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ABSTRACT
Environmental variability poses a major challenge to any field study. Researchers attempt to 
mitigate this challenge through replication. Thus, the ability to detect experimental signals is 
determined by the degree of replication and the amount of environmental variation, noise, within
the experimental system. A major source of noise in field studies comes from the natural 
heterogeneity of soil properties which create micro-treatments throughout the field. To make 
matters worse, the variation within different soil properties is often non-randomly distributed 
across a field. We explore this challenge through a sorghum field trial dataset with 
accompanying plant, microbiome and soil property data. Diverse sorghum genotypes and two 
watering regimes were applied in a split-plot design. We describe a process of identifying, 
estimating, and controlling for the effects of spatially distributed soil properties on plant traits 
and microbial communities using minimal degrees of freedom. Importantly, this process 
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provides a tool with which sources of environmental variation in field data can be identified and 
removed, improving our ability to resolve effects of interest and to quantify subtle phenotypes.

IMPORTANCE 
Data from field experiments are notoriously noisy. Proper field designs with high replication aid 
in mitigating this challenge, yet true biological correlations are still often masked by 
environmental variability. This work identifies soil property composition as a spatially distributed 
source of variance to three types of characteristics: plant phenotype, microbiome composition, 
and leaf traits. We show that once identified, spatial principal component regression was able to
account for these effects so that more precise estimates of experimental factors were obtained. 
This generalizable method is applicable to diverse field experiments.

INTRODUCTION
Environmental variation makes the real world a noisy place to conduct science. In the context of
experimental agriculture fields, variation in topography may result in uneven water moisture 
accumulation. Similarly, soil nutrients such as nitrogen and phosphate, are often non-uniformly 
distributed across a field. These unintended and often unknown sources of environmental 
variation may significantly affect the experimental results. The traditional approach to mitigate 
this variability is through experimental designs that include replicate blocks (Piepho et al. 2013; 
Fisher 1925). While helpful for removing variation that is relatively uniform within the blocks, true
biological signal may still be masked by other experimental noise that is heterogeneous within 
blocks. 

Analytical approaches have been used to parameterize the entire spatial variation within a field 
and can account for the effects on observations analytically using traditional mixed-effect 
modeling. These methods come in two varieties: estimating spatial-covariance structures, and 
spatial-smoothing using splines (Rodríguez-Álvarez et al. 2016). The former is older and 
canonical but more challenging to complete, and the latter is newer and easier to use courtesy 
of advancements in computation. Spatial-smoothing has been shown to effectively account for 
spatial variations in uniform barley fields and promotes genetic heritability in simulation studies 
(Rodríguez-Álvarez et al. 2016). While spatial-smoothing using splines does effectively address 
spatial variation of a trait in a field, traditional parameterizations using spatial-covariance 
structures do so as well and further provide intuitive metrics on the type and shape of the 
structure. 

Spatial distribution has been considered in a variety of biological systems ranging from 
nematodes (Quist et al. 2019), microbiomes (Franklin and Mills 2003), forestry (Ohashi and 
Gyokusen 2007; Möttönen et al. 1999; Bai et al. 2012), and ionomics QTL mapping (Pauli et al. 
2018). These previous studies have used spatial-covariance estimation methods to identify and 
associate spatial effects on various traits of interest. These methods are also the backbone of 
geospatial statistics where the goal is to interpolate values between sampling points (Olea 
2018). These previous studies have only demonstrated the presence of spatial structure in 
these measurements. However, it remains a challenge to identify which factors of a multivariate 
dataset have an effect on the traits of interest and then adjust for the effects from all covariates 
while maintaining sufficient degrees of freedom for statistical inference. This challenge is similar 
to the challenge associated with genome-wide association studies (GWAS) that must handle 
population structure. In GWAS studies, phylogenetic relatedness is managed by principal 
component analysis (Price et al. 2006). Principal components capture axes of most variation 
and effectively reduce a complex multivariate dataset down to only a few independent vectors of
most importance.
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Here, we combine approaches from geospatial statistics and GWAS to overcome environmental
variation in field studies. Specifically, we estimated spatial-covariance structures for each factor 
and then accounted for these effects using principal component regression. A field trial with 24 
varieties of sorghum and two watering treatments, well-watered and water stressed, arranged in
a split-plot design with 8 replicate blocks, was completed in 2017. Several types of data were 
collected including, but not limited to, plant harvest traits (height, fresh and dry weight, panicle 
size), soil property composition (calcium, magnesium, nitrate, organic matter, pH, phosphate, 
potassium, salinity, sodium, sulfate, total cations), three microbiome samplings for each plot 
(root, rhizosphere, and soil), leaf traits (specific leaf area, C and N content and stable isotopes 
of C and N), and root metabolomic profile. In this study, the soil chemical and physical 
properties were used as the multi-covariates that exhibited spatial-covariance structure and 
subsequently created micro-treatment effects throughout the field that associated with plant 
traits. We demonstrate that accounting for these effects via residuals of principal component 
regression is an effective method to improve the resolution of experimental design effects and 
reduce the noise caused by spatial variation within a field.

METHODS
The field experimental design (sorghum varieties, watering regimes, and field layout) was 
previously described in Qi et. al., 2021.  In short, we planted 24 varieties of sorghum in a split-
plot design with eight replicate blocks with two watering treatments per block (well-watered and 
drought). End of season harvesting procedures, microbiome sampling, DNA extraction, and 
sequencing are also fully described in Qi et. al., 2021.

Processing amplicon reads with VSEARCH and OTU table QC
Three microbiomes were collected for each plant: root endophytes, rhizosphere, and bulk soil, 
and all samples were sent for 16S PE amplicon sequencing at JGI (see Qi et.al. 2021 for 
extraction and sequencing methods). What follows is the VSEARCH (v2.9.0) (Rognes et al. 
2016) workflow for taking the reads for each sample and processing them to curate the OTU 
table: merge paired ends, merge all samples, fastq filter, sequence dereplication, cluster unique 
sequences, remove chimeras, and read quantification. Merging paired ends had the following 
parameters: max diffs = 10, max diff percentage = 90, min merge length = 230, max merge 
length = 540. Samples were then combined into a single fasta file. Fastq filtering had the 
following parameters: maxee = 1, strip left = 19, strip right = 20, fastq max n’s = 0, fasta width = 
0. Dereplication had the following parameters: min unique size = 1, fasta width = 0. OTU 
clustering had the following parameters: id percentage = 0.995, strand = both. Removing 
chimeras had the following parameters: fasta width = 0. Read quantification had the following 
parameters: id percentage = 0.9. These steps were combined all together in a directed acyclic 
graph (DAG) workflow and executed on a HTCondor high-throughput computation cluster. A 
total of 171,273 OTU’s were detected and of those 114,179 had quantification across all 1,280 
samples. OTU table quality control was done in two steps: samples were removed if the total 
number of reads quantified across all OTU’s was less than 10,000. In addition, OTUs were 
removed if the total number of reads quantified across all samples was less than 100 or greater 
than 200,000. After applying this filter 92,385 OTU’s and 1,280 samples remained. Of the OTU’s
removed only 422 had counts larger than 200,000 indicating the majority of the OTU’s removed 
were rare and would not have enough information to perform proper statistical analysis. Once 
OTU’s and samples that did not meet the quality control filters were removed, each OTU count 
in a sample was scaled proportionally to the same number, max number of reads per sample, 
so that all samples had the same number of OTU counts quantified.

Geospatial interpolation methods
The variance of observed samples at multiple distances were calculated to produce a variogram
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and then, several spatial models were fitted to the data. The best fitting model was selected as 
the one that produced the minimal sum-of-squares errors. The spatial models that were 
considered include: no structure, exponential, spherical, gaussian, Matern, and Stein’s 
parameterization of Matern. There are three metrics that describe a spatial fit and help us 
understand how the sampled points are correlated. The nugget is the estimated variance 
between two adjacent samples and represents the noise of the data. The range is the distance 
at which the change in variance with respect to distance first becomes zero and represents how 
far away sampled points demonstrate the correlation structure. Finally, the partial sill is the 
variance at the range minus the nugget variance.

Each spatial structure ultimately yields estimated spatial weights as a function of the distance 
between two sampling points. With these weights, we can estimate values at non-sampled 
positions by kriging, a method to interpolate by using a weighted average of the observed 
values in the neighborhood of non-sampled position. We apply the ordinary kriging and let the 
sum of spatial weights to be one so that ordinary kriging to be unbiased (Olea 2018). 

Statistical testing for evidence of spatial structure 
One major assumption of fitting spatial models is that the distribution is stationary, meaning that 
the mean and covariance between any two samples are the same throughout the grid. 
However, this field trial included two treatment factors (watering treatments and sorghum 
genotypes) which may have directly affected the measured soil properties. Thus, to satisfy the 
stationary assumption, we needed to account for any influence on the soil properties from the 
two treatment factors and/or their interaction. To do this, we fitted linear models including 
treatment factors and their interaction for each soil property separately. Residuals from these 
linear models correspond to soil property data after correcting for the linear effect of both 
treatment factors. To test for a spatial distribution, these residuals were used as the response 
variable of multiple models: intercept-only, and others with different spatial covariance 
structures (spherical, exponential, gaussian, linear, and rational-quadratic). The likelihood of the
intercept-only model was compared to the likelihood of each spatial model using a likelihood 
ratio test. A soil property is considered to exhibit evidence of spatial structure if any of five 
spatial covariance structure models are significantly more likely than the intercept-only model

Soil property composition sampling and processing
Selected plants were excavated using a shovel to a depth of 12 – 14 inches. The soil 
(approximately 200 g) from the excavated root ball was shaken off into a wash pan in the field, 
homogenized and collected into a quart-size Ziploc bag. In addition to the collection of roots for 
microbiome analysis a subset of roots were collected for metabolite analysis as described in 
(Sheflin et al. 2019). The soil used for chemical and physical analysis was stored in the Ziploc 
bags at 4˚C and sent to Ward labs for analysis of pH, buffer pH, sum of cations (CEC), base 
saturation (%), soluble salts, organic matter, nitrate-nitrogen, phosphorus, potassium, calcium, 
magnesium, sodium, sulfur, zinc, iron, manganese and copper.

Root metabolomics sampling and processing
Non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS)

Metabolite extraction was conducted by weighing out 19 - 21 mg of each freeze-dried 
sorghum roots and placing them into clean 2 mL autosampler glass vials (VWR, Radnor, PA, 
USA). Automated control of sample extraction (i.e., solvent proportions, solvent volumes, 
sample agitation and supernatant transfers) was accomplished using a standalone Gerstel 
MultiPurpose Sampler (MPS). Samples were extracted by adding 770 μl of methyl-tert-butyl-
ether (MTBE) and 385 μl to each vial and vortexing on the MPS at room temperature for 30 min.
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To separate organic and aqueous layers, 640 μl of water was added to the remaining extract 
and vortexed for 15 min. Samples were then centrifuged for 25 min at 3500 rpm at 4 C. The 
organic layer was extracted twice by transferring into a new 2 mL autosampler vial without 
disturbing the lower layer then adding 600 μl of MTBE and transferring again. The aqueous 
layer was also extracted twice by transferring out of the vial into a new 2 mL autosampler vial 
without disturbing the pellet then adding 300 μl of methanol and 300 μl of acetonitrile, vortexing 
for 3 min and transferring again.  The aqueous layer was completely dried under N gas, 
resuspended in 300 μl of 75% methanol. 20 µL of the aqueous layer from each sample was 
transferred to another set of glass vials, centrifuged for 2 min at 3500 rpm and then dried under 
N2 (g) for 30 min. Dried samples were stored at -80 ˚C until derivatization. Derivatization 
(methoximation and silylation) took place immediately prior to running the samples. Dried down 
samples were allowed to warm to room temperature and then re-suspended in 50 µL of 
methoxyamine HCl (prewarmed to 60 ˚C) and centrifuged for 30 sec. Samples were then 
incubated at 60 ˚C for 45 min, followed by a brief vortex, sonication for 10 min and an additional 
incubation at 60 ˚C for 45 min. Following this, the samples were centrifuged before receiving 50 
µL of N-Methyl-M (trimethylsilyl) trifluoroacetamide (MSTFA) + 1 % trimethylchlorosilane 
(TMCS) (ThermoFisher Scientific, Waltham, MA, USA), briefly vortexed and incubated at 60 ˚C 
for 40 min, as described previously (Chaparro et al. 2018). Samples were loaded (~100 µL) into 
glass inserts within glass autosampler vials and centrifuged for 30 sec prior to GC-MS analysis. 
In addition, a pooled extract was created by combining equal volumes of each sample into one 
glass vial for use as a consistent representative quality control sample (QC). 

GC-MS analysis was performed using a Trace 1310 GC coupled to a Thermo ISQ mass 
spectrometer (ThermoScientific). Derivatized samples (1 µL) were injected in a 1:10 split ratio. 
Metabolites were separated with a 30-m TG-5MS column (Thermo Scientific, 0.25 mm i.d. 0.25 
μm film thickness). The GC program began at 80 ˚C for 0.5 min and ramped to 330 ˚C at a rate 
of 15 ˚C per minute and ended with an 8 min hold at a 1.2 mL · min-1 helium gas flow rate. The 
inlet temperature was held at 285 ˚C and the transfer line was held at 260 ˚C. Masses between 
50-650 m/z were scanned at five scans/sec after electron impact ionization. 

Metabolomic data processing was conducted as previously described (Chaparro et al. 
2018). GC-MS files were converted to .cdf format and processed by XCMS in R (Smith et al. 
2006; Mahieu et al. 2016; R Core Team 2015). All samples were normalized to the total ion 
current (TIC). RAMClustR was used to deconvolute peaks into spectral clusters for metabolite 
annotation (Broeckling et al. 2014). RAMSearch (Broeckling et al. 2016) was used to match 
metabolites using retention time, retention index and matching mass spectra data with external 
databases including Golm Metabolome Database (Hummel et al. 2007; Hummel et al. 2013) 
and NIST (Broeckling et al. 2016).

Leaf traits analyses
The middle portion (10-12 cm long) of the uppermost fully expanded leaf from individual plants 
was harvested in a coin envelope for the analysis of specific leaf area, C and N content, and 
stable isotopes of C and N. Leaf samples were oven-dried at 65 °C to a constant mass and ca. 
2.5 mg of the dry leaf was subsample using a custom-made leaf punch system in a tin capsule. 
The leaf punch provided the leaf area of subsample, which were weighed to estimate specific 
leaf area (SLA). The N, C and δ15N and δ13C concentrations of dry leaf were determined by 
combusting encapsulated samples in an elemental analyzer (ECS 4010, Costech Analytical 
Technologies) coupled to a continuous flow isotope ratio mass spectrometer (Delta XP, 
Finnigan MAT) at the Stable Isotope Core Laboratory, Washington State University.

RESULTS
Geospatial statistics interpolates soil property composition throughout the field
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We conducted a field experiment in which sorghum and its associated microbiome were 
evaluated across two different watering treatments (Qi et. al. 2021). As is typical of field studies,
the collected data showed significant variability across all measured parameters (biomass, leaf 
traits, metabolites, and microbiome (root, rhizosphere and soil)). In this study, we also 
measured several different soil properties at multiple points throughout the field including: 
organic matter, pH, phosphate, nitrate, sum of cations, calcium, magnesium, potassium, 
sodium, sulfate and salinity compositions. We hypothesized that variation across the field in 
these soil properties may explain some of the variability in the other measurements.

First, because only a limited set of points across the field were sampled for soil properties, there
was a need to estimate the missing values (Figure 1A). We hypothesized that sample proximity 
would correlate with the measured soil properties. To assess this type of spatial correlation, we 
employed techniques from geospatial statistics to capture the correlation structure of any pair of 
samples in the field. Of the twelve properties tested, six properties exhibited evidence of spatial 
distributions (see methods) (p-value < 0.05): salinity (mmho), nitrate (ppm), sulfate (ppm), 
calcium (ppm), magnesium (ppm), phosphate (ppm). For these six soil properties we estimated 
the missing values throughout the field. Interpolation of values between sampling points was 
performed by leveraging spatial correlation structure to predict unobserved values, a process 
called kriging (see methods) (Supp Table 1). To test the kriging accuracy, we performed a 
leave-one-out cross validation for each soil property. Through this analysis we observed that the
error of the predictions, when scaled to unit variance of the observations, exhibit distributions 
that resemble the expected standard Z-distribution (Supp 1A). The ratio of the partial sill to the 
nugget, see methods for definitions, is a proxy for the magnitude of the variance that is 
attributable to the spatial structure. Comparing this ratio for nitrate and phosphate, shows that 
the phosphate spatial correlation was much stronger than the nitrate spatial correlation (Fig 
1B,C). Calcium also exhibited correlation structure of distances larger than nitrate, but much 
smaller than phosphate (Fig 1D). To visualize the spatial structure for each soil property, the 
kriged values of each property were centered around the mean and scaled to unit variance (Fig 
1A-D). This analysis revealed that the soil properties exhibited different topographies across the
field. For example, phosphate levels were high in a band across the center of the field while 
nitrate and calcium levels were more variable with several high and low spots (Fig 1B-D). We 
also considered correlation between the different soil properties and observed several 
correlation blocks, implying similar spatial structures (Supp 2A). 

Soil property variation influences plant phenotypes and microbiome composition.
The above analyses clearly showed that soil properties were variable across the field site. 
However, it was not clear whether the observed variation was large enough to affect plant 
associated phenotypes or the microbiome. To address this, we used constrained analysis of 
principal coordinates (CAP). With CAP, it is possible to identify specific effects on a 
multidimensional dataset while acknowledging variation due to other effects. For example, to 
understand if and how soil property variation affected microbiome composition, we first had to 
control for the effects of the watering treatments, the different genotypes and their interactions.  
A permutation ANOVA, using 999 iterations, was performed to assign statistical significance to 
the kriged properties. CAP and PERMANOVA were done for each of the three microbiome 
compartments (root, rhizosphere, and soil), and association was assessed for each soil property
measured. From this analysis we observed that the root microbiome was invariant to all soil 
property variations. In contrast, the rhizosphere and soil microbiomes were influenced by the 
variation in several soil properties (Fig 2A). Additionally, there were some soil properties 
(salinity, sulfate, and calcium) whose variation affected either the rhizosphere or soil 
microbiomes but not both. This suggests that microbiome compartments are differentially 
sensitive to different types of soil property variation. CAP was also applied to annotated root 
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metabolomic profiles. In contrast to the large effects seen in the microbiomes, no soil property 
variances were associated with changes in the metabolomic profile (Supp 3A). This may reflect 
the relative stability of the metabolites identified from GCMS which mostly represents primary 
metabolites, or the sensitivity of measurements. 

While microbiome and metabolite data are highly multivariate, plant phenotypes and leaf traits 
are much less so and are therefore suited to univariate statistical analyses. Just as the 
microbiome has the potential to be influenced by the soil property variations, the same could be 
true for the univariate phenotypes. Similarly, the effects due to the experimental design must be 
acknowledged to more precisely evaluate the association a given property has on the 
phenotype. Mixed effect models with random effect for the split-plot replicates and multivariate-
normal spatial correlation structure were created for each soil property-phenotype pair. The 
precise effect a given soil property has on a phenotype was evaluated using type-III sum of 
squares to account for the other sources of variance (treatment, genotype, and the interaction) 
on the phenotypes. Traditional F-statistics from the analysis of variance (ANOVA) tables 
revealed that plant height and total fresh weight are influenced by soil phosphate and 
magnesium variation, respectively (Fig 2B). Similar modeling of the leaf traits indicated the soil 
phosphate variation is significantly associated with ẟ15N (Fig 2C). Many other phenotypes were 
examined and did not have statistically significant associations with the variation in soil 
properties (Supp 3A). Closer examination showed that soil phosphate levels are mildly inversely
correlated to plant height (Fig 2D). This supports the hypothesis that excess phosphate inhibits 
plant growth and development (Shukla et al. 2017; Song et al. 2016) and suggests that the 
levels found in the center of the field were too high for optimum sorghum growth. 

Statistical approach to place field noise into principal components
We have shown that many of the soil properties exhibit spatial distribution and influence various 
plant and microbiome traits. Therefore, to understand the effects of treatment and genotype on 
these traits, the effects of the soil properties must first be accounted for. The replication in our 
study was not sufficient to include all the soil properties as covariates to account for their 
influence -- this would require a degree of freedom for every soil property. A generalized 
approach to overcome limited sample size is reducing the dimensionality of the covariates using
principal component analysis and regressing against the first several principal components, 
known as principal component regression. In this approach, the principal components retain a 
percentage of the influence from the individual properties and can be used as a proxy to adjust 
for as much variation as possible. 

As above, our goal was to create spatial models using the generated principal components and 
so the stationary requirement must be met. Using only the observed data, not the kriged values,
we first adjust for treatment, genotype and interaction effects from each soil property by fitting 
linear models and obtaining model residuals, and the residuals were then processed with 
principal component analysis. To test the success of accounting for our experimental design, we
investigated clustering within the first two PCs and observed that indeed the treatment and 
genotype effects were accounted for (Fig 3A). We selected the first three components as 
regressors which represented approximately 66% of the total variance in the soil property data 
(Fig 3B). Next, we visualized the contribution of each soil property within each principal 
component (PC) (Fig 3C). PC1 is primarily represented by calcium, magnesium, potassium, 
sodium and sum of cations. PC2 is primarily represented by sulfate, salinity and pH. PC3 is 
primarily represented by phosphate and nitrate. Then, we used kriging, as described above, to 
interpolate the missing values for the rest of the field. Since many soil properties exhibited 
spatial distributions (Fig 1), we expected that the principal components would also display a 
spatial distribution. Indeed, the spatial distribution of the kriged first principal component 
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resembles the calcium distribution which emphasizes the contribution of that property (Fig 1D 
and Fig 3D). In summary, through this approach, we revealed specific sources of field level 
noise and successfully captured a significant proportion of the field level variation into three 
principal components. 

Using principal components to de-noise field data
As a final step, we sought to address the variation associated with the three principal 
components from the plant and microbiome data. Starting with the microbiome data, 
generalized mixed-effects models based on zero-inflated negative-binomial distribution were 
created for each individual microbe where the microbe counts were the dependent variable, the 
first three principal components of the soil property variations were fixed effects, and random 
intercepts for each split-plot replicate each having multivariate normal spatial correlation 
structure. An adjusted count for each microbe was created by dividing the raw count by the 
corresponding estimated scale effect of the three principal components, and the intercept 
according to the fitted generalized linear model. Since we accounted for a source of variation 
that is invariant to the microbiome compartments, we expected the variance within each of the 
compartments to decrease and the difference between compartments to be more obvious. To 
test this, we combined the original observed counts and the adjusted counts for these remaining
microbes and performed principal component analysis. This revealed clustering that 
demonstrated larger distances between microbiome compartments using the adjusted counts 
versus the observed counts. This indicates the sources of variation from the soil properties were
better controlled thereby increasing the differentiation between compartments. Within each 
compartment, the root microbiome was least affected by soil factors which was demonstrated by
the small distance between the observed and adjusted counts, followed by rhizosphere with a 
larger separation, and soil being the farthest and most affected (Fig 4A). The adjusted counts 
produce clusters that are larger than their respective original counts again indicating sources of 
variation were addressed so that the within compartment effects are better elucidated (Fig 4A). 
Next, we sought to identify treatment effect changes within each of the tissue compartments. 
Given the strong compartment differentiation, identifying clusters within a compartment required 
principal component analysis to be performed on each compartment individually. In the 
rhizosphere we observed treatment differentiation using both the observed and adjusted counts;
however, the distance between the centers of each cluster is larger after adjustment further 
indicating within-group variation being reduced (Fig 4B). 

To assess how principal component regression affected the plant phenotypes, we compared the
data before and after signal marginalization. Prior to removing noise from soil properties, plant 
height and fresh weight both showed drought effects, and after performing principal component 
regression, these effects were maintained (Supp 4). Further, by plotting the original values 
against the change for each value after adjustment, we showed that our correction method is 
equitable for all plant sizes; in other words, short and tall plants were not overly adjusted either 
positively or negatively (Fig 4 C, D). Additionally, the variation attributable to soil properties was 
as much as +/- 10% for fresh weight and +/- 6% for plant height (determined by the ratio of the 
standard deviation of the change to the standard deviation of the observations). This indicates 
that if an experimental factor is expected to have an effect size less than the soil property effect 
size, the contribution of the soil property variations may mask the ability to resolve the effects of 
the experimental factor. For instance, leaf delta δ15N showed an association with phosphate and
calculated partial correlations for the treatment, genotype and interaction effects on this trait and
found that the difference in R2 between the adjusted and unadjusted is approximately 0.05 (Fig 
4E). This shows that the soil properties explain about 5% of the total variation in δ15N, which is 
similar to variance explained in both plant height and fresh weight.
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Microbiome analyses often have less-than-ideal replication and therefore elimination of 
confounding variations is crucial in identifying effects of interest, such as identifying plant-growth
promoting microbes. For instance, change-point models can identify microbial impacts on plant 
phenotypes once the abundance of the microbe reaches a particular level (Qi et. al. 2021). We 
show that in water stressed samples before the adjustment on both plant height and microbe 
abundance of Microvirga in the soil microbiome, we do not see any evidence of an association 
but after accounting for the variance from the soil properties there is a strong plant-growth 
association (Fig 4F, G). This further emphasizes that if an experimental factor is expected to 
have an effect size that is less than the soil property effect size, the experimental factor would 
be lost to noise. This result demonstrates that even though these are relatively small changes to
each of these data types, when combined for associations, the effect can be large.  

DISCUSSION 
Large scale trials within complex environments are an important component of many biological 
subdisciplines. Because of environmental variability, these experiments must include high levels
of replication and even so, results often fail to repeat in subsequent trials. For agricultural field 
studies a major source of variation is heterogeneous soil property distributions that create their 
own micro-treatments and are covariates to planned experimental designs. Because these 
micro-treatments are often unknown, and therefore not accounted for, they show up as 
experimental noise and may lead to false positives. For instance, nitrogen is known to affect 
plant growth (size, color, yield, etc) (Chapin et al. 1987,   Veley et al. 2017)  . If nitrogen is 
unevenly distributed across a field experiment aimed at characterizing biomass among diverse 
genotypes, the variability in nitrogen may confound the experiment. In this study, by intentionally
measuring multiple soil properties across the field experiment, we were able to account for this 
known variation through principal components and gain novel biological insight into field 
relevant interactions between plants and microbes (Qi et al. 2021). 

While the approach described here represents a major advance forward, we acknowledge 
several opportunities for further improvement. For example, the soil property data was collected 
approximately one month prior to harvest and could have been impacted by a multitude of 
things in that time. Future studies might gather soil property composition at multiple time points, 
including before planting, to generate paired data, and of course at the time of phenotyping. We 
predict this approach would still be able to account for soil property variation under the 
assumption that the soil properties themselves are relatively stable. Additionally, advancements 
have been made in spatio-temporal modeling using Bayesian hierarchical modeling with time as
an autoregressor (Finley et al. 2015; Rushworth et al. 2014)     which may prove powerful if soil 
property composition were densely sampled over time. We also note that replication remains a 
crucial aspect of these types of experiments. In this analysis, we lost three degrees of freedom 
by using the first three principal components (PC) of the soil property data in a regression to 
account for their contributions on the phenotypes. Had a fourth PC shown a significant source of
variance, degrees of freedom would have become limiting. On the other hand, had we included 
additional replication, it may have been possible to correct for covariates such as the soil 
properties by directly regressing on the properties themselves, rather than using a dimension 
reduction technique. 

We note that in these datasets, the stable isotopes and primary metabolite profiles are invariant 
to the measured soil properties. For the isotopes, this may be indicative of stability relative the 
fluctuations in the properties across the field but it is possible that if the soil property variations 
were larger, then a relationship might be established. The metabolite profile used in these 
analyses are only those captured from GC/MS and mostly consist of primary metabolites such 
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as sugars, organic and amino acids, small phenolics, and fatty acids. It may be true that 
secondary metabolites that were not examined in these analyses may associate with the soil 
property variations. We observe that a relatively small amount of variation in plant height and 
weight are attributed to the soil property composition, other types of data, particularly 
microbiome composition, are much more susceptible. Microbiome quantification has been 
shifting from using operational taxonomic units (OTUs) to amplicon sequence variants (ASVs) 
which are designed to identify and retain more specific bacterial identification. Some microbes 
were overtly sparse across the samples and principal component regression could not 
successfully estimate model parameters. The microbiome table generation pipeline used for this
field allows for the identification of very sparse microbes by way of using 99.5% identity 
clustering which results in 23,617 OTUs detected. After applying principal component 
regression, approximately 25% of the microbes were successfully modeled and retained. The 
methods proposed here should also be applicable to those types of tables as well with one 
caveat: ASV tables are sparser than OTU tables. While the methods proposed here are zero-
inflated, likely the percent of ASVs that would not be successfully modeled would be larger than 
what would be observed with an accompanying OTU table of the same data. 

In conclusion, here we demonstrated the impact of spatially distributed soil property variations 
on several phenotypes of interest and present principal component regression as a method to 
alleviate the effects analytically. Phenotypes range in their sensitivities to the soil properties and
could contribute large amounts of variation to the recorded observations leading to false-positive
or false-negative results. In this field study, the microbiome communities were identified to be 
heavily influenced by the soil properties while plant phenotypes were more resilient but 
nonetheless affected. Identifying sources of variation and removing their influence enhances the
ability to resolve other effects of interest and enables more honest, reliable, and believable 
quantification of subtle phenotypes.

SOFTWARE USED AND DATA AVAILABILITY
All analyses herein were performed in R using the following packages: raster(3.4.5), 
ggplot2(3.3.3), deldir(0.1.21), vegan(2.5.5), plyr(1.8.4), gridExtra(2.3), reshape(1.4.3), 
FactoMineR(2.4), factoextra(1.0.7), chngpt(2019.3.12), stringr(1.4.0), gstat(2.0.6), sp(1.4.2), 
scales(1.0.0), lme4(1.1.21), nlme(3.1.140), parallel(3.5.2), patchwork(1.1.1). All data and scripts
used to create all figures and perform all analyses can be found at 10.5281/zenodo.4715924. 
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Figure 1
Graphical depictions of field layout where each cell is a plot in the field. Water treatment is specified on right; 
WS = water stressed, WW = well watered. Eight split-plot replicate blocks are denoted in gray vertical bars. 
Color scale represents data with genotype and treatment removed. Green indicates larger than average, white 
indicates approximately average, and magenta indicates below average values. (A) Nitrate values are shown 
for each cell (outlined in grey) that were sampled for soil property analysis. (B) kriged nitrate values to estimate 
nitrate levels in unsampled plots (C, D) Kriged values for phosphate and calcium. Variogram fit of spatial 
model is indicated with model type, nugget, partial sill, and range. 

A

Phosphate (ppm) - Kriged
Ste (nugget=31.46, psill=3600, range=1401)

B

D Calcium (ppm) - Kriged
Sph (nugget=6960, psill=10545, range=2.45)

Nitrate (ppm) - Sampled Plots
P(no spatial structure) = 0.0023

C

Nitrate (ppm) - Kriged
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Figure 2
Association of soil property variations with multiple phenotypes. Six soil properties were 
assessed for effect on root microbiome and plant phenotypes using permutation ANOVA. Cells 
are colored by -log10 p-value of the effect. (A) Effect of each soil property on microbiome beta 
diversity from three root compartments: root (endosphere), RHZ (rhizosphere) and soil (bulk 
soil), while constraining on genotype and treatment. (B,C) Effect of each soil nutrient on the 
height and weight (B) and leaf δ15N (C) using type III sum of squares while including treatment, 
genotype, and interaction as additional fixed effects. (D) Example effect of kriged phosphate, 
x-axis, on plant height, adjusted for genotype and treatment, y-axis. 
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Figure 3 Variation in soil properties can be collapsed into principal components. (A) First two principal 
components of soil property residuals as x-axis and y-axis respectively colored by genotype and shaped by 
treatment. (B) Skree plot of the first 10 principal components. Shown is the percent variance explained of 
the total property variance by each component. Dashed line is at 10% variance explained. (C) For the first 
three components, colored is the contribution of each soil property to its respective variance explained 
within each component. (D) Spatial distribution of kriged PC1. Each cell colored by scaling the values to 
unit variance. Variogram fit with nugget, partial sill and range displayed. 

A

Nutrients PC1 - Kriged
Sph (nugget=2.66, psill=4.13, range=2.52)

B

C
D
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Figure 4. Accounting for influence from soil property variance within microbiome data reveals plant phenotypes that correlate with 
microbe abundance. (A) Principal component analysis on the combined raw and residual microbiome tables. Shown are the first 
two components with their respective variance explained. Samples are colored by tissue type and shaped by original or residual 
values. Gray points are the centers of each respective cluster, and gray lines connect the centers of each cluster. (B) Principal 
component analysis on the rhizosphere samples only using the combined raw and residual microbiome tables. Left panel uses 
the original counts and right uses adjusted counts as described (methods). Each panel has colors corresponding to the treatment 
for each sample. (C) Observed plant height values, x-axis, and the change in that value as a result of the adjustment, y-axis. (D) 
Similar to C, shown are the fresh weight values and their respective changes. (E) Partial correlations of experimental design 
variables in leaf δ15N before and after principal component regression. (F,G) For only water-stressed samples and only the soil 
microbiome, plant height, y-axis, and OTU abundance of Microvirga, x-axis, before and after principal component regression. 
Shown in G, is the fit of a change-point model where the red line is no change before threshold, the vertical dashed line, and the 
blue line is a linear fit after the threshold.

A

E

C

B D

F G
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Supplemental 1
(A) Leave-one-out cross-validation of soil property observations. Shown is the difference 
between the predicted and the observed values for each sample normalized to the standard 
deviation of the observations, x-axis, and their respective frequency, y-axis. 
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Salinity Nitrate Sulfate Calcium Magnesium Phosphate

Nugget Only 1.92115E-05 203.668 10645.6 833211000 2261360 149688

Exponential 1.1769E-06 41.2651 1909.53 17886300000 65136300 27556.2

Spherical 2.03099E-06 25.5247 2058.42 244155000 1038010 32351.9

Gaussian 2.16269E-06 22.3183 289060 17669600000 64365000 100531

Matern 1.13273E-06 23.0069 1682.03 266373000 1087980 18961.6

Stein’s Matern 1.13273E-06 23.0069 290357 17886300000 65136300 18827.8

Supplemental Table 1
Shown are sum-of-square errors for each soil property (columns) and each spatial model 
tested (rows). Cells that are colored green are those models that have minimal errors and 
are chosen to be the best fit model for kriging for the respective soil property.  
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A

Supplemental 2A
(A) Pearson correlations between all pairwise soil properties. Negative correlations are 
depicted as shades of red, and positive correlations are depicted as blue. Soil properties are 
ordered by hierarchical clustering based on euclidean distance and complete 
agglomeration. 
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Supplemental 3A
Same analysis as Fig 2 A,B,&C, but here are shown the phenotypes that did not 
demonstrate soil property associations. 
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Supplemental 4
Effect of applying principal component regression on plant morphology. (A) Boxplots, 
overlaying violin plots, of plant height, y-axis, against the watering treatments, x-axis (B) 
Same as A, but displaying the residuals of plant height, y-axis, from principal component 
regression model using dimension reduced soil properties as covariates. See (Qi et al. 
2021) for additional details and analysis on these data.
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