Thompson Corinne
- 305 N, Rabaa Maia A, et al. A novel ciprofloxacin-resistant subclade of H58 Salmonella
- 306 Typhi is associated with fluoroquinolone treatment failure. *Elife* 2016;**5**:e14003. Doi:
- 307 10.7554/eLife.14003.
- 308 12 Holt Kathryn E, Baker Stephen, Dongol Sabina, Basnyat Buddha, Adhikari Neelam,
- 309 Thorson Stephen, et al. High-throughput bacterial SNP typing identifies distinct clusters
- 310 of Salmonella Typhi causing typhoid in Nepalese children. *BMC Infectious Diseases*

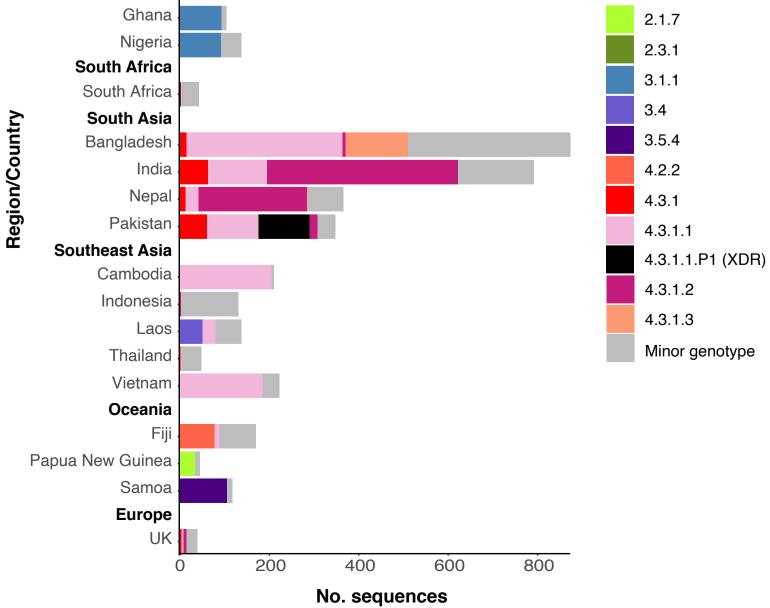
311 2010;**10**:144. Doi: 10.1186/1471-2334-10-144.

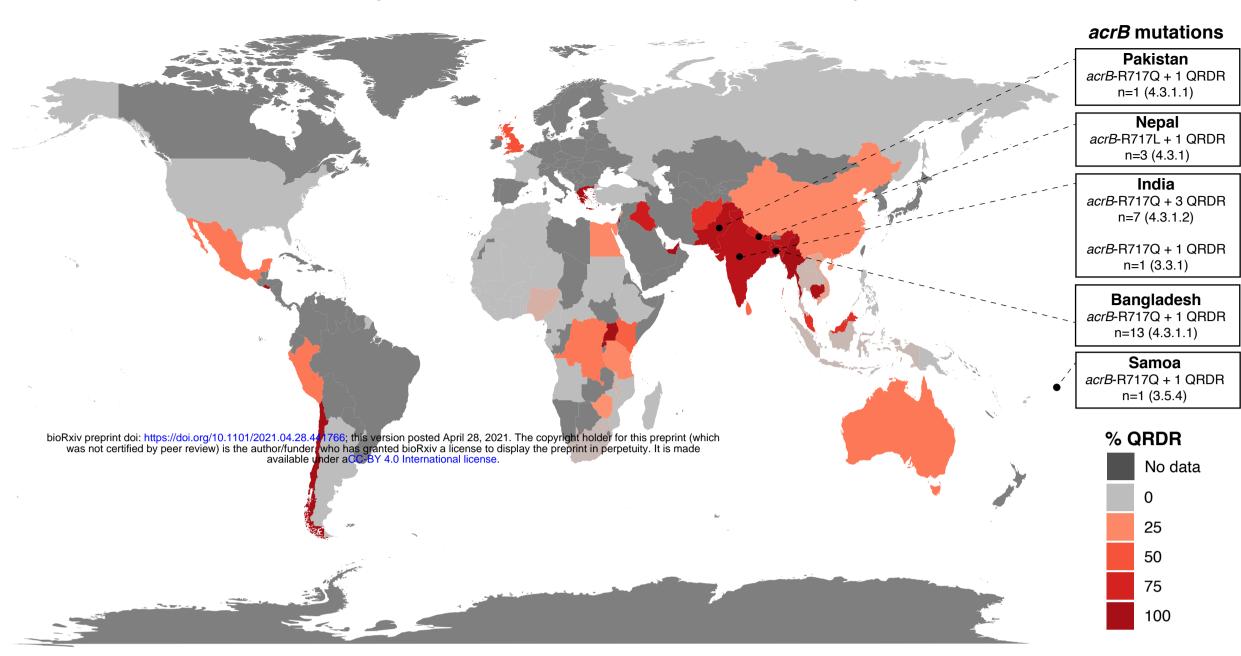

- 312 13 Park Se Eun, Pham Duy Thanh, Boinett Christine, Wong Vanessa K, Pak Gi Deok,
- Panzner Ursula, et al. The phylogeography and incidence of multi-drug resistant typhoid
- fever in sub-Saharan Africa. *Nat Commun* 2018;**9**(1):5094. Doi: 10.1038/s41467-018-
- 315 07370-z.
- 316 14 Rasheed Farhan, Saeed Muhammad, Alikhan Nabil-Fareed, Baker David, Khurshid
- 317 Mohsin, Ainsworth Emma V, et al. Emergence of Resistance to Fluoroquinolones and
- 318 Third-Generation Cephalosporins in Salmonella Typhi in Lahore, Pakistan.
- 319 *Microorganisms* 2020;**8**(9). Doi: 10.3390/microorganisms8091336.
- 320 15 Sajib Mohammad S I, Tanmoy Arif M, Hooda Yogesh, Rahman Hafizur, Andrews Jason
- R, Garrett Denise O, et al. Tracking the Emergence of Azithromycin Resistance in
- 322 Multiple Genotypes of Typhoidal Salmonella. *mBio* 2021;**12**(1). Doi:
- 323 10.1128/mBio.03481-20.

Percentage H58/4.3.1 sequenced per country

В






С

Genotype

Phylogentic structure



В

Percentage sequenced with QRDR mutations per genotype and region

