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Reporting biomarkers assessed by routine immunohistochemi-
cal (IHC) staining of tissue is broadly used in diagnostic pathol-
ogy laboratories for patient care. To date, clinical reporting
is predominantly qualitative or semi-quantitative. By creating
a multitask deep learning framework referred to as DeepLIIF,
we are presenting a single step solution to nuclear segmenta-
tion and quantitative single-cell IHC scoring. Leveraging a
unique de novo dataset of co-registered IHC and multiplex im-
munoflourescence (mpIF) data generated from the same tissue
section, we simultaneously segment and translate low-cost and
prevalent IHC slides to more expensive-yet-informative mpIF
images. Moreover, a nuclear-pore marker, LAP2beta, is co-
registered to improve cell segmentation and protein expression
quantification on IHC slides. By formulating the IHC quan-
tification as cell instance segmentation/classification rather than
cell detection problem, we show that our model trained on clean
IHC Ki67 data can generalize to more noisy and artifact-ridden
images as well as other nuclear and non-nuclear markers such
as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10 and TP53. We
thoroughly evaluate our method on publicly available bench-
mark datasets as well as against pathologists’ semi-quantitative
scoring. The code, trained models, and the resultant embed-
dings for all the datasets used in this paper will be released via
GitHub.
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Introduction

The assessment of protein expression using immunohisto-
chemical staining of tissue sections on glass slides is criti-
cal for guiding clinical decision making in several diagnos-
tic clinical scenarios including cancer classification, residual
disease detection and even mutation detection (BRAFV600E
and NRASQ61R). The conventional method of assessment
is manual semi-quantitative (‘positive’, ‘negative’, ‘low’,
‘medium’, ‘high’ or approximate percentage staining within
a population) scoring of different proteins by an anatomic
pathologist after tissue staining by immunohistochemistry
(IHC). Standard chromogenic IHC staining, while high
throughput, has a narrow dynamic range and a relatively lim-
ited number of markers are detectable on the same slide. The
restricted marker depth or “plexing” of standard IHC limits
further delineation of which cells are expressing the protein-
of-interest (Ki67, PDL1, Bcl6, etc). Furthermore, the lim-
ited marker depth of IHC prevents the inclusion of markers

of cell boundaries and therefore manual cell segmentation is
also highly error prone with high inter-observer variability.
As opposed to conventional immunohistochemistry (IHC)
staining, multiplex immunofluorescence (mpIF) staining pro-
vides the opportunity to examine panels of several markers
individually or simultaneously as a composite permitting ac-
curate co-localization, stain standardization, more objective
scoring, and cut-offs for all the markers values (especially
in low-expression regions, which are difficult to assess on
IHC stained slides and can be misconstrued as negative due to
weak staining that can be masked by the hematoxylin coun-
terstain) (1, 2). Moreover, in a recent meta-analysis (3), mpIF
was shown to have a higher diagnostic prediction accuracy (at
par with multimodal cross-platform composite approaches)
than IHC scoring, tumor mutational burden, or gene expres-
sion profiling. However, mpIF assays are expensive and not
widely available. This can lead to a unique opportunity to
leverage the advantages of mpIF to improve the explainabil-
ity and interpretability of the conventional IHCs using recent
deep learning breakthroughs.
Current deep learning methods for scoring IHCs rely
solely on the error-prone manual annotations (unclear cell
boundaries, overlapping cells, and difficult assessment of
low-expression regions) rather than on co-registered high-
dimensional imaging of the same tissue samples. Therefore,
we present a new multitask deep learning technique, leverag-
ing co-registered IHC and mpIF data for different tissue and
cancer types, to simultaneously translate low-cost/prevalent
IHC images to high-cost and more informative mpIF rep-
resentations (creating a Deep-Learning-Inferred IF image),
accurately auto-segment relevant cells, and quantify protein
expression for more accurate and reproducible IHC quantifi-
cation; using multitask learning (4) to train models to per-
form a variety of tasks rather than one narrowly defined task
makes them more generally useful and robust. In essence,
this creates registered orthogonal datasets to confirm and
further specify the target staining characteristics. The ben-
efit of our model is that we establish an absolute and quan-
titative single-cell IHC scoring system rather than the semi-
quantitative/binned criteria often used clinically.
Several approaches have been proposed for deep learning-
based stain-to-stain translation of unstained (label-free),
H&E, IHC and multiplex slides but relatively few attempts
have been made (in limited contexts) at leveraging the trans-
lated enriched feature set for cellular-level segmentation,
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Fig. 1. DeepLIIF multitask deep learning results for IHC Ki67. Given IHC input, our multitask deep learning framework simultaneously generates the corresponding IHC
Hematoxylin channel, mpIF DAPI, mpIF protein expression (Ki67, CD3, CD8, etc.) and the nuclei segmentation, baking explainability and interpretability into the model itself
rather than relying on coarse activation/attention maps. In the segmentation mask, the red color shows positive cells while the blue color shows the negative cells.

classification or scoring (5, 6). Recently, Liu et al. (7) used
publicly available fluorescence microscopy and histopathol-
ogy H&E datasets for unsupervised nuclei segmentation in
histopathology images, by learning from fluorescence mi-
croscopy DAPI images. However, their pipeline incorpo-
rated CycleGAN which hallucinated nuclei in the target
histopathology domain and hence, required segmentation
masks in the source domain to remove any redundant or
unnecessary nuclei in the target domain. The model was

also not generalizable across the two target histopathology
datasets due to the stain variations, making this unsupervised
solution less suitable for inferring different cell types from
given H&E or IHC images. Burlingame et al. (8) on the
other hand used supervised learning trained on H&E and co-
registered single-channel pancytokeratin IF for 4 pancreatic
ductal adenocarcinoma (PDAC) patients to infer pancytoker-
atin stain for given PDAC H&E image. Another work (9)
used a supervised deep learning method trained on H&E and
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co-registered IHC PHH3 DAB slides for mitosis detection in
H&E breast cancer WSIs. Moreover, for stain-to-stain trans-
lation, there are methods to translate between H&E and IHC
but none for translating between IHC and mpIF modalities.
To focus on immediate clinical application, we want to ac-
centuate/disambiguate the cellular information in low-cost
IHCs (using a higher-cost and more informative mpIF rep-
resentation) to improve the interpretability for pathologists
as well as for the downstream analysis/algorithms. Tradi-
tional IHC deconvolution or stain separation algorithms do
not work well in our context and are difficult to generalize
even across the same patient cohort.

In recent years, deep convolutional neural networks have
achieved great success in the automatic analysis of medical
images, including nuclei detection, segmentation, and classi-
fication in digital pathology images. Long et al. (10) designed
the fully convolutional neural network (FCN) for semantic
segmentation. Several other popular FCN-based architec-
tures such as SegNet (11), DeepLab (12), RefineNet (13,
14) achieved state-of-the-art performance. Ronneberger et
al. (15) proposed U-Net, an FCN-based network architec-
ture to detect nuclei from the background by utilizing fea-
tures from different scales. However, this network usually
fails in separating touching and overlapping nuclei. Zhou et
al. (16) presented UNet++ for reducing the semantic gap be-
tween the feature maps of the encoder and decoder of the
UNet by adding a series of nested, dense skip pathways, re-
sulting in higher accuracy in image segmentation tasks in
comparison with UNet. He et al. (17) achieved higher ac-
curacy on various semantic segmentation tasks by designing
Mask_RCNN, a Region-based CNN (RCNN) approach. This
model generates three outputs for each candidate object, a
class label, a bounding-box offset, and an object mask, and
performs pixel-to-pixel alignment, which makes it a power-
ful segmentation model. Several cell counting approaches are
designed specifically for detecting the centroids of the cells,
using a cell spatial density mask (18–20). These approaches,
however, assume that the cells have circular morphology, re-
sulting in their failure to detect cells with irregular shapes.
Moreover, these models are not generalizable across differ-
ent tissues and markers.

Generative adversarial networks (GANs), introduced by
Goodfellow et al. (21), have shown remarkable performance
for a variety of image processing tasks including seman-
tic segmentation of objects (22–24). Mahmood et al. (25)
trained a supervised conditional GAN (cGAN) – that re-
quires paired/co-registered training data – with synthetic and
real data to overcome the multi-organ nuclei segmentation
challenge. While the model showed promising results in
segmenting nuclei, the performance degraded drastically on
poor-quality input images or images where the assumed stain
normalization failed or was not applied. We present a new
stain-invariant multitask deep learning technique, DeepLIIF,
which leverages cGAN and co-registered IHC and mpIF data
to simultaneously translate IHC images to mpIF representa-
tions, accurately auto-segment relevant cells, and quantify
protein expression for more accurate and reproducible IHC

quantification. cGAN, with its combination of L1 loss and
generator-discriminator framework, does away with the need
for handcrafting loss functions for individual tasks (providing
a seamless way for integrating additional tasks) and in con-
trast to the unsupervised counterparts, for example, Cycle-
GAN, does not hallucinate or produce randomized outputs.
Our model trained on clean IHC Ki67 images generalizes to
more noisy and artifact-ridden images as well as other nu-
clear and non-nuclear markers such as CD3, CD8, BCL2,
BCL6, MYC, MUM1, CD10 and TP53. As shown in Fig-
ure 1, given an IHC image, DeepLIIF simultaneously infers
Hematoxylin (nuclear) channel, mpIF DAPI (nuclear), mpIF
Lap2 (nuclear envelop), mpIF Ki67, and using these inferred
modalities, automatically segments and classifies cells for ac-
curate IHC quantification. Example IHC images stained with
different markers along with the DeepLIIF inferred modali-
ties and segmented/classified nuclear masks are also shown
in Figure 1.

Results
In this section, we evaluate the performance of DeepLIIF on
cell segmentation and classification tasks.
Metrics. We evaluated the performance of our model and
other state-of-the-art methods using pixel accuracy (PixAcc)
computed from the number of true positives, TP, false pos-
itives, FP and false negatives, FN, as TP

TP+FP+FN , Dice
Score as 2×TP

2×TP+FP+FN , and IOU as the class-wise inter-
section over the union. We compute these metrics for each
class, including negative and positive, and compute the aver-
age value of both classes for each metric. A pixel is counted
as TP if it is segmented and classified correctly. A pixel is
considered FP if it is falsely segmented as the foreground
of the corresponding class. A pixel is counted as FN if it
is falsely detected as the background of the corresponding
class. For example, assuming the model segments a pixel as
a pixel of a negative cell (blue), but in the ground-truth mask,
it is marked as positive (red). Since there is no correspond-
ing pixel in the foreground of the ground-truth mask of the
negative class, it is considered FP for the negative class and
FN for the positive class, as there is no marked corresponding
pixel in the foreground of the predicted mask of the positive
class.
Testing Sets. To compare our model with state-of-the-art
models, we use three different datasets. 1) We evaluate all
models on our internal test set which includes 600 images
of size 512×512 and 40x magnification from bladder carci-
noma and non-small cell lung carcinoma slides. 2) We ran-
domly selected and segmented 41 images of size 640× 640
from recently released BCDataset (20) which contains Ki67
stained sections of breast carcinoma with Ki67+ and Ki67-
cell centroid annotations (targeting cell detection as opposed
to cell instance segmentation task). We split these tiles into
164 images of size 512×512; the test set varies widely in the
density of tumor cells and the Ki67 index. 3) We also tested
our model and others on a publicly available CD3 and CD8
IHC NuClick Dataset (26). We used the training set of this
dataset containing 671 IHC patches of size 256× 256, ex-
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Fig. 2. The IHC markers in the tested datasets were embedded using t-SNE. Each point represents an IHC image of its corresponding marker. Randomly chosen example
images of each marker are shown around the t-SNE plot. The black circle shows the cluster of training images.

tracted from LYON19 dataset (27). LYON19 is a challenge
dataset for lymphocytes detection on IHC CD3/CD8 images
taken from breast, colon and prostate.
Benchmarks. Trained on clean lung and bladder images
stained with Ki67 marker, DeepLIIF generalizes well to
other markers. We trained state-of-the-art segmentation net-
works, including FPN (28), LinkNet (29), Mask_RCNN (17),
Unet++ (16) on our training set (described in Sec A) using
the IHC images as the input and generating the colored seg-
mentation mask representing normal cells and lymphocytes.
DeepLIIF outperformed previous models trained and tested
on same data on all three metrics.
Evaluation. We compare the DeepLIIF model’s performance
against state-of-the-art models on the test set obtained from
BCDataset (20). The results were analyzed both qualitatively
and quantitatively, as shown in Figure 3. All models are
trained and validated on the same training set as DeepLIIF
model.
Application of DeepLIIF to the BC Dataset (20) resulted in
a pixel accuracy of 84.00%, IOU of 36.70%, and Dice Score
of 50.59%, and outperformed Mask_RCNN with pixel accu-
racy of 83.47%, IOU of 33.36%, and Dice Score of 46.64%,
UNet++ with pixel accuracy of 81.96%, IOU of 34.32%,
and Dice Score of 47.88%, LinkNet with pixel accuracy of
82.59%, IOU of 35.05%, and Dice Score of 48.56%, and
FPN with pixel accuracy of 80.64%, IOU of 34.25%, and
Dice Score of 47.47%, while maintaining lower standard de-
viation on all metrics.
We used pixel-level accuracy metrics for the primary eval-
uation, as we are formulating the IHC quantification prob-

lem as cell instance segmentation/classification. However,
since DeepLIIF is capable of separating the touching nu-
clei, we also performed a cell-level analysis of DeepLIIF
against cell centroid detection approaches. U−CSRNet (20),
for example, detects and classifies cells without perform-
ing cell instance segmentation. Most of these approaches
use crowd counting techniques to find cell centroids. The
major hurdle in evaluating these techniques is the vari-
ance in detected cell centroids. We trained FCRN_A (18),
FCRN_B (18), Deeplab_Xeption (30), SC_CNN (19), CSR-
Net (31), U−CSRNet (20) using our training set (the cen-
troids of our individual cell segmentation masks are used as
detection masks). Most of these approaches failed in detect-
ing and classifying cells on the BCData testing set, and the
rest detected centroids far from the ground-truth centroids.
As a result, we resorted to comparing the performance of
DeepLIIF (trained on our training set) with these models
trained on the training set of the BCData and tested on the
testing set of the BCData. As shown in Extended Figure 1,
even though our model was trained on a completely different
dataset from the testing set, it has better performance than the
detection models that were trained on the same training set
of the test dataset. The results show that, unlike DeepLIIF,
the detection models are not generalizable across different
datasets, staining techniques, and tissue/cancer types.

As was mentioned earlier, our model generalizes well to
segment/classify cells stained with different markers includ-
ing CD3/CD8. We compare the performance of our trained
model against other trained models on the training set of the
NuClick dataset (32). The comparative analysis is shown
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Fig. 3. (a) Three example images from our training set. (b) A segmentation mask showing Ki67- and Ki67+ cell representation, along with a visual segmentation and
classification accuracy. Predicted classes are shown in different colors where blue represents Ki67- and red represents Ki67+ cells, and the hue is set using the log2 of
the ratio between the predicted area and ground-truth area. Cells with too large areas are shown in dark colors, and cells with too small areas are shown in a light color.
For example, if the model correctly classifies a cell as Ki67+, but the predicted cell area is too large, the cell is colored in dark red. If there is no cell in the ground-truth
mask corresponding to a predicted cell, the predicted cell is shown in yellow, which means that the cell is misclassified (cell segmented correctly but classified wrongly) or
missegmented (no cell in the segmented cell area). (c) The accuracy of the segmentation and classification is measured by getting average of Dice score, Pixel Accuracy,
and IOU (intersection over union) between the predicted segmentation mask of each class and the ground-truth mask of the corresponding class (0 indicates no agreement
and 100 indicates perfect agreement). Evaluation of all scores show that DeepLIIF outperforms all state-of-the-art models. (d) As mentioned earlier, DeepLIIF generalizes
across different tissue types and imaging platforms. Two example images from the BC Dataset (20) along with the generated modalities and classified segmentation masks
are shown in the top rows where the ground-truth mask and segmentation masks of five state-of-the-art models are shown in the second row. The mean IOU and Pixel
Accuracy are given for each generated mask.
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in Figure 4. DeepLIIF model outperformed other mod-
els on segmenting and classifying CD3/CD8+ cells (tumor-
infiltrating lymphocytes or TILs) on all three metrics.
We also tested DeepLIIF on other datasets including nine
IHC snapshots from a digital microscope stained with Ki67
and PDL1 markers (two examples shown in Extended Data
Figures 4 and 5), testing set of LYON19 (27) containing 441
ROIs (no annotations) from WSI of CD3/CD8 IHC speci-
mens of breast, colon, and prostate (Figure 4(c), and Ex-
tended Data Figures 6, 7 and 8), Human Protein Atlas (33)
IHC tiff images for TP53 (Figure 5), and the new DLBCL-
Morph dataset (34) containing IHC tissue-microarrays for
209 patients stained with BCL2, BCL6, CD10, MYC,
MUM1 markers (Figure 5 and Extended Data Figures 9, 10,
11, 12 and 13).
We have also evaluated the performance of DeepLIIF with
and without LAP2beta and found the segmentation per-
formance of DeepLIIF with LAP2beta better than without
LAP2beta (Extended Data Figure 3). LAP2beta is a nu-
clear envelope protein broadly expressed in normal tissues.
In Extended Data Figure 2, LAP2beta immunohistochem-
istry reveals nuclear envelope-specific staining in the major-
ity of cells in spleen (99.98%), colon (99.41%), pancreas
(99.50%), placenta (76.47%), testis (95.59%), skin (96.74%),
lung (98.57%), liver (98.70%), kidney (95.92%) and lymph
node (99.86%). Placenta syncytiotrophoblast does not stain
with LAP2beta and the granular layer of skin does not show
LAP2beta expression, however, the granular layer of skin
lacks nuclei and is therefore not expected to express nu-
clear envelope proteins. We also observe lack of consistent
Lap2beta staining in smooth muscle of blood vessel walls
(not shown).

Discussion
Assessing IHC stained tissue sections is a widely utilized
technique in diagnostic pathology laboratories worldwide.
IHC-based protein detection in tissue with microscopic vi-
sualization is used for many purposes including tumor iden-
tification, tumor classification, cell enumeration as well as
biomarker detection and quantification. Nearly all IHC
stained slides for clinical care are analyzed and reported qual-
itatively or semi-quantitatively by diagnostic pathologists.
By creating a multitask deep learning framework referred
to as DeepLIIF, we are providing a unified solution to nu-
clear segmentation and quantification of IHC stained slides.
DeepLIIF is automated and does not require annotations.
In contrast, most commercial platforms use a time-intensive
workflow for IHC quantification which involves user-guided
(a) IHC-DAB deconvolution, (b) nuclei segmentation of
hematoxylin channel, (c) threshold setting for the brown
DAB stain, and (d) cell classification based on the threshold.
We present a simpler workflow; given an IHC input, we gen-
erate different modalities along with the segmented/classified
cell masks. Our multitask deep learning framework per-
forms IHC quantification in one process and does not require
error-prone IHC deconvolution or manual thresholding steps.
We use a single optimizer for all generators and discrimina-

tors that improves performance of all tasks simultaneously.
Unique to this model, DeepLIIF is trained by generating reg-
istered mpIF, IHC and hematoxylin staining data from the
same slide with the inclusion of nuclear envelope staining to
assist in accurate segmentation of adjacent and overlapping
nuclei.
Formulating the problem as cell instance segmenta-
tion/classification rather than a detection problem helps us
to move beyond the reliance on crowd counting algorithms
and towards more precise boundary delineation (semantic
segmentation) and classification algorithms. DeepLIIF was
trained for multi-organ, stain invariant determination of nu-
clear boundaries and classification of subsequent single cell
nuclei as positive or negative for Ki67 staining detected
with the 3,3’-Diaminobenzidine (DAB) chromogen. Subse-
quently, we determined that DeepLIIF accurately classified
all tested nuclear antigens as positive or negative.
Surprisingly, DeepLIIF is often capable of accurate cell clas-
sification of non-nuclear staining patterns using CD3, CD8,
BCL2, PDL1 and CD10. We believe the success of the
DeepLIIF classification of non-nuclear markers is at least in
part dependent on the the location of the chromogen depo-
sition. BCL2 and CD10 protein staining often shows cyto-
plasmic chromogen deposition close to the nucleus and CD3
and CD8 most often stain small lymphocytes with scant cyto-
plasm whereby the chromogen deposition is physically close
to the nucleus. DeepLIIF is slightly less accurate in clas-
sifying PDL1 staining (Extended Data Figure 5) and, no-
tably, PDL1 staining is more often membranous staining of
medium to large cells such as tumor cells and monocyte-
derived cell lineages where DAB chromogen deposition is
physically further from the nucleus. Since DeepLIIF was not
trained for non-nuclear classification, we anticipate that fur-
ther training using non-nuclear markers will rapidly improve
their classification with DeepLIIF.
We have purposely assessed the performance of DeepLIIF
for the detection of proteins currently reported semi-
quantitatively by pathologists with the goal of facilitating
transition to quantitative reporting. We anticipate further ex-
tension of this work to include validation of DeepLIIF on
all markers in which more accurate, quantitative reporting
would be clinically useful. Additional studies will also com-
pare nuclear biomarker reporting for commonly used thera-
peutic targets such as ER, PR and AR. We will also assess
the usability of Ki67 quantification in tumors with more un-
usual morphologic features such as sarcomas. The approach
will also be extended to handle more challenging membra-
nous/cytoplasmic markers such as PDL1, Her2, etc. Fi-
nally, we will incorporate additional mpIF tumor and im-
mune markers into DeepLIIF for more precise phenotypic
IHC quantification such as for distinguishing PDL1 expres-
sion within tumor vs. macrophage populations.
This work provides a universal, multitask model for both seg-
menting nuclei in IHC images and recognizing and quantify-
ing positive and negative nuclear staining. Importantly, we
describe a modality where training data from higher-cost and
higher-dimensional multiplex imaging platforms improves
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Fig. 4. (a) A segmentation mask showing CD3/CD8+ cells, along with a visual segmentation and classification accuracy. Predicted CD3/CD8+ cells are shown in red color,
and the hue is set using the log2 of the ratio between the predicted area and ground-truth area. Cells with too large areas are shown in dark colors, and cells with too small
areas are shown in a light color. For example, if the model correctly classifies a cell as CD3/CD8+, but the predicted cell area is too large, the cell is colored in dark red. If
there is no cell in the ground-truth mask corresponding to a predicted cell, the predicted cell is shown in yellow, which means that the cell is missegmented (no corresponding
ground-truth cell in the segmented cell area). (b) The accuracy of the segmentation and classification is measured by getting average of Dice score, Pixel Accuracy, and
IOU (intersection over union) between the predicted segmentation mask of CD3/CD8 and the ground-truth mask of the corresponding cells (0 indicates no agreement and
100 indicates perfect agreement). Evaluation of all scores show that DeepLIIF outperforms all state-of-the-art models. (c) As mentioned earlier, DeepLIIF generalizes across
different tissue types and imaging platforms. Two example images from the NuClick Dataset (32) along with the modalities and classified segmentation masks generated by
DeepLIIF are shown in the top rows where the ground-truth mask and quantitative segmentation masks of DeepLIIF and state-of-the-art models are shown in the second
row. The mean IOU and Pixel Accuracy are given for each generated mask. (d) Randomly chosen samples from the LYON19 challenge dataset (27). The top row shows the
IHC image and the bottom row shows the classified segmentation mask generated by DeepLIIF. In the mask, the blue color shows the boundary of negative cells and the red
color shows the boundary of positive cells.
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the interpretability of more widely-used and lower-cost IHC.

Methods

A. Training Data. To train DeepLIIF, we used a dataset of
lung and bladder tissues containing IHC, hematoxylin, mpIF
DAPI, mpIF Lap2, and mpIF Ki67 of the same tissue scanned
using ZEISS Axioscan. These images were scaled and co-
registered with the fixed IHC images using affine transfor-
mations, resulting in 1667 registered sets of IHC images and
the other modalities of size 512×512. We randomly selected
709 sets for training, 358 sets for validation, and 600 sets for
testing the model.
Ground-truth Classified Segmentation Mask. To create
the ground-truth segmentation mask for training and testing
our model, we used our interactive deep learning ImPartial
annotations framework (35). Given mpIF DAPI images and
few cell annotations, this framework auto-thresholds and per-
forms cell instance segmentation for the entire image. Using
this framework, we generated nuclear segmentation masks
for each registered set of images with precise cell boundary
delineation. Finally, using the mpIF Ki67 images in each set,
we classified the segmented cells in the segmentation mask,
resulting in 9180 Ki67 positive cells and 59000 Ki67 nega-
tive cells. Examples of classified segmentation masks from
the ImPartial framework are shown in Figures 1 and 3. The
white boundary around the cells are generated by ImPartial,
and the cells are classified into red (positive) and blue (neg-
ative) using the corresponding mpIF Ki67 image. If a seg-
mented cell has any representation in the mpIF Ki67 image,
we classify it as positive (red color), otherwise, we classify it
as negative (blue color).

B. Objective. Given a dataset of IHC+Ki67 RGB images,
our objective is to train a model f(.) that maps an input image
to four individual modalities, including Hematoxylin chan-
nel, mpIF DAPI, mpIF Lap2, and mpIF Ki67 images, and
using the mapped representations, generate the segmentation
mask. We present a framework, as shown in Figure 6 that
performs two tasks simultaneously. First, the translation task
translates the IHC+Ki67 image into four different modali-
ties for clinical interpretability as well as for segmentation.
Second, a segmentation task generates a single classified seg-
mentation mask from the IHC input and three of the inferred
modalities by applying a weighted average and coloring cell
boundaries green, positive cells red, and negative cells blue.
We use cGANs to generate the modalities and the segmenta-
tion mask. cGANs are made of two distinct components, a
generator and a discriminator. The generator learns a map-
ping from the input image x to output image y, G : x→ y.
The discriminator learns to the paired input and output of the
generator from the paired input and ground truth result. We
define eight generators to produce four modalities and seg-
mentation masks that cannot be distinguished from real im-
ages by eight adversarially trained discriminators (trained to
detect fake images from the generators).
Translation. Generators Gt1 , Gt2 , Gt3 , and Gt4 produce
hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67 im-

ages from the input IHC image, respectively (Gti : xi→ yi,
where i = 1,2,3,4). The discriminator Di is responsible for
discriminating generated images by generators Gti . The ob-
jective of the conditional GAN for the image translator tasks
are defines as follows:

LtGAN (Gti ,Dti) = Ex,yi [logDti(x,yi)]
+Ex,yi [log(1−Dti(x,Gti(x)))]

(1)

We use smooth L1 loss (Huber loss) to compute the error be-
tween the predicted value and the true value, since it is less
sensitive to outliers compared to L2 loss and prevents explod-
ing gradients while minimizing blur (36, 37). It is defined as:

LL1(G) = Ex,y[smoothL1(y−G(x))] (2)

where

smoothL1(a) =
{

0.5a2 if |a|< 0.5
|a|−0.5 otherwise

(3)

The objective loss function of the translation task is:

LT (Gt,Dt) =
∑
i=1∼5

LtGAN (Gti ,Dti)+LL1(Gti) (4)

Segmentation/Classification. The segmentation component
consists of four generators GS1 , GS2 , GS3 , and GS4 pro-
ducing four individual segmentation masks from the real
IHC Ki67 image, generated hematoxylin image (Gt1 ), gen-
erated mpIF DAPI (Gt2 ), and generated mpIF Lap2 (Gt3 ),
GSi

=: zi→ ysi where i = 1,2,3,4. The final segmentation
mask of GS generator is created by averaging the four gener-
ated segmentation masks by GSi

using pre-defined weights,
S(zi) =

∑4
n=1 wsi×GSi

(zi), where wsi are the pre-defined
weights. The discriminators DSi

are responsible for discrim-
inating generated images by generators GSi

.
In this task, we use LSGAN loss function, since it solves the
problem of vanishing gradients for the segmented pixels on
the correct side of the decision boundary, but far from the
real data, resulting in a more stable boundary segmentatin
learning process. We define the objective of the conditional
GAN for segmentation/classification task as follows:

LsGAN (DS) =
∑
i=1∼4

(1
2Ezi,ysi

[(DSi
(zi,ysi)−1)2]

+ 1
2Ezi,ysi

[(DSi
(zi,S(zi)))2])

LsGAN (S) =
∑
i=1∼4

1
2Ezi,ysi

[(DSi
(zi,S(zi))−1)2]

(5)

For this task, we also use smooth L1 loss. The objective loss
function of the segmentation/classification task is:

LS(S,DS) = LsGAN (S,DS)+LL1(S) (6)

Final Objective. The final objective is:

L(Gt,Dt,S,DS) = LT (Gt,Dt)
+LS(S,DS)

(7)
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C Generator

Fig. 5. Examples of tissues stained with various markers. The top box shows sample tissues stained with BCL2, BCL6, CD10, MYC, and MUM1 from DLBCL-morph
dataset (34). The bottom box shows sample images stained with TP53 marker from the Human Protein Atlas (33). In each row, the first image on the left shows the original
tissue stained with a specific marker. The quantification score computed by the classified segmentation mask generated by DeepLIIF is shown on the top of the whole tissue
image, and the predicted score by pathologists is shown on the bottom. In the following images of each row, the modalities and the classified segmentation mask of a chosen
crop from the original tissue are shown.

C. Generator. We use two different types of generators,
ResNet-9blocks generator for producing modalities and U-
Net generator for creating segmentation mask.

C.1. ResNet-9blocks Generator. The generators responsible
for generating modalities including hematoxylin, mpIF DAPI

and mpIF Lap2 starts with a convolution layer and a
batch normalization layer followed by Rectified Linear Unit
(ReLU) activation function, 2 downsampling layers, 9 resid-
ual blocks, 2 upsampling layers, and a covolutional layer fol-
lowed by a tanh activation function. Each residual block
consists of two convolutional layers with the same number
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Fig. 6. Overview of DeepLIIF. The network consists of a generator and a discriminator component. It uses ResNet-9block generator for generating the modalities including
Hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67 and UNet512 generator for generating the segmentation mask. In the segmentation component, the generated
masks from IHC, Hematoxylin, mpIF DAPI, and mpIF Lap2 representations are averaged with pre-defined weights to create the final segmentation mask. The discriminator
component consists of the modalities discriminator module and segmentation discriminator module.

of output channels. Each convolutional layer in the residual
block is followed by a batch normalization layer and a ReLU
activation function. Then, these convolution operations are
skipped and the input is directly added before the final ReLU
activation function.

C.2. U-Net Generator. For generating the segmentation
masks, we use the generator proposed by (37), using the gen-
eral shape of U-Net (38) with skip connections. The skip
connections are added between each layer i and layer n− i
where n is the total number of layers. Each skip connection
concatenates all channels at layer i with those at layer n− i.

D. Markovian discriminator (PatchGAN). To address
high-frequencies in the image, we use a PatchGAN discrim-
inator that only penalizes structure at the scale of patches. It

classifies each N ×N patch in an image as real or fake. We
run this fully convolutional discriminator across the image,
averaging all responses to provide the final output of D.

E. Optimization. To optimize our network, we use the same
standard approach as (21), alternating between one gradient
descent step on D and one step on G. In all defined tasks
(translation, classification, and segmentation), the network
generates different representations for the same cells in the
input meaning all tasks have the same endpoint. Therefore,
we use a single optimizer for all generators and a single opti-
mizer for all discriminators. Using this approach, optimizing
the parameters of a task with a more clear representation of
cells improves the accuracy of other tasks since all these tasks
are optimized simultaneously.
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Extended Data Fig. 1. Qualitative and quantitative analysis of DeepLIIF against detection models on the testing set of the BC Data (20). (a) An example IHC image from
the BC Data testing set, the generated modalities, segmentation mask overlaid on the IHC image, and the detection mask generated by DeepLIIF. (b) The detection masks
generated by the detection models. In the detection mask, the center of a detected positive cell is shown with red dot and the center of a detected negative cell is shown with
blue dot. We show the missing positive cells in cyan bounding boxes, the missing negative cells in yellow bounding boxes, the wrongly detected positive cells in blue bounding
boxes, the wrongly detected negative cells in pink bounding boxes. (c) The detection accuracy is measured by getting average of precision ( T P

T P +F P ), recall ( T P
T P +F N ), and

f1-score ( 2×precision×recall
precision+recall ) between the predicted detection mask of each class and the ground-truth mask of the corresponding class. A predicted point is regarded as

true positive if it is within the region of a ground-truth point with a predefined radius (we set it to 10 pixels in our experiment which is similar to the predefined radius in (20)).
Centers that have been detected more than once are considered as false positive. Evaluation of all scores show that DeepLIIF outperforms all state-of-the-art models.
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Colon (99.41%) Kidney (95.92%) Liver (98.70%)

Placenta (76.47%) Skin (96.74%) Spleen (99.98%)

Lymph Node (99.86%) Lung (98.57%) Testis (95.59%)

Pancreas (99.50%)

Extended Data Fig. 2. LAP2beta coverage for normal tissues. LAP2beta immunohistochemistry reveals nuclear envelope-specific staining in the majority of cells in spleen
(99.98%), colon (99.41%), pancreas (99.50%), placenta (76.47%), testis (95.59%), skin (96.74%), lung (98.57%), liver (98.70%), kidney (95.92%) and lymph node (99.86%).
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Extended Data Fig. 3. (a) A qualitative comparison of DeepLIIF against noLap2 model. (b) Some example IHC images. The first image in each row shows the input IHC
image. In the second image, the generated mpIF Lap2 image is overlaid on the classified/segmented IHC image. The third and fourth images show the segmentation mask,
respectively, generated by DeepLIIF and noLap2.
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Extended Data Fig. 4. Microscope Snapshot for IHC Ki67.

Extended Data Fig. 5. Microscopic Snapshot for IHC PDL1.
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Extended Data Fig. 6. Some examples from LYON19 Challenge Dataset (27). The generated modalities and classified segmentation mask for each sample are shown in a
separate box.
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Extended Data Fig. 7. Some examples from LYON19 Challenge Dataset (27). The generated modalities and classified segmentation mask for each sample are shown in a
separate box.
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Extended Data Fig. 8. Some examples from LYON19 Challenge Dataset (27). The generated modalities and classified segmentation mask for each sample are shown in a
separate box.
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Extended Data Fig. 9. Some sample tissues stained with BCL2 marker from DLBCL-morph Dataset (34). In each row, the original IHC tissue image is shown on the left
side, and the corresponding segmentation mask is shown on the right side.
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Extended Data Fig. 10. Some sample tissues stained with BCL6 marker from DLBCL-morph Dataset (34). In each row, the original IHC tissue image is shown on the left
side, and the corresponding segmentation mask is shown on the right side.
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Extended Data Fig. 11. Some sample tissues stained with CD10 marker from DLBCL-morph Dataset (34). In each row, the original IHC tissue image is shown on the left
side, and the corresponding segmentation mask is shown on the right side.
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Extended Data Fig. 12. Some sample tissues stained with MUM1 marker from DLBCL-morph Dataset (34). In each row, the original IHC tissue image is shown on the left
side, and the corresponding segmentation mask is shown on the right side.

22 | bioRχiv Ghahremani et al. | DeepLIIF

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.01.442219doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442219


E Optimization

Extended Data Fig. 13. Some sample tissues stained with MYC marker from DLBCL-morph Dataset (34). In each row, the original IHC tissue image is shown on the left
side, and the corresponding segmentation mask is shown on the right side.
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