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Figure 2. Cluster size of CD22 after treatment with cytoskeletal disruptors. Raji cells were 

treated with cytochalasin D (CytoD) or latrunculin A (LatA) at 37 °C for 30 min. Cells were then 

fixed and stained with mouse anti-CD22 and anti-mouse IgG-AF647 and imaged using confocal 

microscopy. Data shown are average from 30 cells among 3 biological replicates; cells were 

analyzed using imageJ and shown as beanplots.(14) Comparisons by student's t-test are shown 

relative to respective controls (****, p < 0.0001; ***, p < 0.001).  

 

We next investigated if cytoskeletal interactions had a significant influence on the lateral 

mobility (diffusion) of CD22 in the membrane. We employed single-particle tracking (SPT) using 

Total Internal Fluorescence Microscopy (TIRFM) to measure changes in CD22 membrane 

diffusion.(30) Raji cells were stained with minimal amounts of Alexa Flour 647 (AF647) - 

conjugated primary antibody to CD22. This sparse labelling allowed visualization of CD22 

trajectories on live cells, which could be converted to rates of diffusion (Figure 3).(42) This 

method allowed us to compare lateral diffusion of proteins in control and cytoskeleton-disrupted 

conditions. Treatment with CytoD at low concentration (2.5 g/mL) significantly decreased CD22 
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diffusion; however, at higher concentrations (10 g/mL) this effect was lost. Treatment with LatA 

(0.25 g/mL) also showed a significant decrease in lateral mobility of CD22.  

 

Figure 3. Lateral mobility of CD22 after treatment with cytoskeletal disruptors. Raji cells were 

treated at 37 °C for 30 min. Lateral mobility was analyzed using single-particle tracking with 

TIRFM videos recorded at 10 FPS for 10s.(30) Diffusion coefficients are given as log(D), where 

D is in units of × 10−10 [cm2s−1] or × 10−2 [μm2s−1]. 150 cells among 3 biological replicates were 

analyzed, and values were compared to control using a student's t-test (****, p < 0.0001). 

Beanplots were generated using R software. Individual data points are represented by short white 

lines, a solid black line indicates the average for each condition, and the dotted line represents an 

average across all populations. 
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NEU1 and NEU3 activity alter CD22 cluster size 

Considering that the lectin activity of CD22 is dependent on sialylated cis ligands, we next 

investigated if native hNEU enzymes could alter CD22 membrane organization. CD22 is found in 

homotypic clusters,(5,43) and also has cis interactions with other sialylated proteins, including 

CD45.(44–46) We developed an siRNA knockdown protocol using electroporation for NEU1 and 

NEU3 enzymes,(47) as lymphocytes are often difficult to transfect using lipid-based methods. The 

reduced expression of NEU1 and NEU3 was confirmed by western blot of the transfected cells 

(Figure 4A, 4B, S1). We found that B cells treated with siRNA for Neu1 or Neu3 had expression 

of the enzymes reduced by approximately half. Viability of the cells by hemocytometer after 

treatment showed no significant decrease for Neu1 siRNA, while Neu3 siRNA did show a decrease 

in viability (Figure S2). We proceeded to determine if NEU1 and NEU3 knockdown (KD) cells 

showed evidence of changes to CD22 membrane organization. Analysis of clustering in these cells 

found a significant increase in CD22 cluster size in NEU1 KD cells while NEU3 KD cells had a 

significant decrease in cluster size, suggesting these two isoenzymes play different roles in 

regulating CD22 organization (Figure 4B). This observation can be partly attributed to the 

different substrate specificities of the two enzymes – with NEU1 known to prefer glycoprotein 

substrates and NEU3 to prefer glycolipids.(20) Additionally, the expression levels of these two 

enzymes may vary in lymphoid cells, with NEU1 generally being found at higher expression in 

many cell types.(48,49)  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441886
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 

Figure 4. CD22 cluster size is altered by NEU1 and NEU3 knockdown. Raji cells were transfected 

with siRNA targeting Neu1 or Neu3 using electroporation and grown for 24 h. (A) Western blots 

confirmed reduced expression of NEU1 and NEU3. (B) After transfection, Raji cells were fixed 

and stained with mouse anti-CD22 and anti-mouse IgG-AF647 and imaged using confocal 

microscopy to determine the cluster size of CD22. Data shown are average from 30 cells among 3 

biological replicates; cells were analyzed using imageJ and shown as beanplots.(14) Comparisons 

by student's t-test are shown relative to respective controls (****, p < 0.001; ***, p < 0.005).  

 

Native NEU modulate B cell activation   

The CD22 receptor acts as a negative regulator of B cell activation and the organization and 

engagement of CD22 can alter B cell response.(50) We investigated the role of NEU1 and NEU3 

in B cell activation using a calcium assay with Indo-1 dye.(51) We first asked if small molecule 

inhibitors of NEU enzymes had a measurable effect on B cell activation (Figure 5).(52) We used 

three different compounds: DANA, a pan-selective inhibitor of NEU enzymes; CG33300, a 
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NEU1-selective inhibitor; and CG22600, a NEU3-selective inhibitor.(53–55) When all conditions 

were normalized to the control group, we observed that treating B cells with DANA increased 

basal activation. Additionally, cells treated with DANA and anti-IgM showed a significant 

increase in activation relative to control. Although these observations are consistent with native 

NEU activity acting as a negative regulator of B cell activation, they did not indicate which 

enzymes were involved. The selective NEU1 inhibitor, CG33300, showed similar effects to 

DANA – increased B cell activation relative to unstimulated and stimulated controls (Figure 5B). 

A selective NEU3 inhibitor, CG22600, showed similar activity – enhancing cell activation in basal 

and stimulated cells (Figure 5C). From these experiments, we concluded that native human NEU 

enzymes, including NEU1 and NEU3, act as negative regulators of B cell activation. We sought 

to confirm the role of NEU1 and NEU3 on B cell activation using siRNA knockdown conditions. 

Transfected B cells were subjected to Ca2+ assay as described above after knockdown of NEU1 or 

NEU3 and compared to a scRNA control (Figure 6). We found that both NEU1 and NEU3 

knockdowns had increased basal Ca2+ levels in cells, consistent with our inhibitor studies.  
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Figure 5. B cell response after treatment with NEU inhibitors. Raji cells were incubated at 37 °C 

for 30 min with NEU inhibitors: (A) DANA (100 µM), (B) CG33300, a NEU1 inhibitor (10 µM), 

or (C) CG22600, a NEU3 inhibitor (10 µM). Cells were either untreated (-, saline), or treated with 

inhibitor (+); followed by activation with anti-IgM.  Activation of cells was monitored by 

observing Ca2+ levels by Indo-1 dye. For each treatment, 6 technical replicates from each of 3 

biological replicates were performed. Responses were normalized to that of saline-treated, and 

unstimulated control groups and compared by student's t-test (****, p < 0.001; ***, p < 0.005; **, 

p < 0.01; *, p < 0.05). 
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Figure 6. B cell calcium levels after NEU1 and NEU3 knockdown. Raji cells were transfected 

with siRNA targeting Neu1, Neu3, or a scrambled control (scRNA) using electroporation. Cells 

were grown for 24 h, and Ca2+ levels were monitored using Indo-1 dye. For each treatment, 2 

technical replicates from each of 3 biological replicates were performed. Responses were 

normalized to that of saline-treated, and unstimulated control groups and compared by student's t-

test (**, p < 0.01). 

 

One possible explanation for changes to B cell activation after siRNA transfection is differences 

in CD22 expression after treatment. We tested for changes in CD22 expression using western blot 

following siRNA treatments (Figure 7, S3). We found no significant change in CD22 expression 

levels in scRNA and NEU1 KD samples. However, NEU3 KD showed an unexpected decrease in 

CD22 expression relative to the untreated and scRNA controls. NEU3 activity has been implicated 

in clathrin-dependent endocytosis and could influence transport and expression of CD22.(56–59)  
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Figure 7. CD22 expression after NEU1 and NEU3 knockdown. Raji cells were transfected with 

siRNA targeting Neu1, Neu3, or a scrambled control (scRNA) using electroporation. Cells were 

allowed to grow for 24 h, and then harvested. A western blot was performed using anti-CD22 to 

compare expression levels and analyzed by densitometry using ImageJ (**, p<0.01; *, p<0.05). 

 

Exogenous NEU affect CD22 organization and B cell activation  

A common strategy for probing the role of membrane sialosides in signaling is to treat cells 

with exogenous NEU enzymes. Typical examples include the sialidase from Athrobacter 

ureafaciens (siaAU) and NanI from Clostridium perfringens. These enzymes have different 

specificities, with siaAU having broad activity to cleave α2,3 and α2,6-linkages;(60,61) while the 

latter prefers α2,3-linked sialosides.(62) It is worth noting that these enzymes have different 

substrate specificity from human NEU isoenzymes, and may not be good biochemical proxies for 

the native enzymes.(63) We found that treatment of B cells with NanI and siaAU generally 

increased clustering of CD22 (Figure S4A, S4C) but not BCR (Figure S5). We noted that the 

effect on CD22 cluster size was dependent on the activity of enzyme used – with high specific 

activity of siaAU (10 mU/mL) reversing significant increases seen at lower activity (5 mU/mL). 
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Analysis of B cells treated with these enzymes by SPT found that CD22 lateral mobility was 

significantly reduced for both NanI and siaAU treatment (Figure 8). This result is similar to 

observations with CytoD treatment, where increased clustering of CD22 was coincident with 

decreased lateral mobility.  

We next investigated if exogenous human NEU3 enzyme had similar effects to the bacterial 

NEU enzymes on clustering and diffusion of CD22. When B cells were treated with NEU3 (10 

mU/mL) clustering of CD22 significantly increased, consistent with the effect of the bacterial 

enzymes (Figure S4B). Measurements of the lateral mobility of CD22 after NEU3 treatment 

showed an increase in diffusion (Figure 8). We performed an analysis of B cell glycosphingolipids 

after exogenous NEU treatment using LC-MS (Figure S6),(30) in which we observed no 

significant changes for any of the enzyme treatments. This may suggest that changes to 

glycosphingolipid composition are not the major factor in changes to CD22 organization, or that 

these changes in composition are below the detection limit of our assay. An alternative explanation 

for changes to CD22 organization is that exogenous NEU enzymes modify CD22 glycosylation, 

thus altering homotypic clustering. Using purified CD22, we confirmed that NanI and siaAU 

reduced SNA staining and increased PNA staining for CD22, consistent with desialylation of the 

receptor in vitro (Figure S7, S8). 
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Figure 8. Lateral mobility of CD22 after treatment with NEU enzymes. Raji cells were treated at 

37 °C for 30 min. Lateral mobility was analyzed using single-particle tracking with TIRFM videos 

recorded at 10 FPS for 10s.(30) Diffusion coefficients are given as log(D), where D is in units of 

× 10−10 [cm2s−1] or × 10−2 [μm2s−1]. Data shown are from 150 cells among 3 biological replicates, 

data were analyzed, and compared to control using a student's t-test (****, p < 0.001). 

 

During our studies, we encountered an issue that may complicate experiments which use 

exogenous bacterially-produced NEU. Exogenous enzymes from bacterial sources may contain 

lipopolysaccharide (LPS), and this contaminant may affect lymphocyte activation(64–66) or CD22 

expression.(67) We found that samples of siaAU and NanI from commercial sources contained 

more than 1 EU/mL (EU = endotoxin units, 1 EU = 0.1 to 0.2 ng), with final LPS concentrations 

in our experiments of 0.0001 to 0.01 ng/mL. We tested whether these amounts of LPS alone could 

affect CD22 clustering (Figure S9). We observed a significant increase in CD22 clustering at 0.01 
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ng/mL of LPS in our assay, while higher concentrations attenuated this effect (0.1 ng/mL). 

Additionally, determinations of B cell activation using Ca2+ level assays after treatment with 

exogenous siaAU or NanI were ambiguous in our hands (Figure S10). For example, siaAU at 

lower concentrations had similar effects to treatment with DANA (Figure S10A versus Figure 

5A) despite the fact that these treatments should have opposite effects on sialic acid content on 

cells. Higher concentrations of siaAU attenuated this effect (Figure S10B), while NanI treatment 

showed no significant differences from control (Figure S10C).  

 

DISCUSSION 

The data described here provide critical insight into the effects of native and exogenous NEU 

enzymes on CD22 organization on B cells. The organization of CD22 on the membrane is 

dependant on the lectin activity of the receptor and the availability of sialoglycoproteins in the 

milieu of the plasma membrane. We set out to understand if native NEU enzymes, which help 

regulate levels of sialyation of glycolipids and glycoproteins, could influence CD22 organization. 

Using confocal microscopy and single-particle tracking we demonstrated that CD22 has 

interactions with the cytoskeleton, though we did not resolve the nature of this interaction. We 

found that native NEU1 and NEU3 activity influenced both the size of CD22 clusters and their 

mobility within the membrane. Based on our results, we conclude that increased NEU1 activity 

led to smaller CD22 clusters. In contrast, increased NEU3 activity (both native or exogenous) 

generated larger CD22 clusters which had increased diffusion. Moreover, exogenous bacterial 

NEU activity generated larger CD22 clusters with decreased diffusion. These stark differences 

were likely the result of different substrate specificities for each enzyme. Importantly, we 

confirmed that LPS contamination in exogenous enzyme preparations influenced CD22 
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organization and could complicate attempts to use these reagents to understand the role of CD22 

interactions with cis sialoside ligands. Furthermore, we confirmed that native NEU activity 

influenced B cell response to BCR clustering using a Ca2+ assay. Knockdown or chemical 

inhibition of both NEU1 and NEU3 enzymes resulted in increased basal activation of B cells, 

consistent with these enzymes acting as negative regulators of B cell stimulation. Our studies 

clearly support the involvement of the cytoskeleton and NEU enzymes in regulating CD22 

organization and B cell activity.  

Lateral mobility of immune cell receptors is complex and can be influenced by a number of 

factors(68) such as the lateral size of the protein,(69) cytoskeletal barriers,(70–73) the presence of 

membrane microdomains,(74) and crowding effects.(75) Studies have proposed CD22,(15) 

CD45,(76) and BCR(77,78) are associated with membrane microdomains in lymphocytes.(19,79) 

CD22 is not thought to have direct contacts to the cytoskeleton; though cis ligands could provide 

indirect contacts. In studies of CD22-cytoskeleton interactions, we found that SPT was more 

sensitive to changes in cluster size than confocal microscopy. Furthermore, we examined CD22-

cytoskeleton interactions using a range of CytoD concentrations (2.5 - 10 g/mL), while previous 

studies tested only a single concentration and found no effect.(15) The interaction of CD22 with 

the cytoskeleton was complex, and our data indicated that with low concentrations of CytoD (2.5 

g/mL) CD22 was found in larger clusters with reduced lateral mobility. These data cannot resolve 

whether CD22-cytoskeleton contacts are direct or indirect, but it is well known that this receptor 

is found in homotypic clusters,(5) and has cis-binding interactions with sialoglycoproteins, such 

as CD45.(6,15,44,80) Notably, CD45 is associated with the cytoskeleton through a spectrin-

ankyrin complex which regulates its lateral mobility, providing a likely explanation for these 

findings.(81–83) 
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As a Siglec that engages cis ligands, CD22 organization could be expected to be influenced 

by mechanisms that regulate membrane sialoglycoproteins. Previous work has found changes to 

CD22 organization from altered sialyltransferase expression, CD45 expression, lectin activity of 

CD22, and altered glycosylation sites on CD22.(15,50,84,85) This work is the first to explore the 

role of native NEU enzymes in CD22 organization. We found that NEU1 and NEU3 had a role in 

CD22 clustering, and our data suggest that isoenzymes could play disparate roles in B cell 

regulation. There is growing recognition that native NEU enzymes may play important roles in 

inflammation and immune cells.(22,30,86,87) We propose that further investigation of the role of 

these enzymes in B cell regulation is needed.  

A common strategy to perturb CD22-ligand interactions is to treat cells with exogenous 

NEU. Many examples have tested the effect of exogenous bacterial NEU enzymes on CD22 

organization and activity.(15,50) While these reagents may reveal aspects of CD22-ligand 

interactions, they may not report on the role of native NEU isoenzymes. The substrate preferences 

of bacterial enzymes and native NEU are different. For example, enzymes like NanI prefer 

glycoprotein substrates, while NEU3 prefers glycolipids.(88,89) Glycosphingolipids are a major 

component of membrane microdomains, and these membrane components may be modulated by 

NEU3 activity.(90) Bacterially-produced enzymes may also be contaminated with LPS, which we 

observed could alter CD22 clustering. Thus, we suggest that results based on the use of bacterially-

produced enzyme be interpreted with caution; and we favor the use of small molecule inhibitors 

or knockdown of NEU expression to avoid this complication. 
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Figure S1. Western blots of NEU knockdowns. Raji cells were transfected with siRNA 

targeting Neu1 and Neu3 using electroporation and grown for 24 hours. Western blots show the 

reduction of expression of hNEU1 (A) and hNEU3 (B). Shown are representative blots of three 

replicates for each NEU. 

Figure S2. Raji cell viability after siRNA transfection. Raji cells were transfected with 

siRNA targeting Neu1, Neu3, or a scrambled control (scRNA) using electroporation and grown 

for 24 hours. The viability of cells from each condition was determined using trypan blue dye 

exclusion on a hemocytometer. 
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Figure S3. Western blot of CD22 expression after NEU1 and NEU3 knockdown. Raji 

cells were transfected with siRNA targeting Neu1, Neu3, or a scrambled control (scRNA) using 

electroporation. Cells were allowed to grow for 24 h, and then harvested. A western blot was 

performed using anti-CD22 to compare expression levels and analyzed by densitometry using 

imageJ. Shown is representative blot of three replicates. 

Figure S4. Cluster size of CD22 after treatment with NEU enzymes. Raji cells were 

treated with bacterial NEU (A) or human NEU enzymes (B) at the indicated concentrations at 37 

°C for 30 min. Cells were then fixed and stained with mouse anti-IgM and anti-mouse IgG-AF647 

and imaged using confocal microscopy (C). Ten cells from each condition were analyzed using 

ImageJ and are shown as beanplots. Bottom right: confocal images of Raji cells stained with anti-

CD22 antibody. Comparisons by student's t-test are shown relative to respective controls (***, p 

< 0.005; *, p < 0.05). 

Figure S5. Cluster size of BCR after treatment with NEU enzymes. Raji cells were 

treated with NanI, siaAU, or NEU3 enzyme at 37 °C for 30 min. Cells were then fixed and stained 

with mouse anti-IgM and anti-mouse IgG-AF647 and imaged using confocal microscopy. Ten 

cells from each condition were analyzed using ImageJ and are shown as beanplots. 

Figure S6. Glycolipid composition of Raji cells after NEU treatment. Raji cells were 

treated with saline, siaAU (5 mU/mL), siaAU (10 mU/mL), NanI (10 mU/mL), or NEU3 (10 

mU/mL) for 30 min at 37 °C. Cells were then subjected to glycolipid analysis using LC-MS. Data 

shown are the average of four replicates. 

Figure S7. Lectin blots of purified CD22 protein treated with NEU enzymes. CD22 was 

purified from Raji cells using an immunoaffinity column. The protein was treated with (-) saline 
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or (+) NEU enzymes (A) siaAU (5 mU/mL) or (B) NanI (10 mU/mL) for 30 minutes at 37 °C. 

Samples were then analyzed by lectin blotting with PNA, SNA, or MAL probes. 

Figure S8. Quantification of NEU-treated CD22 protein. CD22 samples treated with (-) 

saline or (+) NEU enzymes (A) siaAU (5 mU/mL) or (B) NanI (10 mU/mL). Purified proteins 

were incubated with corresponding neuraminidase for 30 min at 37 °C. Samples were then 

analyzed by lectin blotting with PNA, SNA, or MAL probes, and images were quantified using 

densitometry. 

Figure S9. Cluster size of CD22 after treatment with LPS.  Cluster size of CD22 using 

confocal microscopy. Raji cells were treated with LPS at 37 °C for 30 min. Cells were then fixed 

and stained with mouse anti-IgM and anti-mouse IgG-AF647 and imaged using confocal 

microscopy. Ten cells from each condition were analyzed using ImageJ and are shown as 

beanplots.22 Comparisons by student's t-test are shown relative to respective controls (*, p < 0.5). 

Figure S10. B cell response after treatment with NEU enzymes. Raji cells were incubated 

at 37 °C for 30 min with NEU enzymes: (A) sialidase from Athrobacter ureafaciens (siaAU) at 5 

mU/mL, (B) siaAU at 10 mU/mL, or (C) NanI at 10 mU/mL. Cells were either untreated (-, saline), 

or treated with enzyme (+); followed by activation with anti-IgM. Activation of cells was 

monitored by observing Ca2+ levels monitored by Indo-1 dye. Responses were normalized to that 

of saline-treated, and unstimulated control groups and compared by student's t-test (****, p < 

0.001; ***, p < 0.005; **, p < 0.01; *, p < 0.05). 
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