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Abstract 

The ROS proto-oncogene 1 (ROS1) gene is rearranged in various cancers. The translated 
fusion protein presents an attractive therapeutic target, since specific inhibitors have been 
approved for several tumor types. In glioma, ROS1 fusions are frequent within infantile 
hemispheric glioma, and single case reports on occurrences in other glioma types exist. 
However, a comprehensive analysis spanning the full width of glioma types and subtypes is 
lacking. We here assessed the spectrum and distribution of ROS1 fusions by screening 
>20,000 glioma cases for typical chromosomal alterations, with subsequent RNA-sequencing 
for confirmation of candidate cases. ROS1 fusions were identified in 16 cases, from low 
grade pilocytic astrocytoma WHO grade 1 to glioblastoma, IDH wildtype WHO grade 4. Thus, 
despite being enriched in some tumor types, ROS1 fusions are not pathognomonic for 
specific glioma types and may consitute a relevant target in a variety of cases. 

 

Introduction 

Gliomas are the most common primary tumors of the central nervous system (CNS). Among 
low-grade gliomas, mitogen-activated protein kinase (MAPK) pathway alterations are 
frequent and may provide a therapeutic target. Currently, mechanism-of-action based 
therapeutic approaches outside the MAPK pathway are scarce. However, especially patients 
with subtotally resected, recurrent or highly malignant tumors may substantially benefit from 
the identification of additional specific oncogenic drivers that not only provide insight into 
disease pathogenesis but also offer targets for personalized cancer therapies. The ROS 
proto-oncogene 1 (ROS1) gene encodes a receptor tyrosine kinase that is involved in 
chromosomal rearrangements in various cancers1, which present an attractive therapeutic 
target, since specific inhibitors have been approved for several entities2,3. Data on ROS1 
fusions in glioma are limited to single cases or small series4-7. 

Recently, an enrichment of these fusions was found in a small number of mostly gliomas in 
infants8,9. Routine diagnostic assessment of ROS1 status in gliomas, however, is so far 
restricted to a few specialized centers or molecularly informed trials10. Thus, the landscape of 
ROS1 fusions across a broad series of glial tumors of all age groups has not been 
comprehensively studied so far. Consequently, the distribution among the various types of 
low- to high-grade glioma is unknown. Similarly, no data exists to determine whether ROS1 
fusion-positive gliomas, irrespective of histology, may share further biological features, 
potentially supporting a ‘ROS1-subtype’ of gliomas. Here, we investigated the presence of 
ROS1 fusions in a large cohort of 20,723 patients encompassing different diagnostic entities 
within the spectrum of glioma, to elucidate the frequency of such fusions and the 
characteristics of the respective cases. 

 

Methods and Results 

To identify gliomas with structural alterations affecting chromosome 6q (around the ROS1 
locus), we systematically evaluated copy-number data of our DNA methylation dataset 
encompassing 20,723 gliomas, irrespective of specific entity and WHO grade (Suppl. Fig. 1 
and 2). As a high proportion of ROS1 fusions (in particular the most frequent GOPC:ROS1 
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fusion) are accompanied by a segmental loss of chromosome 6q22 in the copy-number 
profile, DNA methylation data were screened for a segmental loss covering that region 
(Suppl. Fig. 1). Automated analysis was followed by visual inspection and led to the 
identification of 14 potential cases. On suspicious cases, we performed RNA and targeted 
exome sequencing, and confirmed the presence of ROS1 fusions in all 14 tumors (Fig. 1A). 
In the most common (n=11) GOPC:ROS1 fusions (Fig. 1B), exons 1-7 or 1-4 of GOPC 
(NM_001017408) are fused in frame to exons 35-43 of ROS1 (NM_002944). Single cases of 
exons 36-43 of ROS1 fused downstream of ZCCHC8 exons 1-2 (NM_0017612), ARCN1 
exons 1-5 (NM_001655), or CHCHD3 exons 1-2 (NM_017812) were also observed (Fig. 1C). 
In all fusion events, the kinase domain of ROS1 was retained (Fig.1B). In addition, two 
further ROS1-fused glioma samples that were already detected as such by performing RNA 
sequencing in a diagnostic context, after the initial screen was performed were included into 
subsequent analyses. One of the samples harbored a GOPC:ROS1 fusion (with exons 1-7 of 
GOPC fused to exons 35-43 of ROS1) and indeed showed segmental loss of chromosome 
6q22, while the other case harbored a CEP85L:ROS1 fusion (with exons 1-12 of CEP85L 
(NM_001042475) fused exons 35-43 of ROS1) with a segmental gain of chromosome 6q22. 
In addition, we analyzed RNA sequencing data from a set of > 1000 FFPE tissue samples 
processed in a diagnostic setting. Here, no further gliomas harboring a ROS1-fusion were 
detected. 

A t-distributed stochastic neighbor embedding (t-SNE) analysis of DNA methylation profiles 
alongside a broad reference set of CNS tumors11 revealed that the ‘ROS1 cohort’ molecularly 
segregated into different glioma groups (Fig. 1D). Six of the samples grouped with the DNA 
methylation class infantile hemispheric glioma, other tumors clustered with various reference 
classes of glioma from low- to high-grade (Fig. 1D). Histological re-evaluation confirmed the 
different histological entities and underline that ROS1 fusions are not specific to any one 
glioma entity. Interestingly, most of the patients harboring a fusion were children (particularly 
infants). Of note, however, was the finding that two classical adult IDH-wildtype 
glioblastomas in adult patients also harbored a GOPC:ROS1 fusion. 

 

Discussion 

Our data show a high frequency of ROS1 gene fusions within the DNA methylation class 
infantile hemispheric glioma, which is in line with recent studies8,9. This clinically distinct 
group of gliomas (that were initially often diagnosed as glioblastomas) carries a high 
prevalence of gene fusions with ROS1, ALK, NTRK1/2/3, or MET as a fusion partner. 
However, our finding that ROS1 fusions also occur in cases that were both histologically and 
epigenetically clearly pilocytic astrocytoma or IDH-wildtype glioblastoma, respectively, 
underscores that this event is not pathognomonic for infantile hemispheric glioma, nor limited 
to pediatric patients, so in that respect concerns a quite ‘promiscuous’ marker in that respect. 

Although relatively rare in other gliomas, identification of ROS1 fusions is important from a 
treatment perspective, as there are specific inhibitors available. Screening via copy-number 
profiling and subsequent validation using RNA sequencing provides an efficient approach to 
identify patients who may benefit from this targeted therapy. However, as illustrated by one 
of the cases that was identified by performing RNA sequencing in a diagnostic setting, not all 
variants of ROS1 fusion necessarily show a deletion around the ROS1 locus. For example, 
copy-neutral translocations can lead to ROS1 fusions as well, and such cases would be 
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missed by screening for segmental 6q22 loss. RNA sequencing thus remains the ‘gold 
standard’ for adequate detection of these rare events. 

Our findings highlight ROS1 fusions as a rare but potentially highly relevant therapeutic 
target for a subset of patients with gliomas of different histological grades and biological 
classes. Even though these fusions have no strong diagnostic relevance, since they are not 
pathognomonic for a tumor type, they are in line with the increasing demand to provide 
predictive markers in diagnostic neuropathology. This highlights the need for expanded 
testing for such alterations beyond infant gliomas. It will be interesting to see whether ROS1-
inhibitors will be effective in upcoming clinical trials for glioma patients.  
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Fig. 1 Summary of clinico-pathological characteristics and key molecular findings in tumors with ROS1 gene fusion (A). 
Schematic illustration of the GOPC:ROS1 fusion detected in case #3 involving exons 1-7 of GOPC and exons 35-43 of ROS1 
(B). Circos plot of gene fusions targeting ROS1 (Lines link fusion gene partners according to chromosomal location; C). t-
distributed stochastic neighbor embedding (t-SNE) analysis of DNA methylation profiles of ROS1-fused glioma alongside 
selected reference samples (D). Reference DNA methylation classes: posterior fossa pilocytic astrocytoma (LGG, PA PF), 
hemispheric pilocytic astrocytoma and ganglioglioma (LGG, PA/GG ST), midline pilocytic astrocytoma (LGG, PA MID), 
polymorphous low-grade neuroepithelial tumor of the young (PLNTY), ganglioglioma (LGG, GG), diffuse leptomeningeal 
glioneuronal tumor subgroup 1 (DLGNT 1), diffuse leptomeningeal glioneuronal tumor subgroup 2 (DLGNT 2), infantile 
hemispheric glioma (IHG), extraventricular neurocytoma (EVNYCT), dysembryoplastic neuroepithelial tumor (LGG, DNT), 
rosette-forming glioneuronal tumor (LGG, RGNT), myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle 
(MYXGNT), diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC), anaplastic 
astrocytoma with piloid features (ANA PA), pleomorphic xanthoastrocytoma (PXA), glioblastoma IDH wildtype subclass RTK I 
(GBM, RTK I), glioblastoma IDH wildtype subclass RTK II (GBM, RTK II), glioblastoma IDH wildtype subclass mesenchymal 
(GBM, MES). The two ROS1-fused glioma samples that were already detected as such by performing RNA sequencing in a 
diagnostic context are highlighted in blue. Other abbreviations: LGG/LGGNT, low-grade glioma/low-grade glioneuronal tumor; 
HGG, high-grade glioma; GBM, glioblastoma; PF, posterior fossa; N/A, not available. 
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