
GhostiPy: an efficient signal processing and spectral analysis

toolbox for large data

Joshua P. Chu1, Caleb T. Kemere1*

1 Department of Electrical and Computer Engineering, Rice University, Houston, Texas,

USA

* caleb.kemere@rice.edu

Abstract

Recent technological advances have enabled neural recordings consisting of hundreds to

thousands of channels. As the pace of these developments continues to grow rapidly, it

is imperative to have fast, flexible tools supporting the analysis of neural data gathered

by such large scale modalities. Here we introduce ghostipy (general hub of spectral

techniques in Python), a Python open source software toolbox implementing various

signal processing and spectral analyses including optimal digital filters and

time-frequency transforms. ghostipy prioritizes performance and efficiency by using

parallelized, blocked algorithms. As a result, it is able to outperform commercial

software in both time and space complexity for high channel count data and can handle

out-of-core computation in a user-friendly manner. Overall, our software suite reduces

frequently encountered bottlenecks in the experimental pipeline, and we believe this

toolset will enhance both the portability and scalability of neural data analysis.

Introduction 1

Advancements in neural recording technologies have enabled the collection of large data 2

in both space (high density/channel count) and time (continuous recordings). During 3

subsequent analysis, the scale of the data induces certain challenges which may manifest 4

May 3, 2021 1/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

as the following scenarios: (1) analysis code takes a long time to complete (high time 5

complexity), (2) code is unable to complete due to insufficient memory on the hardware 6

(high spatial complexity). Moreover the scientist may have difficulty finding existing 7

tools that address both (1) and (2) and that implement the desired analyses. 8

Although a potential remedy is to simply upgrade the hardware, it is not an 9

acceptable solution for scientists desiring portability of analyses. In those situations 10

hardware resources may be limited (e.g. using a laptop at the airport). We thus took an 11

alternate approach by efficiently implementing analyses that would trivially scale for 12

different hardware configurations. Our solution is ghostipy (general hub of spectral 13

techniques in Python), a free and open source Python toolbox that attempts to 14

optimize both time and space complexity in the context of spectral analyses. Methods 15

include linear filtering, signal envelope extraction, and spectrogram estimation, 16

according to best practices. ghostipy is designed for general purpose usage; while well 17

suited for high density continuous neural data, it works with any arbitrary array-like 18

data object. 19

In this paper we first describe ghostipy’s software design principles to increase 20

efficiency. We then elaborate on featured methods along with code samples illustrating 21

user friendliness of the software. Finally we benchmark our software against a 22

comparable implementation, and we discuss strategies for working under an out-of-core 23

(when data cannot fit into system memory) processing context. 24

Materials and methods 25

An overview of implemented methods can be found in Table 1. Excluding out-of-core 26

support, it is possible to use multiple different packages to achieve the same 27

functionality. However the mix-and-match approach can reduce user friendliness since 28

application programming interfaces (APIs) differ across packages and dependency 29

management is more difficult. We believe our unified package provides an attractive 30

solution to this challenge. 31

May 3, 2021 2/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

Software Design Considerations 32

As previously noted, successful completion of analyses may be hampered by long 33

computation times or lack of system memory. Specifically, algorithmic time and space 34

complexity are major determinants for the efficiency and performance of a software 35

method. In general it is difficult to optimize both simultaneously. For example, time 36

complexity may be reduced by increasing hardware parallelization, at the expense of 37

higher space complexity (memory requirements). While we sought to lower both kinds 38

of complexity compared to existing solutions, we gave space complexity a higher priority. 39

Stated concretely, slow computation time is primarily a nuisance, but failure to 40

complete an analysis due to insufficient memory is catastrophic. 41

Our design decision to prioritize space complexity was particularly critical because it 42

directly influenced which backend library we chose for the Fast Fourier Transform 43

(FFT), an operation used in the majority of ghostipy’s methods. While investigating 44

the different options, we saw that numpy currently uses the pocketfft backend [26, 20]. 45

When accelerated with Intel’s MKL library, it can be slightly faster than FFTW [6]. 46

However, we have found FFTW [9, 10] superior for memory management and better 47

suited for arbitrary length FFTs, including prime and odd numbers. An additional 48

benefit of FFTW was its multithreaded capabilities. We therefore selected FFTW as our 49

FFT backend. 50

To lower space complexity we used blocked algorithms, including overlap save 51

convolution, which is not offered in any of the standard Python numerical computing 52

libraries such as numpy or scipy [26, 27]. This approach enabled us to process very 53

large data that could not fit in memory (also known as out-of-core processing). 54

Throughout our code, we also employed other strategies such as in-place operations. 55

To lower the time complexity, we used efficient lengths of FFTs wherever possible, 56

and we leveraged modern computing hardware by parallelizing our algorithms. For 57

example a wavelet transform can be trivially parallelized since the transform for each 58

scale is not dependent on other scales. 59

May 3, 2021 3/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

Python Overlap
save
convolu-
tion

Multi-
taper
method

Hilbert
Trans-
form

Morse
CWT

Synchro-
squeezed
trans-
form

Out-of-
core

Ghostipy + + + + + + +

SciPy + + - + - - -

Chronux - - + - - - -

Elephant + + - + - - -

Brain-
storm

+ + + + - - -

PyWt + - - - - + -

Field
Trip

- + + + - - -

MNE + + + + - - -

MATLAB - + + + + + -

Table 1. Features implemented by ghostipy compared to existing software [27, 1, 28,
22, 13, 18, 12]

Multitaper Method 60

Users often wish to perform a spectral decomposition on a signal of interest. This can 61

be accomplished by using the multitaper method [25, 19]. The technique is well-suited 62

to reduce the variance of a spectrum estimate, which is particularly useful when working 63

with noisy neural data. The spectrum estimate is obtained as an average of multiple 64

statistically independent spectrum estimators for a discrete signal x[n] with sampling 65

frequency fs: 66

ŜmtW (k) =
1

L

L∑
l=1

Ŝmtl,W (k) (1)

Ŝmtl,W (k) =
1

fs

N−1∑
n=0

vl,W [n] x[n] e−2πjkn/N (2)

Given the length of data N and a smoothing half-bandwidth W , the tapers vl,W [n] 67

are computed by solving for vectors that satisfy the energy and orthogonality properties 68

N−1∑
n=0

vl,W [n] vl,W [n] = 1 (3)

May 3, 2021 4/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

N−1∑
n=0

vl,W [n] vm,W [n] = 0, l 6= m (4)

An example using ghostipy is shown in Figure 1. 69

Continuous Wavelet Transform 70

Neuroscientists often use a continuous wavelet transform (CWT) to study transient 71

oscillatory activity. The CWT itself is defined in the time domain by 72

W (a, b) =

∫ ∞
−∞

1√
a
ψ?
(
t− b
a

)
x(t) dt (5)

where ψ(...) is the mother wavelet function. The transform represents a two-dimensional 73

decomposition in the scale (a) and time (b) planes. In the frequency domain, the CWT 74

psds = []

bandwidths = [10, 15, 20, 25]

for bandwidth in bandwidths:

psd, freqs = gsp.mtm_spectrum(ripple_data,

fs=asa.fs,

n_fft_threads=8,

bandwidth=bandwidth)

psds.append(psd)

100 200 300 400 5000

500

1000

1500

2000
a Bandwidth: 10 Hz

100 200 300 400 5000

500

1000

1500

2000
b Bandwidth: 15 Hz

100 200 300 400 5000

500

1000

1500

2000
c Bandwidth: 20 Hz

100 200 300 400 5000

500

1000

1500

2000
d Bandwidth: 25 Hz

Frequency (Hz)

(u
ni

ts
^2

 /
Hz

)

Fig 1. Mutitaper spectrum estimates can be readily generated. The example uses a
sharp wave ripple event, where energy occurs mainly between 100 and 250 Hz.

May 3, 2021 5/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

is given by the inverse Fourier transform of 75

W (a) = X(ω)Ψ?(aω) (6)

for a given scale (a), where X and Ψ are the Fourier transforms of x and ψ, respectively. 76

Many mother wavelet functions have been investigated in the literature, but we have 77

focused on the analytic wavelets, as they are found to be superior, particularly for 78

estimating phase [17, 14, 16, 15]. We have implemented the analytic Morse, Morlet, and 79

Bump wavelets, whose respective frequency domain definitions are 80

Ψ(aω) = 2 e−(aω−ω0)
2/2 H(ω), (7)

Ψ(aω) = 2

(
eγ

β

) β
γ

(aω)β e−(aω)
γ

H(ω) (8)

Ψ(aω) = 2 e
1−

(
1−(µ−σa)

2
)−1

1(µ−σ)/a,(µ+σ)/a (9)

where 1(µ−σ)/a,(µ+σ)/a is the indicator function for the interval 81

(µ− σ)/a ≤ ω ≤ (µ+ σ)/a and H(ω) is the Heaviside step function. In our 82

implementation, we use Equation 6 to compute the CWT. 83

Note that in practice the timeseries x(t) is sampled, and the CWT is likewise 84

sampled. Then equation 6 becomes a pointwise complex multiplication of discrete 85

Fourier transforms, where the discretized angular frequencies ωk are determined by 86

ωk =
2πk

N∆t
(10)

where N is the number of data samples and ∆t is the sampling interval. 87

For electrophysiological data, a typical wavelet analysis will require computing 88

Equation 6 for 50-500 scales. This is an obvious candidate for parallelization since the 89

wavelet transform for each scale can be computed independently of the others. We use a 90

backend powered by dask to carry out the parallelization [21]. Users can set the number 91

of parallel computations to execute and thereby leverage the multicore capabilities 92

offered by modern computing hardware. 93

May 3, 2021 6/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

Synchrosqueezing Transform 94

One disadvantage of the wavelet transform is that its frequency resolution decreases as 95

the temporal resolution increases. Strictly speaking the CWT results in information 96

contained in the (time, scale) plane, but a single frequency is typically assigned to each 97

scale. Regardless, spectral smearing can be observed for at higher frequencies/lower 98

scales. However, [4, 24] showed the synchrosqueezing transform (SST) could mitigate 99

this issue by transferring a CWT’s (time, scale) plane information to the (time, 100

frequency) plane. 101

The synchrosqueezing transform proceeds as the following. For every scale a: 102

1. Compute the CWT W (a) using equation 6 103

2. Compute the partial derivative 104

∂bW (a) = jωX(ω)Ψ(aω) (11)

3. Compute the phase transform 105

ωf (a) =
1

2π
=
(
∂bW (a)

W (a)

)
(12)

The phase transform contains the real frequencies each point in the CWT matrix 106

should be assigned to. In practice the real frequency space is discretized, so the CWT 107

points are assigned to frequency bins. Note that multiple CWT points at a given time 108

coordinate b may map to the same frequency bin. In this situation, a given frequency 109

bin is a simple additive accumulation of CWT points. 110

Note the similarity of the SST to the spectral reassignment algorithms in [11, 8]. 111

However an important distinction is that the SST only operates along the scale 112

dimension. In addition to preserving the temporal resolution of the CWT, this makes 113

SST data easy to work with since uniform sampling can be maintained. 114

Overall, the spectrogram methods implemented by ghostipy give an experimenter a 115

more complete picture of the time-varying spectral content of neural data. Figure 2 116

illustrates using the scipy standard spectrogram method along with ghostipy’s 117

methods. 118

May 3, 2021 7/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

import scipy.signal as sig

fs = asa.fs

nperseg = 64

noverlap = 16

w = 25

f_spect, t_spect, psd_spect = sig.spectrogram(data, fs=fs,

nperseg=nperseg,

noverlap=noverlap)

psd_mtm, f_mtm, t_mtm = gsp.mtm_spectrogram(data, w, fs=fs,

nperseg=nperseg,

noverlap=noverlap)

coefs_cwt, _, f_cwt, t_cwt, _ = gsp.cwt(data, fs=fs, freq_limits=[1, 500])

coefs_wsst, _, f_wsst, t_wsst, _ = gsp.wsst(data, fs=fs, freq_limits=[1, 500],

voices_per_octave=32)

psd_cwt = np.abs(coefs_cwt)**2 / fs

psd_wsst = np.abs(coefs_wsst)**2 / fs

0.1 0.2 0.30

100

200

300

400
a Scipy Spectrogram

0.1 0.2 0.30

100

200

300

400
b MT Spectrogram

0.0 0.1 0.2 0.30

100

200

300

400
c CWT Spectrogram

0.0 0.1 0.2 0.30

100

200

300

400
d SST Spectrogram

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Frequency (Hz)

No
rm

al
ize

d
PS

D

Fig 2. Users can leverage scipy’s spectrogram along with ghostipy’s methods to
determine different time-frequency representations. The synchrosqueezed transform in
(d) gives the overall sharpest time and frequency resolution.

May 3, 2021 8/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

FIR Filter Design 119

In addition to the time-frequency transforms described above, ghostipy provides 120

classical signal processing capabilities such as filtering data, using the efficient overlap 121

save convolution. Filtering data is an ubiquitous operation, but before this stage, the 122

filter must itself be designed. While this step may appear somewhat trivial, it can make 123

a significant difference. Consider theta-gamma phase amplitude coupling (PAC), a 124

phenomenon in which the amplitude of the gamma band (approximately 30-120 Hz) 125

oscillation is modulated by the phase of the theta band (approximately 6-10 Hz) 126

oscillation. [7] states that ”It is not possible to measure significant amounts of PAC 127

with amplitudes filtered with narrower bandwidths than the frequency of the 128

modulatory rhythm”, but one of the early studies documenting theta-gamma coupling 129

used 4 Hz bandwidth filters [3]. How could theta-gamma PAC have been discovered if 130

the filters were nominally 4 Hz in bandwidth? The answer was that the software library 131

used by the seminal paper scaled the transition bandwidth according to the passband 132

center frequency, so the effective bandwidth was larger than the initially requested 4 Hz 133

[7]. Theta-gamma coupling was thus a serendipitous discovery. Clearly it is important 134

to control the transition bands of the filter, not just the passband. Existing packages 135

such as scipy and MNE offer a variety of FIR filter design methods [27, 12]. However 136

they suffer from certain issues, as documented below: 137

1. Least squares method: A solution may result in a filter with magnitude response 138

effectively zero throughout. This situation is more common when designing filters 139

with passband relatively low compared to the sampling rate. 140

2. Remez exchange method: The algorithm may simply fail to converge. 141

3. Window method: The transition bands cannot be controlled exactly, and 142

optimality can not be defined, as is the case for the least squares (L2 optimal) and 143

Remez exchange (L1 optimal) 144

Therefore ghostipy’s filter design uses the method defined in [2] for the following 145

reasons: 146

1. It is simple to design. The computational complexity is similar to that of a 147

window method and can be implemented on embedded hardware if desired. 148

May 3, 2021 9/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

2. Optimality can be defined, as it is optimal in the L2 sense. 149

3. Transition bands can be defined exactly, and the steepness of the passband rolloff 150

can be controlled by the spline power parameter. 151

4. The filter impulse response can be defined analytically. Consequently its 152

computation does not suffer from the failure modes of the least squares or Remez 153

exchange methods, as those must solve systems of linear equations. In other 154

words, the design process is reliable and stable. 155

This method designs a low pass filter according to 156

h(n) =
sin(ω0n)

πn

[
sin(∆n/p)

∆n/p

]p
(13)

ω0 =
ω2 + ω1

2
(14)

∆ = ω2 − ω1 (15)

where ω1 and ω2 are radian frequencies defining the transition band boundaries. 157

ghostipy uses the low pass filter defined in 13 as a prototype to design more 158

complicated filters. As a result, users can request filters with arbitrary magnitude 159

response. Two examples are shown in Figure 3. 160

Results 161

Spectral analysis is ubiquitous in systems neuroscience experiments involving 162

electrophysiology. One of the primary goals of our development was to facilitate clear 163

and simple workflows with high performance. Of special note is that our tool enables 164

wavelet-based spectral analysis using the Morse wavelet [15], a feature that has 165

previously only been conveniently available in commercial tools such as Matlab. In 166

particular, the Morse wavelet is exactly analytic and nicely parameterized to tradeoff 167

frequency and temporal resolution. For very long data, most investigators will not be 168

interested in the sub-Hz frequency components, and performance can be improved by 169

restricting the frequencies/scales that are actually used for the transform. 170

May 3, 2021 10/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

tw = 2

p = 2

fs = 30000

numtaps = gsp.estimate_taps(fs, tw)

band_edges = [4, 6, 10, 12]

desired = [0, 1, 1, 0]

theta_filter = gsp.firdesign(numtaps, band_edges, desired,

fs=fs, p=p)

numtaps = gsp.estimate_taps(30000, 2)

band_edges = [10, 12, 55, 60, 100, 150, 200, 250, 300, 350]

desired = [1, 0, 0, 1, 1, 0, 0, 1, 1, 0]

arbitrary_filter = gsp.firdesign(numtaps, band_edges, desired,

fs=fs, p=p)

0 2 4 6 8 10 12 14 16
0.00

0.25

0.50

0.75

1.00
a Theta band

0 100 200 300 400
0.00

0.25

0.50

0.75

1.00
b Arbitrary bands

Frequency (Hz)

M
ag

ni
tu

de
 R

es
po

ns
e

Fig 3. (a) A theta band filter designed for full bandwidth data. The specification of
the transition bands allows for easy determination of critical frequencies. The -6 dB
points are exactly the midpoints of the transition bands. (b) Filters with arbitrary pass
and stop bands may also be designed.

A naive implementation of the Morse wavelet transform calculates untruncated 171

wavelets the same length as the input data. This is often inefficient because it is 172

equivalent to convolving the data with a time-domain wavelet mainly consisting of 173

leading and trailing zeros. In our approach we exploit the fact that wavelets are finite in 174

time and frequency, and we use an overlap-save algorithm to compute the CWT purely 175

in the frequency domain. Note that the latter point is particularly critical: Due to the 176

Gibbs phenomenon, using any time-domain representation of the wavelet may violate 177

numerical analyticity for wavelet center frequencies near the Nyquist frequency. It is 178

therefore necessary to use only the frequency domain representation of the wavelet. 179

While we offer both traditional/naive and blockwise convolution implementations, the 180

latter will give superior performance for longer-duration data. We believe that this is a 181

valuable option for researchers and that this is the first tool which uses blockwise 182

May 3, 2021 11/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

0
10

Sp
ee

d
(c

m
/s

)
50

100

150

200

250

Fr
eq

ue
nc

y
(H

z)

274.0 274.5 275.0 275.5 276.0 276.5 277.0 277.5 278.0 278.5
−500

0
500

Fig 4. Spectrogram of local field potential recordings from area CA1 of the
hippocampus of a rat during exploration (middle), with movement speed (top) and the
raw electrophysiological signal (bottom). A number of features of the hippocampal
rhythms can be noted in this example, including the pervasive theta oscillation (∼8 Hz),
theta-nested gamma oscillations (∼60 Hz) during movement, and, towards the end, a
sharp wave ripple (∼200 Hz). An example notebook replicating this figure can be found
online.

convolution to implement the CWT. 183

An example spectrogram of local field potentials recorded in area CA1 of the rat 184

hippocampus is shown in figure 4. Clearly apparent are the theta oscillation, 185

theta-nested gamma oscillations, and a sharp-wave-ripple, which occurs after the animal 186

has stopped moving. 187

Performance and Complexity 188

The calculation of the CWT is computationally intensive and consequently a good 189

method to benchmark performance. Of the software packages listed in Table 1, only 190

MATLAB offered an equivalent solution. It was thus chosen as the reference to compare 191

our implementation against. Figure 5 shows that our implementation results in faster 192

computation times and better memory usage. 193

It is not entirely clear what accounts for the higher jaggedness in the MATLAB curves 194

from Figure 5. A possible explanation is that the FFT computation is less efficient for 195

May 3, 2021 12/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://colab.research.google.com/drive/1TnNtEGQXEjfaxZTqtgexf4-S5BOIb6eu?usp=sharing
https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

0.0 2.5 5.0 7.5 10.0 12.5
Data length (Megasamples)

0

20

40

60

80

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

a

MATLAB
Ghostipy

0.0 2.5 5.0 7.5 10.0 12.5
Data length (Megasamples)

0

10000

20000

30000

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

b

MATLAB
Ghostipy

Fig 5. Our implementation of the Morse continuous wavelet transform outperforms
MATLAB’s in both (a) time and (b) space complexity. Note that MATLAB was unable to
complete execution for the full range of the test parameter (data length) due to
out-of-memory exceptions. The test machine was an Intel Core i7-4790 (8 hyperthreads)
equipped with 32 GB RAM.

an odd-length transform, but the magnitude of the spikes in the curve is surprising 196

given that MATLAB’s FFT backend also uses FFTW. Regardless, we have demonstrated 197

that our implementation is able to achieve lower time and space complexity. When 198

using the functionality offered by ghostipy, three primary scenarios arise with regards 199

to the sizes of data involved in the processing: 200

1. both the input and output data fit into core memory 201

2. the input fits into core memory but the output does not 202

3. neither the input nor the output fit 203

In all of the previous examples, we have restricted ourselves to case 1. However, with 204

the ever-increasing sizes of data, the other cases will inevitably be encountered. Case 2 205

may arise when attempting to generate spectrograms. As the input is a single channel, 206

memory constraints are rarely an issue. For example, even a 10 hr LFP recording 207

sampled at 1 kHz and saved as 64-bit floating point values will require less than 300 208

MiB of memory. However, the size of a wavelet spectrogram computed from this data 209

will be directly proportional to the number of scales/frequencies. For a typical range of 210

1 to 350 Hz at 10 voices per octave, this amount to a space requirement of 85 times that 211

of the input data. Given that this can well exceed the core memory size of a machine, 212

ghostipy’s CWT routine can also accept a pre-allocated output array that is stored on 213

disk (Figure 6). 214

May 3, 2021 13/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

shape, dtype = gsp.cwt(data, fs=1250, freq_limits=[1, 350],

describe_dims=True)

cwt_data = outfile.create_dataset('cwt_data', shape=shape, dtype=dtype)

out_of_core_params = {}

out_of_core_params['output_array'] = cwt_data

gsp.cwt(data, fs=fs, freq_limits=[1, 350],

out_of_core_params=out_of_core_params)

Fig 6. Example code when the output array is too large for main memory. The CWT
method is first executed as a dry run to compute the necessary array sizes.

Case 3 may arise when a user wishes to filter many channels of full bandwidth data. 215

One use case is a 1 hour recording for a 256 channel probe sampled at 30 kHz and stored 216

as a 2-byte signed integer type; already this requires 51 GiB. Our strategy is similar to 217

case 2, where an output array is allocated and stored on disk. As for the input, it is 218

read in chunks, and the size of these can be chosen to lower memory usage, although 219

potentially at a cost to computation time. The code in Figure 7 illustrates an example: 220

with h5py.File(input_filepath, 'r') as infile:

with h5py.File(output_filepath, 'w') as outfile:

ds = 300

K = filter_delay

N = infile['chdata'].shape[1]

shape, dtype = gsp.filter_data_fir(infile['chdata'],

theta_filter,

axis=1,

ds=ds,

output_index_bounds=[K, K+N],

describe_dims=True)

outdata = outfile.create_dataset('theta_data',

shape=shape,

dtype=dtype)

gsp.filter_data_fir(infile['chdata'],

theta_filter,

axis=1,

ds=ds,

output_index_bounds=[K, K+N],

outarray=outdata)

Fig 7. Filtering data from a large array stored on disk and likewise storing the output
on disk. Similar to the CWT out-of-core features, the method is called once as a dry
run to compute array sizes, which the user can then pass in to store the result. The
filtering method also allows to correct for the delay of the filter and to downsample
without storing any intermediate results. Although example uses the h5py library, any
object that behaves like an array can be used.

May 3, 2021 14/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

Several points can be made about the scheme in Figure 7. Our method allows for 221

downsampling during the convolution, which can reduce the number of stages in a 222

computational scheme. Given full bandwidth data, a traditional strategy to filter to the 223

theta band would look like the following: 224

1. Apply an anti-aliasing filter. 225

2. Downsample to obtain LFP. 226

3. Store the LFP to disk. 227

4. Apply a theta-band filter. 228

5. Downsample this output. 229

6. Save the result. 230

Using ghostipy’s method, it is not necessary to generate the intermediate LFP. To 231

our knowledge, we do not know of other software that allows out-of-core filtering and 232

downsampling in a single function call. The result is a simultaneous reduction in time 233

and space complexity, by storing only the downsampled result and by filtering only once. 234

Filtering to the theta band is now simplified to the following steps: 235

1. Apply a theta filter to the full bandwidth data. 236

2. Downsample the result. 237

3. Save the result to disk. 238

Conclusion 239

We have described the key features of ghostipy and given examples of its ease of use to 240

perform computations efficiently. Users can thus conduct exploratory spectral analyses 241

quickly across a range of parameters while reducing their concerns for running out of 242

memory, especially since out-of-core computation is supported for many of the methods. 243

Thus we believe ghostipy is well-suited to handle the ever-increasing size of 244

experimental data. 245

May 3, 2021 15/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

In the future we plan to improve ghostipy with various enhancements. For example, 246

currently the methods are designed to offer the user a lot of low level control over areas 247

such as multithreading, and to work with raw array types. However, users may desire a 248

higher-level API. For this reason we believe it would be a worthwhile endeavor to 249

incorporate our work into frameworks such as NWB [23]; this would also facilitate more 250

widespread adoption. Lastly, there are other analyses we could implement, including the 251

adaptive multitaper method [19] and other time-frequency reassignment techniques 252

similar to the synchrosqueezing transform [5]. 253

Our primary contribution is improving the ease and speed at which data analysis 254

can be conducted, by developing user-friendly software implementing efficient 255

algorithms well-suited for large data sizes. This point is specifically demonstrated by 256

our ability to outperform existing solutions in space and time complexity, and to run 257

computations even in out-of-core memory conditions, which enables machines with 1-10s 258

of GBs of memory to process data on the scale of 10-100s GBs and higher. In these 259

ways, we have increased the accessibility of neural data analysis by enabling it to be run 260

on hardware such as laptops, a scenario that often was not previously possible. 261

Lastly, the software we developed has a much larger potential impact than the scope 262

described in this paper. Although many of the examples given in this paper were 263

specific to extracellular rodent hippocampal data, the functionality we implemented is 264

intentionally generic and applicable to many fields. As an example, our code can easily 265

be adapted for use in real-time processing, whether running on embedded hardware or 266

on a laptop in a clinical EEG setting. Given the functionality already developed and the 267

full scope of our work, we are optimistic that ghostipy can help accelerate modern 268

scientific progress. 269

Acknowledgements 270

We thank Shayok Dutta (Rice University), Antonio Fernandez-Ruiz (Cornell University) 271

and Josh Siegle (Allen Institute) for sharing data used in example analyses. The 272

development of GhostiPy was supported by the National Science Foundation (NSF 273

CBET1351692) and the National Institute of Neurological Diseases and Strokes 274

(R01NS115233). 275

May 3, 2021 16/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

References

[1] Hemant Bokil et al. “Chronux: a platform for analyzing neural signals”. In:

Journal of neuroscience methods 192.1 (2010), pp. 146–151.

[2] C Sidney Burrus, Admadji W Soewito, and Ramesh A Gopinath. “Least squared

error FIR filter design with transition bands”. In: IEEE Transactions on Signal

Processing 40.6 (1992), pp. 1327–1340.

[3] Ryan T Canolty et al. “High gamma power is phase-locked to theta oscillations in

human neocortex”. In: science 313.5793 (2006), pp. 1626–1628.

[4] Ingrid Daubechies. “A nonlinear squeezing of the continuous wavelet transform

based on auditory nerve models”. In: Wavelets in medicine and biology (1996),

pp. 527–546.

[5] Ingrid Daubechies, Yi Wang, and Hau-tieng Wu. “ConceFT: Concentration of

frequency and time via a multitapered synchrosqueezed transform”. In:

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences 374.2065 (2016), p. 20150193.

[6] Intel developers. Performance Benchmarks.

https://software.intel.com/content/www/us/en/develop/tools/math-

kernel-library/benchmarks.html. [Online; accessed 2020-06-09]. 2020.

[7] Dino Dvorak and André A Fenton. “Toward a proper estimation of

phase–amplitude coupling in neural oscillations”. In: Journal of Neuroscience

methods 225 (2014), pp. 42–56.

[8] Kelly R Fitz and Sean A Fulop. “A unified theory of time-frequency

reassignment”. In: arXiv preprint arXiv:0903.3080 (2009).

[9] Matteo Frigo and Steven G Johnson. “FFTW: An adaptive software architecture

for the FFT”. In: Proceedings of the 1998 IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181).

Vol. 3. IEEE. 1998, pp. 1381–1384.

[10] Matteo Frigo and Steven G Johnson. “The design and implementation of

FFTW3”. In: Proceedings of the IEEE 93.2 (2005), pp. 216–231.

May 3, 2021 17/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library/benchmarks.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library/benchmarks.html
https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

[11] Timothy J Gardner and Marcelo O Magnasco. “Sparse time-frequency

representations”. In: Proceedings of the National Academy of Sciences 103.16

(2006), pp. 6094–6099.

[12] Alexandre Gramfort et al. “MEG and EEG data analysis with MNE-Python”. In:

Frontiers in neuroscience 7 (2013), p. 267.

[13] Gregory Lee et al. “PyWavelets: A Python package for wavelet analysis”. In:

Journal of Open Source Software 4.36 (2019), p. 1237.

[14] JM Lilly and J-C Gascard. “Wavelet ridge diagnosis of time-varying elliptical

signals with application to an oceanic eddy”. In: Nonlinear Processes in

Geophysics 13.5 (2006), pp. 467–483.

[15] Jonathan M Lilly and Sofia C Olhede. “Generalized Morse wavelets as a

superfamily of analytic wavelets”. In: IEEE Transactions on Signal Processing

60.11 (2012), pp. 6036–6041.

[16] Jonathan M Lilly and Sofia C Olhede. “Higher-order properties of analytic

wavelets”. In: IEEE Transactions on Signal Processing 57.1 (2008), pp. 146–160.

[17] Sofia C Olhede and Andrew T Walden. “Generalized morse wavelets”. In: IEEE

Transactions on Signal Processing 50.11 (2002), pp. 2661–2670.

[18] Robert Oostenveld et al. “FieldTrip: open source software for advanced analysis of

MEG, EEG, and invasive electrophysiological data”. In: Computational

intelligence and neuroscience 2011 (2011).

[19] Donald B Percival, Andrew T Walden, et al. Spectral analysis for physical

applications. cambridge university press, 1993.

[20] M. Reinecke. Performance Benchmarks.

https://gitlab.mpcdf.mpg.de/mtr/pocketfft. [Online; accessed 2020-06-11].

2019.

[21] Matthew Rocklin. “Dask: Parallel computation with blocked algorithms and task

scheduling”. In: Proceedings of the 14th python in science conference. Vol. 126.

Citeseer. 2015.

[22] François Tadel et al. “MEG/EEG group analysis with brainstorm”. In: Frontiers

in neuroscience 13 (2019), p. 76.

May 3, 2021 18/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://gitlab.mpcdf.mpg.de/mtr/pocketfft
https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

[23] Jeffery L Teeters et al. “Neurodata without borders: creating a common data

format for neurophysiology”. In: Neuron 88.4 (2015), pp. 629–634.

[24] Gaurav Thakur et al. “The synchrosqueezing algorithm for time-varying spectral

analysis: Robustness properties and new paleoclimate applications”. In: Signal

Processing 93.5 (2013), pp. 1079–1094.

[25] David J Thomson. “Spectrum estimation and harmonic analysis”. In: Proceedings

of the IEEE 70.9 (1982), pp. 1055–1096.

[26] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array:

a structure for efficient numerical computation”. In: Computing in science &

engineering 13.2 (2011), pp. 22–30.

[27] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing

in Python”. In: Nature methods 17.3 (2020), pp. 261–272.

[28] Alper Yegenoglu et al. Elephant–open-source tool for the analysis of

electrophysiological data sets. Tech. rep. Computational and Systems Neuroscience,

2015.

May 3, 2021 19/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442217doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.30.442217
http://creativecommons.org/licenses/by-nd/4.0/

