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Abstract 
Holographic cytometry is introduced as an ultra-high throughput implementation of 

quantitative phase image based on off-axis interferometry of cells flowing through parallel 

microfluidic channels.  Here, it is applied for characterizing morphological changes of red blood 

cells during storage under regular blood bank condition. The approach allows high quality 

phase imaging of a large number of cells greatly extending our ability to study cellular 

phenotypes using individual cell images.  Holographic cytology measurements show multiple 

physical traits of the cells, including optical volume and area, which are observed to 

consistently change over the storage time. In addition, the large volume of cell imaging data can 

serve as training data for machine learning algorithms. For the study here, logistic regression is 

used to classify the cells according to the storage time points. The results of the classifiers 

demonstrate the potential of holographic cytometry as a diagnostic tool. 
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Introduction 

Flow cytometry is a powerful tool that measures multiple physical parameters of 

complex populations of flowing cells over a short period of time [1]. Since its development as a 

primarily cell-size measuring instrument, flow cytometry has evolved into a sophisticated 

modality that can simultaneously detect up to 14 optical and fluorescence parameters [2]. As a 

diagnostic tool, flow cytometry can be used to obtain information about the biochemical, 

biophysical, and molecular aspects of broad populations at the single cell level. Structural and 

morphological characteristics of cells can be derived from scattered light measurements while 

fluorescence emission is used to provide molecular information by estimating the number of 

fluorescent probes bound to various cellular components [3]. 

As an extension, imaging flow cytometry has become a valuable tool in the past decade 

that enables greater analysis of cellular morphology to provide additional information to 

biological studies and clinical diagnosis [4–6]. In-depth imagery of individual cells can be used 

to verify the parameters measured from conventional flow cytometry by obtaining information 

such as the detailed shape of the cells and the location of labeled biomolecules within them [7–

9]. Also, false positive occurrences can be reduced by analyzing cell images to eliminate non-cell 

objects such as debris and clusters of cells [10–12]. Therefore, users can be more definitive about 

the outcome of flow cytometry analysis by having access to sample attributes within the cell 

images.   

Another tool that has been recently developed for cell imaging is quantitative phase 

microscopy (QPM) which can characterize biological cells by their morphological and spectral 

features with nanometer levels of precision [13–16]. Currently, the number of cells analyzed by 

QPM is greatly limited by the need for manual manipulation of the sample stage to find a good 

field of view. To translate the technique to be a diagnostically significant screening tool, it is 

necessary to increase the throughput of the system to reach levels similar to those of imaging 

flow cytometry which ranges from 1,000 to 100,000 cells/second [4]. Therefore, further 

development of QPM as a diagnostic approach requires the throughput of the system to be 

significantly increased.   

To demonstrate the potential utility of a high throughput QPM method such as 

holographic cytology, the technique is used to assess the morphological changes of red blood 

cells (RBCs) that occur during storage, often termed storage lesion. The number of red blood 

cells that can be imaged with this system is hundreds of times greater than previous studies 

which have examined RBCs with QPM [13].  Characteristics of storage lesion include 

morphological, rheological and biochemical changes to RBCs which reduce their lifetime in 

circulation [17].  The change in RBCs during storage is of interest since there is an increase in 

patient risks with transfusion of older blood and thus significant efforts have been made to 

improve the viability of stored RBCs [18].  In addition, the stored RBCs are used to boost the 

hemoglobin and increase the athletic performance in blood doping. Currently, however, there is 

no way to effectively measure the viability of RBCs at the cellular level with high enough 

throughput to be useful for evaluating units for transfusion.  Instead, the clinical standard is to 

depend on the observed percentage of hemolysis as an assay, neglecting the significant changes 

in RBC morphology and mechanical properties which can reflect their reduced viability.  
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In this article, holographic cytometry is presented as a quantitative phase imaging 

system that can acquire a large number of images of cells in flow by incorporating customized 

microfluidic chips and stroboscopic illumination. The approach is used to acquire quantitative 

phase images of a broad population of individual RBCs at different storage time points. To 

classify these cells, a set of morphological parameters are extracted from each cell image to 

enable characterization of millions of cells at the single cell level.  The extracted physical 

parameters show consistent changes over time and suggest new avenues for improved 

understanding of the effects of storing RBCs. Further, the extracted parameters are used to train 

a supervised learning algorithm, based on logistic regression, to classify the cells according to 

their storage time points.  

Materials and Methods 

Blood Collection and Preparation 

Whole blood from five different healthy donors (Table 1) are collected into CPD-

OPTISOL [AS-5] collection sets. 

 

Table 1: Basic information of blood donors 

 Gender Year of Birth 

Sample A Male 1985 

Sample B Female 2000 

Sample C Male 1988 

Sample D Female 1964 

Sample E Male 1955 

 

Each unit of whole blood was stored at 1-6°C for up to 6 weeks for the experiment. The 

stored blood is removed from the units at specified time points using a sterile-docking system 

with a fitted valve. The removed blood was centrifuged at 1000 rpm for 5 minutes to isolate the 

RBC pellets which were resuspended as a 0.8% hematocrit solution in 5mL of high refractive 

index medium (RI = 1.372 at 23°C). The mixture is then loaded onto a syringe pump system 

flowing at 3µL/min for the experiment. 

Development of Microfluidic Channels 

The following experiments were performed using PDMS channels. The mask design is 

shown in Figure 1. Since the width of the channels, 40μm, is much larger than the average 

diameter of the RBCs, the passages are free from blockages that could potentially disrupt the 

uniform flow across the channels. In addition, the height of the SU-8 master mold, 5.39 + 0.18 

μm, is comparable to the thickness of the RBCs. 
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Figure 1: A) Overall mask design for the PDMS channels. B) Magnified mask design 

showing the dimensions of the channels C) PDMS channel 

Holographic Cytometry 

The RBCs flowing through the channels were imaged using the holographic cytometry 

shown in Figure 2. 

 
Figure 2: Holographic cytometry for high-throughput imaging 

The illumination beam from a laser source (𝜆0 = 640nm, Δ𝜆 = 0.7nm) is modulated at 

300Hz using an acousto-optic modulator (AOM). The AOM is triggered to synchronize with the 

frame rate of the camera using an Arduino based microcontroller.  The pulse width of the 

modulated beam is 350μs and the spatial noise of the system is observed to stabilize at the 1nm 

rms level, with an intensity that is lower than the saturation level of the detector. The pulsed 

illumination beam provides a stroboscopic effect such that the motion of the cells, which are 

flowing at maximum velocity of 2.65mm/s, is effectively frozen during the exposure.  Over the 
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duration of one individual pulse of light, the RBCs travelling at this maximum velocity move 

only 0.93μm, which is less than the spatial resolution of the system (0.98μm), and therefore 

motion artifacts are minimized. 

The output beam from the AOM is coupled into a 1x2 fiber coupler which splits the 

beam into the sample and the reference arms for the off-axis Mach-Zehnder interferometer.  The 

collimated beam from the sample arm passes through the sample and the image is magnified by 

33x using an objective lens (20x, 0.4NA). The magnified beam is combined with the collimated 

reference beam at an angle using a beam splitter to create an off-axis interferogram which is 

captured by the camera (Dalsa, 4096x96px, 300fps). For each sample, 99 sets of 10,000 frames 

(~33 seconds each set) are captured at each storage time point. 

The interferograms are post-processed frame-by-frame to obtain optical phase delays, 

∆𝜙, of the wavefronts propagating through the sample which depends upon refractive index as: 

 

 
Δ𝜙(𝑥, 𝑦, 𝑡) =  

2𝜋

𝜆
 (𝑛𝑐𝑒𝑙𝑙(𝑥, 𝑦, 𝑡) − 𝑛𝑚𝑒𝑑𝑖𝑎) ∙ ℎ(𝑥, 𝑦, 𝑡) 

 

where n is the refractive index, h is the height of the sample, and λ refers to the wavelength. An 

example of a phase image sequence of stored RBCs flowing through the channels is shown in 

Figure 3.  

 
Figure 3 Top: Flow sequence with channels shown at the top subtracted as a 

background. Scale bar = 10μm. Bottom: Selected red blood cells from the flow sequence on 

top. Scale bar = 5μm (Video 1) 

Briefly, the complex field information describing the flowing RBC was retrieved from 

the interferograms [14].  Each complex field image is digitally refocused by propagating the 

field to the plane of best focus, as determined by the minimum variance of amplitude of the 

cells in the first 3 frames [19]. The cells in the subsequent frames of the flow sequences are 

digitally refocused using the same distance determined in the first 3 frames since the axial 

positions are restricted during flow by the height of the customized channel which is 

comparable to the cell thicknesses [20]. After background subtraction, any remaining noise is 
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removed using a 3rd-order polynomial fit to the field of view excluding the cells. Then, each 

RBC is segmented from the image using an area and thickness threshold.  

Multiple images of the same cell are identified using a modified tracking code from the 

Computer Vision Toolbox  in Matlab [21]. The tracking code first detects moving objects from a 

given FOV. Then, it predicts the subsequent location of the object based on the previously 

observed motion using a Kalman filter. The predicted locations across the frames are used to 

form motion tracks which identify the moving copies of each single cell object. This ensures that 

identified copies of multiple images of the same cell do not account for multiple counts in the 

total number of cells imaged by the system.  

Since the RBCs are isolated from the background based only on two morphological 

parameters, another quality check is performed to ensure that non-RBC objects are not included 

in the analysis as shown in Figure 4 below.  

 
Figure 4: A) Scatter plot showing standard deviation of phase and area of all objects 

imaged in a typical flow sequence before quality check. Segmented objects with area < 

21μm2, ex. Figure 4C), shown on the scatter plot by the red vertical dotted line and objects 

with standard deviation < 0.09, ex. Figure 4D), shown by the red horizontal dotted line are 

excluded from further analysis. B) Scatter plot showing OV and circularity of all objects in 

the sequence. Multiple-connected cells, i.e. clumps, with OV > 5fL and circularity < 0.85 or > 

1.23, ex. Figure 4E), shown on the scatter plot by the red dotted lines are also excluded from 

further analysis. Scale bar = 5μm. 

As can be seen in Figure 4A, there are groups of segmented objects that do not exhibit 

morphological features that correspond to the physical properties of RBCs based on size and 

dynamic structure. Therefore, objects with area below the threshold of 21μm2 as well as those 

with standard deviation of phase below 0.09 are categorized as non-RBC objects. Typical images 

of these rejected cells are shown in Figure 4C and D.  These excluded objects may include 
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platelets or cell fragments which are omitted from further analysis. In addition, some of the 

segmented objects are multiple cells clumped together during flow as shown in Figure 4B. The 

clumped cells that are selected based on the circularity (circularity < 0.85 or >1.23) and optical 

volume (OV > 5fL) are also excluded from further analysis (typical images shown in Figure 4E). 

The set of morphological parameters used in our previous study [13] and 2 additional 

features, solidity and circularity, are extracted for each RBC using the segmented images. 

Solidity is the ratio between the area of the cell and the convex hull, with area defined by the 

bounding region that connects the outer points of the cell [22]. Circularity is the ratio between 

the perimeter and the area of the cell that should resemble a circle for values close to 1. 

Results 

Total Number of Cells 

The total number of unique, single RBCs imaged with the system for all samples on day 

1, 15, and 29, after excluding non-RBC objects, are 9,437,349 cells as shown in Table 2 below.  

 

Table 2: Total number of segmented RBCs 

 Sample A Sample B Sample C Sample D Sample E 

Day 01 653,835 585,142 742,151 342,148 144,187 

Day 15 788,569 1,387,083 704,062 117,985 135,920 

Day 29 813,324 1,046,341 845,081 709,039 422,482 

 

 The total imaging time for each sample on a given day is ~3300s, comprising 99 sets, 

10,000 frames per set, at a rate of 300 fps. As can be seen in the table above, the throughput of 

the system ranges from 36 cells/s for Sample D at day 15 to 420 cells/s for Sample B at day 15 

The number of RBCs imaged with the system for each storage day and sample is much greater, 

by a factor ~300x or higher, than the total number of RBCs imaged in our previous studies of 

RBCs using translatable sample stages [13]. The capability to image such a large number of cells 

will provide a more accurate representation of the total population within the storage units than 

possible with other methods. 

Characterization of Morphological Changes Over Time 

Out of the 25 morphological parameters examined here, optical volume and area show 

the most consistent changes over storage time across most of the samples. The average optical 

volume over the storage time for all samples are shown as line plots in Figure 5A.  
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Figure 5: A) Line plots of optical volume for all samples over the storage time B) 

Normalized histogram of optical volume of cells over the storage period for Sample A-E 

As can be seen in the line plots, the optical volume consistently decreases over the 

storage time for all samples except Sample A, which declined at week 3, but paradoxically rises 

at the Week 5 time point. The change in the parameter over the storage period is also illustrated 

using the normalized histograms in Figure 5B where the optical volume of the cells decreases 

over the storage period for Samples B-E.  

Similarly, the area of the cells follows the trend as shown by the mean value of this 

parameter with line plots in Figure 6A. 

 
Figure 6: A) Line plots of area for all samples over the storage time B) Normalized 

histogram of area of cells over the storage period for Sample A-E 
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Generally, the area of the cells also decreases over time except for Sample A, at the final 

time point, Week 5. The change in this parameter over the storage period is also shown using 

normalized histograms in Figure 6B. It should be noted that the decrease in cell area for 

Samples B-E may occur at different time points. For Samples B, C, and E, there is a gradual 

decrease in the parameters over the storage period. For sample D, both parameters are similar at 

weeks 1 and 3 but then exhibit an abrupt change in week 5. Previous studies have shown that 

morphological change is not uniformly associated with age [23] and therefore, the different time 

points where the changes in physical parameters appears could be attributed to sample 

variations.  There is a known donor variability that depends on factors such as age, sex, and 

environmental attributes [24,25] that is also well represented by the difference in the time 

dependent trends between the donors for both parameters as shown in Figures 5 and 6 . 

Classification of RBCs using Logistic Regression 

The extracted morphological parameters were used to train logistic regression to classify 

the cells according to their storage time. In order to efficiently train the classifiers, their 

performance is evaluated as a function of number of cells imaged using a binary classification 

between cells in week 1 and 5. The algorithms are built with randomly selected training data 

and then tested on the remaining dataset and repeated 10 times. The mean and the standard 

deviation of the classification accuracy for the different training data sizes are represented as 

error bar plots, shown below in Figure 7.  

 
Figure 7: Learning curves showing performance of logistic regression versus number 

of training data for Sample A-E. Dotted red line = 5000 training data. 

For all the samples, the accuracy of the algorithms increases with the number of the 

training data until the gain in the performance becomes insignificant. The improvement in the 

performance of the algorithms is comparable to the standard deviation of the accuracies across 

the trials when the number of training data images used in the algorithm is 4096. Therefore, the 

classifiers are trained with 5000 randomly selected cell images from each class while the 

performance is evaluated using the remaining dataset. The process is repeated 10 times to get 

the mean and the standard deviations of the classification accuracies. 
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Self-Trained Binary Classification: Week 1 vs Week 5 

The classification performances for the cells in week 1 vs week 5 using the algorithms 

trained on the same population are shown in Table 3. When the algorithm is trained with cells 

from Sample A, the classifier shows the highest performance with 85.6% accuracy where 90.8% 

and 81.5% of the cells from Sample A are correctly identified as cells from week 1 and 5, 

respectively. 

 

Table 3: Binary classification of cells from week 1 and 5 using logistic regression trained and 

tested with cells from the same sample 

Classification 

Performance 

Avg + std [%] 

Sample A Sample B Sample C Sample D Sample E 

Week 01 90.8 + 0.3 82.0 + 0.4 83.2 + 0.4 77.3 + 0.3 71.6 + 0.2 

Week 05 81.5 + 0.3 78.1 + 0.3 75.3 + 0.4 85.1 + 0.3 80.4 + 0.2 

Accuracy 85.6 + 0.1 79.5 + 0.1 79.0 + 0.1 82.6 + 0.1 78.2 + 0.1 

 

All Sample Binary Classification: Week 1 vs Week 5 

As a further examination, when the algorithm is trained with cells randomly selected 

from all the samples, its performance across the different donors is shown in Table 4. 

 

Table 4: Binary classification of cells from week 1 and 5 using logistic regression trained and 

tested with cells from all samples 

Classification Performance 

Avg + std [%] 
Week01 Week05 

Week01 76.1 + 0.4 23.9 + 0.4 

Week05 34.9 + 0.6 65.1 + 0.6 

 

The classifiers trained with the cells from multiple samples are able to distinguish the 

storage time point of the cells from the different donors with 69.9% accuracy where 76.1% and 

65.1% of the cells are classified correctly as cells from week 1 and 5 respectively.  

 

Discussion 

Throughout the study, holographic cytometry is used to image a large number of RBCs 

from stored blood units at the individual cell level to identify morphological changes over the 

storage period. By imaging cells flowing through the channels of the microfluidic chips, the 

throughput of holographic cytometry is no longer limited by the manual translation of sample 

stages. The use of multiple parallel channels further increases throughput while the use of 

stroboscopic illumination allows for a high flow rate without image streaking. At the maximum 
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throughput of the current setup, it takes less than one second to image hundreds of cells, which 

is the same number of cells from our previous experiments [13]. Therefore, holographic 

cytometry can efficiently expand the utility of QPM by imaging a significantly greater number 

of cells relative to traditional QPM imaging systems. 

One of the advantages of imaging a large number of cells is that the sensitivity of the 

system can be characterized at a much higher level of precision, enabling evaluation of rare 

conditions such as blood infections with low parasitemia percentages [26]. The diagnostic 

capability of a system will be limited by the lowest number of rare target cells that can be 

detected within a population. Therefore, by imaging a greater number of cells, the clinical utility 

of the system as a screening tool can be defined based on classification performance without the 

lower bound restriction arising from the total number of acquired cell images. 

Out of the 25 morphological parameters extracted from the images, OV and area show a 

consistent decrease over the storage time for all the samples except Sample A, at week 5 as 

shown by the Figures 5 and 6. A possible explanation for the rise in the number of cells with 

decreased area over the storage period could be due to the previously reported transformation 

of discocytes to morphologically altered RBCs with smaller projected surface areas such as 

echinocytes, spheroechinocytes, and spherocytes [27–29]. One of these studies has shown that 

morphologically altered RBCs accounted for 4.9% of the blood population on day 3 which 

increased to 23.6% by day 42 [28]. Therefore, the fairly consistent decrease in area over the 

storage time observed here can be a result of the echino-spherocytic shift of RBCs during 

storage. Previous studies have also shown a decrease in MCHC (mean corpuscular hemoglobin 

concentration) for stored RBCs.  In the QPM measurements, this corresponds to a net decrease 

in refractive index of the RBCs relative to the high RI medium, which would result in a 

decreased OV [29,30]. It should also be noted that the physical parameters of the cells from 

Sample A do not continue to decrease at the week 5 storage time, unlike the cells from Sample 

B-E that show steady changes over the storage time. This exception to the trend may have arisen 

from variations in sample handling or differences in the characteristics between the donors.  In 

order to fully understand this, RBCs from a greater number of different donors must be 

examined.  

Logistic regression, trained by the large data set of extracted parameters, is used to 

classify the cells according to the storage time points. Learning curves, shown in Figure 7, 

compare the classification accuracies relative to the training data set size to determine the 

optimal number of cell images to use. For all samples, the increase realized in classification 

accuracies is comparable to the standard deviation seen for the variation in performance across 

trials when there are ~4096 cell images used as training data. Therefore, a threshold of 5000 

randomly selected cells from each sample are viewed as sufficient to build the classification 

algorithms, and the remaining cell imaging data are used as the test set.  

Another advantage that can be realized by exploiting the large number of cell images 

that are acquired with holographic cytology can be seen by noting the number of images 

required to construct the training data. When logistic regression is trained with a low number of 

cells, the trained algorithms cannot distinguish images in the test data at optimal performance 

and therefore it can be assumed that the variability within the total population is not completely 

captured by a smaller training data set. The number of data points required to capture the 
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characteristics of the total population will vary depending on the type of the analyzed sample 

and the selected diagnostic criteria. For classification of QPM images of cells in stored blood 

units based on logistic regression, the analysis here shows that the number of training data 

should be greater than 5000 cells which would have been very difficult to accomplish using 

QPM with conventional scanning approaches such as using manual or automated translation 

stages. 

The performances of algorithms for binary classification between week 1 and 5 are 

shown in Table 3.  These algorithms were trained and tested by analyzing only cells from within 

the same sample.  For the algorithm trained and tested with only the cells from Sample A, the 

highest accuracy in classifying the cells according to storage time was achieved, at 85.6% 

accuracy.  The lowest performance was for the algorithm which was trained only on images of 

cells from Sample E with 78.2% accuracy. Given that Sample A exhibits the only outlier in the 

trends of OV and cell area, it is important to note that 23 other morphological parameters, 

extracted from the quantitative phase images are also used to train the algorithms allowing high 

classification accuracies. Thus, even though OV and cell area are presented in detail here, all of 

the remaining morphological parameters show significantly significant differences over the 

storage time.  This illustrates the wealth of information that can be obtained from QPM images. 

For algorithms that were trained using randomly selected images of cells across all the 

samples to build a binary classifier (as shown in Table 4), the overall classification accuracy 

decreases to 69.9%, a decrease that should be expected. The decrease in the performance of the 

algorithm relative to those trained only within the same population can be attributed to donor 

variability [24,25]. As can be seen in Figures 5 and 6, the RBCs from different donors have 

varying morphological parameter distributions as well as distinctive changes over time that 

describe the variation in storage lesion.  While some general trends in storage lesion can be 

expected to hold for all potential donors, it stands to reason that it may manifest with small 

variations depending on the source of the blood unit as well as its handling. Therefore, it is 

reasonable to expect that the performance of the universal classifier would decrease relative to 

those trained on individual samples. In order to fully characterize the range of morphological 

changes that can appear due to storage lesion, broader studies with RBCs from a greater 

number of different donors should be undertaken. 

One possible source of variation in the observed trends across samples is the fact that 

each unit of RBCs is comprised of a continuum of cells of various ages from those at day 1 in the 

circulation to those that are at the end of the circulatory life [27]. Hence, the age distribution of 

cells imaged at one specific storage time point will inevitably have an overlap with the other 

time points examined here and therefore some cross-classification between storage time points 

by the algorithms is unavoidable. In the future, holographic cytometry could be used to image 

RBCs that have been fractionated by age to acquire information from cells with narrower age 

distribution possibly increasing the overall performance of the algorithms and improving our 

understanding of storage lesion. In addition, the results of holographic cytometry could be 

combined with other approaches to enhance the ability to detect blood doping. For example, the 

discovery of the RNA species in RBCs [31] have enabled the identification of the transcriptional 

changes during RBC storage [32] that may be used together to enhance our ability to identify 

stored RBCs. 
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Conclusion 
 

In this study, we have employed holographic cytometry to image large numbers of cells 

at high throughput.  For application to storage lesion, the approach provides data that better 

represents the variation within blood units than randomly sampling a handful of cells alone. By 

characterizing a greater number of cells at the individual level than previous studies, 

holographic cytometry is able to identify consistent morphological changes in RBCs over the 

storage period with trends that agree with previous literature findings. In the future, by 

imaging samples from more subjects with diverse demographics, donor variability can be 

evaluated for establishing a cell-based predictor of transfusion yield. The potential of 

holographic cytometry as a screening tool is demonstrated by the classification performance of 

the logistic regression algorithms trained with morphological traits extracted from individual 

cell images, rather than from whole cell images.  This distillation step enables examination of 

broader population than would be enabled by direct evaluation of the cell images, where the 

volume of data may pose an obstacle for efficient training and application of algorithms.  The 

classification algorithms show promising accuracies that could be improved by narrowing the 

distribution of the training data using demographic information such as age, gender and health 

history, among others. 
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