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Varroa mites (Varroa destructor) are the most significant threat1

to beekeeping worldwide. They are directly or indirectly re-2

sponsible for millions of colony losses each year. Beekeepers3

are somewhat able to control Varroa populations through the4

use of physical and chemical treatments. However, these meth-5

ods range in effectiveness, can harm honey bees, can be phys-6

ically demanding on the beekeeper, and do not always provide7

complete protection from Varroa. More importantly, in some8

populations Varroa mites have developed resistance to available9

acaricides. Overcoming the Varroa mite problem will require10

novel and targeted treatment options. Here, we explore the po-11

tential of gene drive technology to control Varroa. We show12

that spreading a neutral gene drive in Varroa is possible but re-13

quires specific colony-level management practices to overcome14

the challenges of both inbreeding and haplodiploidy. Further-15

more, continued treatment with acaricides is necessary to give a16

gene drive time to fix in the Varroa population. Unfortunately, a17

gene drive that impacts female or male fertility does not spread18

in Varroa. Therefore, we suggest that the most promising way19

forward is to use a gene drive which carries a toxin precursor or20

removes acaricide resistance alleles.21
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Introduction24

When the Varroa mite (Varroa destructor) jumped from its25

original host the Eastern honey bee (Apis cerana) to the West-26

ern honey bee (Apis mellifera), it spread rapidly around the27

globe and caused catastrophic losses of commercial and feral28

honey bee colonies (1–4). To this day, Varroa mites remain29

the most highly-reported cause of colony loss for commercial30

beekeepers and hobbyists (1, 5–7). There are treatment op-31

tions available to beekeepers that allow them to control Var-32

roa. Unfortunately, currently available treatments do not pro-33

vide complete protection from Varroa and they often harm34

honey bees or are physically demanding for the beekeeper.35

For example, acaricides are among the most effective treat-36

ments available and can kill between 49-82% of the Varroa37

within a colony (8–10). Despite their effectiveness, some38

acaricides also affect honey bees; they reduce honey bee fer-39

tility (11), foraging, and immune responses against bacte-40

rial infections (12). More concerning still, in some popu-41

lations Varroa mites have developed resistance to acaricides42

(13–16). Beyond chemical treatments, beekeepers can use 43

physical means of Varroa control such as drone brood re- 44

moval, which gives Varroa mites limited opportunities to re- 45

produce. However, physical methods can require significant 46

labour and thus may not be feasible on a large scale (17, 18). 47

The unfortunate fact of Varroa mite control is that it relies 48

on blunt chemical treatment methods that can harm bees and 49

may not be effective long-term because of evolved resistance. 50

This echoes similar treatment methods available to other pest 51

species around the globe like malarial-vectoring mosquitoes 52

and crop pests like spider mites (19–22). 53

Genetic population controls, like those that can be im- 54

plemented through the use of a gene drive (23), could be a 55

more successful and more sustainable means to control Var- 56

roa mites and other invertebrate pests than currently-available 57

chemical and physical methods (24). Gene drives are self- 58

ish genetic elements that can be engineered to promote the 59

inheritance of desired alleles at rates much greater than con- 60

ventional Mendelian inheritance (25). When a gene drive al- 61

lele is introduced into a population, it spreads through the 62

mating of gene drive carrying individuals with wild-type in- 63

dividuals (24). A CRISPR-based gene drive element encodes 64

the two components of CRISPR (a Cas nuclease and guide 65

RNA) and can contain a gene of interest one wishes to propa- 66

gate (26, 27), or it can be targeted to a gene one wants to dis- 67

rupt (28–30). In the germline of gene drive carriers, the Cas 68

nuclease and guide RNA are expressed to generate a double- 69

stranded DNA break on the opposing wild-type chromosome 70

at the gene drive locus. This DNA break is repaired through 71

homology-directed repair, using the gene drive harbouring 72

chromosome as the repair template, and thus the gene drive 73

element is copied to the second chromosome (24). The con- 74

version rates for gene drives in insects can be as high as 100% 75

(26, 31–33). This process occurs again in the offspring gen- 76

eration and will do so in all subsequent generations, resulting 77

in the gene drive spreading through the target population. A 78

gene drive can be designed to reduce the fitness of individual 79

homozygous carriers with the aim to reduce population size 80

or even achieve extirpation (23, 34). 81

The introduction of CRISPR-Cas9 gene drives as a man- 82

agement tool for Varroa numbers could greatly impact our 83

ability to control them, and technology is progressing to 84

Faber et al. | bioRχiv | April 30, 2021 | 1–22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442149doi: bioRxiv preprint 

https://orcid.org/0000-0003-0113-8135
https://orcid.org/0000-0003-1624-6067
https://orcid.org/0000-0002-7287-4810
https://orcid.org/0000-0001-8008-2787
https://orcid.org/0000-0001-8722-272X
https://doi.org/10.1101/2021.04.30.442149
http://creativecommons.org/licenses/by-nc/4.0/


a stage where we could test this strategy. The necessary85

biochemical and biological research is currently coming to-86

gether: in vitro-rearing techniques for Varroa are being re-87

fined (35, 36), there is a high-quality reference genome (37),88

and there is a growing list of genes essential to mite survival89

(38). CRISPR-Cas9-mediated mutagenesis has not yet been90

published for Varroa mites but recent work on spider mites91

demonstrates that this may soon be possible (39). However,92

we do not yet know if a gene drive can spread in a Varroa pop-93

ulation. Prior to any gene drive system being implemented,94

it is essential to develop a species-specific genetic and demo-95

graphic model to predict the effectiveness of a drive spread-96

ing successfully (29, 30, 34, 40–44). This is especially im-97

portant in non-model species where mating biology and sex-98

determination systems can limit the spread of gene drives. In99

the case of Varroa mites, they can both outbreed and inbreed,100

and the proportion of each breeding strategy varies through-101

out the season based on brood cell availability (44, 45). In-102

breeding, along with haplodiploidy (46) in Varroa reduce the103

likelihood of a gene drive spreading effectively.104

We present a modelling study to investigate the effective-105

ness of a gene drive given the unique life history of Varroa. 106

We estimate the spreading efficiency of a gene drive in a sin- 107

gle honey bee colony and identify management techniques 108

beekeepers may have to implement to successfully spread a 109

gene drive in their colonies. We show that spreading a neutral 110

gene drive in Varroa is challenging because of the high rate of 111

inbreeding and their exponential growth rate that can quickly 112

overwhelm a honey bee colony. Some management strate- 113

gies, including the use of acaricides, may help spread gene 114

drive alleles. Unfortunately, we could devise no scenario to 115

spread gene drives that impact fitness traits like male or fe- 116

male fertility. Therefore, we suggest that the most promising 117

way forward is to use a gene drive which carries a toxin pre- 118

cursor or removes acaricide resistance alleles. 119

Results 120

A. Development of a genetic population model of Var- 121

roa destructor. We first created a realistic, stochastic, popu- 122

lation model of Varroa destructor that includes genetic inher- 123

itance. For an overview and description of the model and life 124

Figure 1. An overview of our Varroa demographic model. For full details, see the Methods section. First, we initialise a certain number of fertilised females. Then, we use a
backbone model of an average honey bee colony in a temperate climate where a certain amount of new brood cells become available for Varroa infestation every day. The
Varroa infest these cells at a certain rate depending on the number of brood cells and adult bees. Varroa prefer drone cells over worker cells, because those are capped for 2
days longer (14 instead of 12 days), which enables more Varroa offspring to mature. Once in the cell, the fertilised females lay 1 male offspring followed by a varying number
of female offspring. Once the females mature, they mate with the male. We assign each female a certain number of reproduction cycles, so one Varroa female can infest
brood cells multiple times throughout her life. Then, the fully grown bee emerges from the cell with the Varroa attached to them, which is the start of the Varroa’s dispersal
phase. At this stage we model a certain mortality rate which accounts for all ways in which a Varroa could have died during its life cycle.
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C With high introduction frequencies, a gene drive approaches fixation

history parameters, see Figure 1 and Methods. Our model has125

a population trajectory that is similar both in shape and am-126

plitude to previous modeling (47–49) and empirical studies127

(50) (Figure 2A). The model begins on day 1 of the calen-128

dar year, a period of low or no growth for temperate popula-129

tions. The population steadily declines due to daily mortal-130

ity. By the summer, the Varroa population grows exponen-131

tially. The starting population of Varroa greatly influences132

the speed with which Varroa reach threshold levels within133

a colony. With 100, 10, or 1 initial Varroa, it respectively134

takes one, two, or three years longer for the population to135

reach the threshold of 10,000 individuals where we stop our136

model. The level of Varroa infestation at which beekeepers137

will typically treat colonies is reached a year earlier. With 1138

initial Varroa, this single Varroa often dies in the winter and139

therefore, the population grows in only a small number of140

replicates. Importantly, we observe more variability in mod-141

els that begin with fewer Varroa. This variability is caused by142

the timing of reproduction of few Varroa, where small initial143

differences will grow bigger with the exponential growth.144

We were also able to quantify the seasonal fluctuations in145

inbreeding in our modelled population (Figure 2B). We es-146

timated the mean homozygosity at 1000 bi-allelic loci (with147

an initial average allele frequency of 0.5) across a single re-148

combining chromosome. We began each model with a mean149

homozygosity at the beginning of the year of 0.95 in line with150

previous estimates for Varroa (51). We found that homozy-151

gosity remains high throughout most of the beekeeping sea-152

son but there are pronounced drops in homozygosity during153

the end of a typical year. This represents a period of time154

when honey bee colonies are reducing brood production and155

Varroa populations are typically high. This combination in-156

creases the amount of mated Varroa sharing cells, increases157

the chance of their offspring outbreeding, and thus reducing158

homozygosity. Overall, our model is qualitatively similar to159

expectations for a typical Varroa population in a managed160

honey bee colony living in a temperate climate.161

B. Inbreeding hinders gene drive spread and a fit-162

ness-affecting gene drive cannot spread. We model the163

release of 1 homozygous gene drive carrying Varroa into a164

population of 10 wild-type Varroa (gene drive frequency of165

0.09), which is relatively high for a non-threshold dependent166

gene drive (42, 52). We then track the genotypes and allele167

frequencies of individual Varroa in a single honey bee colony168

(Figure 2C, D). As can be seen in both plots, the wild-type al-169

lele and wild-type genotypes remain the most prevalent even170

if we allow the model to continue to a population size of171

10,000 Varroa mites, greatly exceeding population sizes ob-172

served in typical colonies (53). Our model strongly suggests173

that typical gene drive release frequencies may not be suffi-174

cient to spread a gene drive in Varroa. This is likely a result175

of inbreeding, given that gene drive homozygotes are more176

prevalent than gene drive heterozygotes over the course of177

the simulation (Figure 2C). As well, gene drive alleles only178

meaningfully increase in the last days of the model when Var-179

roa numbers are high and cell sharing increases. The dy-180

namics described above are consistent even when increasing181

the initial population size and released gene drive individuals 182

(Figure S1). We found that our model is not sensitive to pa- 183

rameters influencing the spread of gene drive alleles (Figure 184

S2). In the context of population control, the goal of a gene 185

drive is to reduce population sizes by spreading alleles that 186

reduce fitness. We could not conceive a model that success- 187

fully spread a male- or female-specific fitness-reducing drive 188

(Figure S3). 189

C. With high introduction frequencies, a gene drive 190

approaches fixation. When Varroa numbers are still low at 191

the start of the year, it is possible to introduce a larger amount 192

of gene drive Varroa to immediately obtain a high gene drive 193

allele frequency. More importantly, this higher gene drive 194

allele frequency could ensure that whenever outbreeding oc- 195

curs, a gene drive Varroa is likely involved. Therefore, we 196

modelled a population of 10 wild-type Varroa with either 197

1, 10, or 50 added homozygous gene drive Varroa. These 198

amounts respectively give initial gene drive frequencies of 199

0.09, 0.50, and 0.83. We find that the gene drive allele in- 200

creases most rapidly at an initial release frequency of 0.5, 201

because an outbreeding event is most likely between a gene 202

drive Varroa and a wild-type Varroa, rather than between two 203

wild-types or between two gene drives (see Figure 3 and Fig- 204

ure S4). Naturally, a high initial gene drive frequency re- 205

sults in the highest gene drive allele frequency in the end. 206

Therefore, a high initial release frequency might be bene- 207

ficial to spread a gene drive through a Varroa population. 208

Unfortunately, we also see that with an initial amount of 50 209

gene drive Varroa, the population reaches 10,000 individuals 210

a year sooner than with 1 or 10 added Varroa (see Figure 3). 211

D. Brood breaks increase outbreeding, but do not 212

meaningfully increase the spread of a gene drive. 213

Above, we demonstrate that outbreeding can be impacted by 214

the initial release frequency of gene drive Varroa. Ultimately, 215

the amount of cell sharing, and thus outbreeding, depends on 216

three factors: the amount of Varroa, the amount of available 217

brood, and the amount of adult honey bees (54). Therefore, 218

decreasing the number of available honey bee brood cells 219

can increase outbreeding frequency. Cell availability typi- 220

cally decreases naturally at the end of a beekeeping season 221

when honey bees reduce egg laying. Beekeepers can also ar- 222

tificially change cell availability by preventing or restricting 223

queens from laying eggs, a period called a ’brood break’ (17). 224

We tested two brood break strategies for their effective- 225

ness at increasing outbreeding and the fixation rate of gene 226

drive alleles. For the first strategy we entirely stopped brood 227

production, forcing Varroa to stay in the dispersal phase (left- 228

most column in Figure 4). After this brood break, Varroa 229

would more likely infest newly available brood with multi- 230

ple Varroa per cell. For the second strategy, we provided a 231

steady but lowered amount of brood throughout the brood 232

break (middle three columns in Figure 4). We also modelled 233

no brood break intervention as a control (right-most column 234

in Figure 4). For each of these strategies, we modelled three 235

different brood break starting days: 110 (early season, when 236

brood production is just starting), 160 (middle season, when 237
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Figure 2. Model of Varroa and gene drive spread. For every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000. A)
Population size over three years with different initial population sizes. The dashed red line indicates a Varroa prevalence of 5% in summer (5 Varroa per 100 adult bees), which
is used by beekeepers as a "danger threshold" where treatment is necessary for bee colony health. B) Mean homozygosity over three years with different initial population
sizes. We model a single chromosome with 1000 bi-allelic loci, each with initial average frequency of 0.5. We initiate individuals at 95% homozygosity because Varroa have
very high inbreeding coefficients of 0.9. C) Numbers of individuals with three genotypes over three years: WT = wild-type and GD = gene drive. The initial population size
was 10 wild-type Varroa with 1 added homozygous gene drive Varroa. D) Frequencies of gene drive alleles over three years: WT = wild-type, GD = gene drive, RE = resistant,
and NF = non-functional. The initial population size was 10 wild-type Varroa with 1 added homozygous gene drive Varroa, giving an initial gene drive frequency of 0.09.
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E Acaricide treatment may facilitate gene drive fixation

Figure 3. Allele frequencies over three years with different gene drive introductions. The initial population size is 10 wild-type Varroa with 1, 10 or 50 added homozygous
gene drive Varroa, giving respective initial gene drive frequencies of 0.09, 0.50, and 0.83. WT = wild-type, GD = gene drive, RE = resistant, and NF = non-functional. For
every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000.

brood production is at its maximum), and 210 (late season,238

just before brood production stops). Both strategies increased239

the amount of cell sharing (see Figure S6). However, only240

the strategy where a beekeeper adds in a specific proportion241

of brood during the break increased the the frequency of het-242

erozygous gene drive Varroa in a colony relative to the con-243

trol without brood break (see Figure 4). A brood break with244

a beekeeper allowing between 0.01 - 0.1 of available cells245

to be used for brood was the most effective. In practice,246

this equates to approximately one full frame in a ten-frame247

Langstoth colony. These results suggest that with some fine-248

tuning, outbreeding can be increased by the beekeeper and249

therefore increasing the likelihood of fixing a gene drive.250

Gene drive allele frequency should increase after het-251

erozygotes produce offspring, as gene drive homing will oc-252

cur in these individuals. Thus, during a brood break, we253

first expect an increase in heterozygotes as outbreeding oc-254

curs, followed by an increase in gene drive allele frequency255

as these heterozygotes reproduce. However, we show in Fig-256

ure S7 that there is only a modest increase in gene drive allele257

frequency after the brood break compared to no brood break.258

This is likely because of the low frequency of heterozygotes,259

which is lower than 0.2 as can be seen in Figure 4. In this260

model, we added the same amount of gene drive Varroa as261

there are wild-type Varroa, so the allele frequencies are both262

0.5. As we showed in Figure 3, this ratio leads to the most263

rapid increase in gene drive allele frequency. Indeed, in Fig-264

ure S8 where we model a larger gene drive introduction fre-265

quency, the frequency of gene drive heterozygotes is even266

lower. Despite the high introduction frequency and brood267

breaks, the gene drive is still not able to fix in the population268

(see Figure S9). These results show that brood breaks are269

unlikely to have a large effect on the spread of a gene drive. 270

E. Acaricide treatment may facilitate gene drive fixa- 271

tion. None of the scenarios we ran were able to fix a gene 272

drive before Varroa reached threshold levels within a honey 273

bee colony. To that end, we incorporated an acaricide treat- 274

ment into the model that would be activated anytime a colony 275

reached threshold Varroa levels (Figure 5). We found that 276

effective acaricide treatments provide additional time for a 277

gene drive to reach fixation. However, acaricide treatments 278

significantly increase the variability between the model rep- 279

etitions, which does not disappear when starting the model 280

with a higher number of initial Varroa (Figure S10). This 281

means that the observed variability is due to the fact that, by 282

chance, we could be removing more gene drive Varroa than 283

wild-types. Therefore, gene drive fixation is not reached very 284

fast and not in all populations. 285

The best acaricide strategy for gene drive fixation was 286

with 80% acaricide effectivity. With this effectivity Var- 287

roa populations reach the treatment threshold multiple times 288

within a single year and multiple acaricide treatments are 289

necessary. These repeated relatively ineffective treatments 290

are less prone to variability but probably not desirable in 291

practice. We show that introducing more gene drive carriers 292

after acaricide treatment facilitates faster gene drive fixation 293

and less variability (see Figure S11). At this point gene drive 294

fixation is probably due to population replacement rather than 295

gene drive spread. 296

Discussion 297

The greatest threat to managed honey bee colonies, globally, 298

is the Varroa mite (1, 5–7). With the ever-advancing toolkit 299
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Figure 4. Gene drive (GD) heterozygote frequency over time for different initial population sizes, given different amounts of brood cell availability (as a fraction of the normal
amount) and different brood break starting days. The grey bars indicate the brood break. The initial population sizes were 10, 100, or 1000 wild-type Varroa with the same
number of gene drive Varroa on top of that, giving an initial gene drive frequency of 0.5. For every set of parameters, we run 10 repetitions and stop the model when the
Varroa population size is over 10,000.

available to study functional genomics in Varroa (37, 55, 56),300

we suggest that the prospect of genetic control is not far from301

a reality. We set out to test the feasibility of such a system, in302

the form of a gene drive, in a modelling study of a population303

of Varroa within a single honey bee colony. We demonstrate304

that a neutral gene drive could spread in a Varroa population305

in a honey bee colony and open the door to future analysis306

in exploring how to spread gene drives in non-model species307

with particularly challenging biology.308

A gene drive could work in Varroa but it is slow and309

requires management inputs. Our stochastic model tracked310

the growth of Varroa mite populations each day over several311

years in a typical temperate honey bee colony. Varroa liv-312

ing in colonies in non-temperate climates will likely need ad-313

ditional modelling given the very different demography that314

honey bees have in these areas (57). We focused on temper-315

ate colonies, specifically, because they represent most man-316

aged colonies in the United States (5) and because temper-317

ate climates provide an opportunity for increased outbreeding318

in Varroa. Varroa populations tend to be highest in the fall319

(47, 58, 59). During this time, honey bee colonies decrease320

brood production to prepare for the winter. As we observe 321

and others have empirically demonstrated, Varroa mites in- 322

crease outbreeding rates in the fall because of reduced brood 323

cell availability (51). Outbreeding is critical to the establish- 324

ment of a Varroa gene drive and indeed to any gene drive 325

(45). 326

We could not conceive a model that would successfully 327

spread a lethal gene drive in Varroa. The most promis- 328

ing way forward may be to design neutral drives with 329

environmentally-induced fitness effects (such as the spread- 330

ing a toxin precursor), drives which remove acaricide resis- 331

tance alleles, or drives that target genes involved in Varroa- 332

viral interactions. Each of these requires a deeper under- 333

standing of Varroa functional genomics but may be fruitful 334

for future investigations. Spreading drives that confer Varroa 335

with genetic resistance against viruses is a particularly inter- 336

esting prospect. The threat that Varroa mites pose to honey 337

bees is exacerbated by the viruses they introduce into their 338

hosts (60–62). 339

There are several challenges to establishing a gene drive 340

in Varroa that need to be overcome. Natural outbreeding 341
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E Acaricide treatment may facilitate gene drive fixation

Figure 5. The spread of a gene drive while the Varroa population is suppressed with acaricides whenever the Varroa prevalence surpasses the danger threshold of 5% in
summer (5 Varroa per 100 adult bees). The initial population size was 10 wild-type Varroa with 50 homozygous gene drive Varroa, giving an initial gene drive frequency of
0.83. For every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000. A) Frequencies of gene drive genotypes over
time, given different intensities of acaricide treatment when the population surpasses the danger threshold. WT = wild-type, GD = gene drive. B) Frequencies of gene drive
alleles over time, given different intensities of acaricide treatment when the population surpasses the danger threshold. WT = wild-type, GD = gene drive, RE = resistant, and
NF = non-functional.
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alone was not enough to reliably increase the frequency of342

gene drive. We attempted to overcome this challenge by343

incorporating beekeeper management in the form of brood344

breaks and acaricide treatments. Both influenced the rate of345

outbreeding and the likelihood of gene drive fixation. Im-346

portantly, both of these management practices are used by347

beekeepers and their incorporation into future gene drive ef-348

forts would not be an additional burden. The need for bee-349

keeper management also suggests that a drive has a limited350

ability to spread beyond the apiary. All gene drive mod-351

els we attempted faced the additional challenge of concomi-352

tantly minimizing population growth. When Varroa popula-353

tions exceed economic thresholds, honey bee colonies pro-354

duce less honey and have a higher probability of collapsing355

(63, 64). Here, we took a very generous threshold of 5 Var-356

roa/100 bees across the year and ran simulations until Varroa357

reached 10,000 mites in a single colony — a level that would358

almost never be observed in a managed colony. Furthermore,359

because Varroa populations grow exponentially, a honey bee360

colony can only go without Varroa control for a few years361

at most, depending on the initial infestation level. Control-362

ling Varroa growth with acaricides was an effective means363

to improve the spread of neutral gene drives by providing364

more time for the gene drives to fix before the honey bee365

colony reached 10,000 Varroa. However, this method in it-366

self is troubling because it does not remove the risk of Varroa367

populations evolving acaricide resistance nor does it remove368

the risk that some acaricides pose to honey bees. We feel369

that the addition of management scenarios in our models and370

others (30) is particularly important for the gene drive litera-371

ture and a feature that could be overlooked. Incorporating the372

typical management practices into models and understanding373

how they impact gene drive dynamics may be an important374

addition to future work.375

In summary, our models provide an early look at how376

gene drives may act in the Varroa system. They are by377

no means comprehensive. Varroa occupy a huge range and378

experience different colony and apiary environments across379

it. Location- or management-specific models may reveal380

that gene drives spread more or less successfully.The genetic381

background of a honey bee colony and a colony’s response to382

increasing Varroa loads were also not modelled. Both could383

impact the spread of a gene drive. The population dynam-384

ics for Varroa in Varroa-tolerant or resistant colonies is likely385

different and could impact the spread of a gene drive, per-386

haps acting like acaricide treatments and providing a longer387

time for gene drives to spread. Any colony-level responses388

to increased levels of Varroa parasitism could increase or de-389

crease the likelihood of a drive spreading. We also did not ex-390

plore dynamics outside of a single honey bee colony and did391

not explore the risks of modified Varroa establishing in non-392

target colonies. Varroa mites are as highly mobile as honey393

bees and more modelling is necessary to understand the roles394

of drifting, foraging, robbing, and management in spreading395

gene drives outside of target colonies (65–68). We suggest,396

given the difficulty we found in spreading drives in a single397

colony, that the above factors may be unlikely to establish398

drives in non-target colonies. Even if they could establish 399

outside of target colonies, the spread of gene drive Varroa 400

may not be viewed as a major threat, at least in North Amer- 401

ica. This may not be the case in other parts of its introduced 402

range. In its native range, Varroa destructor can be found in 403

low frequency in Apis cerana colonies where we have little 404

information about its native ecology. 405

To our knowledge, genetic modification has not been per- 406

formed in Varroa mites and in vitro rearing methods are, so 407

far, unable to maintain a breeding population of Varroa (55). 408

Mutagenesis in chelicerates has recently been accomplished 409

(39) but transgenesis has yet to be achieved. Gene drives may 410

be many years off for Varroa. With more expertise develop- 411

ing in the fields of transgenesis and mutagenesis in arthro- 412

pods, it is likely that we will see experiments in the Varroa 413

system and we hope that our work can help develop ideas 414

about genetic control of this invasive pest species. In the 415

short-term, currently-available treatment methods (63) and 416

perhaps newer methods (38, 69) remain the best methods to 417

control Varroa. 418

Methods 419

Within R 4.0.5 (70), we used the package AlphaSimR as a 420

framework for our modelling (71). AlphaSimR is designed 421

to model the genetics of plant and animal breeding schemes, 422

but lends itself well to general population genetics modelling 423

too. We have created an individual-based, stochastic, day- 424

by-day model of Varroa destructor (hereafter simply named 425

Varroa), which consist of three aspects: a static honey bee 426

colony as backbone, a stochastic model of Varroa and its life 427

history, and the implementation of a gene drive. Everyday in 428

the model, we track parameters such as the size of the Varroa 429

population, the levels of inbreeding, and the allele frequen- 430

cies at the gene drive locus, among others. 431

A. Honey bee colony simulation. Varroa is a parasite and 432

depends on its host, Apis mellifera, for reproduction. There- 433

fore, to realistically model a population of Varroa, we must 434

also model a honey bee colony. We chose to use a static 435

model for the honey bee colony, as we are primarily inter- 436

ested in the Varroa population and not the interaction between 437

parasite and host. We used a honey bee colony model from 438

Calis et al. (1999) (48), who based their model on data from 439

Allen (1965) (72). This model is based on a colony of average 440

size in a Northern European climate and contains the amount 441

of adult honey bees, drone brood, and worker brood over 365 442

days. At the end of the year, bee and brood numbers are the 443

same as at the start of the year. Therefore, we can model mul- 444

tiple years by replicating this honey bee model several times 445

back to back. We assumed that a honey bee colony would col- 446

lapse when the Varroa population reaches 10,000 individuals, 447

at which point we stopped the model. We also implemented 448

an option to reduce brood amounts through colony manage- 449

ment by the beekeeper to manage inbreeding in the Varroa 450

population (73). For a variable amount of days, we reduce 451

the brood by a variable percentage of its original amount on 452

those days. In our fixed honey bee colony model, we only 453
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change the amount of drone and worker brood and leave the454

adult bee numbers the same.455

B. Varroa life history. Our model consists of a number of456

steps to accurately represent the complex life history of Var-457

roa mites:458

1. Initialising mated females. At the start of the model,459

we initialise a certain number of mated Varroa females.460

Then, every time when female Varroa offspring is cre-461

ated, we assign each Varroa a certain number of repro-462

duction cycles it will go through in its life. Current463

estimates of how many reproduction cycles are com-464

pleted on average range between 2 to 3 (74, 75). There-465

fore, we assign each female a number between 1 and 4466

randomly, which gives an average of 2.5 reproduction467

cycles.468

2. Brood infestation. The first step in Varroa reproduc-469

tion is the infestation of a honey bee brood cell. For470

the rate of brood entering, we use a model by Boot et471

al. (1994) (54), who tested several models to predict472

this rate. On every day of our model, we calculate the473

number of infestations (Ni) as:474

Ni = 1+e−(−2.87+0.00385∗ Nb
Na

∗10000)
−1

, (1)

which is dependent on the ratio between available475

brood (Nb) and the number of adult bees (Na) (54).476

The biological reasoning behind this model is that Var-477

roas are phoretic on adults bees and when those bees478

get close to available brood cells, the Varroa can in-479

fest (54). When this ratio is low, the probability that an480

adult bee with a phoretic Varroa will pass by an avail-481

able brood cell is low, and vice versa.482

Once we have determined the number of Varroa that in-483

fest, we assign them to the available drone and worker484

cells. Varroa prefer drone cells over worker cells, be-485

cause those are capped for 2 days longer (14 instead of486

12 days) (47), which enables more Varroa offspring to487

mature. We model a drone cell preference by giving488

drone cells an eight times higher probability of infes-489

tation (76). Therefore, by chance any drone or worker490

cell could be infested by more than one Varroa, with491

the probability of this happening being much higher in492

drone cells.493

3. Generating offspring. Varroa mites first produce a494

single male offspring, followed by a varying number495

of female offspring (1). More female offspring are able496

to mature in drone brood than in worker brood because497

of the longer capping period of those cells (77). There-498

fore, we use two separate distributions to determine the499

number of female offspring per Varroa in the two types500

of brood as described by Infantidis (1984) (59). These501

distributions include Varroa that produce no offspring502

as well. The averages of these distributions for female503

offspring are 1.70 for drone cells and 0.71 for worker504

cells (59). Excluding the non-productive Varroa, the 505

averages of female offspring are 2.77 for drone cells 506

and 1.33 for worker cells (59). 507

4. Mating between offspring. Varroa offspring mate in 508

the brood cell they are born in (78). Usually only one 509

Varroa infests a cell, which forces offspring to inbreed 510

by full-sibling mating. Occasionally however, espe- 511

cially at the end of the season when Varroa numbers 512

are high, multiple Varroa infest a single cell, which al- 513

lows for outbreeding (51). Mated females will gener- 514

ate offspring the rest of their lives with the sperm they 515

save in their spermatheca (77). We model random mat- 516

ing between males and females in a brood cell, where 517

females mate with a single male. 518

5. Emergence from brood. In every brood cell, there is 519

a limit to how many Varroa offspring can survive (79). 520

According to data from Martin (1995) (79), the max- 521

imum live offspring per cell is 16 in drone cells and 522

8 in worker cells. Additionally, they show that there 523

is usually one male offspring for every mother mite, 524

so mostly female offspring will not survive in over- 525

crowded brood. This is likely because of competition 526

at the feeding site (79). Therefore, we determine the fe- 527

male offspring survival probability (Ps) per brood cell: 528

Ps =
{

0 f > max−m

1− max−m
f f ≤ max−m

, (2)

where (m) is the number of male offspring, (f ) the 529

number of female offspring, and (max) the maximum 530

number of offspring in that type of brood. 531

6. Mortality. In our model, we expect 0.5% of Varroa to 532

die every day, which is the average between the sum- 533

mer and winter mortality used by Fries et al. (1994) 534

(47). Additionally, we remove Varroa who have gone 535

through their final reproduction cycle, after which they 536

are assumed to die (74). 537

C. Gene drive implementation. Although AlphaSimR 538

was designed to model large numbers of loci for breeding and 539

quantitative genetics, the framework is perfect for the single 540

locus of a gene drive too. Each individual is modelled with a 541

single gene drive locus on two chromosomes and inheritance 542

is random. 543

We have implemented a gene drive which homes in the 544

germline and has four potential alleles: wild-type, gene drive, 545

resistance, and non-functional. Like Prowse et al. (2017) 546

(42), we model a probability of cutting (PC ) of 0.95, a 547

probability of non-homologous end joining (PNHEJ ), which 548

is variable, a probability that non-functional repair occurs 549

(PNFR) of 0.67, which is the probability of a frame-shift 550

occuring. 551
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Supplementary Material

Figure S1. Model of Varroa and gene drive spread as in Figure 2C and D, but with a 10 times larger starting population: 100 wild-type Varroa instead of 10, and 10 gene
drive Varroa instead of 1. The initial population size is 100 wild-type Varroa with 10 added homozygous gene drive Varroa, giving an initial gene drive frequency of 0.09. For
every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000. A) Numbers of individuals with different genotypes. WT =
wild-type and GD = gene drive. B) Frequencies of gene drive alleles. WT = wild-type, GD = gene drive, RE = resistant, and NF = non-functional.
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C Gene drive implementation

Figure S2. Sensitivity analysis of our Varroa model shown in Figure 2A and D. We run the model for a year with a range of parameters and on day 365, we measure both
population size and gene drive (GD) frequency to see which parameter has an influence. The initial population size is 100 wild-type Varroa with 10 added homozygous gene
drive Varroa, giving an initial gene drive frequency of 0.09. We vary five parameters independently: invasion rate slope (see Equation 1), invasion rate intercept (see Equation
1), drone cell preference, max offspring per drone cell (see Equation 2), and max offspring per worker cell (see Equation 2). Pink circles indicate each repetition’s outcome,
the black lines represent the 95% confidence interval around the mean, and the grey bar and text "Default" indicate the default parameters that are supported by literature
and are used in Figure 2 and all other figures. For every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000.
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Figure S3. Model of Varroa and gene drive spread as in Figure 2C and D, but besides a neutral gene drive, we also model a gene drive which, when homozygous or
hemizygous, causes male or female infertility. Besides the release of homozygous females as in Figure 2C and D, we also model the release of heterozygous gene drive
Varroa females so the infertility does not immediately affect females. The initial population size is 10 wild-type Varroa with 1 added gene drive Varroa, giving an initial gene
drive frequency of 0.09 for a homozygote release and 0.045 for a heterozygote release. For every set of parameters, we run 10 repetitions and stop the model when the
Varroa population size is over 10,000. A) Numbers of individuals with different genotypes. WT = wild-type and GD = gene drive. B) Frequencies of gene drive alleles. WT =
wild-type, GD = gene drive, RE = resistant, and NF = non-functional.
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C Gene drive implementation

Figure S4. Numbers of individuals with three genotypes, corresponding to the allele frequencies in Figure 3 over three years with different gene drive introduction amounts.
The initial population size is 10 wild-type Varroa with 1, 10 or 50 added homozygous gene drive Varroa, giving initial gene drive frequencies of 0.09, 0.50, and 0.83,
respectively. WT = wild-type and GD = gene drive. For every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000.
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Figure S5. The same as Figure 3 and Figure S4, but with 10 times more initial Varroa. The initial population size is 100 wild-type Varroa with 10, 100 or 500 added
homozygous gene drive Varroa, respectively giving initial gene drive frequencies of 0.09, 0.50, and 0.83. For every set of parameters, we run 10 repetitions and stop the
model when the Varroa population size is over 10,000. A) Allele frequencies over three years with different gene drive introduction amounts. WT = wild-type, GD = gene
drive, RE = resistant, and NF = non-functional. B) Numbers of individuals with three genotypes. WT = wild-type and GD = gene drive.
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C Gene drive implementation

Figure S6. Average Varroa per drone cell over time for different initial population sizes, given different amounts of brood cell availability (as a fraction of the normal amount)
and different brood break starting days like in Figure 4. The grey bars indicate the brood break. The "~" in two plots indicates that values were higher than 20 and thus fall
off the truncated y-axis to keep the plot interpretable. The number after the "~" roughly indicates the maximum of the truncated values. The initial population sizes were 10,
100, or 1000 wild-type Varroa with the same number of gene drive Varroa on top of that, giving initial gene drive frequencies of 0.5. For every set of parameters, we run 10
repetitions and stop the model when the Varroa population size is over 10,000.
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Figure S7. Gene drive (GD) allele frequency over time for different initial population sizes, given different amounts of brood cell availability (as a fraction of the normal amount)
and different brood break starting days like in Figure 4. The grey bars indicate the brood break. The initial population sizes were 10, 100, or 1000 wild-type Varroa with the
same number of gene drive Varroa on top of that, giving an initial gene drive frequency of 0.5. For every set of parameters, we run 10 repetitions and stop the model when
the Varroa population size is over 10,000.
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C Gene drive implementation

Figure S8. Gene drive (GD) heterozygote frequency over time for different initial population sizes, given different amounts of brood cell availability (as a fraction of the normal
amount) and different brood break starting days like in Figure 4, but with more introduced gene drive Varroa. The initial population sizes were 10, 100, and 1000 wild-type
Varroa with 100, 1000, and 5000 gene drive Varroa on top of that, respectively, giving initial gene drive frequencies of 0.91, 0.91, and 0.83. The grey bars indicate the brood
break. For every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000.
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Figure S9. Gene drive (GD) allele frequency over time for different initial population sizes, given different amounts of brood cell availability (as a fraction of the normal amount)
and different brood break starting days like in Figure 4, but with more introduced gene drive Varroa. The initial population sizes were 10, 100, and 1000 wild-type Varroa with
100, 1000, and 5000 gene drive Varroa on top of that, respectively, giving initial gene drive frequencies of 0.91, 0.91, and 0.83. The grey bars indicate the brood break. For
every set of parameters, we run 10 repetitions and stop the model when the Varroa population size is over 10,000.
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C Gene drive implementation

Figure S10. The spread of a gene drive while the Varroa population is suppressed with acaricides whenever the Varroa prevalence surpasses the danger threshold of 5%
in summer (5 Varroa per 100 adult bees). The same as Figure 5, but with a 10 times larger starting population. The initial population size was 100 wild-type Varroa with
500 homozygous gene drive Varroa, giving an initial gene drive frequency of 0.83. For every set of parameters, we run 10 repetitions and stop the model when the Varroa
population size is over 10,000. A) Frequencies of gene drive genotypes over time, given different intensities of acaricide treatment when the population surpasses the danger
threshold. WT = wild-type, GD = gene drive. B) Frequencies of gene drive alleles over time, given different intensities of acaricide treatment when the population surpasses
the danger threshold. WT = wild-type, GD = gene drive, RE = resistant, and NF = non-functional.
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Figure S11. The spread of a gene drive while the Varroa population is suppressed with acaricides whenever the Varroa prevalence surpasses the danger threshold of 5% in
summer (5 Varroa per 100 adult bees). The same as Figure 5, but now we do an extra release of 50 gene drive Varroa after every acaricide treatment. The initial population
size was 10 wild-type Varroa with 50 homozygous gene drive Varroa, giving an initial gene drive frequency of 0.83. For every set of parameters, we run 10 repetitions and
stop the model when the Varroa population size is over 10,000. A) Frequencies of gene drive genotypes over time, given different intensities of acaricide treatment when the
population surpasses the danger threshold. WT = wild-type, GD = gene drive. B) Frequencies of gene drive alleles over time, given different intensities of acaricide treatment
when the population surpasses the danger threshold. WT = wild-type, GD = gene drive, RE = resistant, and NF = non-functional.

22 | bioRχiv Faber et al. | Varroa destructor population control by gene drive

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442149
http://creativecommons.org/licenses/by-nc/4.0/

	Development of a genetic population model of Varroa destructor
	Inbreeding hinders gene drive spread and a fitness-affecting gene drive cannot spread
	With high introduction frequencies, a gene drive approaches fixation
	Brood breaks increase outbreeding, but do not meaningfully increase the spread of a gene drive
	Acaricide treatment may facilitate gene drive fixation
	Honey bee colony simulation
	Varroa life history
	Gene drive implementation

