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Abstract 

This article addresses a new method for the classification of white blood cells (WBCs) using 

image processing techniques and machine learning methods. The proposed method consists 

of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At 

first, a new algorithm is designed to segment the nucleus. For the cytoplasm to be detected, 

only a part of it located inside the convex hull of the nucleus is involved in the process. This 

attitude helps us overcome the difficulties of segmenting the cytoplasm. In the second phase, 

three shapes and four novel color features are devised and extracted. Finally, by using an SVM 

model, the WBCs are classified. The segmentation algorithm can detect the nucleus with a 

dice similarity coefficient of 0.9675. The proposed method can categorize WBCs in Raabin-

WBC, LISC, and BCCD datasets with accuracies of 94.65 %, 92.21 %, and 94.20 %, 

respectively. It is worth mentioning that the hyperparameters of the classifier are fixed only 

with the Raabin-WBC dataset, and these parameters are not readjusted for LISC and BCCD 

datasets. The obtained results demonstrate that the proposed method is robust, fast, and 

accurate. 

 

Introduction  

Generally, there exist three types of blood cells: red blood cells, white blood cells (WBC), and 

platelets; among these, WBCs are responsible for the immune system and protect the body 

against diseases and infections. In peripheral blood, WBCs are categorized into five general 

types: lymphocytes, monocytes, neutrophils, eosinophils, and basophils. In various diseases 
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such as leukemia, anemia, malaria, human immunodeficiency virus infection (HIV) and, 

infectious diseases, changes in the number of WBCs are visible [1, 2, 3, 4]. A recent study 

also indicated that leukopenia, lymphocytopenia, and eosinophil cytopenia have occurred 

significantly more in Covid-19 patients [5]. Therefore, differential counting of WBCs can be 

of considerable assistance in disease diagnosis [6]. 

In several cases, peripheral blood smear analysis is done manually by a hematologist who 

visually analyzes the blood smears under the microscope [1, 7]. This procedure is very time 

consuming [8] and can be inaccurate due to tiredness and human error [9]. On the other hand, 

automated hematology analyzer devices (e.g. Sysmex) are very expensive, especially for low-

income countries [10]. Fortunately, machine learning-based methods can easily fill the above-

mentioned gaps. This study is aimed at proposing a new method based on machine learning 

and image processing techniques to classify WBCs in peripheral blood smear. 

In machine learning-based methods, at first, it is a requisite to collect the appropriate 

dataset taking quality, variety, and size into account. Yet, the lack of such dataset with 

aforementioned properties is the major challenge [11]. A plethora of articles have used small 

datasets collected using only one microscope or one camera [7, 12, 13]. Also, some of these 

datasets were solely labeled by one hematologist [7, 14], which carries the risk of being 

labeled incorrectly because of the challenges diagnosing WBC types involves. In this study, 

three different datasets were used: Raabin-WBC dataset [15], LISC dataset [7], and BCCD 

dataset [16]. We will elaborate more on these datasets in the datasets section.  

After data collection, diverse machine learning techniques can be used to classify WBCs. 

In general, different methods proposed in the literature for classifying WBCs favor either 

traditional or deep learning frameworks [1]. In traditional frameworks, it is first necessary to 

extract the appropriate handcraft features from WBCs, and then, classify them using one or 

an ensemble of several classifiers. Feature engineering is the most challenging part of 

traditional approaches. Unlike traditional frameworks, in deep learning frameworks, features 

are automatically extracted by means of deep neural networks. 

One of the most commonly used networks for classifying images are convolutional neural 

networks (CNNs). To obtain good classification results, we need a large deep CNN with 

numerous parameters. Training such a large network from scratch needs a large dataset. 

However, medical datasets are not usually large enough. Therefore pre-trained networks are 

normally used in two ways. The first way is to extract features by means of a pre-trained 

network as the input of a traditional classifier model such as support vector machine (SVM), 

k nearest neighbor (KNN), etc. The second way is to fine-tune the pre-trained network using 

a small dataset. .  

There are some works that have utilized pre-trained CNNs for extracting features in the 

task of classifying WBCs [17, 18, 19, 20].  In the task of diagnosing acute lymphoblastic 

leukemia, Rehman et al. [17] compared the accuracy of using three different classifiers on the 
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image features extracted by pre-trained CNNs. They observed that the SVM classifier gives 

the best results. In [18], the features extracted by three well known CNN architectures 

(AlexNet, GoogleNet, and ResNet-50) were merged, then proper features were selected using 

the maximal information coefficient and ridge algorithms. Finally, WBCs were classified 

using a quadratic discriminant analysis model. Similarly, Togacar et al. [19] used a pre-trained 

Alexnet network to extract features and a quadratic discriminant analysis model to classify 

WBCs. Sahlol et al. [20] employed a pre-trained CNN for extracting features, along with a 

statistically enhanced salp swarm algorithm for feature selection, and an SVM model. 

Deep learning neural networks can also be directly trained to categorize WBCs [1, 21, 22, 

23, 24, 25, 26]. Hedge et al. [1] performed the classification of WBCs with and without using 

a pre-trained network. They found out that full training from scratch leads to better results 

than fine-tuning an AlexNet pre-trained network. In [21], authors addressed the classification 

of WBCs by tuning pre-trained AlexNet and LeNet-5 networks as well as training a new CNN 

from scratch. They declared that the novel network they have proposed performed better than 

the fine-tuned networks mentioned previously. Jung et al. [22] designed a new CNN 

architecture called W-Net to classify WBCs in the LISC dataset. Baydilli and Atila [23] 

adopted capsule networks to classify the WBCs existing in the LISC dataset. Banik et al. [24] 

devised a fused CNN model in the task of differential WBC count and evaluated their model 

with the BCCD dataset. Liang et al. [25] combined the output feature vector of the flatten 

layer in a fine-tuned CNN and a long short term memory network to classify WBCs in BCCD 

dataset. A new complicated fused CNN introduced in [26] was trained from scratch on 10253 

augmented WBCs images from the BCCD dataset. Despite the complexity of the proposed 

CNN in [26], the number of its parameters stands at 133000. 

For the classification of WBCs based on traditional frameworks, segmenting the nucleus 

and the cytoplasm of WBCs is a vital but tough task. In this study, a novel accurate method to 

segment the nucleus is put forward. In order to segment the nucleus, some researchers used 

the thresholding algorithms after applying various pre-processing techniques on the image 

(e.g. Otsu’s thresholding algorithm, Zack algorithm, and etc.) [27, 28, 29, 30]. A combination 

of machine learning and image processing techniques is also commonly employed to segment 

the nucleus of the WBC [31, 32]. Moreover, during the last decade, CNNs have gained more 

popularity and are used to segment the nucleus of the WBC and cytoplasm [33].  Segmenting 

the cytoplasm is more complicated and less accurate than segmenting the nucleus. Therefore, 

in this paper, a part of the cytoplasm rather than the whole cytoplasm is detected as a 

representative of the cytoplasm (ROC) to be segmented. This approach, as a result, does not 

have the difficulties of segmenting the cytoplasm. We will talk more about this method in 

materials and methods section.  

In order to classify WBCs after segmenting the nucleus and the cytoplasm, discriminative 

features need to be extracted. Shape characteristics such as circularity, convexity, solidity are 

meaningful features for the nucleus. This is due to the fact that lymphocytes and monocytes 
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are mononuclear, and the shape of their nucleus is circular and ellipsoidal, respectively [11]. 

On the other hand, the nucleus of neutrophil and eosinophil is multi-lobed [11] and non-solid. 

Characteristics such as color and texture, e.g., local binary pattern (LBP) or gray level co-

occurrence matrix (GLCM), are also interpretable features for the cytoplasm [11]. In addition 

to the mentioned features, SIFT (scale-invariant features transform) or dense SIFT algorithm 

can be employed for feature extraction. In the next paragraph, we review some related works 

that use traditional frameworks for classifying WBCs.  

Rezatofighi and Soltani-zadeh [7] proposed a new system for the classification of five types 

of WBCs. In this system, nucleus and cytoplasm were extracted using the Gram-Schmidt 

method and Snake algorithm, respectively. Then, LBP and GLCM were used for feature 

extraction, and WBCs were categorized using a hybrid classifier including a neural network 

and an SVM model. Hiremath et al. [28] segmented the nucleus utilizing a global thresholding 

algorithm and classified WBCs using geometric features of the nucleus and cytoplasm. In 

[29], Otsu’s thresholding algorithm was used to detect the nucleus, and shape features such as 

area, perimeter, eccentricity, and circularity were extracted to identify five types of WBCs. 

Diagnosing ALL using images of WBCs was investigated in [30]. The authors of this paper 

applied the Zack algorithm to estimate the threshold value to segment the cells. Then, shape, 

texture, and color features were extracted, and the best features were selected by the means of 

the social spider optimization algorithm. Finally, they classified WBCs into two types of 

healthy and non-healthy, using a KNN classifier. Ghane et al. [31] designed a new method to 

segment the nucleus of the WBCs through a novel combination of Otsu’s thresholding 

algorithm, k-means clustering, and modified watershed algorithm, and succeeded in 

segmenting nuclei with a precision of 96.07 %. Laosai and Chamnongthai [32] examined the 

task of diagnosing ALL and acute myelogenous leukemia using the images of the WBCs. 

They detected the nuclei by employing the k-means clustering algorithm, extracted shape and 

texture features, and finally categorized WBCs utilizing an SVM classifier. 

In this section, we briefly introduced the WBCs, its clinical importance and available 

datasets together with methods used to classify and count WBCs in other studies. In the 

materials and methods section, we present our proposed method for classifying WBCs.  

Afterwards, we will present and compare the obtained results with those of the other studies. 

 

Materials and Methods  

Datasets.     Three different datasets used in this study are Raabin-WBC [15], LISC [7], and 

BCCD [16]. These datasets are discussed in the next three subsections, and are compared in 

Table 1. Also, Figure 1 shows some sample images of these three datasets.  

Raabin-WBC dataset.     Raabin-WBC [15] is a large free-access dataset recently published in 

2021. Raabin-WBC dataset possesses three sets of WBC cropped images for classification: 
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Train, Test-A, and Test-B. All WBCs in Train and Test-A sets have been separately labeled 

by two experts. Yet, images of Test-B have not yet been labeled thoroughly. Therefore, in this 

study we only used Train and Test-A sets. These two sets have been collected from 56 normal 

peripheral blood smears (for lymphocyte, monocyte, neutrophil, and eosinophil) and one 

chronic myeloid leukemia (CML) case (for basophil) and contain 14514 WBC images. All 

these films were stained through Giemsa technique. The normal peripheral blood smears have 

been taken using the camera phone of Samsung Galaxy S5 and the microscope of Olympus 

CX18. Also, the CML slide has been imaged utilizing an LG G3 camera phone along with a 

microscope of Zeiss brand. It is worth noting that the images have all been taken with a 

magnification of 100.  

    

LISC dataset.     LISC dataset [7] contains 257 WBCs from peripheral blood, which have been 

labeled by only one expert. The LISC dataset has been acquired from peripheral blood smear 

and stained through Gismo-right technique. These images have been taken at a magnification 

of 100 using a light microscope (Microscope-Axioskope 40) and a digital camera (Sony 

Model No. SSCDC50AP). We cropped all WBCs in this dataset as shown in Figure 1. 

 

BCCD dataset.     BCCD dataset [16] has been taken from the peripheral blood and includes 

349 WBCs labeled by one expert. The Gismo-right technique has been employed for staining 

the blood smears. This dataset, also, has been imaged at a magnification of 100 using a regular 

light microscope together with a CCD color camera [34]. In addition, based on diagnosis made 

by two of our experts, we found that one of the images of the BCCD dataset had been 

incorrectly labeled, and thus, we corrected this label. 

 

Training, augmented training, and test sets.     For the Raabin-WBC dataset, we have 

employed already split sets of the original data namely Train and Test-A sets for training and 

test. In this dataset, different blood smears have been considered for the training and testing 

sets. Test-A and Train sets comprise almost 30 percent and 70 percent of the whole data, 

respectively. For the LISC dataset, we randomly selected 70 percent of the data for training, 

and 30 percent for testing. BCCD dataset has two splits in the original data, 80% of which 

serve as training and 20% as testing. Since this dataset had only three basophils, we ignored 

the basophils in BCCD and only considered the remaining four types.  

To train an appropriate classifier, it is necessary to balance the training data adopting 

various augmentation methods. For this reason, some augmentation methods such as 

horizontal flip, vertical flip, random rotation (between -90 and +90 degree), random scale 

augmentation (rescaling between 0.8 and 1.2), and a combination of them were utilized to 

augment the training sets of Raabin-WBC and LISC datasets. In addition, the training data of 
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the BCCD dataset had already been augmented. In Table 1, all information about the amount 

of data in each set is presented. 

 

Dataset 
Number of WBCs 

Staining Microscope and Zoom Camera 

Lymph. Mon. Neut. Eos. Bas. Total 

Raabin

-WBC 

[15] 

 

All WBCs 3461 795 8891 1066 301 14514 

Giemsa 

 

1.Olympus CX18      

2.Zeiss microscope        

 Zoom : 100X 

 

1. Phone camera-

Samsung Galaxy S5 

 
2.Phone camera-LG G3 

Training set 2427 561 6231 744 212 10175 

Augmented training set 7305 6083 6231 6680 3180 29479 

Test set 1034 234 2660 322 89 4339 

BCCD 

[16] 

All WBCs 33 19 208 86 3 349 

Gismo-right 

Regular light microscope 

 Zoom : 100X 

CCD color camera 

Training set 27 16 159 75 - 277 

Augmented training set 2483 2478 2499 2497 - 9957 

Test set 6 3 49 11 - 72 

LISC 

[7] 

All WBCs 59 48 56 39 55 257 

Gismo-right 
Axioskope40 

 
Zoom : 100X 

 

Sony-SSCDC50AP 

 

Training set 41 33 39 28 39 180 

Augmented training set 410 396 390 420 390 2006 

Test set 18 15 17 11 16 77 

Table 1. The properties of LISC, BCCD, and Raabin-WBC datasets. 
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Figure 1. Some samples of the WBCs in Raabin-WBC, LISC, and BCCD datasets; Lymph (lymphocyte), 

Mono (monocyte), Neut (neutrophil), Eosi (eosinophil), Baso (basophil). 

 

Nucleus Segmentation.     Three following steps for nucleus segmentation are considered: 

Firstly, a color balancing algorithm [1] is applied to the RGB input image, then the CMYK 

and HLS color spaces are computed and combined and a soft map is computed. Finally, the 

nucleus is segmented by applying Otsu’s thresholding algorithm on the aforementioned soft 

map. The precise steps of the nucleus segmentation algorithm are as follows: 

a) Converting color-balanced RGB image to CMYK color space 

b) KM = (K component) – (M component)   

c) Converting color-balanced RGB image to HLS color space 
  

d) MS = Min(M component , S component)   
 

e) Output  soft map = MS – KM     
 

f) Employing Otsu’s thresholding algorithm to segment the nucleus 
 

Figures 2 illustrates the resulting images obtained by applying different steps of the 

proposed method to segment a sample nucleus. As depicted in Figure 2, red blood cells and 

the cytoplasm of the WBC in the K component have more intensity than those in the M 

component. Furthermore, the nucleus of the WBC has a lower intensity in comparison to the 
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M component. Accordingly, as shown in Figure 2 (6), subtracting the M component from the 

K component produces an image the nucleus pixels of which are zero or close to zero. On the 

other hand, as seen in Figure 2 (7), computing the minimum of the M and S channels creates 

an image wherein the intensity of the red blood cell and the background are close to zero. 

Finally, by subtracting Figure 2 (6) from Figure 2 (7), Figure 2 (8) is formed in which the red 

blood cells, cytoplasm, and the background are eliminated. Figure 3 also shows the block-

diagram of the proposed algorithm. 

In this research, the color balancing algorithm of [1] is utilized to reduce color variations. 

To create a color-balanced representation of the image, it is necessary to compute the mean 

of R, G, and B channels as well as the grayscale representation of the RGB image. Then, by 

using equation (1), the new balanced R, G, B components are obtained.  

𝑛𝑒𝑤 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑜𝑙𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗
𝑚𝑒𝑎𝑛 𝑜𝑓 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑖𝑚𝑎𝑔𝑒

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑜𝑙𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
  (1) 

  After color balancing, the color-balanced image is converted to the CMYK and HLS color 

spaces. The CMYK color space has four components, which are cyan (C), magenta (M), 

yellow (Y), and black (K). The steps of converting RGB to CMYK are given by the following 

equations [37]: 

𝐶′ = 255 − 𝑅   (2) 

𝑀′ = 255 − 𝐺   (3) 

𝑌′ = 255 − 𝐵   (4) 

𝐾 = min (𝐶′, 𝑀′, 𝑌′)  (5) 

𝐶 =
𝐶′−𝐾 

255−𝐾
   (6) 

𝑀 =
𝑀′−𝐾 

255−𝐾
   (7) 

𝑌 =
𝑌′−𝐾 

255−𝐾
   (8) 
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Figure 2. The results obtained through applying different steps of our nucleus segmentation method: (1) RGB image, (2) color-

balanced image, (3) K component of CMYK color space, (4) M component of CMYK color space, (5) S component of HLS color 

space , (6) result of K – M, (7) result of Min(M , S), (8) result of Min(M , S) – ( K – M), (9) the result of applying Otsu’s 

thresholding algorithm, (10) the final result. 

 

Figure 3.   The block diagram of the nucleus segmentation method. 

 

 Cytoplasm Detection.     To extract proper features from the cytoplasm, it is first necessary 

to segment it. However, segmenting the cytoplasm is more difficult and less accurate than 
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segmenting the nucleus. Hence, we designed a new method to solve this problem. In this 

method, the convex hull of the nucleus is obtained first, and a part of the cytoplasm that has 

been located inside the convex hull is considered as the representative of the cytoplasm 

(ROC). The more convex nucleus is, the smaller ROC is. Thus, lymphocytes, which usually 

have a circular nucleus, have lower ROC than neutrophils. Figure 4 illustrates this point.  

 

Figure 4. The cytoplasm detection. The first row and the second row are neutrophil and lymphocyte, 

respectively. (a) RGB image, (b) nucleus, (c) convex hull of the nucleus, (d) the representative of the cytoplasm 

(ROC). 

Feature Extraction.     In this study, two groups of features are taken into account. The first 

group includes shape features of the nucleus (convexity, circularity, and solidity). The 

equations associated with the shape features are as follows [1]:  

Solidity = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑁𝑢𝑐𝑙𝑒𝑢𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
   (9) 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑁𝑢𝑐𝑙𝑒𝑢𝑠
  (10) 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑦 =
(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑁𝑢𝑐𝑙𝑒𝑢𝑠)2

4×𝜋×(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑁𝑢𝑐𝑙𝑒𝑢𝑠)
  (11) 

The second group of features is color characteristics. According to the experience of 

hematologists, in addition to the shape features of the nucleus, the color features of the nucleus 

and the cytoplasm can also provide us with useful information about the type of WBC [11]. 

In this research, four novel color features by means of nucleus region, convex hull region, and 

ROC region are designed as follows: 
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1. 
𝑀𝑒𝑎𝑛 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
 

2. 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
 

3. 
𝑀𝑒𝑎𝑛 𝑜𝑓 𝑅𝑂𝐶

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
 

4. 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑂𝐶

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
 

These color features were extracted from the components of RGB, HSV, LAB, and YCrCb 

color spaces. Therefore, 48 color features and 3 shape features were extracted, which comes 

up to a total of 51 features. By looking at the classifier's performance in the results section, it 

is evident that the introduced color features significantly improve the classification accuracy.  

 

Classification.     After features are extracted from augmented data, they are normalized using 

the max-min method and are fed into an SVM classifier. We also tested other classifiers such 

as KNN and deep neural networks. However, we observed that the SVM provides us with the 

best results. With much trial and error, we found that if the weight of the neutrophils in the 

training is set to be more than one, and the rest of the classes are one, the best overall accuracy 

is observed. Three commonly used kernels which are linear, polynomial, and radial basis 

functions are tested in this regard. Besides, the regularization parameter known as C is an 

important parameter to train an SVM model. Thus, three important hyperparameters (class-

weight, kernel, and C) are tuned to properly train the SVM model. To find the optimal 

hyperparameters, we applied 5-fold cross-validation on the Train set of the Raabin-WBC 

employing three different kernels (linear, polynomial with degree three, and radial basis 

function), neutrophil-weight = 1, 2, 5, 10, 15, 20, and C = 1, 2, 4, 6, 8, 10. Hence, 108 states 

were assumed. We examined each combination of the hyperparameters with 5-fold cross-

validation on the Train set of the Raabin-WBC. Table 2 shows the result of examining 

different combinations of the hyperparameters. From Table 2, it can be seen that the best 

accuracy is obtained by polynomial kernel, neutrophil-weight of 10, and this is when the C 

parameter is equal to 6. We fixed these hyperparameters obtained over the Raabin-WBC 

dataset meaning that we did not readjust these hyperparameters for the LISC and BCCD 

datasets.  

 

Kernel                 C 

W 

C = 1 C = 2 C = 4 C = 6 C = 8 C = 10 

Linear 
Neut-W = 1 92.93 ± 0.31 93.22 ± 0.41 93.48 ± 0.37 93.42 ± 0.30 93.52 ± 0.43 93.57 ± 0.35 

Neut-W = 2 93.91 ± 0.18 94.08 ± 0.32 94.28 ± 0.37  94.29 ± 0.36 94.35 ± 0.42 94.36 ± 0.34  
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Results   

The Result of Nucleus Segmentation.    The performance of the proposed nucleus 

segmentation algorithm is evaluated using three different metrics namely dice similarity 

coefficient (DSC), sensitivity, and precision. These metrics are computed using true positive 

(TP), false positive (FP), true negative (TN) and false negative (FP) of the resulting 

segmentation (as shown in Figure 5) and are provided by the following equations.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (13) 

Neut-W = 5 94.51 ± 0.27 94.69 ± 0.49 94.99 ± 0.42 94.98 ± 0.39 94.95 ± 0.39 94.94 ± 0.34  

Neut-W = 10 94.61 ± 0.24 94.68 ± 0.32 94.79 ±0.35 94.92 ± 0.29 95.02 ± 0.32 95.03 ± 0.27 

Neut-W = 15 94.49 ± 0.22 94.60 ± 0.24 94.73 ± 0.26 94.77 ± 0.29 94.87 ± 0.35 94.85 ± 0.30 

Neut-W = 20 94.42 ± 0.23 94.55 ± 0.26 94.65 ± 0.26 94.67 ± 0.29 94.66 ± 0.33 94.70 ± 0.30 

RBF 

Neut-W = 1 93.21 ± 0.26 93.63 ± 0.27 94.15 ± 0.37 94.34 ± 0.37 94.41 ± 0.35 94.50 ± 0.26 

Neut-W = 2 94.33 ± 0.24 94.61 ± 0.22 95.02 ± 0.19  95.22 ± 0.27 95.35 ± 0.27 95.36 ± 0.29 

Neut-W = 5 95.10 ± 0.26 95.41 ± 0.30 95.67 ± 0.31 95.73 ± 0.31 95.87 ± 0.41 95.87 ± 0.37 

Neut-W = 10 94.95 ± 0.35 95.24 ± 0.40 95.54 ± 0.29 95.66 ± 0.28 95.84 ± 0.32 95.85 ± 0.35  

Neut-W = 15 94.89 ± 0.24 95.23 ± 0.30 95.58 ± 0.26 95.64 ± 0.28 95.75 ± 0.34 95.82 ± 0.36 

Neut-W = 20 94.79 ± 0.25 95.14 ± 0.27 95.54 ± 0.21 95.61 ± 0.31 95.78 ± 0.36 95.79 ± 0.41 

Poly 

Neut-W = 1 94.18 ± 0.42 94.47 ± 0.51 94.77 ± 0.34 94.90 ± 0.31 94.90 ± 0.29 94.92 ± 0.34 

Neut-W = 2 95.20 ± 0.27 95.37 ± 0.46 95.56 ± 0.34 95.61 ± 0.28 95.56 ± 0.30 95.59 ± 0.40 

Neut-W = 5 95.72 ± 0.42  95.75 ± 0.47 96.00 ± 0.44 95.99 ± 0.46 95.91 ± 0.49 95.88 ± 0.50 

Neut-W = 10 95.52 ± 0.39 95.68 ± 0.41 95.95 ± 0.44 96.01 ± 0.42 95.91 ± 0.39 95.94 ± 0.41 

Neut-W = 15 95.50 ± 0.36 95.61 ± 0.43 95.89 ± 0.41  95.98 ± 0.36 95.90 ± 0.30 95.87 ± 0.40 

Neut-W = 20 95.45 ± 0.34 95.53 ± 0.35 95.80 ± 0.29 95.95 ± 0.38 95.87 ± 0.33 95.83 ± 0.40 

Table 2.  The accuracy for 5-fold cross validation on the Raabin-WBC in order to find the optimal hyperparameters; RBF (radial 

basis function), Poly (polynomial with degree 3), C (regularization parameter), Neut-W (neutrophil-weight). The results shows that 

the SVM model with polynomial kernel, C = 6, and neutrophil-weight = 10 provides the best accuracy  
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𝐷𝑆𝐶 = 2⨉
𝑇𝑃

(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)
 (14)       

In order to extract the ground truth, 250 images including 50 images from each type of 

WBCs were randomly selected from Raabin-WBC dataset. Then, the ground truths for these 

images were identified by an expert with the help of Easy-GT software [36]. Also, since very 

dark purple granules cover the basophil’s surface, it is almost impossible to distinguish the 

nucleus [11]. Therefore, the whole basophil cell was considered as the ground truth. The 

results of the proposed segmentation algorithm have been presented in Table 3. The proposed 

segmentation method can detect the nucleus with precision, sensitivity, and dice similarity 

coefficient of 0.9972, 0.9526, and 0.9675, respectively.  

The performance of the proposed segmentation algorithm is compared with that of U-

Net++ [33], Attention U-Net [37], and Mousavi et al.'s method [36]. U-Net++ and Attention 

U-Net are two well-known deep CNN developed for medical image segmentation. To train 

these models, 989 images from Raabin-WBC dataset were randomly chosen, and their ground 

truths were extracted by an expert utilizing Easy-GT software [36]. The training set includes 

199 lymphocytes, 199 monocytes, 199 neutrophils, 195 eosinophils, and 197 basophils. Both 

models were trained for 40 epochs, then evaluated with 250 ground truths mentioned in the 

previous paragraph. Table 3 presents the results of different segmentation algorithms. It can 

be seen that the proposed segmentation method has very low standard deviation for DSC and 

precision which indicates that the proposed method works consistently well for different cells 

in the data. In addition, U-Net++ and attention U-Net are deep CNNs, and their training 

process is supervised. Hence, they need way more data to be trained. This is while our 

proposed method does not need to be learned. Also, these two models have lots of parameters 

and need more time to segment an image, but the proposed segmentation algorithm is simpler 

and faster. The suggested method can detect the nucleus of a WBC in a 575 by 575 image size 

in 45 milliseconds. This is while U-Net++ and attention U-Net need 1612 and 628 

milliseconds to segment the nucleus. The proposed method, U-Net++, attention U-Net, and 

Mousavi et al.’s method [36]  were implemented in Google Colab, CPU mode and were 

compared their execution time.    

 

 Figure 5. The graphic display of TP, FP, and FN for a segmentation problem. 
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Methods Precision Sensitivity DSC Time 

(ms) 

Trainable 

Parameters Mean  Std  Mean  Std  Mean  Std  

U-Net++ [33] 0.9598 0.0632 0.9873 0.0225 0.9719 0.0397 1612 897412 

Attention U-Net [37] 0.9478 0.0903 0.9850 0.0213 0.9633 0.0584 628 854936 

Mousavi et al. [36] 0.9362 0.1158 0.9827 0.0310 0.9542 0.0750 47 0 

Proposed method 0.9972 0.0090 0.9526 0.0300 0.9675 0.0180 45 0 

Table 3. The result of different nucleus segmentation algorithms evaluated on 250 test images; DSC (dice similarity 

coefficient), Std (standard    deviation), ms (millisecond).  

 

Result of Classification.     In order to evaluate the classification accuracy, four metrics are 

used: Precision, Sensitivity, F1-score (F1), and Accuracy (Acc). If we face a two-class 

classification problem such the first class is called Positive and the second class is called 

Negative, the confusion matrix can be assumed as Table 4, and the mentioned criteria are 

obtained through relations (15), (16), (17), and (18).  

Negative Positive  

 

False Negative (FN) 
 

Number of samples that are 

Positive while classifier 

predicts Negative 

 

True Positive (TP) 
 

Number of samples that are 

Positive and classifier 

predicts Positive 

 

Positive 

 

True Negative (TN) 
 

Number of samples that are 

Negative and classifier 

predicts Negative 

 

False Positive (FP) 
 

Number of samples that are 

Negative while classifier 

predicts Positive 

 

Negative 

Table 4. Confusion matrix for a two-class problem. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (15) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (16) 

𝐹1 = 2⨉
𝑃𝑟𝑒𝑐 ⨉ 𝑆𝑒𝑛𝑠

𝑃𝑟𝑒𝑐+𝑆𝑒𝑛𝑠
  (17) 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (18) 

In order to evaluate the effectiveness of color features, Raabin-WBC, LISC, and BCCD 

datasets are classified in two modes: classification using the shape features, and classification 

using the shape features together with the color ones. The comparison of the classification 

accuracy of these two modes is provided in Table 5. It can be seen in Table 5 that adding 

proposed color features significantly changes the classification results. Addition of color 
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features leads to a remarkable increase in precision, sensitivity, and F1-score for all five types 

of WBCs. The proposed method classifies WBCs in Raabin-WBC, LISC, and BCCD datasets 

with accuracies of 94.65 %, 92.21 %, and 94.20 %, respectively. The resulting confusion 

matrices of our proposed method for the three datasets are shown in Figure 6.  

 
Acc. 

(%) 

Bas. Eos. Neut. Mon. Lymph. 

Features Dataset F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

84.56 52.35 43.82 65.00 0 0 0 89.93 96.99 83.82 41.03 37.61 45.13            94.31 93.04 95.63 Shape Raabin-

WBC 94.65 96.05 95.51 96.59 80.66 91.30 72.24 96.78 95.60 98 85.59 86.32 84.87 96.14 95.07 97.23 Shape & Color 

64.94 51.61 50.00 53.33 22.22 18.18 28.57 77.27 100 62.96 69.23 60 81.82 80 77.78 82.35 Shape 

LISC 
92.21 100 100 100 100 100 100 97.14 100 94.44 78.57 73.33 84.62 86.49 88.89 84.21 Shape & Color 

71.01 --- --- --- 0 0 0 83.05 100 71.07 0 0 0 0 0 0 Shape 

BCCD 
94.20 --- --- --- 80 72.73 88.89 96 97.96 94.12 100 100 100 100 100 100 Shape & Color 

Table 5. The comparison of classification results using two modes of features. One mode uses only shape features and the other 

mode uses both shape and color features.  The abbreviations: P (precision), S (sensitivity), F1 (F1-score), Acc (accuracy). 

 

 

 

Comparison with the state-of-the-art methods.     Since the LISC and BCCD datasets have 

been publicly available for several years, the performance of the proposed method on these 

two datasets is compared to that of the state-of-the-art works in terms of precision, sensitivity, 

and F1-score. Also, because the categorization of WBCs in peripheral blood is an imbalanced 

classification problem [15], the comparison has been made based on each class.  Table 6 shows 

the detailed comparisons.  

Figure 6. The confusion matrices of our proposed classification method for Raabin-WBC, LISC, and BCCD 

datasets.  
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By taking a meticulous look at criterion F1-score, which actually covers both criteria 

precision and sensitivity, it can be said that our proposed method has achieved the best 

performance in most classes. In the LISC dataset, the proposed method has classified 

neutrophils, eosinophils, and basophils with F1-scores of 97.14%, 100%, and 100%, 

respectively. Also, in the BCCD dataset, our method was able to classify lymphocytes, 

monocytes, and neutrophils with F1-scores of 100%, 100%, and 96%, respectively. In 

reference to traditional approaches, the method employed in this article is simple and creative 

and can be easily implemented. In this method, suitable shape and color features are extracted 

by means of the nucleus and the cytoplasm, yet there is no need for the cytoplasm to be 

segmented. The methods used in [19], [22], [23], [24], [25], and [26] are based on deep 

learning approaches. Therefore, their models are more complex and have more trainable 

parameters versus our classifier model which is SVM. For example, the models utilized in 

[22], [23], and [25] have 16.5, 23.5, and 59.5 million parameters, successively. Besides, it 

should be noted that the hyperparameters of our SVM model were set only using the Raabin-

WBC dataset and were not readjusted again on the LISC and BCCD datasets. This is while 

the other methods have fixed the hyperparameters of their classifiers on each dataset, 

separately.  

 

Bas. Eos. Neut. Mon. Lymph. 

Method Dataset F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

94.23 98 90.74 97.30 94.74 100 96.55 100 93.33 93.88 95.83 92 96.43 93.10 100 

Rezatofighi 

and Soltanian-

Zadeh [7] 

LISC 
85 100 73.91 100 100 100 97.14 100 94.44          80 66.67         100       94.12 88.89     100      

Jung et al. [22] 
 

88.89 88.89 88.89 90.71 83 100 96.65 100 91.66 80 80 80 100 100 100 
Baydilli and 

Atila  [23] 

100 100 100 100 100 100 97.14 100 94.44 78.57 73.33 84.62 86.49 88.89 84.21 Our method 

--- --- --- 89.60 84 96 83.95 97 74 89.50 81 100 99.50 100 99 
Banik et al. 

[24] 

BCCD 

--- --- --- 91.99 91 93 84.42 92 78 87.27 80 96 100 100 100 
Liang et al. 

[25] 

--- --- --- 93 93 93 92.50 92 93 99 99 99 100 100 100 
Banik et al. 

[26] 

--- --- --- 92.85 90.86 94.92 92.78 92.09 93.49 97.87 100 95.83 98.89 99.80 97.99 
Togacar et al. 

[19] 

--- --- --- 80 72.73 88.89 96 97.96 94.12 100 100 100 100 100 100 Our method 

Table 6. The comparison of our method with other works; P (precision), S (sensitivity), F1 (F1-score). 
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Discussion   

As mentioned before, the proposed method contains three phases. Segmenting the nucleus and 

detecting a part of the cytoplasm located in the nucleus’s convex hull are performed at first 

phase. After extracting shape and color features, WBCs are finally categorized employing 

extracted features. Our proposed nucleus segmentation algorithm consists of several steps 

depicted in Figure 2. These steps have been designed to remove the red blood cells and the 

cytoplasm. From Table 3, it is clear that the segmentation algorithm can detect the nucleus 

with a very high precision of 0.9972 and DSC of 0.9675. The proposed segmentation 

algorithm is very fast in comparison with U-Net++ and Attention U-Net models (Table 2).  

In the cytoplasm detection phase, in contrast to the common practice of segmenting the 

whole cytoplasm, only parts of the cytoplasm that are inside the convex hull of the nucleus 

was selected as a representative of cytoplasm (ROC). This way has not the difficulties of 

segmenting cytoplasm, but the classification accuracy is boosted with the help of features 

extracted by means of ROC.  

In the Feature extracting phase, we used three common shape features namely solidity, 

convexity, and circularity. Besides, we designed four novel color features and extracted them 

from channels of RGB, HSV, LAB, and YCrCb color spaces. According to Table 5, it is 

obvious that the designed color features have remarkably increased the classification 

accuracy.  

In the final phase, the classification is done with an SVM model. To choose the best 

hyperparameters for the SVM model, 5-fold cross validation was applied only on the Raabin-

WBC dataset. The SVM model was separately trained for a different combination of 

hyperparameters to obtain the best one (Table 2). The method we put forward is automatic 

and simple that does not need to resize the images and segment the cytoplasm. According to 

Table 6, in LISC dataset, the proposed method came first in distinguishing neutrophils, 

eosinophils, and basophils. In addition, in the BCCD data set, our method was ranked first in 

detecting lymphocytes, monocytes, and neutrophils.  

 

Conclusion   

In this research, we designed a novel nucleus segmentation algorithm and four new color 

features to classify WBCs. The proposed method successfully managed to classify three data 

sets differing in terms of microscope, camera, staining technique, variation, and lighting 

conditions, and ensured the following accuracy of 94.65 % (Raabin-WBC), 92.21 % (LISC), 

and 94.20 % (BCCD). We showed that the novel color features designed for this research can 

greatly help identifying WBCs. Therefore, we can conclude that not only is the suggested 

method robust and reliable, but also it can be utilized for laboratory applications and purposes. 
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Data and code availability 

Three used dataset are available through the below links: 

 Raabin-WBC: www.raabindata.com  

 LISC: http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm 

 BCCD: https://www.kaggle.com/paultimothymooney/blood-cells  

Also, the codes of the proposed method are available from first author on reasonable request. 
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