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Abstract19

The process of deciding what a sensory stimulus is and how to act on that decision seem distinct, yet20

they appear to be coupled at the neural level. Neurons in the parietal cortex of monkeys represent both21

the integration of evidence toward a decision and the behavior used to report the decision. This raises22

the possibility that monkeys evaluate sensory percepts in terms of their motor affordances rather than their23

abstract identity. It is not clear how monkeys can evaluate sensory percepts when unaware of the motor24

actions they bear upon. We investigated this by training monkeys to make perceptual decisions about the25

direction of motion in a noisy random-dot display. They learned to associate leftward and rightward with two26

colors, and to select from a pair of colored targets, which were displayed after the motion at unpredictable27

locations. Surprisingly we found that monkeys postpone decision formation until the pertinent motor actions28

are revealed. Neurons in parietal cortex represent the accumulation of evidence sampled from short term29

memory of the motion display. The findings demonstrate that abstract decisions are framed in terms of their30

motor affordances and highlight the capacity for integration of evidence from memory.31

Significance Statement32

Perceptual decision-making is the process of choosing an appropriate motor action based on perceived sen-33

sory information. In monkeys, neurons that are involved in planning the motor action are also involved34

in accumulating the sensory evidence for making the decision. We investigated how monkeys accumulate35

sensory evidence when the motor action they bear upon is unknown. Surprisingly, we found that monkeys36

do not make the decision while viewing the sensory stimulus. Instead, they store stimulus information in37

short term memory and assemble this information to make a decision after the relevant motor actions are38

revealed. Thus perceptual decisions are implemented as a choice between potential intentions rather than as39

an abstract decision about the properties of the sensory stimulus.40
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Introduction41

A decision is a commitment to a proposition or plan of action based on evidence, prior knowledge, priorities42

and value. Perceptual decision-making refers to the class of decisions in which the dominant source of43

evidence is derived from sensation and in which the decision is a provisional action or a mental assignment to44

a category. Viewed from the perspective of information processing, perceptual decision-making establishes45

a compressed distillation of sensory data into distinct categories. Viewed from the perspective of behavior, it46

effects an intention, satisfying policy objectives such as obtaining reward. These perspectives are naturally47

connected because we decide about a perceptual category in order to make a choice. For animals, perceptual48

decisions typically guide foraging and social choices. For humans, perceptual decisions seem like they are49

about the perception itself, involving no more than an internal report or change in ideation. The study of50

decision-making in laboratory animals tends to conflate these depictions, perhaps by necessity.51

There is recent interest in characterizing the neural processes that underlie decisions about category mem-52

bership, independent of intention (e.g., Freedman et al. 2001; Freedman and Assad 2006; Seger and Miller53

2010; Goodwin et al. 2012), what we will refer to as abstract decisions. Categorical labels introduce flexi-54

bility to sensorimotor programs (Tenenbaum et al., 2011; Chafee and Crowe, 2012). For example, one can55

assign the abstract labels “rightward” and “leftward” to consolidate motion perceived to the right or left, ir-56

respective of its precise direction or motion strength. These abstract labels then allow for the implementation57

of flexible action plans such as “press a red button if you see rightward motion”.58

The extent to which nonhuman primates can assign abstract labels to sensory percepts and exploit them to be59

flexible in their actions is unclear. The process of abstraction, by definition, unyokes the sensory evaluation60

processes from the process of acting on the sensory information. However, multiple lines of research in61

macaques suggest that the process of sensory evaluation is intimately coupled to the actions that can result62

from the evaluative process (Cisek, 2007; Shadlen et al., 2008; Cisek and Kalaska, 2010). This framework,63

wherein cognitive processes are embodied in terms of the motor actions they afford, is supported by the64

patterns of neural activity found in association and premotor cortices of monkeys (Cisek, 2007; Klaes et al.,65

2011; Shadlen and Kiani, 2013). But monkeys can be trained to decide on properties of sensory stimuli even66

when unaware of the exact motor action that will be required of them to report their decision (Freedman et67
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al., 2001; Gold and Shadlen, 2003; Freedman and Assad, 2006; Genovesio et al., 2009; Bennur and Gold,68

2011; Goodwin et al., 2012; Wang et al., 2019). In these studies, monkeys were required to commit to a69

category assignment without committing to an action. These studies do not address the process by which70

sensory evidence is evaluated towards an abstract decision and how such decisions can flexibly recruit motor71

actions. That is what we set out to do.72

We trained two monkeys to decide on the net direction of stochastic random dot motion and associate73

two possible directions with two colors. The monkeys reported the direction of motion by making an eye74

movement to the target of the associated color, but these targets were revealed at unpredictable locations75

after the motion stimulus had been extinguished. To perform the task well, monkeys needed to integrate76

motion information in the stimulus over time to make an abstract decision about the direction of motion.77

This imposition allowed us to investigate how an abstract perceptual decision is formed when the actions78

associated with the decision are yet to be specified. Further, since the decision making phase is unyoked79

from the motor planning phase, the task also permits investigation of the conversion of an abstract decision80

to an action.81

Surprisingly, we found that evidence evaluation and action selection—the two aspects of abstract decision82

making that our task was supposed to unyoke—were, in fact, intimately coupled. The behavior of the83

monkeys showed that they based their decision on motion evidence integrated over time. However, this84

integration transpired during the action selection epoch instead of the epoch when the evidence was pre-85

sented. Further, activity of neurons in the sensorimotor association area LIP represented decision formation86

during the action selection epoch. Our results suggest that monkeys form abstract perceptual decisions by87

evaluating sensory information from iconic short term memory for action selection.88

Materials and Methods89

All procedures were in accordance with the Public Health Service Policy on Humane Care and Use of90

Laboratory Animals, and approved by Columbia University’s Institutional Animal Care and Use Committee.91
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Behavioral Task and Electrophysiology92

Two adult macaque monkeys (one female, AN; one male, SM) performed a behavioral task in which they93

decided whether the net direction of a stochastic random-dot motion (RDM) stimulus was to the left or94

right. The animals initiated trials by fixating on a point (fixation point; FP) presented on an otherwise95

black screen. The RDM stimulus was then presented within a circular aperture (radius 2.5◦ or 3◦) centered96

on the FP. The first three frames of the stimulus consist of white dots randomly plotted at a density of97

16.7 dots ·deg−2 · s−1. From the fourth frame, each dot from three frames before is replotted—either98

displaced to the right or left, or at a random location. The probability with which a dot is displaced to the99

right or left determines the stimulus strength (coherence; C) and on each trial, C was randomly chosen from100

the set {0,±0.04,±0.08,±0.16,±0.32,±0.64}, the positive sign indicating rightward motion. The motion101

strengths and the two directions were randomly interleaved. The stimulus was presented for a variable102

duration drawn from a truncated exponential distribution (range 350–800 ms, mean 500 ms). Two targets,103

one blue and one yellow, were presented after a short delay (333 ms, monkey-AN; 200 ms, monkey-SM)104

at eccentric locations that varied across trials. The monkeys had to report the perceived direction of motion105

by choosing the target of the associated color (blue for rightward and yellow for leftward, monkey-AN;106

vice-versa for monkey-SM). In the go-task (Figure 1, top), the FP was extinguished simultaneously with the107

onset of the colored targets. In the wait-task (Figure 1, bottom), the FP stayed on for a variable duration108

(drawn from an inverted truncated exponential distribution, range 400–1200 ms, mean 900 ms).109

We recorded spikes from 60 well-isolated single units (29 monkey-AN; 31 monkey-SM) in area LIPv (Lewis110

and Van Essen, 2000). MRI was used to localize LIPv and to guide the placement of recording electrodes.111

We screened for neurons that exhibited spatially selective persistent activity using a memory-guided saccade112

task (Gnadt and Andersen, 1988). In the screening task, a target is flashed in the periphery while the monkey113

fixates on a central spot. The monkey has to remember the location of the target and execute a saccade to114

that location when instructed. The response field (RF) of each neuron was identified as the region of visual115

space that elicited the highest activity during the interval between the target flash and the eventual saccade.116

During recording experiments, the locations for target presentation were chosen based on the location of the117

neuronal RF. For monkey-AN, six locations (including the RF) were chosen, equally spaced on an imaginary118
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circle. On each trial, pairs of locations 2π/3 rad apart were pseudorandomly selected to display the targets.119

The RF location was oversampled to increase the concentration of trials from which we could analyze120

neural data. A similar approach was taken in monkey-SM except that the number of possible locations were121

restricted to four and the target pairs were situated π/2 rad apart. Each colored target appeared in the RF122

on 33% and 28% of the trials for monkey-AN and monkey-SM, respectively. Note that the monkeys were123

trained to generalize across a larger set of locations and these spatial restrictions on target locations were124

implemented during recording sessions.125

Analyses of behavioral data126

Both monkeys were taught the association between the color of the target and the direction of motion using127

only the strongest motion strength (±64% coh). We then introduced the next easiest stimulus strength128

(±32% coh) and continued to add more coherences until we reached 0%. To assess the improvement of129

sensitivity across training sessions, we fit the choice-accuracy, Pco, as a function of motion strength, |C|, for130

each session with a Weibull function (Quick, 1974) of the following form:131

Pco = 0.5 + (0.5− λ)

[
1− 2

−
(

|C|
α

)β]
(1)

where λ is the lapse rate, β is the shape parameter, and α is the threshold if λ = 0. We interpolated from132

these fits the |C| that supports 75% accuracy and report that as the threshold (e.g., Supp. Figure 2-1).133

The quantification of learning rate is from the introduction of the ±32% coh. The rates (e.g., Supp. Fig-134

ure 2-1) are based on approximate number of sessions (and trials), because both monkeys experienced in-135

terruptions to training. For interruptions lasting more than a month, we excluded sessions after resumption136

until the monkey re-established thresholds similar to those prior to the interruption. This was also the case137

for monkey-SM when we switched from the go-task to the wait-task.138

In Figure 2A,B and Figure 3C, we fit the choices of the monkeys with a logistic model of the following139

form:140

Pright = λ+ (1− 2λ) [1 + exp(− (β0 + β1C)]−1 (2)
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where λ, β0, β1 are fit parameters (Figure 2A-B). This is also the analytic solution to symmetric diffusion141

(when λ = 0), and thus comparable to the fits of the models which are constrained to explain both choice142

and go-RT.143

The go-reaction times (go-RT) of monkey-AN were fit with a bounded evidence accumulation model144

(Shadlen et al., 2006), modified to account for errors at the highest motion strength. In this model, the145

instantaneous evidence about motion at each time step is assumed to arise from a normal distribution with146

variance ∆t and mean κ(C+C0)∆t, where C is the signed motion coherence, C0 is bias (expressed in units147

of signed coherence), and κ is a scaling parameter. The samples of instantaneous evidence are assumed to be148

independent and accumulated over time until the decision terminates, which occurs when the accumulated149

evidence reaches one of the bounds ±B leading to the choice of one of the targets. The mean go-RT is the150

expectation of the time taken for the accumulated evidence to reach the bound plus a constant—the non-151

decision time tnd comprising all contributions to the go-RT that do not depend on motion strength/direction152

and bias (e.g., sensory and motor delays). To account for asymmetric go-RTs in some configurations, we153

used two different non-decision times (tbnd and tynd) for blue and yellow target choices respectively.154

In this framework, the mean go-RT for correct choices (i.e. choices consistent with the sign of the drift rate,155

κ[C + C0] ) is described by156

T̃ x(C|θ) =
B

κ (C + C0)
tanh [κ (C + C0)B] + txnd (3)

where x ∈ {b, y} and θ are the fitted parameters {B, κ,C0, t
b
nd, t

y
nd}. The proportion of blue choices is157

determined by three of these parameters:158

P̃ b(C|B, κ,C0) = [1 + exp (−2κ(C + C0)B)]−1 (4)

where P̃ b is the probability of the diffusion process terminating at the bound for blue choices. We first159

established an estimate of the bias from a logistic fit to the choices (Eq. 2), expressing the bias in units of160

coherence (ζ = β0/β1). Because the model explains the go-RT only when the choice is consistent with the161

sign of the drift rate (Ratcliff and Rouder, 1998), we used the mean go-RT for positive choices at C+ ζ > 0162
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and negative choices for C + ζ < 0.163

Informed by the patterns of error go-RTs observed at the highest coherence (Supp. Figure 3-1B), we attribute164

the errors at the highest motion strength (lapse rate, λ) to a mistaken association between the sign of the165

terminating bound and its corresponding color-target (“direction-color confusion”). For weaker motion166

strengths the same confusion converts a fraction of correct terminations to erroneous color choices and167

the same fraction of incorrect terminations to correct color choices. We estimated λ from Eq. 2, thereby168

enabling conversion of P̃ b to the observed proportion of blue choices (P b):169

P b = P̃ b − (λP̃ b) + λ(1− P̃ b) . (5)

In our formulation, the trials with direction-color confusion inherit the tnd of the motion decision (not the170

chosen color) and the mean observed go-RT would include contributions from the trials lost and gained from171

that process. The fraction of confusion trials for blue choices at coherence C is172

fλ(C) = λ(1− P̃ b)/P b (6)

and the mean go-RT for blue choices observed to be correct would be173

T b(C) = T̃ b(C) [1− fλ(C)] + T̃ y(C)fλ(C) . (7)

We used a maximum likelihood procedure to fit this model to the choice and mean go-RTs on the correct174

(relative to ζ) choices (Figure 3B).175

We also fit an elaborated version of the bounded evidence accumulation model to include both correct and176

error trials. In this model, the decision bounds (B) collapse over time:177

B =


B0 +B1(t−Bdel) if t ≥ Bdel

B0 otherwise

(8)

where B0 is the initial bound height, B1 is the rate of collapse and Bdel is the delay to onset of collapse.178
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The non-decision time was modeled as a normal distribution with mean tnd and standard deviation σnd.179

Instead of using Eq. 3 and Eq. 4, T̃ x(C) and P̃ b(C) are obtained by numerical solution of Fokker-Planck180

equations (Chang and Cooper 1970; Kiani and Shadlen 2009). Again, separate non-decision times were181

used for decisions terminating at each of the two bounds and errors at the highest coherence were modeled182

as ‘direction-color confusion’ using the approach described above. This model furnished an expectation183

of the mean decision times for each coherence. We compared this model to one in which the errors at the184

highest coherence are not explained by direction-color confusion but by poor sensitivity (i.e. λ = 0; Supp.185

Figure 3-1). The observed pattern of error go-RTs also rules out the possibility that the errors at the highest186

coherence arise from the monkey disregarding motion information and choosing targets randomly. If this187

were true, those error trials would exhibit faster go-RT than the correct trials.188

We augmented these analyses with psychophysical reverse correlation, to provide an empirical estimate of189

the epoch in which the RDM stimulus affected the choice. The motion energy on individual trials (0%190

coherence only) was computed using spatiotemporal filters as described in Kiani et al. (2008). The sign,191

right minus left or vice versa, was chosen such that positive indicates stimulus evidence in support of the192

monkey’s choice on that trial (Figure 2C–D and Figure 3D). To determine the actual duration of motion193

that had a significant influence on choices, we recalculated kernels using different lengths of the random194

dot movie shown in each trial. We report the length of time that the stimulus affects choice as the shortest195

movie-length that accounts for all the statistically significant bins obtained using the full-length movie.196

Analyses of neural data197

For visualization of population average firing rates (Figure 4), spike times from single trials, si=1...n , were198

represented as delta functions δ(si − t) and convolved with an 80 ms boxcar filter. For each neuron we199

grouped trials based on what was presented in its RF: blue target, yellow target or neither. We averaged200

across trials for each group and determined the maximum of the average responses across the three groups.201

The responses on all individual trials were divided by this maximum to obtain normalized firing rates. The202

population responses shown in Figure 4 were then computed from these normalized responses using relevant203

subsets of trials. For the motion viewing epoch, trials were grouped based on motion direction (0° or 180°)204

and coherence (High: 64% & 32%; Medium: 16%; Low: 8% & 4%; and 0%). In the target onset and205
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saccade epochs, the grouping was based on which target was shown in the neuron’s RF (blue or yellow),206

coherence (same coherence groups as in the motion viewing epoch) and the direction of motion (preferred207

vs. nonpreferred). For the majority of neurons, on trials in which a target appeared in the RF, a higher208

response was recorded when target appearance was preceded by the associated motion direction. For six209

neurons in monkey-SM, the non-associated direction elicited the higher response and was designated the210

preferred direction. To visualize the coherence dependent buildup of activity (insets of Figure 4C–F), we211

detrended the population responses by subtracting the average responses to the 0% and ±4% coherence212

conditions. This detrending was done separately for trials with each colored target in the RF.213

We pursued several analyses to characterize the neural responses during the epoch of action selection, after214

the onset of the color-choice targets. We defined the beginning of this epoch, t∇, as the first of three215

consecutive 40 ms time bins, beginning at least 50 ms after target onset, in which the average responses216

associated with correct choices at the strongest motion diverged (p<0.05, Wilcoxon rank sum test). For217

monkeys AN and SM t∇ = 170 and 100 ms, respectively. Our analyses focus on early decision formation,218

before many decisions would be expected to terminate on the more difficult conditions. For monkey-AN,219

we set the end of the epoch as t∇ + 300 ms or 200 ms before saccade initiation, whichever occurred first.220

There are no overt terminating events for monkey-SM. We therefore chose t∇ + 250 ms.221

The effect of signed motion strength on build-up rate (Figure 5) was established as follows. In the epoch222

defined above, we computed firing rates in 20 ms bins for each trial. For each neuron we grouped trials based223

on the target that appeared in the RF (blue or yellow). We removed the sensory component of the responses224

for each group by subtracting the average responses to the 0% and ±4% coherence conditions and computed225

the buildup rate for each coherence (the slope across bins). We excluded the ±64% coherence conditions226

from this analysis because there were too few time bins for monkey-AN, owing to fast go-RT, and an early227

plateau in monkey-SM, owing, we suspect, to fast decision terminations. We report the population mean and228

SE of the buildup rates and the fit to a linear model regressing these buildup rates against signed coherence229

in Figure 5.230

The analyses summarized in Figure 6 & Figure 7 compare the evolution of the variance and autocorrela-231

tion of the firing rate during the epoch of putative decision formation to the expected time course of these232
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statistics under diffusion — if the spikes are associated with latent firing rates that represent the the sum233

of independent, identically distributed (iid) random numbers. The theory and algorithm are described in234

previous publications (Churchland et al., 2011; de Lafuente et al., 2015; Shushruth et al., 2018). We used235

the spike counts in 60 ms bins in the epoch described above. This analysis focused on trials with the three236

weakest motion strengths (0%, ±4% and ±8% coh) to exploit the longer duration over which the decision237

process unfolds in these trials. The trials are initially grouped by neuron, the 5 unique signed coherences,238

and the target in the RF. We used the residuals of responses for each group to remove the contribution of239

motion strength and direction.240

Consider, for the moment, trials from one neuron and one time bin. For each trial, i, we measure the241

raw spike count and compute the residual count by removing the mean count for all trials of the same242

combination of signed coherence and the color of the target in the RF, j,243

νij = nij − n̄j (9)

The total variance across trials, is244

Var[νij ]i = Var[nij ]i (10)

because variance is a central moment. We assume the noise component of evidence samples is the same245

for all the motion strengths. Therefore the variance across all combinations of signed coherence and the246

color of the target in the RF is Var[ν], ∀ j. This is the total variance of the counts in the time bin under247

consideration. We are interested in the variance of the latent rate that gives rise to the spike counts on each248

trial. This is obtained by subtracting off the component of the variance attributed to the variable spike counts249

that would be observed even if the latent rate were fixed. For a Poisson point process this would be n̄j , but250

we assume the point process is a generalized renewal (Nawrot et al., 2008) and is thus approximated by the251

point process variance,252

V PP
j [νj ] = φn̄j (11)
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where the Fano factor, φ, is unknown. Note that the point process variance depends on the signed coherence.253

From the law of total variance, subtraction of this component from the total variance leaves the variance of254

the conditional expectation, VarCE ≡ Var[E(n)]. There is a bookkeeping step that respects the dependence255

of V PP on signed coherence and neuron (see previous citations), but using the residuals, we can obtain an256

estimate of the VarCE across all neurons at one time bin. Dividing by 0.062 yields the variance of the latent257

rates (spikes2/s2) across trials (in the time bin under consideration), although it depends on the unknown φ.258

For unbounded diffusion the VarCE should increase linearly as a function of time, because it is a cumulative259

sum of iid random numbers.260

Diffusion also specifies the autocorrelation, between the cumulative sum of the first i samples and the261

cumulative sum of the first j ≥ i values:262

ρij =

√
i

j
(12)

This implies a decay of correlation as function of lag, j − i, and an increase in correlation for fixed lag, as a263

function of time. We obtain the estimates, rij , from data by forming the autocovariance matrix on residuals264

from all neurons. Note that the CovPP = 0 for i 6= j, because by construction, given the rate in time bin265

j the stochastic realization of spike count does not depend on the rate or realization of spike count in bin266

i. Therefore the covariance of the conditional expectation (CovCE) is the raw covariance for i 6= j. Its267

diagonal (i = j) is the VarCE. This matrix is normalized in the usual way to produce a correlation matrix of268

conditional expectation (CorCE).269

The CorCE depends on the VarCE which depends on φ, which is unknown. We chose the value that mini-270

mized the sum of squares,271

n−1∑
i=1

n∑
j=2

[Z(rij)−Z(ρij)]
2 (13)

where Z denotes standardization (Fisher-z transform).272

The values of the variance plotted in Figure 6 & Figure 7 are VarCE, using the fitted φ. The standard errors273

are estimated from a bootstrap procedure (Efron, 1987) in which trials were sampled (with replacement)274
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while maintaining their grouping (same neuron, dot direction, coherence and color of target in RF). We also275

performed the same analysis using neural responses in the epoch between 190 to 550 ms after RDM onset276

(Supp. Figure 6-1 & Supp. Figure 7-1).277

We used the same approach to evaluate two alternatives to latent diffusion dynamics on single trials. Both278

are capable of mimicking the firing rate averages average observed in the a data (e.g., Figure 4 insets): (i)279

a linear buildup of activity with variable slope across trials; or (ii) a constant firing rate followed by a step280

to a high or low firing rate at the termination of the decision. We simulated 10000 trials for each of the281

alternatives and estimated the expected variance and autocorrelation (see also Churchland et al. 2011). The282

simulations were matched to have the same decision termination times and state at termination. The only283

difference across simulations on each trial was the path the simulated decision variable took to reach the284

point of termination.285

We first simulated drift-diffusion dynamics (e.g., inset to Figure 7A) wherein the responses (R) evolved over286

300 ms. At each time step, ∆t,287

∆R = κ∆t+N
{

0,
√

∆t
}

(14)

where κ is the deterministic drift component (derived from the model fit to behavioral data from monkey-288

AN) and N is the diffusion component (i.e., Normally distributed with mean zero and SD
√

∆t). The289

diffusion dynamics on each trial terminated if and when |R| ≥ B, the bound value derived from the fit to290

behavior. For each trial, we generated an equivalent trial in which (i) the responses increased or decreased291

linearly to the same termination point (the linear ramp model) or (ii) the responses remained constant and292

stepped up or down to bound ±B at the time point at which the corresponding diffusion path terminated (ter-293

minating step model). For monkey-SM, in the simulated trials that terminated before 300 ms, the responses294

stayed at B for the reminder of the trial. This simulates the wait time that was imposed on monkey-SM295

before being allowed to report its decision. For monkey-AN, spikes that occurred within 200 ms prior to the296

eye movement were excluded from neural analyses. Thus the model with terminating steps can be ruled out,297

as it predicts no change in firing rate (hence, no change in VarCE) in the analyzed epoch.298
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We used the same approach as before to compare the autocorrelation of the firing rate in the action selection299

epoch to the expectations from the simulations (Supp. Figure 6-2 & Supp. Figure 7-2). For each comparison,300

the value of φ was fit to minimize the sum of squares as in Eq. 13. Note that this is the only free parameter301

for each comparison. We report Bayesian Information Criterion across models.302

Results303

RF of 
neuron 

go-task

wait-task 
(Monkey SM)

Figure 1: Behavioral task. The monkey fixates at an instructed location (red dot). After a delay, a random
dot motion stimulus appears around the fixation point. The stimulus terminates after a variable duration
(350–800 ms). After another short delay (200–333 ms), a blue and a yellow target appear at unpredictable
peripheral locations. In the go version of the task (top panel), the fixation is extinguished at the time the
targets appear and the monkey can report the decision by choosing one of the colored targets. In the wait
version of the task (bottom panel), the monkey must wait until the fixation point is extinguished before
choosing a target. During recording sessions, the target locations on each trial are pseudorandomly chosen
from a restricted set of locations based on the receptive field of the neuron being recorded. The unchosen
locations are illustrated by dashed gray circles (not shown to the monkey). During training sessions, the
target locations were less constrained.

We trained two monkeys to decide whether the net direction of a random dot motion (RDM) stimulus was to304

the right or left. The monkeys reported their decision by making an eye movement to a blue or yellow target305

based on the association they had learned between the direction of motion and target colors (Figure 1). The306

two targets appeared after a short delay (200-333 ms) following the termination of the motion stimulus, and307

the locations of the two targets were randomized across trials. Thus all the evidence bearing on the decision308

was supplied before the monkeys were instructed about the motor act that would be required to report the309
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decision. Both monkeys were naı̈ve to the RDM stimulus when they began training on the task. Since one310

of our goals was to investigate how decisions are converted to motor actions, the monkeys were allowed to311

report the decision as soon as the targets were presented (go-task). Monkey-SM was also trained on a variant312

of the task in which an additional waiting time was imposed after the appearance of the targets (wait-task).313

The abstract decision-making task proved to be challenging for the monkeys to learn (Supp. Figure 2-1).314

Monkey-AN required 28 sessions to acquire the motion-color association, and failed to improve beyond315

competency at the highest motion strengths for the next ∼40 sessions (∼50,000 trials). Only then did the316

monkey begin to exhibit gradual improvement, quantified by a reduction in psychophysical threshold—the317

motion strength required to support accuracy greater than 75% correct (Eq. 1). Monkey-SM learned the318

motion-color association quickly but made little progress over months of training. After 127 sessions (983319

trials per session on average), the thresholds still hovered around 25% coherence. This monkey was then320

trained on the wait variant of the task for an additional 58 sessions (740 trials per session) until the thresholds321

decreased and stabilized at ∼11% coherence.322

By the final training session, both monkeys performed the task above chance for all non-zero motion co-323

herences (Figure 2A,B), although they made many errors on the easiest motion strength. Such asymptotic324

performance, also known as lapses, is often attributed to guessing and amounted to 9% and 11% of trials for325

monkeys AN and SM, respectively. Notably, monkeys performing the same direction discrimination task326

with a direct mapping between motion direction and actions typically exhibit lapse rates under 1–2%. We327

consider the nature of the lapses below. The important point here is that the task is challenging, but for the328

vast majority of trials, both monkeys used evidence from the RDM to choose the appropriate color.329

This conclusion is further supported by identifying the times during motion viewing that random fluctuations330

of motion energy influence the decision. Such psychophysical reverse correlation reveals that both monkeys331

based their decisions on information acquired over several hundred milliseconds (357 ms and 261 ms for AN332

and SM, respectively Figure 2 C & D). For both monkeys, this evidence was acquired before the color-choice333

targets appeared. We therefore hypothesized that when the color-choice targets appeared, both monkeys had334

already formed a decision about which color to choose. Alternatively, they might store the experienced335

stream of evidence in short-term memory during the motion presentation epoch and consult this memory336
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Figure 2: Color choices are governed by the strength and direction of motion. A, Effect of motion
strength on decisions for monkey-AN on the go-task. Monkey-AN was trained to associate blue with right-
ward and yellow with leftward. The proportion of blue (rightward) choices are plotted as a function of
signed motion strength (rightward motion is positive signed). Curves are logistic regression fits to the data.
Error bars are s.e. B, Effect of motion strength on decisions for monkey-SM on the wait-task. Monkey-SM
was trained to associate yellow with rightward and blue with leftward. The proportion of yellow (rightward)
choices are plotted as a function of signed motion strength. Otherwise, same conventions as in A. C–D,
The influence of fluctuations in motion information on choices plotted as a function of time from motion
onset. Curves represents the mean motion energy in support of the direction chosen by the monkey on 0%
coherence trials (shading, ±1 s.e.m.).

later to decide between the blue and yellow choice targets. We evaluate these alternatives separately for the337

two monkeys. Monkey-SM was forced to wait through a variable delay period before indicating its choice,338

whereas monkey-AN was allowed to indicate the decision as soon as the colored targets appeared. This339

latency, termed the go-RT, proved informative.340

Action selection during abstract decision making is a deliberative process341

If, by the time the color targets appeared, monkey-AN had made a decision about the direction of motion,342

then the go-RT should be fast (Figure 3A, Strategy 1). The monkey must simply choose between two highly343

discriminable colors, which ought to take ∼200 ms (Schall and Thompson, 1999; Seideman et al., 2018).344

Alternatively, if monkey-AN were to form the decision from samples of evidence in short-term memory, the345

go-RT might be longer (Figure 3A, Strategy 2). The data support the latter alternative. Not only were the346
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Figure 3: Deliberation during action selection. A, Schematic of strategies that monkeys could adopt to
solve the task. Strategy 1: During motion viewing, evidence for motion direction is accumulated to decide
if the motion is to the right or left. The result of the decision about direction and/or its color association is
stored. When the colored targets are presented, the previously made decision guides an immediate saccade to
the target with the chosen color. The saccadic latency might vary by 10–20 ms as a function of confidence in
the decision. Strategy 2: During motion viewing, the experienced evidence is stored in short term memory.
When the targets are shown, the stored evidence is evaluated to decide which of the two colored targets to
choose. The four curves (left) represent distributions of noisy samples of evidence associated with a strong
and weak motion strength for the two directions. Instead of integrating them immediately (as in Strategy
1) they are stored in short-term memory. The recalled samples are acccumulated during action-selection
(right). The drawing gives the impression of many samples, but the samples themselves might represent
several tens of ms of motion information (as in Kang et al. 2021). B, Go-RTs of monkey-AN plotted as a
function of signed motion coherence (top). Curves are fits to a bounded drift-diffusion model. The model
is also constrained by the choice proportions. Bottom, Same data as in Figure 2A. Curve is the fit of the
bounded diffusion model, which accounts for both the choice proportions and the go-RTs. C, Proportion
of rightward (yellow) choices as a function of motion strength for monkey-SM from the last four training
sessions on the go-task (green). The same data as Figure 2B is shown for comparison (black). Lines are
logistic regression fits to the data. D, Influence of motion fluctuations on choice in the last four training
sessions of the go-task for monkey-SM (green curve). Same conventions as Figure 2D. Data from the wait-
task (black curve, same as in Figure 2D) is shown for comparison.

go-RTs longer than expected, they exhibited clear dependence on the strength and direction of the random347

dot motion (Figure 3B, top). The average go-RT for correct decisions ranged from 440 ms for the easiest348

condition to 771 ms for the most difficult. The pattern resembles response times obtained from monkeys349

in earlier studies, where they were free to indicate their saccadic choices to visible targets any time during350
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motion viewing (e.g., Roitman and Shadlen 2002). The prolongation of go-RTs is unlikely to be due to351

difficulty in distinguishing the colors of the targets. The observed go-RTs spanned 2–4 times the mean go-352

RT of ∼190 ms previously reported in monkeys discriminating between distinctly colored targets (Tanaka353

et al., 2015).354

We therefore considered the possibility that the pattern of go-RTs might result from sequential sampling355

of evidence experienced earlier in the trial (Figure 3A, Strategy 2). To evaluate this, we appropriated a356

bounded evidence-accumulation model (drift-diffusion) that is known to reconcile the choice proportions357

with the response times of subjects when they are allowed to answer whenever ready. In such free response358

tasks, the decision-maker knows how to answer while viewing the motion and simply stops the trial by359

pushing a button or making an eye movement to one of two visible targets. We wondered if the same type360

of model could reconcile the choices and go-RTs of monkey-AN. Intuitively, when motion is strong, the361

noisy samples of evidence are mostly of the same sign, so the accumulation is an approximately linear rise362

or decline—a ramp-like path toward a positive or negative stopping bound, ±B. If the mean sample of363

evidence is +B
10 it will take 10 time steps to reach the positive bound, on average. If the mean of the samples364

is zero, the path is the accumulation of random positive and negative steps—an unbiased random walk. Such365

paths are guaranteed to terminate in one or the other bound with equal probability. If the standard deviation366

of the samples is B
10 , the expectation of the number of steps to reach a bound is 100. For intermediate levels367

of signal to noise, the terminations are governed by a mixture of the signal- and noise-dominant regimes.368

The curves in Figure 3B are fits of a bounded drift-diffusion to the proportion of blue choices and the369

mean go-RTs. The simplest version of this model assumes the drift rate is proportional to signed motion370

coherence and the terminating bounds do not change as a function of time (Palmer et al., 2005). Any bias is371

accommodated by an offset to the drift rate (Hanks et al., 2011). The mean go-RT for each signed motions372

strength is predicted by the expectation of the bound termination times plus a constant non-decision time,373

which captures contributions to the response time that do not depend on the motion strength and bias. We374

used separate terms, tbnd and tynd , to describe the faster blue and slower yellow choices. The model to this375

point uses only five degrees of freedom to explain the choice proportions and mean go-RT across 11 motion376

strengths (Eq. 3 and Eq. 4).377
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We incorporated one additional feature to accommodate the failure of monkey-AN to achieve perfect per-378

formance on the easiest conditions (±64% coh). Such errors are typically attributed to lapses in which the379

subject ignores the evidence and guesses. However we noticed that the go-RTs associated with errors on380

the strong leftward condition (blue choices), had the slow go-RTs associated with correct leftward (yellow)381

choices. Similarly, the errors associated with the strong rightward condition (yellow choices) had the fast382

go-RTs associated with correct rightward choices (Supp. Figure 3-1). This indicates that the lapses were not383

guesses but an error in the association between direction and color. We accommodated this feature in the384

model, assuming that this type of error occurred with equal frequency at all motion strengths (see Methods).385

The model captures the coherence dependence of the go-RTs on correct choices (R2 = 0.99) while also386

accounting for the accuracy of the monkey’s choices. The fidelity of the fits supports the hypothesis that387

the prolonged go-RTs reflect a bounded sequential sampling of information leading to the rendering of the388

decision. As this sampling began at least 300 ms after the motion stimulus was extinguished, these samples389

must be derived from short-term memory.390

We are suggesting that a substantial fraction of errors—indeed the vast majority of errors at the strongest391

motion strengths—are explained by a mistaken association of direction with color. This idea deserves further392

scrutiny. We compared the model to an alternative account that explains the rate of errors without the393

mistaken association. Instead it attributes these errors to a noisier or less inefficient decision process, perhaps394

because the evidence must be held in memory. To conduct this comparison, we endowed the diffusion model395

with additional parameters that allow it to explain the go-RT on errors (Eq. 8). Model comparison provides396

decisive support for mistaken associations of direction and color (∆BIC = 1242; Supp. Figure 3-1). It397

thus appears that on the vast majority of trials the monkey forms a decision based on the accumulation398

of evidence from memory and makes the opposite color choice on ∼ 9% of trials. The best fitting model399

yields an expectation of the integration time for each motion strength. For 0% coherence, the expectation is400

228 ms, which is consistent with the psychophysical reverse correlation analysis, above (Figure 2C). Note401

that the reverse correlation analysis also shows that the monkey uses the earliest epochs of motion evidence402

to inform its decision. Taken together, the analyses of go-RT suggest that monkey-AN stores at least 300 ms403

of information about the motion in some form, because the duration of stimulus information needed for404

decision termination is not known before the accumulation process transpires, later in the action selection405
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epoch.406

We are unable to analyze go-RTs for monkey-SM because we enforced a wait time of at least 600 ms after407

onset of the color-choice targets. We nonetheless suspected that this monkey also formed its decision in408

the action-selection epoch. Recall that monkey-SM failed to show behavioral signatures of deliberation409

in the go version of the task. Monkey-SM learned the direction-color association and performed better410

than monkey-AN at the strongest motion conditions, but failed to achieve proficiency on the more difficult411

conditions (Supp. Figure 2-1). Even after extensive training, sensitivity plateaued at an unacceptable level412

(Figure 3C, green), and psychophysical reverse correlation revealed only a weak, transient impact of motion413

information on choice (Figure 3D). We therefore suspected that this monkey based its decisions on a brief414

sample of information from the first, last or random glimpse of the display (e.g., see Stine et al. 2020). We415

confirmed this suspicion using a variant of the go task in which the strength of motion was modulated as a416

function of time within a trial (Supp. Figure 3-2). The coherence started at 0% and either stepped or changed417

gradually to a large positive or negative value. The time of the step or the rate of change varied across trials.418

The monkey’s performance deteriorated to chance when the strong motion was concentrated at the end of419

the trial (Supp. Figure 3-2). We deduced that the monkey based its decisions on motion information sampled420

over a short time window at the beginning of the trial. Not surprisingly, the go-RTs exhibited no sign of421

deliberation. They were nearly as fast as a simple saccadic reaction time to a single target (192 ± 0.4 ms)422

and showed no influence of the previously experienced motion strength.423

Based on our experience with monkey-AN, we wondered if monkey-SM failed to integrate after the color-424

choice targets appeared. We therefore introduced a wait time after the onset of the targets. This simple425

modification led to a twofold improvement in sensitivity (Figure 3C, green vs. black traces; also see Supp.426

Figure 2-1). This degree of improvement would require at least a fourfold increase in the number of indepen-427

dent samples of evidence the monkey used to form its decision. Indeed, psychophysical reverse correlation428

revealed a longer time window over which motion information influenced decisions: from 40 ms, before the429

introduction of the enforced wait, to 261 ms, after ∼40 sessions of training (Figure 3D), Thus, the impo-430

sition of a wait after the onset of the targets encouraged monkey-SM to use more information to inform its431

decision—information that was acquired earlier, in the motion viewing epoch.432
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The behavioral data from both monkeys therefore provides complementary evidence that deliberation during433

the action-selection epoch is necessary for integrating previously observed motion information. During434

motion viewing both monkeys must store some representation of the motion in short term memory. The435

go-RTs from monkey-AN indicate that the stored information is sampled sequentially in the action selection436

period. Monkey-SM either uses the same strategy as monkey-AN or, conceivably, deliberates to a decision437

before the color-choice targets appear. Owing to the enforced wait, we lack meaningful go-RTs for this438

monkey. Therefore we cannot distinguish between these alternatives. However, as we next show, the neural439

recordings from monkey-SM are informative.440

The evolution of neural responses in LIP during action selection reflect previously presented441

evidence442

We recorded from single units with spatially selective persistent activity in area LIP (Gnadt and Ander-443

sen, 1988; Barash et al., 1991). Such neurons are known to represent an evolving decision variable—the444

accumulated evidence for and against a motion direction—when one of the choice targets is in the neural445

response field (RF) (Shadlen and Newsome, 1996; Roitman and Shadlen, 2002). The present study differs446

from previous reports in two critical aspects: (i) the choice targets were not visible during motion viewing,447

and (ii) the locations of the choice targets were unpredictable. Under these conditions, the neural responses448

accompanying motion-viewing were only weakly modulated by motion strength in monkey-AN (Figure 4A)449

and unmodulated in monkey-SM (Figure 4B).450

The action selection epoch begins with the appearance of the color-choice targets. When a target was in the451

neural RF, it elicited a strong visual response beginning ∼50 ms after onset (Figure 4C–F), consistent with452

previous reports (Bisley and Goldberg, 2003). The subsequent evolution of the response reflected both the453

strength and direction of the RDM stimulus that had been presented in the previous epoch. To better visualize454

the relationship between the neuronal response and the previously presented RDM stimulus, we removed455

the visual response (see Methods). The residual responses (Figure 4C–F, insets) are effectively detrended456

with respect to any influences that are unaffected by the strength and direction of motion. As shown in457

Figure 4C–F (insets), the residual responses exhibit a clear dependency on the strength and direction of the458

RDM.459
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Figure 4: LIP activity during motion viewing and target selection. The graphs show average normalized
responses as a function of time aligned to motion onset, target onset, or time of saccade. Data from the two
monkeys are shown separately (top row, AN, 29 neurons; bottom row, SM, 31 neurons). A,B Responses
aligned to motion onset. All trials are included. C–F Data from trials in which the blue (C,D) or yellow
(E,F) target was in the neuronal response field. The responses are aligned to the onset of the target (left)
or the time of saccade (right). Insets show residual responses after removal of the large visual response to
the target. They isolate the component of the response that is controlled by the strength and direction of
motion. In all panels, coherences are grouped as High (±64% and ±32%), Medium (±16%), Low (±8% and
±4%) and 0%. Grouping of the direction of motion is based on the preferred color-motion association for
each neuron. This was consistent with the association the monkey had learned between motion direction and
target color, except for six neurons in monkey-SM for which the association was reversed (see Methods).
In panels C–F, for the responses aligned to target onset (left) all trials, including errors, are included in the
averages grouped by signed coherence; for the responses aligned to saccade (right) errors are excluded.

To quantify the rate of change of residual responses (buildup rate), we identified the time at which the raw460

responses first diverge. For each neuron, we then computed the buildup rate for each coherence as the slope461

of a line fit to the average of the residual firing rates. Each point displayed in Figure 5 is the mean buildup462

rate across neurons. These buildup rates exhibited a linear dependence on motion strength. For monkey-463
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Figure 5: Buildup of neural activity depends on the strength and direction of motion. Buildup rates
were estimated for each neuron, using trials with the same motion strength, direction, and color-target in the
response field (top, monkey-AN; bottom, monkey-SM). Symbols are averages across neurons (error bars are
s.e.m.) The lines in the graph are weighted least square fits to the average buildup rates, grouped by motion
direction. The 0% coherence point (gray) is included in both weighted regressions in each panel.

SM, the linear dependence was statistically significant in all four conditions (i.e., for all combinations of464

direction of motion and color of target in the RF; see Table 1). For monkey-AN, the linear dependence was465

statistically significant in three of the four combinations of motion and direction (p < 0.05, Table 1). The466

magnitude of the dependencies are comparable to those obtained under simpler task, when the motion is467

viewed in the presence of saccadic choice targets (e.g., see Figure 3G in Shushruth et al. 2018).468

Thus for both monkeys, the neural responses during action selection exhibit the hallmark of a decision469

variable, which must be informed by information acquired earlier. This is consistent with the pattern of go-470

RTs in monkey-AN, which also support sequential sampling of evidence during the action-selection epoch.471

Analyses of the time dependent changes in response variance and autocorrelation lend additional support472

for sampling of noisy evidence from memory in both monkeys.473
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Figure 6: Variance and autocorrelation of decision related neural responses during action selection in
monkey-AN. The go-RTs from monkey-AN suggest that decisions are formed by accumulation of noisy
evidence to a terminating bound. The analyses depicted here evaluate predictions that the decision related
activity on single trials includes a representation of accumulated noise. A, Variance of neural responses
aligned to target onset. Filled symbols are estimates of the variance of the conditional expectations (VarCE)
of the spike counts in six 60 ms bins spanning the putative integration epoch. This is an estimate of the
variance of the firing rate in the bin, across trials. B, Theoretical correlations between the cumulative sums
of independent, identically distributed random numbers from the 1st to ith and from 1st to jth samples. The
15 unique correlation values of the 6× 6 correlation matrix are displayed as an upper triangular matrix (i.e.,
rows 1–5 and columns 2–6). The horizontal solid line shows the correlation between the first sample and
the cumulative sum to the jth sample (lag = j − i). It shows decreasing correlation as a function of lag.
The dashed line identifies the first juxtadiagonal set of correlations between pairs with the same lag = 1.
It shows an increase in correlation as a function of time of the pairs of samples. The theoretical values
for all correlations is given by

√
i/j. C, Correlations estimated from the neural response. These are the

correlations between the conditional expectation of the spike counts (CorCE) in time bins i and j. This is an
estimate of the correlation between the firing rates that gives rise to these counts. If the rates on single trials
are determined by unbounded drift-diffusion, these correlations should match the values in panel B. The top
row and first juxtadiagonal are identied as in B. D, Deviance of the estimated from theoretical correlations
(sum of squares measure). E, Comparison of theoretical and estimated correlations in the top row and first
juxtadiagonal of the matrices in B & C. Gray traces show the theoretical values in B. Black lines connect
the CorCE values in C. Line and symbol styles distinguish the top row (correlation as a function of lag) and
first juxtadiagonal (correlations of neighboring bins as a function of time).

Neural responses in LIP are consistent with the instantiation of a sequential sampling process474

The coherence dependent ramping evident in trial-averaged response residuals could reflect the accumula-475

tion of noisy samples of evidence on single trials. The trial-averages suppress the noise, leaving mainly476
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Figure 7: VarCE and CorCE during action selection in monkey-SM. The same analysis as in Figure 6
for monkey-SM.

the deterministic component of the accumulation—a ramp with slope equal to the statistical expectation477

of the momentary evidence for yellow or blue. On single trials, theoretically, the decision variable also478

includes an accumulation of noise. This is the diffusion component of drift-diffusion, which is thought to479

explain stochastic choice and variable decision times. Although suppressed in the trial averages, the dif-480

fusion component can be detected in the evolution of the variance and autocorrelation of the neural firing481

rates (Churchland et al., 2011; de Lafuente et al., 2015; Shushruth et al., 2018). The procedure utilizes482

spike counts from single trials, which provide a noisy estimate of the rate over a short counting window.483

The counts are thus conceived as the result of a doubly stochastic process: a rate that represents a diffusion484

(or random walk) process, which differs from trial to trial, and the stochastic point process that renders485

spike-counts from the rate. The strategy is to remove the latter component of the total variance to reveal486

the variance of the conditional expectation of that count. Hence we refer to variance of the rate, at the time487

of a counting window, as the variance of the conditional expectation (VarCE) of the count. We adapted488

this procedure to the current data set in order to ascertain whether the residual firing rates on single trials489

incorporate the accumulation of independent samples of noise (see Methods, Eqs. 9–13).490

We divided the period following target onset into 60 ms bins and computed the VarCE across trials for each491

bin. We identified the epoch of putative accumulation to coincide with the time of the buildup. The VarCE492
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underwent a linear increase as a function of time over most of this epoch (Figure 6A and Figure 7A). This is493

the pattern expected for partial sums (i.e., accumulation up to time, t) of independent samples of noise. The494

autocorrelation of the responses (CorCE) also showed signatures of a diffusion process: a decrease in auto-495

correlation as a function of the time separation between the bins (i.e., lag) and an increase in autocorrelation496

between adjacent bins as a function of time (Figure 6C,E and Figure 7C,E). The estimated autocorrelation497

pattern for both monkeys hewed closely to the theoretical predictions (R2 = 0.84, monkey-AN, Figure 6D;498

R2 = 0.89, monkey-SM, Figure 7D). Such conformance lends further support to the idea that the LIP re-499

sponses represent the accumulation of independent samples of noisy evidence during the action-selection500

epoch. In contrast, the second order statistics of neural responses during the RDM presentation epoch did501

not show conformance to the theoretical predictions of a diffusion process in either monkey (R2 = 0.45,502

monkey-AN, Supp. Figure 6-1; R2 = 0.26, monkey-SM, Supp. Figure 7-1). Thus, it is unlikely that the503

neurons we recorded from are participating in evidence accumulation during motion viewing.504

We also considered two alternatives to the accumulation of noisy evidence that might explain the coherence-505

dependent ramping seen in the average responses. (1) Residual firing rates on individual trials represent506

ramps that vary in their slope across trials. This might reflect the anticipation of reward or confidence in the507

decision. (2) Responses on individual trials represent a step at the termination of the decision. Consideration508

of these alternatives is especially warranted in the case of monkey-SM, as we lack access to the time of509

decision termination on individual trials. The VarCE and CorCE estimated from data supported the diffusion510

model over these alternatives (see Supp. Figure 6-2 and Supp. Figure 7-2).511

The analyses of the neural responses lend additional support to the thesis that the monkeys form their de-512

cision in the action selection epoch, and do so though the accumulation of noisy samples of evidence to a513

threshold. These samples are derived from short term memories constructed during motion viewing.514

Discussion515

The study of perceptual decision-making in monkeys has provided insights into the process by which se-516

quential samples of sensory evidence are accumulated over time (Newsome et al., 1989; Shadlen and New-517

some, 1996). A peculiar observation in these studies is that the accumulation of evidence is instantiated by518
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neurons associated with motor planning (Roitman and Shadlen, 2002; Kim and Shadlen, 1999; Ding and519

Gold, 2010, 2012; de Lafuente et al., 2015). When monkeys are trained to indicate a decision between cat-520

egory A and B by action-1 and action-2, the neurons that represent the decision process are parsimonously521

characterized by their association with actions 1 & 2. This observation has led to the proposal that perceptual522

decision-making is embodied as a choice between potential actions (Shadlen et al., 2008; Cisek, 2007).523

Yet monkeys can make perceptual decisions when they are unsure of the action that will be required of them524

to report their decision (Gold and Shadlen, 2003; Bennur and Gold, 2011; Wang et al., 2019; Horwitz et525

al., 2004). We set out to investigate how monkeys accumulate sensory evidence under these circumstances,526

and we did so using monkeys that had never learned an association between the decision and the action to527

report it. Instead they learned to associate leftward and rightward motion with the colors yellow and blue.528

No left-choice or right-choice targets were visible during motion viewing, but afterward, a yellow and a blue529

target were presented at unpredictable locations in the visual field and the monkey was required to choose530

one or the other color. We therefore predicted that they would not represent evidence in the form of an531

oculomotor plan but rather as a plan to invoke the appropriate rule: choose blue or choose yellow. Instead532

we found that the monkeys formed their decisions after the color-choice targets appeared—that is, during533

the period of action selection—after the source of sensory evidence had been extinguished.534

Both monkeys based their decisions on samples of evidence that must have been retrieved from short-535

term memory. Monkey-AN developed this strategy spontaneously; monkey-SM did not, but appears to536

have adopted this strategy once we imposed a second waiting period during the action selection epoch.537

The striking change was evident in the longer time span of stimulus information used to inform decisions538

(Figure 3D) to achieve a level of proficiency comparable to monkey-AN and many others we have trained on539

direction discrimination tasks. The go-RT from monkey-AN exhibited one peculiar feature. The difference540

in nondecision times for blue and yellow choices was nearly as long as the entire range of go-RT for either541

choice. The pattern suggests that monkey-AN makes a decision about blue and, failing to achieve sufficient542

support, switches to evaluating the evidence for yellow. This would seem absurd if stated as evidence543

for rightward and leftward motion, because evidence for rightward is evidence against leftward, and vice544

versa. However the sources of evidence bearing on the value of blue and yellow items do not typically545

have this antithetical relationship. We thus interpret the temporal offset in the blue and yellow go-RTs as546
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a sign that the monkey makes two decisions in series (e.g., Kang et al. 2021) but is willing to terminate547

with a blue choice if there is sufficient evidence. This interpretation is based on only one monkey so must548

be regarded as provisional. However, for both monkeys, neural recordings from area LIP provided further549

confirmation that a sampling process transpired during the action selection epoch. On trials when one of550

the color-choice targets appeared in the neural response field, it produced a visual response plus a signal551

reflecting the direction and strength of the previously presented motion. The time course of the evolution552

was characteristic of an integration process—more specifically, the integration of noisy evidence acquired553

from the stimulus.554

Previous studies of perceptual decisions, dissociated from action, have not implicated a role for memory, but555

we suspect it played a role. An effective strategy to dissociate a decision from a plan of action exploits the556

delayed match-to-sample design (Freedman et al., 2001), wherein a subject evaluates a sample stimulus and557

then, after a short delay, is presented with a second stimulus, which is compared to the first and classified558

as the same or different. It is assumed that the subject forms a categorical decision about the identity or559

category membership of the sample before the test stimulus is presented and therefore before an action560

associated with match and non-match can be planned. Using this approach, it has been shown that monkeys561

can report if the test and sample belong to the same category (Freedman et al., 2001; Freedman and Assad,562

2006; Fitzgerald et al., 2011; Goodwin et al., 2012) or share similar properties like magnitude (Genovesio et563

al., 2011), numerosity (Nieder et al., 2002) or speed/direction (Hussar and Pasternak, 2009). These studies564

focus mainly on neural activity in association cortex during sample and delay period. This activity often565

varies systematically with the relevant properties of the sample stimulus and is thus interpreted as a decision566

about the identity or category membership of the stimulus, independent of any planned action.567

Our results suggest an alternative interpretation. Instead of a decision about category, the information about568

the stimulus might be encoded in short term memory to support a comparison with the test stimulus, crit-569

ically, to establish the behavioral response. This decision may require multiple samples, but not if the570

match/nonmatch comparison is easy or if the sample (and test) stimuli do not supply multiple samples. A571

mechanism like this has been observed in the setting of a comparison of two vibrotactile flutter-vibration572

frequencies (Brody et al., 2003). A related alternative is that the sample stimulus is processed as an in-573

struction to brain circuits that organize the response to the test stimulus. The instruction might establish a574
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criterion to classify the test or it might establish the appropriate sensory-response mapping. For example,575

test stimuli A and B might be associated with responses, match and non-match, respectively, if the sample576

is A, or irrespectively, if the sample is B. Such a mechanism has been documented in a simple olfactory577

delayed match to sample task in mice (Wu et al., 2020). It does not require making a decision about the578

sample, it requires working memory to establish the mapping.579

Other studies of abstract perceptual decision-making deployed a strategy similar to ours: the monkey is580

supplied evidence to make a decision before it can plan an action associated with the decision outcome. Gold581

and Shadlen (2003) used a RDM task nearly identical to ours, but they obtained a strikingly different result.582

Their monkeys exhibited saccadic latencies of ∼200 ms from color-target appearance, suggesting they had583

formed their decision about the color rule before the targets appeared. They exhibited no behavioral signs584

of sampling from memory. The only salient difference is that their monkeys had been trained previously585

to associate motion with eye movements to targets. We suspect that having learned to accumulate evidence586

for motion as an evolving plan to make a saccade, they were able to form a decision in another intentional587

way—for color rule instead of target location. A similar explanation applies to the study by Bennur and Gold588

(2011). Their monkeys made their decisions in the presence of saccadic choice targets. They were required589

to associate up and down motion with up and down targets or with down and up targets, depending on a590

colored cue delivered after the motion had been shown. They too had learned an association with an action591

and thus required only a slight elaboration: to switch the stimulus-response associations in accordance with592

the color cue. In contrast, the monkeys in our study had never formed an association between the direction593

of RDM and an action. The only visual-motor association they were taught concerned color. The Gold594

and Shadlen (2003) and Bennur and Gold (2011) studies did not examine neural activity during the action595

selection epoch.596

Our result was anticipated by Wang et al. (2019) who used a spatial integration task with separate evaluation597

and action selection epochs. The task structure used for one monkey resembles our go-task. It imposes a598

delay between the extinction of a static discriminandum and the presentation of the choice options. Sim-599

ilar to our monkey-AN, their monkey-T exhibited go-RTs that depended on the strength of the evidence600

experienced beforehand. They also report that the rate of rise of neuronal responses in Area PMd during601

action selection was dependent on stimulus strength. The Wang et al. study also supports the hypothesis602
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that sampling of evidence from memory may be necessary to form a perceptual decision when the evidence603

is provided before it is possible to accommodate it in an intentional context.604

The near limitless capacity for abstraction in humans gives an impression of disembodied ideation. Humans605

can evaluate propositions about the world—what things are and what categories they belong to—without606

using them as objects of possible action. An alternative formulation, rooted in ecological perception (Gib-607

son, 1979), suggests that knowledge of the environment is in the service of what we might do, in the form of608

considerations and intentions (Merleau-Ponty, 1962; Clark, 1997). One activity humans pursue is reporting609

to other humans. The conversion of a provisional report to an action, like “look at the blue spot if the motion610

is rightward” permits humans to form a decision before the action is specified. The same logical structure611

applies to what monkeys—previously trained to associate rightward/leftward motion with an eye movement612

to the right/left—can achieve in abstract decision tasks like ours. If the human is not informed about the613

axis of discrimination until after the motion has been viewed, then like the monkey, humans too must rely614

on memory (Bang and Fleming, 2018). Further, studies of iconic short term memory demonstrate that such615

memory can be formed strategically in order to anticipate knowledge of the operations that may be required616

(Sperling, 1960; Gegenfurtner and Sperling, 1993). Thus both monkeys in our task must have learned to617

store the appropriate motion information in short-term memory buffers to enable action selection based on618

the colors of the choice targets.619

The difficulty that our abstract decision task poses for naive monkeys might raise concerns about the rele-620

vance of our finding to human cognitive function. But consider. The simpler (non-abstract) version of the621

motion task invites an association between a source of evidence, derived from one part of the visual field,622

that bears on the relative value of options, instantiated by targets elsewhere in the visual field. It is repre-623

sentative of the type of foraging decisions that monkeys make naturally, but it is not in the repertoire of the624

animal’s experiences. They must learn that the relevant evidence bearing on action-selection is conveyed by625

a population of direction selective neurons with receptive fields that align to the patch of dynamic random626

dots. The same is true of a simpler blue-yellow decision task in which the color of an object near the point of627

fixation, say, determines whether a reward is associated with a blue or yellow choice target shown elsewhere628

in the visual field. The abstract decision in our task requires the animal to combine these types of decisions,629

either by (i) building a hierarchical decision in which the outcome of the motion decision substitutes for630
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the colored object, to instruct the blue-yellow choice, or (ii) storing evidence from motion to resolve the631

subsequent color choice.632

The hierarchical strategy is the one humans appear to exercise, as the effect of the strength of evidence on633

go-RTs is minimal in human subjects (Twomey et al., 2016; Coallier and Kalaska, 2014). It is the way we634

would instruct another human to perform the task: “Decide whether the cloud of random dots is moving to635

the right or left; if right choose blue, and if left, choose yellow.” This is also the way monkeys previously636

trained on the non-abstract motion task solve the abstract task (Gold and Shadlen, 2003). Yet both monkeys637

in the present study used the second strategy. Neither showed any sign of integrating evidence toward a638

decision during motion viewing. We speculate that this is because they never had the experience of planning639

an action associated with a decision about motion. They were rewarded only for actions associated with640

color, and they could only discover a source of evidence associated with the color selection in short-term641

memory. It is an open question whether they improved their performance by learning to store more samples642

or by sampling more from passive storage that occurs naturally during perception, or both.643

At first glance, the hierarchical strategy might appear to be the more sophisticated of the two. It is more644

complex, and the nested structure seems like a building block for language. Indeed, humans probably645

adopt this strategy because it is implied in the verbal instruction to perform the task. However the second646

strategy also connects to a sophisticated element of cognition: the capacity to use recent, but temporally647

non-adjacent, information to guide a decision. This is critical for learning causal relations, and it too plays648

a role in language. We make strategic use of short-term memory to store semantic content (analogous to649

samples of evidence) which we incorporate in locution later—analogous to action selection—in accordance650

with syntactic demands. The process is embarrassingly vivid when we lose the train of our thought. Such651

embarrassment is mitigated by the strategic use of short term memory, adhering to the old adage, “Put your652

mind in gear before you put your mouth in motion” (A. Shadlen, personal communication).653

Clearly, expressions of perceptual decisions through eye movements and expressions of ideas through lan-654

guage invite more contrast than comparison, but the structural similarity may prove useful for neurobiology.655

Thus it is that the monkey’s crude approximation to abstract decision-making elucidates a critical building656

block of our own ideation.657
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Monkey Target in RF Buildup for (spikes/s2/%coh) Buildup against (spikes/s2/%coh)
AN Blue 3.2 (p = 10−5) -0.63 (p = 0.130)
AN Yellow 1.5 (p = 0.002) -2.1 (p = 10−4)
SM Blue 1.2 (p = 0.029) -2.4 (p = 10−5)
SM Yellow 1.4 (p = 0.002) -1.3 (p = 0.005)

Data from Shushruth et al. (2018)
Two monkeys Neutral 1.5 (p = 10−9) -1.2 (p = 10−5)

Table 1: Dependence of buildup rates on motion strength.
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Supp. Figure 2-1: Psychophysical thresholds during training. The motion strength required to support
75% accuracy is plotted as a function of training day. The values are interpolated from a Weibull fit (Eq. 1) to
proportion accuracy vs. |coherence|. Green lines indicate the thresholds from all neural recording sessions.
The purple line in the bottom panel indicates the thresholds for monkey-SM from the last four sessions of
training on the go-task (the sessions included in Figure 3C-D). Grey lines show the running geometric mean
of thresholds from 11 consecutive sessions.
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Supp. Figure 3-1: Model comparison. We consider two plausible explanations of the errors at the strongest
motions strengths. Both models use bounded drift diffusion with symmetric, collapsing bounds (Eq. 8) and
can thus explain go-RT on errors. Direction-Color Confusion (solid traces). A fraction of trials, λ, deploy
the wrong association between motion direction and color. For the strongest motions, this explains all lapses
(λ = 9%). At weaker motion strengths the confusion contributes a fraction of both error and correct choices
(open and filled symbols). The nondecision time (tbnd or tynd) is associated with the sign of the terminating
bound, so opposite that of the rendered choice on these trials. Low Sensitivity (broken traces) The lapses
are a sign of lower sensitivity to all motion strengths. This is the diffusion model without direction-color
confusion. The Direction-Color Confusion model is clearly superior to Low Sensitivity model.
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Supp. Figure 3-2: Further confirmation that monkey-SM did not accumulate evidence from the motion
stimulus on the go-task. We introduced two variants of the go-task to evaluate the hypothesis that monkey-
SM used only a brief sample of the random dot stimulus to inform its choice. A, Step version. Each trial
started at 0% coherence and stepped to ±32% or ±64% at a variable time. Choice accuracy is plotted as a
function of step time (4 sessions, N=4663 trials). B, Ramp version. The motion strength changed linearly
as a function of time from 0% to ±32% or ±64% coherence. The rate of change was varied across trials.
Choice accuracy is plotted as a function of the time when the coherence reached its maximum (3 sessions;
N=3054 trials).
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Supp. Figure 6-1: VarCE and CorCE during motion viewing in monkey-AN. Same analysis as in Fig-
ure 6, using data from the motion viewing epoch.
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Supp. Figure 6-2: Analysis of an alternative variable-rate-of-rise model (monkey-AN). Here we lever-
age the CorCE estimate of response autocorrelation to evaluate an alternative to unbounded drift-diffusion.
A, The expected CorCE if the neural responses represent a linear rise with variable slope across trials. Inset,
Examples of latent rate function from single trials. B, The deviation of CorCE estimated from neural data
from the expectation shown in A. This deviation was significantly worse than the deviation from the expec-
tation of diffusion (∆BIC=148 cf. Figure 6D) C The comparison between expected and estimated CorCE
for the top row and the first juxtadiagonal, as in Figure 6E.
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Supp. Figure 7-1: VarCE and CorCE during motion viewing in monkey-SM. Same analysis as in Fig-
ure 7, using data from the motion viewing epoch.
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Supp. Figure 7-2 Analysis of alternative models (monkey-SM). Here we leverage the CorCE estimate of
response autocorrelation to compare three plausible accounts of the firing dynamics on single trials during
the epoch of putative decision formation. Each of the models (rows) can explain the pattern of buildup of
the residual firing rates observed in the averages across trials. Theoretical values of response autocorrelation
were obtained by simulation. Examples are shown in the insets of panels A, B and C for the 0% coher-
ence condition. A, Bounded drift-diffusion. Firing rates on individual trials represent the accumulation of
unbiased, independent, identically distributed random samples until the accumulation reaches a positive or
negative bound. Thereafter the rate is determined by the value of the bound. B, Bounded variable rate of
rise. The firing rate on single trials is a ramp with slope varying across trials. Same termination rule as in A.
C, Constant firing rate with a step in firing rate at decision termination. D, E, F, Comparison of estimated
CorCE from data with expected autocorrelation values obtained from simulation. The deviance is calculated
as in Figures 6 & 7. G, H, I, Comparison of expected autocorrelation and estimated CorCE using the same
conventions as in Figures 6 & 7. The bounded diffusion model was superior to the variable rate of rise model
(∆BIC=1378) and the terminating steps model (∆BIC=129).
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