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Abstract

With the rapid growth of the number of sequenced ancient genomes, there has been increasing

interest in using this new information to study past and present adaptation. Such an additional

temporal component has the promise of providing improved power for the estimation of natural

selection. Over the last decade, statistical approaches for detection and quantification of natural

selection from ancient DNA (aDNA) data have been developed. However, most of the existing

methods do not allow us to estimate the timing of natural selection along with its strength, which

is key to understanding the evolution and persistence of organismal diversity. Additionally, most

methods ignore the fact that natural populations are almost always structured, which can result

in overestimation of the effect of natural selection. To address these issues, we introduce a novel

Bayesian framework for the inference of natural selection and gene migration from aDNA data

with Markov chain Monte Carlo techniques, co-estimating both timing and strength of natural

selection and gene migration. Such an advance enables us to infer drivers of natural selection

and gene migration by correlating genetic evolution with potential causes such as the changes

in the ecological context in which an organism has evolved. The performance of our procedure

is evaluated through extensive simulations, with its utility shown with an application to ancient

chicken samples.
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1. Introduction1

With modern advances in ancient DNA (aDNA) techniques, there has been a rapid increase2

in the availability of time serial samples of segregating alleles across one or more related popu-3

lations. The temporal aspect of such samples reflects the combined evolutionary forces acting4

within and among populations such as genetic drift, natural selection and gene migration, which5

can contribute to our understanding of how these evolutionary forces shape the patterns ob-6

served in contemporaneous samples. One of the most powerful applications of such genetic time7

series is to study the action of natural selection since the expected changes in allele frequencies8

over time are closely related to the timing and strength of natural selection.9

Over the past fifteen years, there has been a growing literature on the statistical inference of10

natural selection from time series data of allele frequencies, especially in aDNA (see Malaspinas,11

2016; Dehasque et al., 2020, for excellent reviews). Typically, estimating natural selection from12

genetic time series is built on the hidden Markov model (HMM) framework proposed by Bollback13

et al. (2008), where the allele frequency trajectory of the underlying population through time14

was modelled as a latent variable following the Wright-Fisher model introduced by Fisher (1922)15

and Wright (1931), and the allele frequency of the sample drawn from the underlying population16

at each sampling time point was modelled as a noisy observation of the latent population allele17

frequency. In their likelihood computation, the Wright-Fisher model was approximated through18

its standard diffusion limit, known as the Wright-Fisher diffusion, which was then discretised19

for numerical integration with a finite difference scheme. Their approach was applied to analyse20

the aDNA data associated with horse coat colouration in Ludwig et al. (2009) and extended to21

more complex evolutionary scenarios (see, e.g., Malaspinas et al., 2012; Steinrücken et al., 2014;22

Ferrer-Admetlla et al., 2016; Schraiber et al., 2016; He et al., 2020b,c).23

Natural populations are almost always structured, which affects the relative effect of natural24

selection and genetic drift on the changes in allele frequencies over time. This can cause overesti-25

mation of the selection coefficient (Mathieson et al., 2015). However, all existing methods based26

on the Wright-Fisher model for the inference of natural selection from temporally-spaced allele27

frequency data lack the ability to account for the confounding effect of gene migration, with the28

exception of Mathieson & McVean (2013), which could model population structure. Mathieson29

& McVean (2013) is an extension of Bollback et al. (2008) for the inference of metapopulations,30
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which enables the co-estimation of the selection coefficient and the migration rate from genetic31

time series. However, their method could become computationally cumbersome for large popu-32

lation sizes and evolutionary timescales since their likelihood computation was carried out with33

the Wright-Fisher model. High computational costs for large evolutionary timescales become a34

strong limitation for the analysis of aDNA.35

More recently, Loog et al. (2017) introduced a Bayesian statistical framework for estimating36

the timing and strength of selection from genetic time series while explicitly modelling migration37

from external sources. Their approach also allows the co-estimation of the underlying population38

allele frequency trajectory through time, which is important for understanding the drivers of39

selection. However, the population size is assumed to be large enough in their method to ignore40

genetic drift, which simplifies the likelihood computation but restricts the application to aDNA.41

In this work, we develop a novel HMM-based approach for the Bayesian inference of natural42

selection and gene migration to re-analyse the ancient chicken samples from Loog et al. (2017).43

Our method is built upon the HMM framework of Bollback et al. (2008), but unlike most existing44

approaches, it allows the joint estimation of the timing and strength of selection and migration.45

Such an advance enables us to infer the drivers of selection and migration by correlating genetic46

evolution with ecological and cultural shifts. Our main innovation is to introduce a multi-allele47

Wright-Fisher diffusion for a single locus evolving under natural selection and gene migration,48

including the timing of selection and migration. This diffusion process characterises the allele49

frequency trajectories of the underlying population over time, where the alleles that migrate from50

external sources are distinguished from those that originate in the underlying population. Such51

a setup allows a full using of available quantities such as the proportion of the modern European52

chicken that have Asian origin as a direct result of gene migration. Our posterior computation53

is carried out through the particle marginal Metropolis-Hastings (PMMH) algorithm of Andrieu54

et al. (2010) with blockwise sampling, which permits a joint update of the underlying population55

allele frequency trajectories. We evaluate the performance of our procedure through extensive56

simulations, with its utility shown with an application to the ancient chicken samples.57

2. Materials and Methods58

In this section, we first introduce the multi-allele Wright-Fisher diffusion for a single locus59

evolving under natural selection and gene migration and then present our Bayesian method for60
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the joint inference of selection and migration from time series allele frequency data.61

2.1. Wright-Fisher diffusion62

Let us consider a population of N randomly mating diploid individuals at a single locus A63

with discrete and nonoverlapping generations, where the population size N is finite and fixed64

over time. Suppose that at locus A there are two allele types, labelled A1 and A2, respectively.65

We attach the symbol A1 to the mutant allele, which arises only once in the population and is66

positively selected once the evolution starts to act through selection, and we attach the symbol67

A2 to the ancestral allele, which originally exists in the population.68

According to Loog et al. (2017), we characterise the population structure with the continent-69

island model (see, e.g., Hamilton, 2011, for an introduction). More specifically, the population is70

subdivided into two demes, the continental population and the island population. To distinguish71

between the alleles found on the island but emigrated from the continent or were originally on72

the island, the mutant and ancestral alleles that originated on the island are labelled Ai
1 and73

Ai
2, respectively, and the mutant and ancestral alleles that were results of emigration from the74

continent are labelled Ac
1 and Ac

2, respectively. Such a setup enables us to trace the alleles that75

migrate from external sources evolving in the island population, thereby allowing the integration76

of available information such as the proportion of the modern European chicken that have Asian77

origin in the inference of selection. Suppose that the continent population is large enough such78

that gene migration between the continent and the island does not affect the genetic composition79

of the continent population. Our interests focus on the island population dynamics so in what80

follows the population refers to the island population unless noted otherwise.81

To investigate the island population dynamics under natural selection and gene migration,82

we specify the life cycle of the island population, which starts with zygotes that selection acts83

on. Selection takes the form of viability selection, and the relative viabilities of all genotypes84

are shown in Table 1, where s ∈ [0, 1] is the selection coefficient, and h ∈ [0, 1] is the dominance85

parameter. After selection, a fraction m of the adults on the continent migrate into the popu-86

lation of mating adults on the island, which causes the change of the genetic composition of the87

island population, i.e., fraction m of the adults on the island are immigrants from the continent,88

and fraction 1 −m of adults were originally already on the island. The Wright-Fisher repro-89

duction introduced by Fisher (1922) and Wright (1931) finally completes the life cycle, which90
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corresponds to randomly sampling 2N gametes with replacement from an effectively infinite91

gamete pool to form new zygotes in the next generation through random union of gametes.92

Ai
1 Ai

2 Ac
1 Ac

2

Ai
1 1 1− hs 1 1− hs
Ai

2 1− hs 1− s 1− hs 1− s
Ac

1 1 1− hs 1 1− hs
Ac

2 1− hs 1− s 1− hs 1− s

Table 1: Relative viabilities of all possible genotypes at locus A when we distinguish between the alleles that
originate on the island and the alleles that emigrate from the continent.

We let X(N)(k) = (X
(N)
1 (k), X

(N)
2 (k), X

(N)
3 (k), X

(N)
4 (k)) denote the frequencies of the Ai

1,93

Ai
2, Ac

1 and Ac
2 alleles in N zygotes of generation k ∈ N on the island, which follows the multi-94

allele Wright-Fisher model with selection and migration described in Supplemental Information,95

File S1. We assume that the selection coefficient and the migration rate are both of order 1/(2N)96

and fixed from the time of the onset of selection and migration up to present. We run time at97

rate 2N , i.e., t = k/(2N), and like Cherry & Wakeley (2003), we scale the selection coefficient98

and the migration rate as99

α(t) =


0, if t < ts

2Ns, otherwise

and β(t) =


0, if t < tm

2Nm, otherwise,

where ts and tm are the starting times of selection and migration on the island measured in the100

units of 2N generations. As the population size N tends to infinity, the Wright-Fisher model101

X(N) converges to a diffusion process, denoted by X = {X(t), t ≥ t0}, evolving in the state102

space ΩX = {x ∈ [0, 1]4 :
∑4

i=1 xi = 1} and satisfying the stochastic differential equation (SDE)103

of the form104

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), t ≥ t0 (1)

with initial condition X(t0) = x0. In Eq. (1), µ(x, t) is the drift term105

µ1(x, t) = α(t)x1(x2 + x4) [(x1 + x3)h+ (x2 + x4)(1− h)]− β(t)x1

µ2(x, t) = −α(t)x2(x1 + x3) [(x1 + x3)h+ (x2 + x4)(1− h)]− β(t)x2

µ3(x, t) = α(t)x3(x2 + x4) [(x1 + x3)h+ (x2 + x4)(1− h)]− β(t)(x3 − xc)

µ4(x, t) = −α(t)x4(x1 + x3) [(x1 + x3)h+ (x2 + x4)(1− h)]− β(t)(x4 + xc − 1),

(2)
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where xc is the frequency of the Ac
1 allele in the continent population, which is fixed over time,106

σ(x, t) is the diffusion term107

σ(x, t) =



√
x1x2

√
x1x3

√
x1x4 0 0 0

−√x2x1 0 0
√
x2x3

√
x2x4 0

0 −√x3x1 0 −√x3x2 0
√
x3x4

0 0 −√x4x1 0 −√x4x2 −√x4x3


, (3)

and W (t) is a six-dimensional standard Brownian motion. The explicit formula for the diffusion108

term σ(x, t) in Eq. (3) is obtained by following He et al. (2020a). The proof of the convergence109

follows in the similar manner to that employed for the neutral two-locus case in Durrett (2008,110

p. 323). We refer to the stochastic process X = {X(t), t ≥ t0} that solves the SDE in Eq. (1)111

as the multi-allele Wright-Fisher diffusion with selection and migration.112

2.2. Bayesian inference of natural selection and gene migration113

Suppose that the available data are sampled from the underlying island population at time114

points t1 < t2 < . . . < tK , which are measured in units of 2N generations to be consistent with115

the Wright-Fisher diffusion timescale. At the sampling time point tk, there are ck mutant alleles116

(i.e., the Ai
1 and Ac

1 alleles) and dk continent alleles (i.e., the Ac
1 and Ac

2 alleles) observed in the117

sample of nk chromosomes drawn from the underlying island population. Note that in real data,118

the continent allele count of the sample may not be available at each sampling time point, e.g.,119

the proportion of the European chicken that have Asian origin is only available in the modern120

sample (Loog et al., 2017). The population genetic parameters of interest are the scaled selection121

coefficient α = 2Ns, the dominance parameter h, the selection time ts, the scaled migration rate122

β = 2Nm, and the migration time tm, as well as the underlying allele frequency trajectories of123

the island population. For simplicity, in the sequel we let ϑs = (α, h, ts) be the selection-related124

parameters and ϑm = (β, tm) be the migration-related parameters, respectively.125

2.2.1. Hidden Markov model126

We apply an HMM framework similar to the one proposed in Bollback et al. (2008), where the127

underlying population evolves under the Wright-Fisher diffusion in Eq. (1) and the observations128

are modelled through independent sampling from the underlying population at each given time129
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point. Unlike Loog et al. (2017), we jointly estimate the timing and strength of selection and130

migration, including the allele frequency trajectories of the underlying population. Our Wright-131

Fisher diffusion can directly trace the temporal changes in the frequencies of the alleles in the132

island population that results from emigrants from the continent population. We can therefore133

make the most of other available information like the proportion of the modern European chicken134

with Asian ancestry in the most recent sample reported in Loog et al. (2017), which provides135

valuable information regarding the timing and strength of migration.136

Let x1:K = (x1,x2, . . . ,xK) be the allele frequency trajectories of the underlying population137

at the sampling time points t1:K . Under our HMM framework, the joint posterior probability138

distribution for the population genetic quantities of interest and the allele frequency trajectories139

of the underlying population is140

p(ϑs,ϑm,x1:K | c1:K ,d1:K) ∝ p(ϑs,ϑm)p(x1:K | ϑs,ϑm)p(c1:K ,d1:K | x1:K ,ϑs,ϑm), (4)

where p(ϑs,ϑm) is the prior probability distribution for the population genetic quantities and141

can be taken to be a uniform distribution over the parameter space if their prior knowledge is142

poor, p(x1:K | ϑs,ϑm) is the probability distribution for the allele frequency trajectories of the143

underlying population at the sampling time points t1:K , and p(c1:K ,d1:K | x1:K ,ϑs,ϑm) is the144

probability of the observations at the sampling time points t1:K conditional on the underlying145

population allele frequency trajectories.146

With the Markov property of the Wright-Fisher diffusion, we have147

p(x1:K | ϑs,ϑm) = p(x1 | ϑs,ϑm)
K−1∏
k=1

p(xk+1 | xk;ϑs,ϑm), (5)

where p(x1 | ϑs,ϑm) is the prior probability distribution for the allele frequencies of the under-148

lying population at the initial sampling time point, commonly taken to be non-informative (e.g.,149

flat over the entire state space) if the prior knowledge is poor, and p(xk+1 | xk;ϑs,ϑm) is the150

transition probability density function of the Wright-Fisher diffusion between two consecutive151

sampling time points for k = 1, 2, . . . ,K−1, which satisfies the Kolmogorov backward equation152

(or its adjoint) resulting from the Wright-Fisher diffusion in Eq. (1). Unless otherwise specified,153

in this work we take the prior p(x1 | ϑs,ϑm) to be a uniform distribution over the state space154
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ΩX , known as the flat Dirichlet distribution, if migration starts before the first sampling time155

point, i.e., tm ≤ t1; otherwise, the prior p(x1 | ϑs,ϑm) is set to be a uniform distribution over156

the state space ΩX restricted to the line satisfying the condition that x3 = x4 = 0, i.e., there is157

no continent allele in the island population.158

Given the allele frequency trajectories of the underlying population, the observations at each159

sampling time point are independent. Therefore, we have160

p(c1:K ,d1:K | x1:K ,ϑs,ϑm) =
K∏
k=1

p(ck, dk | xk;ϑs,ϑm), (6)

where p(ck, dk | xk;ϑs,ϑm) is the probability of the observations at the sampling time point tk161

given its corresponding allele frequencies of the underlying population for k = 1, 2, . . . ,K. If162

the sample continent allele count dk is available, we introduce zk = (z1,k, z2,k, z3,k, z4,k) to be163

the counts of the Ai
1, Ai

2, Ac
1 and Ac

2 alleles in the sample at the k-th sampling time point, and164

the emission probability p(ck, dk | xk;ϑs,ϑm) can be expressed as165

p(ck, dk | xk;ϑs,ϑm) =
∑

zk∈ΩZk

nk!∏4
i=1 zi,k!

4∏
i=1

x
zi,k
i,k 1{z1,k+z3,k=ck,z3,k+z4,k=dk}(zk),

where ΩZk
= {zk ∈ N4 :

∑4
i=1 zi,k = nk} and 1A is the indicator function that equals to 1 if166

condition A holds and 0 otherwise. Otherwise, the emission probability p(ck, dk | xk;ϑs,ϑm)167

can be reduced to168

p(ck, dk | xk;ϑs,ϑm) =
nk!

ck!(nk − ck)!
(x1,k + x3,k)ck(x2,k + x4,k)nk−ck .

2.2.2. Particle marginal Metropolis-Hastings169

The most challenging part in the computation of the posterior p(ϑs,ϑm,x1:K | c1:K ,d1:K) is170

obtaining the transition probability density function p(xk+1 | xk;ϑs,ϑm) for k = 1, 2, . . . ,K−1.171

In principle, the transition probability density function can be achieved by numerically solving172

the Kolmogorov backward equation (or its adjoint) resulting from the Wright-Fisher diffusion in173

Eq. (1) typically through a finite difference scheme (Bollback et al., 2008; He et al., 2020c). This174

requires a fine discretisation of the state space ΩX to guarantee numerically stable computation175

of the solution, but how fine the discretisation needs to be strongly depends on the underlying176
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population genetic quantities that we aim to estimate (He et al., 2020a). We therefore resort to177

the PMMH algorithm of Andrieu et al. (2010) in this work. The PMMH algorithm only involves178

simulating the Wright-Fisher SDE in Eq. (1) and permits a joint update of the population genetic179

parameters and the allele frequency trajectories of the underlying population.180

In our PMMH-based procedure, the marginal likelihood181

p(c1:K ,d1:K | ϑs,ϑm) =

∫
ΩK

X

p(x1:K | ϑs,ϑm)p(c1:K ,d1:K | x1:K ,ϑs,ϑm) dx1:K

is estimated with the bootstrap particle filter developed by Gordon et al. (1993), where the par-182

ticles are generated by simulating the Wright-Fisher SDE in Eq. (1) with the Euler-Maruyama183

scheme. The product of the average weights of the set of particles at the sampling time points184

t1:K yields an unbiased estimate of the marginal likelihood p(c1:K ,d1:K | ϑs,ϑm), and the un-185

derlying population allele frequency trajectories x1:K are sampled once from the final set of186

particles with their corresponding weights. Since the strength of selection and migration can be187

strongly correlated with their timing, we adopt a blockwise updating scheme to avoid the small188

acceptance ratio of the PMMH with full dimensional updates. We partition the population ge-189

netic parameters into two blocks, the selection-related parameters ϑs and the migration-related190

parameters ϑm, respectively, and iteratively update one block at a time through the PMMH.191

More specifically, we first generate a set of the initial candidates of the parameters (ϑs,ϑm)192

from the prior p(ϑs,ϑm). We then run a bootstrap particle filter with the proposed parameters193

(ϑs,ϑm) to obtain a marginal likelihood estimate p̂(c1:K ,d1:K | ϑs,ϑm) and an initial candidate194

of the underlying population allele frequency trajectories x1:K . Repeat the following steps until195

a sufficient number of the samples of the parameters (ϑs,ϑm) and the underlying population196

allele frequency trajectories x1:K have been obtained:197

Step 1: Update the selection-related parameters ϑs.198

Step 1a: Draw ϑ?
s ∼ qs( · | ϑs).199

Step 1b: Run a bootstrap particle filter with (ϑ?
s,ϑm) to yield p̂(c1:K ,d1:K | ϑ?

s,ϑm) and200

x∗1:K .201

Step 1c: Accept ϑ?
s and x∗1:K with202

A =
p(ϑ?

s,ϑm)

p(ϑs,ϑm)

p̂(c1:K ,d1:K | ϑ?
s,ϑm)

p̂(c1:K ,d1:K | ϑs,ϑm)

qs(ϑs | ϑ?
s)

qs(ϑ
?
s | ϑs)

9
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otherwise set ϑ?
s = ϑs and x∗1:K = x1:K .203

Step 2: Update the migration-related parameters ϑm.204

Step 2a: Draw ϑ?
m ∼ qm( · | ϑm).205

Step 2b: Run a bootstrap particle filter with (ϑ?
s,ϑ

?
m) to yield p̂(c1:K ,d1:K | ϑ?

s,ϑ
?
m) and206

x?
1:K .207

Step 2c: Accept ϑ?
m and x?

1:K with208

A =
p(ϑ?

s,ϑ
?
m)

p(ϑ?
s,ϑm)

p̂(c1:K ,d1:K | ϑ?
s,ϑ

?
m)

p̂(c1:K ,d1:K | ϑ?
s,ϑm)

qm(ϑm | ϑ?
m)

qm(ϑ?
m | ϑm)

otherwise set ϑ?
m = ϑm and x?

1:K = x∗1:K .209

In this work we use random walk proposals for both selection- and migration-related parameters210

in our blockwise PMMH algorithm unless otherwise specified.211

Once enough samples of the parameters (ϑs,ϑm) and the underlying population allele fre-212

quency trajectories x1:K have been yielded, we can compute the posterior p(ϑs,ϑm | c1:K ,d1:K)213

from the samples of the parameters (ϑs,ϑm) using nonparametric density estimation techniques214

(see Izenman, 1991, for a review) and achieve the maximum a posteriori probability (MAP) esti-215

mates for the population genetic parameters. Our estimates for the underlying population allele216

frequency trajectories are the posterior mean of the stored samples of the underlying population217

allele frequency trajectories. Our approach can be readily extended to the analysis of multiple218

(independent) loci. Given that the migration-related parameters are shared by all loci, in each219

iteration we only need to replicate Step 1 once to update selection-related parameters specified220

for each locus and then update migration-related parameters with shared by all loci in Step 2,221

where the likelihood is replaced by the product of the likelihoods for each locus.222

3. Results223

In this section, we first evaluate the performance of our approach using simulated datasets224

with various population genetic parameter values and then apply it to re-analyse the time series225

allele frequency data from ancient chicken in Loog et al. (2017) genotyped at the locus encoding226

for the thyroid-stimulating hormone receptor (TSHR), which is hypothesised to have undergone227

strong and recent selection in domestic chicken.228
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3.1. Robustness and performance229

To assess our method, we ran forward-in-time simulations of the multi-allele Wright-Fisher230

model with selection and migration described in File S1 and examined the bias and the root mean231

square error (RMSE) of our estimates obtained from these replicate simulations. Here we varied232

the selection coefficient s ∈ {0.003, 0.006, 0.009} and the dominance parameter h ∈ {0, 0.5, 1}233

and fixed the migration rate m = 0.005. We adopted the selection time ks = 180 and varied234

the migration time km ∈ {90, 360}, which were measured in generations. In addition, we varied235

the population size N ∈ {5000, 50000, 500000}. In principle, the conclusions we draw here hold236

for other values of the population genetic parameters in similar ranges.237

More specifically, we ran two groups of simulation. For the first group, we fix the dominance238

parameter h = 0.5 and vary all other parameters in the sets specified above, yielding a total of239

18 parameter combinations. For the second group, we fix the population size N = 50000 and240

vary all other parameters, yielding another 18 parameter combinations. Due to overlap between241

these two groups, we have a total of 30 parameter combinations, for each of which we performed242

300 replicated runs. For each run, we took the starting allele frequencies of the underlying island243

population at generation 0 (i.e., the first sampling time point) to be x1 = (0.4, 0.6, 0, 0) and the244

mutant allele frequency of the underlying continent population to be xc = 0.9. These values245

are similar to those of ancient chicken samples reported in Loog et al. (2017). We simulated a246

total of 500 generations under the multi-allele Wright-Fisher model with selection and migration247

and generated a multinomial sample of 100 chromosomes from the underlying island population248

every 50 generations from generation 0, 11 sampling time points in total. At each sampling time249

point, we generated the mutant allele count by summing the first and third components of the250

simulated sample allele counts, and the continent allele count by summing the third and fourth251

components since in real data only mutant allele counts and continent allele counts are available.252

Additionally, in real data the continent allele count of the sample may not be available at each253

sampling time point (e.g., Loog et al., 2017). To explore the impact of missing continent allele254

counts, we assumed that the continent allele counts of the sample were unavailable at the first255

three and seven sampling time points, respectively, for each run in our simulation studies, as256

shown in simulated datasets A and B, respectively, in Figure 1.257

In our procedure, we chose a uniform prior over the interval [−1, 1] for the selection coefficient258
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Figure 1: Representative examples of the datasets simulated using the Wright-Fisher model with selection and
migration. We take the selection coefficient and time to be s = 0.006 and ks = 180 and the migration rate and
time to be m = 0.005 and km = 360, respectively. We set the dominance parameter h = 0.5 and the population
size N = 5000. We adopt the starting allele frequencies of the underlying island population x1 = (0.4, 0.6, 0, 0)
and the mutant allele frequency of the underlying continent population xc = 0.9. We sample 100 chromosomes at
every 50 generations from generation 0 to 500. (a) simulated dataset A: continent allele counts are not available
at the first three sampling time points. (b) simulated dataset B: continent allele counts of the sample are not
available at the first seven sampling time points.

s and a uniform prior over the interval [0, 1] for the migration rate m. We let the starting times259

of selection and migration ks and km be uniformly distributed over the set of all possible time260

points, i.e., ks, km ∈ {k ∈ Z : k ≤ 500}. We generated 10000 iterations of the blockwise PMMH261

with 1000 particles, and in the Euler-Maruyama scheme each generation was divided into five262

subintervals. We discarded the first half of the iterations as the burn-in period and then thinned263

the remaining PMMH output by selecting every fifth value. See Figures 2 and 3 for our posteriors264

for the timing and strength of selection and migration based on the simulated datasets shown in265

Figure 1, including our estimates for the mutant and continent allele frequency trajectories of the266

underlying island population. Evidently, our approach is capable of identifying the selection and267

migration signatures and accurately estimate their timing and strength in these two examples.268

The underlying frequency trajectories of the mutant and continent alleles in island population269

are both well matched with our estimates, i.e., the allele frequency trajectories of the underlying270
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island population fluctuate slightly around our estimates and are completely covered by our 95%271

highest posterior density (HPD) intervals.272

Figure 2: Bayesian estimates for the dataset shown in Figure 1a simulated for the case of the continent allele
counts unavailable at the first three sampling time points. Posteriors for (a) the selection coefficient (b) the
selection time (c) the migration rate and (d) the migration time. The MAP estimate is for the joint posterior,
and may not correspond to the mode of the marginals. Estimated underlying trajectories of (e) the mutant allele
frequency and (f) the continent allele frequency of the island population.

In Figure 4, we present the boxplots of our estimates for additive selection (h = 0.5) where273

continent allele counts are not available at the first three sampling time points. These boxplots274

show the relative bias of (a) the selection coefficient estimates, (b) the selection time estimates,275

(c) the migration rate estimates and (d) the migration time estimates across 18 different com-276

binations of the selection coefficient, the migration time and the population size. The tips of277

the whiskers represent the 2.5%-quantile and the 97.5%-quantile, and the boxes denote the first278
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Figure 3: Bayesian estimates for the dataset shown in Figure 1b simulated for the case of continent allele counts
unavailable at the first seven sampling time points. Posteriors for (a) the selection coefficient (b) the selection
time (c) the migration rate and (d) the migration time. The MAP estimate is for the joint posterior, and may not
correspond to the mode of the marginals. Estimated underlying trajectories of (e) the mutant allele frequency
and (f) the continent allele frequency of the island population.

and third quartiles with the median in the middle. We summarise the bias and the RMSE of279

the estimates in Tables S1 and S2.280

As shown in Figure 4, our estimates for the selection coefficient and time are approximately281

median-unbiased across 18 different parameter combinations, but the migration rate and time282

are both slightly overestimated (i.e., a small positive bias is found in our estimates). An increase283

in the population size results in the better overall performance of our estimation (i.e., smaller284

bias with smaller variance). In particular, the average proportion of the replicates for which the285

signature of selection can be identified (i.e., the 95% HPD interval does not contain the value of286
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Figure 4: Empirical distributions of the estimates for 300 datasets simulated for additive selection (h = 0.5) where
continent allele counts are not available at the first three sampling time points. Green boxplots represent the
estimates produced for the case of selection starting after migration, and orange boxplots represent the estimates
produced for the case of selection starting before migration. Boxplots of the relative bias of (a) the selection
coefficient estimates (b) the selection time estimates (c) the migration rate estimates and (d) the migration time
estimates. To aid visual comparison, we have picked the y axes here so that boxes are of a relatively large size.
This causes some outliers to lie outside the plots. Boxplots containing all outliers can be found in Figure S1.
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0) increases from 17.17% to 59.33% and then to 80.67% as the population size increases. Such287

an improvement in the performance of our estimation is to be expected since large population288

sizes reduce the magnitude of the stochastic effect on the changes in allele frequencies due to289

genetic drift, which dilutes evidence of selection and migration.290

Compared to the case of selection starting after migration (i.e., km = 90), our estimates for291

the case of selection starting before migration (i.e., km = 360) reveal smaller bias and variances292

in both selection coefficient and time. The average proportion of replicates where the signature293

of selection can be identified when the migration time km = 360 is 15.96% higher than when294

km = 90. One possible explanation is as follows: if selection begins before migration, there is a295

period of time that the allele frequency trajectories of the underlying population are only under296

the influence of selection. In contrast, our method performs better for the migration rate when297

selection starts after migration (i.e., km = 90), but the performance for the migration time298

deteriorates somewhat unexpectedly when the migration time km = 360. This might be due to299

our parameter setting where the starting time of migration is within the period of availability300

of continent allele counts for km = 360, but not for km = 90.301

In addition, we see from Figure 4 that the bias and variance of our estimates for the selection302

coefficient and time are largely reduced as the selection coefficient increases, especially in terms303

of outliers. The average proportion of the replicates where selection signatures can be identified304

increases from 27.56% to 63.11% and then to 66.50% as the selection coefficient increases, with305

97.17% for the case of large population size (N = 500000) and selection coefficient (s = 0.009).306

For weak selection, the underlying trajectory of allele frequencies is extremely stochastic so that307

it is difficult to disentangle the effects of genetic drift and natural selection (Schraiber et al.,308

2013). An increase in the strength of selection leads to more pronounced changes through time309

in allele frequencies, making the signature of selection more identifiable. In contrast, an increase310

in the selection coefficient has little effect on our estimates of the migration rate and time.311

In Figure 5, we present the boxplots of our estimates for additive selection (h = 0.5) where312

continent allele counts are unavailable at the first seven sampling time points, with their bias313

and RMSE summarised in Tables S3 and S4. They reveal similar behaviour in estimation bias314

and variance, although our estimates for the migration-related parameters show significantly315

larger bias and variances, probably resulting from the increased length of time when continent316
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allele counts are not available. This, however, has little effect on our estimation of the selection-317

related parameters, with similar average proportions of the replicates where the signature of318

selection can be identified (52.39% vs. 52.17%).319

The resulting estimates for dominant selection (h = 0) and recessive selection (h = 1) can be320

found in Figures S3 and S4, respectively, for the case of the population size N = 50000. They321

are very similar to the boxplot results in the empirical studies for additive selection illustrated in322

Figures 4 and 5. Their bias and RMSE are summarised in Tables S5-S8. It should be noted that323

overall, recessive selection yields the best performance, additive selection next, while dominant324

selection yields the worst performance in our simulation studies for the inference of selection.325

This is mainly due to our parameter setting, i.e., the effect of selection, when the mutant allele326

has been established in the population (e.g., our starting mutant allele frequency is 0.4), is the327

strongest for recessive selection and weakest for dominant selection (see Figure S5).328

In conclusion, our approach can produce reasonably accurate joint estimates of the timing329

and strength of selection and migration from time series data of allele frequencies across different330

parameter combinations. Our estimates for the selection coefficient and time are approximately331

median-unbiased, with smaller variances as the population size or the selection coefficient (or332

both) increases. Our estimates for the migration rate and time both show little positive bias.333

Their performance improves with an increase in population size or the number of the sampling334

time points when continent allele counts are available (or both).335

3.2. Application to ancient chicken samples336

We re-analysed aDNA data of 452 European chicken genotyped at the TSHR locus (position337

43250347 on chromosome 5) from previous studies of Flink et al. (2014) and Loog et al. (2017).338

The time from which the data come ranges from approximately 2200 years ago to the present.339

The data shown in Table 2 come from grouping the raw chicken samples by their sampling time340

points. The raw sample information and genotyping results can be found in Loog et al. (2017).341

The derived TSHR allele has been associated with reduced aggression to conspecifics and faster342

onset of egg laying (Belyaev, 1979; Rubin et al., 2010; Karlsson et al., 2015, 2016), which was343

hypothesised to have undergone strong and recent selection in domestic chicken (Rubin et al.,344

2010; Karlsson et al., 2015) from the period of time when changes in Medieval dietary preferences345

and husbandry practices across northwestern Europe occurred (Loog et al., 2017).346
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Figure 5: Empirical distributions of the estimates for 300 datasets simulated for additive selection (h = 0.5) where
continent allele counts are not available at the first seven sampling time points. Green boxplots represent the
estimates produced for the case of selection starting after migration, and orange boxplots represent the estimates
produced for the case of selection starting before migration. Boxplots of the relative bias of (a) the selection
coefficient estimates (b) the selection time estimates (c) the migration rate estimates and (d) the migration time
estimates. To aid visual comparison, we have picked the y axes here so that boxes are of a relatively large size.
This causes some outliers to lie outside the plots. Boxplots containing all outliers can be found in Figure S2.
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Sample time Sample size Mutant allele

−128 12 8
−25 8 5

82 8 3
200 32 14
256 14 3

1067 6 0
1309 20 18
1650 2 1
1850 2 2
1975 14 14
1995 334 328

Table 2: Time serial European chicken samples of segregating alleles at the TSHR locus. The unit of the sampling
time is the AD year so that positive values denote the AD year e.g., AD 82, and negative values denote the BC
year, e.g., 25 BC.

To avoid overestimating the effect of selection on allele frequency changes, we model recent347

migration in domestic chicken from Asia to Europe in this work. More specifically, the European348

chicken population was represented as the island population while the Asian chicken population349

was represented as the continent population with a derived TSHR allele frequency of xc = 0.99350

fixed from the time of the onset of migration, which is a conservative estimate chosen in Loog351

et al. (2017). Migration from Asia in domestic chicken, beginning around 250 years ago and352

continuing until the present, was historically well documented (Dana et al., 2011; Flink et al.,353

2014; Lyimo et al., 2015). Unlike Loog et al. (2017), we estimated the migration rate along with354

the selection coefficient and time by incorporating the estimate reported in Loog et al. (2017)355

that about 15% of the modern European chicken have Asia origin. This allows us to obtain the356

sample frequency of the allele in European chicken at the most recent sampling time point that357

resulted from immigration from Asia. We took the average length of a generation of chicken to358

be one year, and the time measured in generations was offset so that the most recent sampling359

time point was generation 0.360

In our analysis, we adopted the dominance parameter h = 1 since the derived TSHR allele361

is recessive, and picked the population size N = 180000 (95% HPD 26000-460000) estimated by362

Loog et al. (2017). We chose a uniform prior over the interval [−1, 1] for the selection coefficient363

s and a uniform prior over the set {−9000,−8999, . . . , 0} for the selection time ks, which covers364

chicken domestication dated to about 8000 (95% CI 7014–8768) years ago (Lawal et al., 2020).365

We picked a uniform prior over the interval [0, 1] for the migration rate m and set the migra-366
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Figure 6: Bayesian estimates for aDNA data of European chicken genotyped at the TSHR locus from Loog et al.
(2017) for the case of the population size N = 180000. (a) Temporal changes in the mutant allele frequencies of
the sample, where the sampling time points have been offset so that the most recent sampling time point (AD
1995) is generation 0. Posteriors for (b) the selection coefficient (c) the selection time and (d) the migration
rate. Estimated underlying trajectories of (e) the mutant allele frequency and (f) the Asian allele frequency in
the European chicken population. The MAP estimate is for the joint posterior, and may not correspond to the
mode of the marginals.

tion time km = −250. All settings in the Euler-Maruyama scheme and the blockwise PMMH367

algorithm are the same as we applied in Section 3.1. The posteriors for the selection coefficient,368

the selection time and the migration rate are illustrated in Figure 6, as well as the estimates for369

the underlying frequency trajectories of the mutant and Asian alleles in the European chicken370

population. The MAP estimates, as well as 95% HPD intervals, are summarised in Table 3.371

From Table 3, we observe that our estimate of the selection coefficient for the mutant allele372

is 0.005120 with 95% HPD interval [0.003591, 0.007064], strong evidence to support the derived373
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Population size MAP 95% HPD

26000 0.005109 [0.003622, 0.007141]
Selection coefficient 180000 0.005120 [0.003591, 0.007064]

460000 0.005122 [0.003648, 0.006578]

26000 −1047 [−1659,−857]
Selection time 180000 −1020 [−1384,−821]

460000 −1047 [−1327,−893]

26000 0.000712 [0.000448, 0.000918]
Migration rate 180000 0.000659 [0.000483, 0.000861]

460000 0.000620 [0.000478, 0.000837]

Table 3: MAP estimates of the selection coefficient, the selection time and the migration rate, as well as their
95% HPD intervals, for TSHR achieved with the population size N = 26000, N = 180000 and N = 460000.

TSHR allele being selectively advantageous in the European chicken population. Such positive374

selection results in an increase over time in the mutant allele frequency, starting from AD 975375

with 95% HPD interval [611, 1174] (see Figure 6e). The starting frequency of the derived TSHR376

allele in 128 BC is 0.454200 with 95% HPD interval [0.349024, 0.562094], which is similar to that377

estimated in a red junglefowl captive zoo population in Rubin et al. (2010). Our estimate of378

the migration rate for the Asian allele is 0.000659 with 95% HPD interval [0.000483, 0.000861].379

This migration, starting about 250 years ago, leads to 15.2848% of the European chicken with380

Asian ancestry in AD 1995, with 95% HPD interval [0.116412, 0.191382] (see Figure 6f). Our381

findings are consistent with those reported in Loog et al. (2017). This is further confirmed by the382

results obtained with different values of the population size (i.e., N = 26000 and N = 460000,383

the lower and upper bounds of 95% HPD interval for the population size given in Loog et al.384

(2017), respectively). These results are shown in Figures S6 and S7 and summarised in Table 3.385

To evaluate the performance of our approach when samples are sparsely distributed in time386

with small uneven sizes like the European chicken samples at the TSHR locus we have studied387

above, we generated 300 simulated datasets that mimic the TSHR data, i.e., we used the sample388

times and sizes as given in Table 2, the timing and strength of selection and migration as given389

by MAP estimates found in Table 3, and population size N = 180000. From Figure 7, we find390

that our simulation studies based on the TSHR data yield median-unbiased estimates for the391

selection coefficient, the selection time and the migration rate, similar to our performance in the392

simulation studies shown in Section 3.1. Moreover, the signature of selection can be identified in393

all 300 replicates. This illustrates that our method can achieve good performance even though394

samples are sparsely distributed in time with small uneven sizes, which is highly desirable for395

21

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.04.30.442150doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442150
http://creativecommons.org/licenses/by/4.0/


aDNA data.396

Figure 7: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
shown in Table 2. We simulate the underlying population dynamics with the timing and strength of selection
and migration estimated with the population size N = 180000 shown in Table 3. To aid visual comparison, we
have picked the x axis in the left panel not to cover all 300 estimates. The histogram containing all 300 estimates
can be found in Figure S8.

In summary, our approach works well on the ancient chicken samples, even though they are397

sparsely distributed in time with small uneven sizes. Our estimates demonstrate strong evidence398

for the derived TSHR allele being positively selected between the 7th and 12th centuries, which399

coincides with the time period of changes in dietary preferences and husbandry practices across400

northwestern Europe. This again shows possible links established by Loog et al. (2017) between401

the selective advantage of the derived TSHR allele and a historically attested cultural shift in402

food preference in Medieval Europe.403

4. Discussion404

In this work, we introduced a novel MCMC-based procedure for the joint inference of the405

timing and strength of selection and migration from aDNA data. To our knowledge, Mathieson406

& McVean (2013) and Loog et al. (2017) described the only existing methods that can jointly407

infer selection and migration from time series data of allele frequencies. However, the approach408

of Mathieson & McVean (2013) cannot estimate the time of the onset of selection and migration.409

Loog et al. (2017) only showed the applicability of their approach in the scenario where timing410

and strength of migration were both pre-specified. In addition, their method is restricted by the411

assumption of infinite population size, which limits the application of their approach to aDNA.412

Our method was built upon an HMM framework incorporating a multi-allele Wright-Fisher413

diffusion with selection and migration. Our estimates for the timing and strength of selection414
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and migration were obtained by the PMMH algorithm with blockwise sampling, which enables415

the co-estimation of the underlying trajectories of allele frequencies through time as well. This416

is a highly desirable feature for aDNA because it allows us to infer the drivers of selection and417

migration by correlating genetic variation patterns with potential evolutionary events such as418

changes in the ecological context in which an organism has evolved.419

We showed through extensive simulation studies that our method could deliver reasonably420

accurate estimates for the timing and strength of selection and migration, including the esti-421

mates for the underlying trajectories of allele frequencies through time. The estimates for the422

selection coefficient and time were largely unbiased, while the estimates for the migration rate423

and time showed a slight positive bias. We applied our approach to re-analyse ancient European424

chicken samples genotyped at the TSHR locus from earlier studies of Flink et al. (2014) and425

Loog et al. (2017). We observed that the derived TSHR allele became selectively advantageous426

from AD 975 (95% HPD 611-1174), which was similar to that reported in Loog et al. (2017).427

Our results further confirmed the findings of Loog et al. (2017) that positive selection acting on428

the derived TSHR allele in European chicken could be driven by chicken intensification and egg429

production in Medieval Europe as a result of Christian fasting practices (i.e., the consumption430

of birds, eggs and fish became allowed (Venarde, 2011)). Except for religiously inspired dietary431

preferences, this could also be a result of changes in Medieval husbandry practices along with432

population growth and urbanisation in the High Middle Ages (around AD 1000-1250). See Loog433

et al. (2017) and references cited therein for more details.434

Unlike Loog et al. (2017), our approach models genetic drift. From Table 3, we observe that435

our estimates from aDNA data for TSHR are close to each other regardless of what population436

size we choose from the 95% HPD interval for the European chicken population size reported437

in Loog et al. (2017). This indicates that ignoring genetic drift might have little effect on the438

inference of selection from aDNA data like those in Loog et al. (2017). To further investigate the439

effect of genetic drift, we simulated 300 datasets based on the aDNA data for TSHR, where the440

timing and strength of selection and migration were taken to be our estimates given in Table 3441

but the true population size was taken to be N = 4500. We ran our method with a misspecified442

population size N = 180000 for these 300 replicates and find that this larger population size443

leads to significant overestimation of the selection coefficient and time with much larger variance444
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(see Figure 8), which implies the necessity of modelling genetic drift in the inference of selection445

from aDNA data.446

Figure 8: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
presented in Table 2. We take the timing and strength of selection and migration to be those estimated with
the population size N = 180000 given in Table 3, but the true population size in the simulation is taken to be
N = 4500. To aid visual comparison, we have picked the x axis in the left panel not to cover all 300 estimates.
The histogram containing all 300 estimates can be found in Figure S9.

We explored how misspecification of genetic dominance or gene migration affects our infer-447

ence of selection and migration in a similar way. We first simulated 300 datasets based on the448

aDNA data for TSHR with the dominance parameter h = 0 and h = 0.5, respectively, but we449

ran our inference procedure with a misspecified dominance parameter h = 1. As shown in Fig-450

ure 9, we find that a misspecified dominance parameter introduces certain bias in the inference451

results for both selection and migration. We then simulated 300 datasets based on the aDNA452

data for TSHR with the migration rate m = 0.00001 and m = 0.01, respectively, but we ran our453

procedure with a misspecified migration rate m = 0.000659 (i.e., the migration rate estimated454

with the population size N = 180000). We observe from Figure 10 that a misspecified migration455

rate does not dramatically alter the posterior median of the selection coefficient and time but456

significantly increase the variance of their estimates. Finally, we simulated 300 datasets based457

on the aDNA data for TSHR with the migration time km = −400 and km = −100, respectively,458

but we ran our procedure with a misspecified migration time km = −250. From Figure 11, we459

see that a misspecified migration time has little effect on the inference of selection but dramat-460

ically alter the estimate of the migration rate. All these results show the necessity of the joint461

inference of selection and migration from aDNA data.462

In this work, we have focused on the continent-island model under the assumption that the463

allele frequencies of the continent population are fixed over time. As has been previously noted464
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Figure 9: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
presented in Table 2. We take the timing and strength of selection and migration to be those estimated with the
population size N = 180000 given in Table 3, but the true dominance parameter in the simulation is taken to be
(a) h = 0 and (b) h = 0.5, respectively. To aid visual comparison, we have picked the x axis in the left panel not
to cover all 300 estimates. The histogram containing all 300 estimates can be found in Figure S10.

in the context of methods for detecting local adaptation (Lotterhos & Whitlock, 2015), caution465

must be exercised when applying to scenarios outside those that are validated in this study.466

Researchers may straightforwardly simulate test datasets under models that more closely reflect467

the assumptions of their study system (Haller & Messer, 2019) to investigate the robustness of468

our approach for their data.469

Our Bayesian framework lends itself to being extended to more complex models of selection470

and migration. For example, we can allow the continent population to evolve under the Wright-471

Fisher diffusion with selection, therefore enabling us to model genetic drift and natural selection472

in the continent population. In this scenario, we need to simulate the underlying allele frequency473

trajectories of the continent population while we simulate those of the island population in our474

PMMH. If the continent population has been well studied, i.e., all required population genetic475

quantities can be pre-specified, our method is expected to have similar performance to this work.476

Otherwise, time serial samples from the continent population are required so that our method477

can be extended to the joint inference of selection acting on the continent population, where the478
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Figure 10: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA
data presented in Table 2. We take the timing and strength of selection and migration to be those estimated
with the population size N = 180000 given in Table 3, but the true migration rate in the simulation is taken to
be (a) m = 0.0001 and (b) m = 0.001, respectively. To aid visual comparison, we have picked the x axis in the
left panel not to cover all 300 estimates. The histogram containing all 300 estimates can be found in Figure S11.

likelihood will depend on the samples from both the island and continent populations, and the479

selection-related parameters for the continent population are updated as an additional block.480

In a similar manner, we can also allow gene migration to change the genetic composition of the481

continent population, i.e., the two-island model. Our approach is also readily applicable to the482

case of time-varying demographic histories such as Schraiber et al. (2016) and He et al. (2020c),483

but it may suffer from particle degeneracy and impoverishment issues if we extend our method484

to jointly estimate the allele age, which results from low-frequency mutant alleles at the early485

stage facing a higher probability of being lost.486

It is possible to extend our procedure to handle the case of multiple islands or multiple loci.487

For multiple islands, our method will be more computationally demanding with an increase in488

the number of demes, but improvements to exact-approximate particle filtering techniques such489

as the PMMH algorithm continue to be developed (see, e.g., Yıldırım et al., 2018). For multiple490

(independent) loci, computational costs can be greatly reduced by updating the selection-related491

parameters for different loci on different cores in parallel. Our approach can be readily extended492
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Figure 11: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA
data presented in Table 2. We take the timing and strength of selection and migration to be those estimated
with the population size N = 180000 given in Table 3, but the true migration time in the simulation is taken to
be (a) km = −400 and (b) km = −100, respectively. To aid visual comparison, we have picked the x axis in the
left panel not to cover all 300 estimates. The histogram containing all 300 estimates can be found in Figure S12.

to the case of two linked loci by incorporating the method of He et al. (2020b), where modelling493

local linkage among loci has been illustrated to be capable of further improving the inference494

of selection, but such an extension will probably be computationally prohibitive in the case of495

multiple linked loci. As a tractable alternative for multiple linked loci, we can use our two-locus496

method in a pairwise manner by adding additional blocks in blockwise sampling.497
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