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Reporting biomarkers assessed by routine immunohistochemi-
cal (IHC) staining of tissue is broadly used in diagnostic pathol-
ogy laboratories for patient care. To date, clinical reporting is
predominantly qualitative or semi-quantitative. By creating a
multitask deep learning framework referred to as DeepLIIF, we
present a single-step solution to stain deconvolution/separation,
cell segmentation, and quantitative single-cell IHC scoring.
Leveraging a unique de novo dataset of co-registered IHC
and multiplex immunofluorescence (mpIF) staining of the same
slides, we segment and translate low-cost and prevalent IHC
slides to more expensive-yet-informative mpIF images, while si-
multaneously providing the essential ground truth for the super-
imposed brightfield IHC channels. Moreover, a new nuclear-
envelop stain, LAP2beta, with high (>95%) cell coverage is
introduced to improve cell delineation/segmentation and pro-
tein expression quantification on IHC slides. By simultaneously
translating input IHC images to clean/separated mpIF chan-
nels and performing cell segmentation/classification, we show
that our model trained on clean IHC Ki67 data can general-
ize to more noisy and artifact-ridden images as well as other
nuclear and non-nuclear markers such as CD3, CD8, BCL2,
BCL6, MYC, MUM1, CD10, and TP53. We thoroughly evaluate
our method on publicly available benchmark datasets as well
as against pathologists’ semi-quantitative scoring. The code,
the pre-trained models, along with easy-to-run containerized
docker files as well as Google CoLab project are available at
https://github.com/nadeemlab/deepliif.
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Introduction

The assessment of protein expression using immunohisto-
chemical staining of tissue sections on glass slides is criti-
cal for guiding clinical decision-making in several diagnos-
tic clinical scenarios, including cancer classification, residual
disease detection, and even mutation detection (BRAFV600E
and NRASQ61R). Standard brightfield chromogenic IHC
staining, while high throughput, has a narrow dynamic
range and results in superimposed channels with high chro-
mogen/stain overlap, requiring specialized digital stain de-
convolution/separation, e.g. (1), as an essential preprocess-
ing step in both state-of-the-art research as well as commer-

cial IHC quantification algorithms. Stain deconvolution is an
open problem requiring extensive hyper-parameter tuning (on
per-case basis) or (highly-error prone and time consuming)
manual labeling of different cell types (2, 3), but still results
in sub-optimal color separation in regions of high chromogen
overlap.
As opposed to standard brightfield IHC staining, multiplex
immunofluorescence (mpIF) staining provides the opportu-
nity to examine panels of several markers individually (with-
out requiring stain deconvolution) or simultaneously as a
composite permitting accurate co-localization, stain stan-
dardization, more objective scoring, and cut-offs for all the
markers’ values (especially in low-expression regions, which
are difficult to assess on IHC stained slides and can be
misconstrued as negative due to weak staining that can be
masked by the hematoxylin counterstain) (4, 5). Moreover, in
a recent meta-analysis (6), mpIF was shown to have a higher
diagnostic prediction accuracy (at par with multimodal cross-
platform composite approaches) than IHC scoring, tumor
mutational burden, or gene expression profiling. However,
mpIF assays are expensive and not widely available. This
can lead to a unique opportunity to leverage the advantages of
mpIF to improve the explainability and interpretability of the
conventional IHCs using recent deep learning breakthroughs.
Current deep learning methods for scoring IHCs rely solely
on the error-prone manual annotations (unclear cell bound-
aries, overlapping cells, and challenging assessment of
low-expression regions) rather than on co-registered high-
dimensional imaging of the same tissue samples (that can
provide essential ground truth for the superimposed bright-
field IHC channels). Therefore, we present a new mul-
titask deep learning algorithm that leverages a unique co-
registered IHC and mpIF training data of the same slides
to simultaneously translate low-cost/prevalent IHC images to
high-cost and more informative mpIF representations (cre-
ating a Deep-Learning-Inferred IF image), accurately auto-
segment relevant cells, and quantify protein expression for
more accurate and reproducible IHC quantification; using
multitask learning (7) to train models to perform a variety
of tasks rather than one narrowly defined task makes them
more generally useful and robust. Specifically, once trained,
DeepLIIF takes only IHC image as input (e.g., Ki67 protein
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IHC as a brown Ki67 stain with standard hematoxylin nu-
clear counterstain) and completely bypassing stain deconvo-
lution, produces/generates corresponding hematoxylin, mpIF
nuclear (DAPI), mpIF protein (e.g., Ki67), mpIF LAP2Beta
(a new nuclear envelop stain with > 95% cell coverage to
better separate touching/overlapping cells) channels and seg-
mented/classified cells (e.g., Ki67+ and Ki67- cell masks
for estimating Ki67 proliferation index which is an impor-
tant clinical prognostic metric across several cancer types), as
shown in Figure 1. Moreover, DeepLIIF trained just on clean
IHC Ki67 images generalizes to more noisy and artifact-
ridden images as well as other nuclear and non-nuclear mark-
ers such as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10,
and TP53. Example IHC images stained with different mark-
ers along with the DeepLIIF inferred modalities and seg-
mented/classified nuclear masks are also shown in Figure 1.
In essence, DeepLIIF presents a single-step solution to stain
deconvoluion, cell segmentation, and quantitative single-cell
IHC scoring. Additionally, our co-registered mpIF data, for
the first time, creates an orthogonal dataset to confirm and
further specify the target brightfield IHC staining character-
istics.

Results
In this section, we evaluate the performance of DeepLIIF on
cell segmentation and classification tasks. We evaluated the
performance of our model and other state-of-the-art methods
using pixel accuracy (PixAcc) computed from the number of
true positives, TP, false positives, FP and false negatives, FN,
as TP

TP+FP+FN , Dice Score as 2×TP
2×TP+FP+FN , and IOU as

the class-wise intersection over the union. We compute these
metrics for each class, including negative and positive, and
compute the average value of both classes for each metric. A
pixel is counted as TP if it is segmented and classified cor-
rectly. A pixel is considered FP if it is falsely segmented as
the foreground of the corresponding class. A pixel is counted
as FN if it is falsely detected as the background of the corre-
sponding class. For example, assuming the model segments
a pixel as a pixel of a negative cell (blue), but in the ground-
truth mask, it is marked as positive (red). Since there is
no corresponding pixel in the foreground of the ground-truth
mask of the negative class, it is considered FP for the negative
class and FN for the positive class, as there is no marked cor-
responding pixel in the foreground of the predicted mask of
the positive class. We also evaluate our model against other
methods using Aggregated Jaccard Index (AJI) which is an

object-level metric (8), defined as ΣN
i=1|Gi∩P i

M |
ΣN

i=1|Gi∪P i
M
|+ΣF ∈U |PF |

.

Considering that the goal is an accurate interpretation of IHC
staining results, we compute the difference between the IHC
quantification percentage of the predicted mask and the real
mask, as shown in Figure 2.
To compare our model with state-of-the-art models, we use
three different datasets. 1) We evaluate all models on our in-
ternal test set, including 600 images of size 512× 512 and
40x magnification from bladder carcinoma and non-small
cell lung carcinoma slides. 2) We randomly selected and

segmented 41 images of size 640× 640 from recently re-
leased BCDataset (9) which contains Ki67 stained sections of
breast carcinoma from scanned whole slide images with man-
ual Ki67+ and Ki67- cell centroid annotations (targeting cell
detection as opposed to cell instance segmentation task), cre-
ated from consensus of 10 pathologists. We split these tiles
into 164 images of size 512× 512; the test set varies widely
in the density of tumor cells and the Ki67 index. 3) We also
tested our model and others on a publicly available CD3 and
CD8 IHC NuClick Dataset (10). We used the training set of
BC Dataset containing 671 IHC patches of size 256× 256,
extracted from LYON19 dataset (11). LYON19 (11) is a
Grand Challenge to provide a dataset and an evolution plat-
form to benchmark existing algorithms for lymphocyte de-
tection in IHC stained specimens. The dataset contains IHC
images of breast, colon, and prostate stained with an antibody
against CD3 or CD8.

Trained on clean lung and bladder images stained with
Ki67 marker, DeepLIIF generalizes well to other markers.
We trained state-of-the-art segmentation networks, including
FPN (12), LinkNet (13), Mask_RCNN (14), Unet++ (15),
and nnU-Net (16) on our training set (described in Section
Training Data) using the IHC images as the input and gen-
erating the colored segmentation mask representing normal
cells and lymphocytes. DeepLIIF outperformed previous
models trained and tested on the same data on all three met-
rics. We trained and tested all models on a desktop with an
NVIDIA Quadro RTX 6000 GPU, which was also used for
all implementations.

We compare the DeepLIIF model’s performance against
state-of-the-art models on the test set obtained from BC-
Dataset (9). The results were analyzed both qualitatively and
quantitatively, as shown in Figure 2. All models are trained
and validated on the same training set as the DeepLIIF model.

Application of DeepLIIF to the BC Dataset resulted in a
pixel accuracy of 94.18%, Dice score of 68.15%, IOU of
53.20%, AJI of 53.48%, and IHC quantification difference of
6.07%, and outperformed Mask_RCNN with pixel accuracy
of 91.95%, IOU of 66.16%, Dice Score of 51.16%, AJI of
52.36% , and IHC quantification difference of 8.42%, nnUnet
with pixel accuracy of 89.24%, Dice Score of 58.69%, IOU
of 43.44%, AJI of 41.31%, and IHC quantification differ-
ence of 9.84%, UNet++ with pixel accuracy of 87.99%, Dice
Score of 54.91%, IOU of 39.47%, AJI of 32.53%, and IHC
quantification difference of 36.67%, LinkNet with pixel accu-
racy of 88.59%, Dice score of 33.64%, IOU of 41.63%, AJI
of 33.64%, and IHC quantification difference of 21.57%, and
FPN with pixel accuracy of 85.78%, Dice score of 52.92%,
IOU of 38.04%, AJI of 27.71%, and IHC quantification dif-
ference of 17.94%, while maintaining lower standard devia-
tion on all metrics. We also performed a significance test to
show that DeepLIIF significantly outperforms other models.
As mentioned earlier, all models are trained and tested on the
exact same dataset, meaning that the data is paired. There-
fore, we perform a paired Wilcoxon rank-sum test, where
a p-value of 5% or lower is considered statistically signifi-
cant. All tests are two-sided, and the assumption of normally
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Figure 1. Overview of DeepLIIF pipeline and sample input IHCs (different brown/DAB markers – BCL2, BCL6, CD10, CD3/CD8, Ki67) with corresponding DeepLIIF-generated
hematoxylin/mpIF modalities and classified (positive (red) and negative (blue) cell) segmentation masks. (a) Overview of DeepLIIF. Given an IHC input, our multitask deep
learning framework simultaneously infers corresponding Hematoxylin channel, mpIF DAPI, mpIF protein expression (Ki67, CD3, CD8, etc.), and the positive/negative protein
cell segmentation, baking explainability and interpretability into the model itself rather than relying on coarse activation/attention maps. In the segmentation mask, the red
cells denote cells with positive protein expression (brown/DAB cells in the input IHC), whereas blue cells represent negative cells (blue cells in the input IHC). (b) Example
DeepLIIF-generated hematoxylin/mpIF modalities and segmentation masks for different IHC markers. DeepLIIF, trained on clean IHC Ki67 nuclear marker images, can
generalize to noisier as well as other IHC nuclear/cytoplasmic marker images.
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distributed data was tested using a Shapiro-Wilk test. The
computed p-values of all metrics show that DeepLIIF signif-
icantly outperforms the state-of-the-art models.
We used pixel-level accuracy metrics for the primary eval-
uation, as we are formulating the IHC quantification prob-
lem as cell instance segmentation/classification. However,
since DeepLIIF is capable of separating the touching nu-
clei, we also performed a cell-level analysis of DeepLIIF
against cell centroid detection approaches. U−CSRNet (9),
for example, detects and classifies cells without perform-
ing cell instance segmentation. Most of these approaches
use crowd-counting techniques to find cell centroids. The
major hurdle in evaluating these techniques is the vari-
ance in detected cell centroids. We trained FCRN_A (17),
FCRN_B (17), Deeplab_Xeption (18), SC_CNN (19), CSR-
Net (20), U−CSRNet (9) using our training set (the centroids
of our individual cell segmentation masks are used as detec-
tion masks). Most of these approaches failed in detecting and
classifying cells on the BCData testing set, and the rest de-
tected centroids far from the ground-truth centroids. As a re-
sult, we resorted to comparing the performance of DeepLIIF
(trained on our training set) with these models trained on
the training set of the BCDataset and tested on the testing
set of the BCData. As shown in Exteneded Data Figure 1,
even though our model was trained on a completely different
dataset from the testing set, it has better performance than
the detection models that were trained on the same training
set of the test dataset. The results show that, unlike DeepLIIF,
the detection models are not robust across different datasets,
staining techniques, and tissue/cancer types.
As was mentioned earlier, our model generalizes well to seg-
ment/classify cells stained with different markers, includ-
ing CD3/CD8. We compare the performance of our trained
model against other trained models on the training set of the
NuClick dataset (21). The comparative analysis is shown in
Figure 3. The DeepLIIF model outperformed other mod-
els on segmenting and classifying CD3/CD8+ cells (tumor-
infiltrating lymphocytes or TILs) on all three metrics.
We also evaluated the quality of the inferred modalities us-
ing mean squared error (MSE) (the average squared differ-
ence between the synthetic image and the actual image) and
Structural Similarity Index (SSIM) (the similarity between
two image). As shown in the Extended Data Figure 2, based
on these metrics, DeepLIIF generates highly-realistic images.
In this figure, We further visualized the first two components
of PCA applied to the feature vectors of synthetic and real im-
ages, calculated by the VGG16 model and then applied PCA
on the calculated feature vectors. The results show that the
synthetic image data points have the same distribution as the
real image data points, confirming that the generated images
by the model have the same characteristics as the real images.
Original/real and DeepLIIF-Inferred modality images of two
samples taken from Bladder and Lung tissues are also shown
side-by-side with SSIM and MSE scores.
We also tested DeepLIIF on IHC images stained with eight
other markers acquired with different scanners and staining
protocols. Our testing set includes (1) nine IHC snapshots

from a digital microscope stained with Ki67 and PDL1 mark-
ers (two examples shown in Extended Data Figure 8), (2)
testing set of LYON19 (11) containing 441 IHC CD3/CD8
breast, colon, and prostate ROIs (no annotations) with vari-
ous staining/tissue artifacts from 8 different institutions (Fig-
ure 3(c), and Extended Data Figure 9), (3) PathoNet IHC
Ki67 breast cancer dataset (22), containing manual centroid
annotations created from consensus of multiple pathologists,
acquired in low-resource settings with microscope camera
(Extended Data Figure 7), (4) Human Protein Atlas (23) IHC
Ki67 (Figure 5) and TP53 images (Extended Data Figure 10),
and (5) DLBCL-Morph dataset (24) containing IHC tissue-
microarrays for 209 patients stained with BCL2, BCL6,
CD10, MYC, MUM1 markers (Extended Data Figure 10.)
We visualized the structure of the testing dataset by apply-
ing t-distributed stochastic neighbor embedding (t-SNE) to
the image styles tested on DeepLIIF in Figure 4. We first
extracted the features from each image using the VGG16
model, and applied principal component analysis (PCA) to
reduce the number of dimensions in the feature vectors. Next,
we visualize the image data points based on the extracted fea-
ture vectors using t-SNE. As shown in Figure 4, DeepLIIF is
able to adapt to images with various resolutions, color and
intensity distributions, and magnifications captured in differ-
ent clinical settings, and successfully segment and classify
the heterogeneous collection of aforementioned testing sets
covering eight different IHC markers.
We have also evaluated the performance of DeepLIIF with
and without LAP2beta and found the segmentation per-
formance of DeepLIIF with LAP2beta better than without
LAP2beta (Extended Data Figure 4). LAP2beta is a nu-
clear envelope protein broadly expressed in normal tissues.
In Extended Data Figure 3, LAP2beta immunohistochem-
istry reveals nuclear envelope-specific staining in the major-
ity of cells in spleen (99.98%), colon (99.41%), pancreas
(99.50%), placenta (76.47%), testis (95.59%), skin (96.74%),
lung (98.57%), liver (98.70%), kidney (95.92%) and lymph
node (99.86%). Placenta syncytiotrophoblast does not stain
with LAP2beta, and the granular layer of skin does not show
LAP2beta expression. However, the granular layer of skin
lacks nuclei and is therefore not expected to express nu-
clear envelope proteins. We also observe a lack of consistent
Lap2beta staining in the smooth muscle of blood vessel walls
(not shown).
DeepLIIF which is solely trained on IHC images stained
with Ki67 marker was also tested on H&E images from the
MonuSeg Dataset (8). As shown in Extended Data Figure 5,
DeepLIIF (out-of-the-box without being trained on H&E im-
ages) was able to infer high-quality mpIF modalities and cor-
rectly segment the nuclei in these images.

Discussion
Assessing IHC stained tissue sections is a widely utilized
technique in diagnostic pathology laboratories worldwide.
IHC-based protein detection in tissue with microscopic visu-
alization is used for many purposes, including tumor identifi-
cation, tumor classification, cell enumeration, and biomarker
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Figure 2. Qualitative and quantitative analysis of DeepLIIF against state-of-the-art semantic segmentation models tested on BC Dataset (9). (a) Three example images
from our training set. (b) A segmentation mask showing Ki67- and Ki67+ cell representation, along with a visual segmentation and classification accuracy. Predicted classes
are shown in different colors where blue represents Ki67- and red represents Ki67+ cells, and the hue is set using the log2 of the ratio between the predicted area and
ground-truth area. Cells with too large areas are shown in dark colors, and cells with too small areas are shown in a light color. For example, if the model correctly classifies
a cell as Ki67+, but the predicted cell area is too large, the cell is colored in dark red. If there is no cell in the ground-truth mask corresponding to a predicted cell, the
predicted cell is shown in yellow, which means that the cell is misclassified (cell segmented correctly but classified wrongly) or missegmented (no cell in the segmented
cell area). (c) The accuracy of the segmentation and classification is measured by getting the average of Dice score, Pixel Accuracy, absolute value of IHC Quantification
difference between the predicted segmentation mask of each class and the ground-truth mask of the corresponding class (0 indicates no agreement and 100 indicates perfect
agreement). Evaluation of all scores shows that DeepLIIF outperforms all state-of-the-art models. (d) As mentioned earlier, DeepLIIF generalizes across different tissue types
and imaging platforms. Two example images from the BC Dataset (9) along with the inferred modalities and generated classified segmentation masks are shown in the top
rows where the ground-truth mask and segmentation masks of five state-of-the-art models are shown in the second row. The mean IOU and Pixel Accuracy are given for
each model in the box below the image.

Ghahremani et al. | DeepLIIF bioRχiv | 5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.05.01.442219doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442219


Figure 3. Qualitative and quantitative analysis of DeepLIIF against state-of-the-art semantic segmentation models tested on NuClick Dataset (21) and four sample images
from the LYON19 challenge dataset (11). (a) A segmentation mask showing CD3/CD8+ cells, along with a visual segmentation and classification accuracy. Predicted
CD3/CD8+ cells are shown in red color, and the hue is set using the log2 of the ratio between the predicted area and ground-truth area. Cells with too large areas are shown
in dark colors, and cells with too small areas are shown in a light color. For example, if the model correctly classifies a cell as CD3/CD8+, but the predicted cell area is too
large, the cell is colored in dark red. If there is no cell in the ground-truth mask corresponding to a predicted cell, the predicted cell is shown in yellow, which means that the cell
is missegmented (no corresponding ground-truth cell in the segmented cell area). (b) The accuracy of the segmentation and classification is measured by getting the average
of Dice score, Pixel Accuracy, and IOU (intersection over union) between the predicted segmentation mask of CD3/CD8 and the ground-truth mask of the corresponding cells
(0 indicates no agreement and 100 indicates perfect agreement). Evaluation of all scores shows that DeepLIIF outperforms all state-of-the-art models. (c) As mentioned
earlier, DeepLIIF generalizes across different tissue types and imaging platforms. Two example images from the NuClick Dataset (21) along with the modalities and classified
segmentation masks generated by DeepLIIF, are shown in the top rows where the ground-truth mask and quantitative segmentation masks of DeepLIIF and state-of-the-art
models are shown in the second row. The mean IOU and Pixel Accuracy are given for each generated mask. (d) Randomly chosen samples from the LYON19 challenge
dataset (11). The top row shows the IHC image, and the bottom row shows the classified segmentation mask generated by DeepLIIF. In the mask, the blue color shows the
boundary of negative cells, and the red color shows the boundary of positive cells.
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Figure 4. The t-SNE plot of tested IHC markers on DeepLIIF. The structure of the testing dataset is visualized by applying t-SNE to the image styles tested on DeepLIIF.
The IHC protein markers in the tested datasets were embedded using t-SNE. Each point represents an IHC image of its corresponding marker. Randomly chosen example
images of each marker are shown around the t-SNE plot. The black circle shows the cluster of training images. The distribution of data points shows that DeepLIIF is able to
adapt to images with various resolutions, color and intensity distributions, and magnifications captured in different clinical settings, and successfully segment and classify the
heterogeneous collection of testing sets covering eight different IHC markers.

detection and quantification. Nearly all IHC stained slides for
clinical care are analyzed and reported qualitatively or semi-
quantitatively by diagnostic pathologists.

Several approaches have been proposed for deep learning-
based stain-to-stain translation of unstained (label-free),
H&E, IHC, and multiplex slides, but relatively few at-
tempts have been made (in limited contexts) at leveraging
the translated enriched feature set for cellular-level segmen-
tation, classification or scoring (25, 26). Recently, Liu et
al. (27) used publicly available fluorescence microscopy and
histopathology H&E datasets for unsupervised nuclei seg-
mentation in histopathology images by learning from fluo-
rescence microscopy DAPI images. However, their pipeline
incorporated CycleGAN, which hallucinated (28) nuclei in
the target histopathology domain and hence, required seg-
mentation masks in the source domain to remove any redun-
dant or unnecessary nuclei in the target domain. The model
was also not generalizable across the two target histopathol-
ogy datasets due to the stain variations, making this unsuper-
vised solution less suitable for inferring different cell types
from given H&E or IHC images. Burlingame et al. (29)
on the other hand, used supervised learning trained on H&E
and co-registered single-channel pancytokeratin IF for four
pancreatic ductal adenocarcinomas (PDAC) patients to in-
fer pancytokeratin stain for given PDAC H&E image. An-
other work (30) used a supervised learning method trained
on H&E, and co-registered IHC PHH3 DAB slides for mi-
tosis detection in H&E breast cancer WSIs. Recently, Haan

et al. (31) used co-registered H&E and special stains for kid-
ney needle core biopsy sections to translate given H&E im-
age to special stains. In essence, there are methods to trans-
late between H&E and IHC but none for translating between
IHC and mpIF modalities. To focus on immediate clinical
application, we want to accentuate/disambiguate the cellu-
lar information in low-cost IHCs (using a higher-cost and
more informative mpIF representation) to improve the inter-
pretability for pathologists as well as for the downstream
analysis/algorithms.

By creating a multitask deep learning framework referred to
as DeepLIIF, we provide a unified solution to nuclear seg-
mentation and quantification of IHC stained slides. DeepLIIF
is automated and does not require annotations. In contrast,
most commercial platforms use a time-intensive workflow
for IHC quantification, which involves user-guided (a) IHC-
DAB deconvolution, (b) nuclei segmentation of hematoxylin
channel, (c) threshold setting for the brown DAB stain, and
(d) cell classification based on the threshold. We present a
simpler workflow; given an IHC input, we generate different
modalities along with the segmented/classified cell masks.
Our multitask deep learning framework performs IHC quan-
tification in one process and does not require error-prone IHC
deconvolution or manual thresholding steps. We use a single
optimizer for all generators and discriminators that improves
the performance of all tasks simultaneously. Unique to this
model, DeepLIIF is trained by generating registered mpIF,
IHC, and hematoxylin staining data from the same slide with

Ghahremani et al. | DeepLIIF bioRχiv | 7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.05.01.442219doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442219


Figure 5. IHC quantification of four cancer type images taken from Protein Atlas IHC Ki67 dataset. In each row, a sample is shown along with the inferred modalities and the
classified segmentation mask. The demographic information of the patient and the details about the staining, along with the manual protein score and the predicted score by
DeepLIIF are reported next to each sample.

the inclusion of nuclear envelope staining to assist in accurate
segmentation of adjacent and overlapping nuclei.

Formulating the problem as cell instance segmenta-
tion/classification rather than a detection problem helps us
to move beyond the reliance on crowd counting algorithms

and towards more precise boundary delineation (semantic
segmentation) and classification algorithms. DeepLIIF was
trained for multi-organ, stain invariant determination of nu-
clear boundaries and classification of subsequent single-cell
nuclei as positive or negative for Ki67 staining detected
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with the 3,3’-Diaminobenzidine (DAB) chromogen. Subse-
quently, we determined that DeepLIIF accurately classified
all tested nuclear antigens as positive or negative.
Surprisingly, DeepLIIF is often capable of accurate cell clas-
sification of non-nuclear staining patterns using CD3, CD8,
BCL2, PDL1, and CD10. We believe the success of the
DeepLIIF classification of non-nuclear markers is at least
in part dependent on the location of the chromogen depo-
sition. BCL2 and CD10 protein staining often show cyto-
plasmic chromogen deposition close to the nucleus, and CD3
and CD8 most often stain small lymphocytes with scant cyto-
plasm whereby the chromogen deposition is physically close
to the nucleus. DeepLIIF is slightly less accurate in clas-
sifying PDL1 staining (Extended Data Figure 8) and, no-
tably, PDL1 staining is more often membranous staining of
medium to large cells such as tumor cells and monocyte-
derived cell lineages where DAB chromogen deposition is
physically further from the nucleus. Since DeepLIIF was not
trained for non-nuclear classification, we anticipate that fur-
ther training using non-nuclear markers will rapidly improve
their classification with DeepLIIF.
DeepLIIF, handling of H&E images (Extended Data Fig-
ure 5), was the most pleasant surprise where the model
out-of-the-box learnt to even separate the H&E images into
hematoxylin and (instead of mpIF protein marker) eosin
stains. The nuclei segmentations were highly precise. This
opens up lot of interesting avenues where we can potentially
drive whole slide image registration of neighboring H&E and
IHC sections (32) by converting these to a common domain
(clean mpIF DAPI images) and then performing deformable
image registration.
For IHC images, we have purposely assessed the perfor-
mance of DeepLIIF for the detection of proteins currently
reported semi-quantitatively by pathologists with the goal of
facilitating the transition to quantitative reporting if deemed
appropriate. We anticipate the further extension of this work
to assess the usability of Ki67 quantification in tumors with
more unusual morphologic features such as sarcomas. The
approach will also be extended to handle more challenging
membranous/cytoplasmic markers such as PDL1, Her2, etc
as well as H&E and multiplex IHC staining (without requir-
ing any manual/weak annotations for different cell types (3)).
Finally, we will incorporate additional mpIF tumor and im-
mune markers into DeepLIIF for more precise phenotypic
IHC quantification such as for distinguishing PDL1 expres-
sion within tumor vs. macrophage populations.
This work provides a universal, multitask model for both seg-
menting nuclei in IHC images and recognizing and quantify-
ing positive and negative nuclear staining. Importantly, we
describe a modality where training data from higher-cost and
higher-dimensional multiplex imaging platforms improves
the interpretability of more widely-used and lower-cost IHC.

Methods
Training Data. To train DeepLIIF, we used a dataset of
lung and bladder tissues containing IHC, hematoxylin, mpIF
DAPI, mpIF Lap2, and mpIF Ki67 of the same tissue scanned

using ZEISS Axioscan (see Supplementary Materials for
more details on staining protocol). These images were scaled
and co-registered with the fixed IHC images using affine
transformations, resulting in 1667 registered sets of IHC im-
ages and the other modalities of size 512×512. We randomly
selected 709 sets for training, 358 sets for validation, and 600
sets for testing the model.

Ground-truth Classified Segmentation Mask. To create
the ground-truth segmentation mask for training and testing
our model, we used our interactive deep learning ImPartial
annotations framework (33). Given mpIF DAPI images and
few cell annotations, this framework auto-thresholds and per-
forms cell instance segmentation for the entire image. Using
this framework, we generated nuclear segmentation masks
for each registered set of images with precise cell boundary
delineation. Finally, using the mpIF Ki67 images in each set,
we classified the segmented cells in the segmentation mask,
resulting in 9180 Ki67 positive cells and 59000 Ki67 nega-
tive cells. Examples of classified segmentation masks from
the ImPartial framework are shown in Figures 1 and 2. The
green boundary around the cells are generated by ImPartial,
and the cells are classified into red (positive) and blue (neg-
ative) using the corresponding mpIF Ki67 image. If a seg-
mented cell has any representation in the mpIF Ki67 image,
we classify it as positive (red color), otherwise, we classify it
as negative (blue color).

Objective. Given a dataset of IHC+Ki67 RGB images, our
objective is to train a model f(.) that maps an input image to
four individual modalities, including Hematoxylin channel,
mpIF DAPI, mpIF Lap2, and mpIF Ki67 images, and using
the mapped representations, generate the segmentation mask.
We present a framework, as shown in Figure 6 that performs
two tasks simultaneously. First, the translation task translates
the IHC+Ki67 image into four different modalities for clin-
ical interpretability as well as for segmentation. Second, a
segmentation task generates a single classified segmentation
mask from the IHC input and three of the inferred modalities
by applying a weighted average and coloring cell boundaries
green, positive cells red, and negative cells blue.

We use cGANs to generate the modalities and the segmenta-
tion mask. cGANs are made of two distinct components, a
generator and a discriminator. The generator learns a map-
ping from the input image x to output image y, G : x→ y.
The discriminator learns to the paired input and output of the
generator from the paired input and ground truth result. We
define eight generators to produce four modalities and seg-
mentation masks that cannot be distinguished from real im-
ages by eight adversarially trained discriminators (trained to
detect fake images from the generators).

Translation. Generators Gt1 , Gt2 , Gt3 , and Gt4 produce
hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67 im-
ages from the input IHC image, respectively (Gti : xi→ yi,
where i = 1,2,3,4). The discriminator Di is responsible for
discriminating generated images by generators Gti . The ob-
jective of the conditional GAN for the image translator tasks
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Figure 6. Overview of DeepLIIF. The network consists of a generator and a discriminator component. It uses ResNet-9block generator for generating the modalities
including Hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67 and UNet512 generator for generating the segmentation mask. In the segmentation component, the generated
masks from IHC, Hematoxylin, mpIF DAPI, and mpIF Lap2 representations are averaged with pre-defined weights to create the final segmentation mask. The discriminator
component consists of the modalities discriminator module and segmentation discriminator module.

are defines as follows:

LtGAN (Gti ,Dti) = Ex,yi [logDti(x,yi)]
+Ex,yi [log(1−Dti(x,Gti(x)))]

(1)

We use smooth L1 loss (Huber loss) to compute the error be-
tween the predicted value and the true value, since it is less
sensitive to outliers compared to L2 loss and prevents explod-
ing gradients while minimizing blur (34, 35). It is defined as:

LL1(G) = Ex,y[smoothL1(y−G(x))] (2)

where

smoothL1(a) =
{

0.5a2 if |a|< 0.5
|a|−0.5 otherwise

(3)

The objective loss function of the translation task is:

LT (Gt,Dt) =
∑
i=1∼5

LtGAN (Gti ,Dti)+λLL1(Gti) (4)

where λ controls the relative importance of two objectives.

Segmentation/Classification. The segmentation component
consists of five generators GS1 , GS2 , GS3 , GS4 , and GS5
producing five individual segmentation masks from the orig-
inal IHC, inferred hematoxylin image (Gt1 ), inferred mpIF
DAPI (Gt2 ), inferred mpIF Lap2 (Gt3 ), and inferred mpIF
marker (Gt4 ), GSi

=: zi→ ysi where i= 1,2,3,4,5. The fi-
nal segmentation mask is created by averaging the five gener-
ated segmentation masks by GSi

using pre-defined weights,
S(zi) =

∑5
n=1wsi×GSi

(zi), wherewsi are the pre-defined
weights. The discriminators DSi

are responsible for discrim-
inating generated images by generators GSi

.

In this task, we use LSGAN loss function, since it solves the
problem of vanishing gradients for the segmented pixels on
the correct side of the decision boundary, but far from the
real data, resulting in a more stable boundary segmentation
learning process. We define the objective of the conditional
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GAN for segmentation/classification task as follows:

LsGAN (DS) =
∑
i=1∼5

(1
2Ezi,ysi

[(DSi
(zi,ysi)−1)2]

+ 1
2Ezi,ysi

[(DSi
(zi,S(zi)))2])

LsGAN (S) =
∑
i=1∼5

1
2Ezi,ysi

[(DSi
(zi,S(zi))−1)2]

(5)

For this task, we also use smooth L1 loss. The objective loss
function of the segmentation/classification task is:

LS(S,DS) = LsGAN (S,DS)+λLL1(S) (6)

Final Objective. The final objective is:

L(Gt,Dt,S,DS) = LT (Gt,Dt)
+LS(S,DS)

(7)

Generator. We use two different types of generators,
ResNet-9blocks generator for producing modalities and U-
Net generator for creating segmentation mask.

ResNet-9blocks Generator. The generators responsible for
generating modalities including hematoxylin, mpIF DAPI
and mpIF Lap2 starts with a convolution layer and a
batch normalization layer followed by Rectified Linear Unit
(ReLU) activation function, 2 downsampling layers, 9 resid-
ual blocks, 2 upsampling layers, and a covolutional layer fol-
lowed by a tanh activation function. Each residual block
consists of two convolutional layers with the same number
of output channels. Each convolutional layer in the residual
block is followed by a batch normalization layer and a ReLU
activation function. Then, these convolution operations are
skipped and the input is directly added before the final ReLU
activation function.

U-Net Generator. For generating the segmentation masks, we
use the generator proposed by (35), using the general shape
of U-Net (36) with skip connections. The skip connections
are added between each layer i and layer n− i where n is the
total number of layers. Each skip connection concatenates all
channels at layer i with those at layer n− i.

Markovian discriminator (PatchGAN). To address high-
frequencies in the image, we use a PatchGAN discriminator
that only penalizes structure at the scale of patches. It classi-
fies eachN×N patch in an image as real or fake. We run this
fully convolutional discriminator across the image, averaging
all responses to provide the final output of D.

Optimization. To optimize our network, we use the same
standard approach as (37), alternating between one gradient
descent step on D and one step on G. In all defined tasks
(translation, classification, and segmentation), the network
generates different representations for the same cells in the
input meaning all tasks have the same endpoint. Therefore,
we use a single optimizer for all generators and a single opti-
mizer for all discriminators. Using this approach, optimizing

the parameters of a task with a more clear representation of
cells improves the accuracy of other tasks since all these tasks
are optimized simultaneously.

Synthetic Data Generation. We found that our model con-
sistently failed in regions with dense clusters of IHC positive
cells due to the absence of similar characteristics in our train-
ing data. To infuse more information about the clustered pos-
itive cells into our model, we developed a novel GAN-based
model for the synthetic generation of IHC images using co-
registered data. The model takes as input Hematoxylin chan-
nel, mpIF DAPI image, and the segmentation mask and gen-
erates the corresponding IHC image (Extended Data Figure
6). The model converts the Hematoxylin channel to grayscale
to infer more helpful information such as the texture and
discard unnecessary information such as color. The Hema-
toxylin image guides the network to synthesize the back-
ground of the IHC image by preserving the shape and tex-
ture of the cells and artifacts in the background. The DAPI
image assists the network in identifying the location, shape,
and texture of the cells to better isolate the cells from the
background. The segmentation mask helps the network spec-
ify the color of cells based on the type of the cell (positive
cell: a brown hue, negative: a blue hue). In the next step, we
generated synthetic IHC images with more clustered positive
cells. To do so, we change the segmentation mask by choos-
ing a percentage of random negative cells in the segmentation
mask (called Neg-to-Pos) and converting these into positive
cells. We synthesized new IHC images by setting Neg-to-
Pos to 50%, 70%, and 90%. DeepLIIF was retrained with
the new dataset, containing original images and these synthe-
sized ones, which resulted in improvement of Dice score by
6.57%, IOU by 7.08%, AJI by 5.53%, and Pixel Accuracy by
2.49%.

Training Details. We train our model from scratch, using a
learning rate of 0.0002 for 100 epochs, and linearly decay
the rate to zero over the next 100 epochs. The weights were
initialized from a Gaussian distribution N (0, 0.02). We set
λ = 100 to give more weight to L1 loss. We used batch nor-
malization in our main model. Adam solver (38) was used
with a batch size of 1. We use Tree-structured Parzen Esti-
mator (TPE) for hyperparameter optimization, and chose the
L1 loss (Least Absolute Deviations) as the evaluation met-
ric to be minimized. We compute the L1 loss for the seg-
mentation mask generated by the model and try to minimize
the L1 loss using the TPE approach. We optimized various
hyperparameters, including the network generator architec-
ture, the discriminator architecture, the number of layers in
the discriminator while using layered architecture, the num-
ber of filters in the generator and discriminator, normaliza-
tion method, initialization method, learning rate, and learn-
ing policy, λ, and the GAN loss function, segmentation mask
generators weights with diverse options for each of them.
Based on the hyperparameter optimization, the following pre-
defined weights (wsi) were set for individual modalities to
generate the final segmentation mask: weight of segmenta-
tion mask generated by original IHC image (ws1)= 0.25,
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Hematoxylin channel (ws2)= 0.15, mpIF DAPI (ws3) =
0.25, mpIF Lap2 (ws4)= 0.1, and mpIF protein marker im-
age (ws5)= 0.25. The cell type (positive or negative) is clas-
sified using the original IHC image (where brown cells are
positive and blue cells are negative) and the mpIF protein
marker image (which only shows the positive cells). There-
fore, to have enough information on the cell types, these two
representations are assigned 50% of the total weight with
equal contribution. The mpIF DAPI image contains the rep-
resentation of the cell where the background and artifacts are
removed. Since this representation has the most useful in-
formation on the cell shape, area, and boundaries, it was as-
signed 25% of the total weight in creating the segmentation
mask. The mpIF Lap2 image is generated from the mpIF
DAPI image and it contains only the boundaries on the cells.
Even though it has more than 90% coverage, it still misses
out on cells, hence 15% of the total weight makes sense. With
this weightage, we can be sure that if there is any confusing
information in the mpIF DAPI image, it does not get infused
into the model by a large weight. Also, by giving less weight
to the Lap2, we increase the final segmentation probability of
the cells not covered by Lap2. The Hematoxylin image has
all the information, including the cells with lower intensities,
the artifacts, and the background. Since this image shares
the background and artifacts information with the IHC im-
age and the cell information with the mpIF DAPI image, it
is given less weight to decrease the probability of artifacts
being segmented and classified as cells.

One of the challenges in GANs is the instability of its train-
ing. We used spectral normalization, a weight normalization
technique, to stabilize the training of the discriminator (39).
Spectral normalization stabilizes the training of discrimina-
tors in GANs by re-scaling the weight tensor with spectral
norm σ of the weight matrix calculated using the power iter-
ation method. If the dimension of the weight tensor is greater
than 2, it is reshaped to 2D in the power iteration method
to get the spectral norm. We first trained the model using
spectral normalization on the original dataset. The spec-
tral normalization could not significantly improve the per-
formance of the model. The original model achieved Dice
score of 61.57%, IOU 46.12%, AJI 47.95% and Pixel Ac-
curacy 91.69% whereas the model with spectral normaliza-
tion achieved a Dice score of 61.57%, IOU of 46.17%, AJI
of 48.11% and Pixel Accuracy of 92.09%. In another ex-
periment, we trained the model with spectral normalization
on our new dataset containing original as well as the gen-
erated synthetic IHC images. The Dice score, IOU, and
Pixel accuracy of the model trained using spectral normal-
ization dropped from 68.15% to 65.14%, 53.20% to 51.15%,
and 94.20% to 94.18%, respectively, while the AJI improved
from 53.48% to 56.49%. As the results show, the addition of
the synthetic images in training improved the model’s perfor-
mance across all metrics.

To increase the inference speed of the model, we also
experimented with many-to-one approach for segmenta-
tion/classification task to decrease the number of generators
to one. In this approach, we still have four generators and

four discriminators for inferring the modalities but use one
generator and one discriminator (instead of five) for segmen-
tation/classification task, trained on the combination of all
inferred modalities. We first trained this model with the orig-
inal dataset. Compared to the original model with five seg-
mentation generators, the Dice score, IOU, AJI, and Pixel
Accuracy dropped by 12.13%, 10.21%, 12.45%, and 3.66%,
respectively. In another experiment, we trained the model
with one segmentation generator on the new dataset includ-
ing synthetic images. Similar to the previous experiment,
using one generator instead of five independent generators
deteriorated the model’s performance in terms of Dice score
by 7%, IOU by 6.49%, AJI by 3.58%, and Pixel Accuracy
by 0.98%. We observed that similar to the original model,
the addition of synthetic IHC images in the training pro-
cess with one generator could increase the Dice score from
49.44% to 61.13%, the IOU from 35.91% to 46.71%, the AJI
from 35.50% to 49.90%, and Pixel Accuracy from 88.03 to
93.22%, while reducing the performance drop, compared to
the original model; this was still significantly less than the
best performance from the multi-generator configuration, as
shown above, Dice score 68.15%, IOU 53.20%, AJI 53.48%,
and Pixel Accuracy 94.20%.

Testing Details. The inference time of the model for a patch
of 512× 512 is 4 seconds. To infer modalities and segment
an image larger than 512× 512, we tile the image into over-
lapping patches. The tile size and overlap size can be given
by the user as an input to the framework. The patches con-
taining no cells are ignored in this step, improving the infer-
ence time. Then, we run the tiles through our model. The
model resizes the given patches to 512 for inference. In the
final step, we stitch tiles using the given overlap size to cre-
ate the final inferred modalities and the classified segmenta-
tion mask. It takes about 10 to 25 minutes (depending on
the percentage of cell-containing region, the WSI magnifi-
cation level, user-selected tile size and overlap size) to infer
the modalities and the classified segmentation mask of a WSI
with size of 10000×10000 with 40x magnification.

Ablation Study. DeepLIIF infers four modalities to compute
the segmentation/classification mask of an IHC image. We
perform an ablation study on each of these four components.
The goal of this experiment is to investigate if the perfor-
mance improvements are due to the increased ability of each
task-specific network to share their respective features. In
each experiment, we trained our model with three modali-
ties, each time removing a modality to study the accuracy of
the model in absence of that modality. We tested all mod-
els on the BC Dataset of 164 images with size 512× 512.
The results show that the original model (with all modalities)
with Dice score 65.14%, IOU 51.15%, AJI 56.49% and Pixel
Accuracy of 94.20% outperforms the model without Hema-
toxylin modality with Dice score 62.86%, IOU 47.68%, AJI
50.10% and Pixel Accuracy 92.43%, model without mpIF
DAPI with Dice score 62.45%, IOU 47.13%, AJI 50.38% and
Pixel Accuracy 92.35%, model without mpIF Lap2 with Dice
score 61.07%, IOU 45.71%, AJI 49.14%, and Pixel Accuracy
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92.16%, and model without mpIF protein marker with Dice
score 57.92%, IOU 42.91%, AJI 47.56%, and Pixel Accuracy
91.81%. The mpIF Lap2 is important for splitting overlap-
ping cells and detecting boundaries (the model without mpIF
Lap2 has the lowest AJI score). Moreover, mpIF Lap2 is the
only modality among the four that clearly outlines the cells
in regions with artifacts or noise. The model without mpIF
protein marker image has the worst Pixel Accuracy and Dice
score, showing its clear importance in cell classification. The
mpIF DAPI image guides the model in predicting the loca-
tion of the cells, given the drop in Pixel Accuracy and AJI
score. Hematoxylin image on the other hand seems to make
the least difference when removed, though it helps visually
(according to two trained pathologists) by providing a sep-
arated hematoxylin channel from the IHC (Hematoxylin +
DAB) input.

Data Availability
The complete IHC Ki67 BCDataset with manual annota-
tions is available at https://sites.google.com/
view/bcdataset. Complete lymphocytes detection
IHC CD3/CD8 (LYON challenge) dataset is available
at https://zenodo.org/record/3385420#
.XW-6JygzYuW. The NuClick IHC annotations for crops
from the LYON19 dataset can be found at https://
warwick.ac.uk/fac/sci/dcs/research/tia/
data/nuclick/ihc_nuclick.zip. DLBCL-Morph
dataset with BCL2, BCL6, MUM1, MYC, and CD10 IHCs
is accessible at https://stanfordmedicine.box.
com/s/ub8e0wlhsdenyhdsuuzp6zhj0i82xrb1.
The high-res tiff images for TP53 IHCs can be down-
loaded from https://www.proteinatlas.org/
ENSG00000141510-TP53. All our internal training
and testing data (acquired under the IRB protcol approval
#16-1683), and source data underlying figures (in excel files)
along with the pretrained models are available at https:
//zenodo.org/record/4751737#.YV379XVKhH4.

Code Availability
All code was implemented in Python using PyTorch as
the primary deep learning package. All code and scripts
to reproduce the experiments of this paper are available
at https://github.com/nadeemlab/DeepLIIF
and releases are available at https://doi.org/10.
5281/zenodo.5553268. For convenience, we have
also included docker file as well as Google CoLab Demo
project (in case someone does not have access to a GPU
and wants to run their images directly via the CoLab
project). The Google CoLab project can be accessed at
https://colab.research.google.com/drive/
12zFfL7rDAtXfzBwArh9hb0jvA38L_ODK?usp=
sharing.
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Extended Data Figure 1. Qualitative and quantitative analysis of DeepLIIF against detection models on the testing set of the BC Data (9). (a) An example IHC image from
the BC Data testing set, the generated modalities, segmentation mask overlaid on the IHC image, and the detection mask generated by DeepLIIF. (b) The detection masks
generated by the detection models. In the detection mask, the center of a detected positive cell is shown with red dot and the center of a detected negative cell is shown with
blue dot. We show the missing positive cells in cyan bounding boxes, the missing negative cells in yellow bounding boxes, the wrongly detected positive cells in blue bounding
boxes, the wrongly detected negative cells in pink bounding boxes. (c) The detection accuracy is measured by getting average of precision ( T P

T P +F P ), recall ( T P
T P +F N ), and

f1-score ( 2×precision×recall
precision+recall ) between the predicted detection mask of each class and the ground-truth mask of the corresponding class. A predicted point is regarded as

true positive if it is within the region of a ground-truth point with a predefined radius (we set it to 10 pixels in our experiment which is similar to the predefined radius in (9)).
Centers that have been detected more than once are considered as false positive. Evaluation of all scores show that DeepLIIF outperforms all state-of-the-art models.
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Extended Data Figure 2. Quantitative and qualitative analysis of DeepLIIF on modality inference. (a) The Quantitative analysis of the synthetic data against the real data
using MSE, SSIM, Inception Score, and FID. The low value of MSE (close to 0) and the high value of SSIM (close to 1) shows that the model generates high quality synthetic
images similar to real images. (b) Visualization of first two components of PCA applied to synthetic and real images. We first, calculated a feature vector for each image
using VGG16 model and then we applied PCA on the calculated feature vectors and visualized the first two components. As shown in the figure, the synthetic image data
points have the same distribution as the real image data points, showing that the generated images by the model have the same characteristics as the real images. (c) The
original/real and model-inferred modalities of two samples taken from Bladder and Lung tissues are shown side-by-side.
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Colon (99.41%) Kidney (95.92%) Liver (98.70%)

Placenta (76.47%) Skin (96.74%) Spleen (99.98%)

Lymph Node (99.86%) Lung (98.57%) Testis (95.59%)

Extended Data Figure 3. LAP2beta coverage for normal tissues. LAP2beta immunohistochemistry reveals nuclear envelope-specific staining in the majority of cells in spleen
(99.98%), colon (99.41%), pancreas (99.50%), placenta (76.47%), testis (95.59%), skin (96.74%), lung (98.57%), liver (98.70%), kidney (95.92%) and lymph node (99.86%).
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Extended Data Figure 4. Qualitative and quantitative analysis of DeepLIIF against the same model without using mpIF Lap2, referred to as noLap2 model. (a) A qualitative
comparison of DeepLIIF against noLap2 model. (b) Some example IHC images. The first image in each row shows the input IHC image. In the second image, the generated
mpIF Lap2 image is overlaid on the classified/segmented IHC image. The third and fourth images show the segmentation mask, respectively, generated by DeepLIIF and
noLap2.
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Extended Data Figure 5. Application of DeepLIIF on some H&E sample images taken from MonuSeg Dataset (8). We tested DeepLIIF, trained solely on IHC images stained
with Ki67 marker, on H&E images. In each row, the inferred modalities and the segmentation mask overlaid on the original H&E sample are shown.
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Extended Data Figure 6. Overview of synthetic IHC image generation. (a) A training sample of the IHC-generator model. (b) Some samples of synthesized IHC images
using the trained IHC-Generator model. The Neg-to-Pos shows the percentage of the negative cells in the segmentation mask converted to positive cells.
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Extended Data Figure 7. Samples taken from the PathoNet IHC Ki67 breast cancer dataset (22) along with the inferred modalities and classified segmentation mask marked
by manual centroid annotations created from consensus of multiple pathologists. The IHC images were acquired in low-resource settings with microscope camera. In each
row, the sample IHC image along with the inferred modalities are shown. The overlaid classified segmentation mask generated by DeepLIIF with manual annotations are
shown in the furthest right column. The blue and red boundaries represent the negative and positive cells predicted by the model, while the pink and yellow dots show the
manual annotations of the negative and positive cells, respectively.
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(a) Microscope Snapshot for IHC Ki67 with inferred modalities and generated classified segmentation mask.

(b) Microscopic snapshots for IHC PDL1 with inferred modalities and generated classified segmentation mask.

Extended Data Figure 8. Microscopic snapshots of IHC images stained with two different markers along with inferred modalities and generated classified segmentation
mask.
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Extended Data Figure 9. Some examples from LYON19 Challenge Dataset (11). The generated modalities and classified segmentation mask for each sample are in a
separate row.
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Extended Data Figure 10. Examples of tissues stained with various markers. The top box shows sample tissues stained with BCL2, BCL6, CD10, MYC, and MUM1 from
DLBCL-morph dataset (24). The bottom box shows sample images stained with TP53 marker from the Human Protein Atlas (23). In each row, the first image on the left
shows the original tissue stained with a specific marker. The quantification score computed by the classified segmentation mask generated by DeepLIIF is shown on the top
of the whole tissue image, and the predicted score by pathologists is shown on the bottom. In the following images of each row, the modalities and the classified segmentation
mask of a chosen crop from the original tissue are shown.
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