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Abstract 

Accurate and early detection of peripheral white blood cell anomalies plays a crucial role in 

the evaluation of an individual's well-being. The emergence of new technologies such as 

artificial intelligence can be very effective in achieving this. In this regard, most of the state-

of-the-art methods use deep neural networks. Data can significantly influence the performance 

and generalization power of machine learning approaches, especially deep neural networks. To 

that end, we collected a large free available dataset of white blood cells from normal peripheral 

blood samples called Raabin-WBC. Our dataset contains about 40000 white blood cells and 

artifacts (color spots). To reassure correct data, a significant number of cells were labeled by 

two experts, and the ground truth of nucleus and cytoplasm were extracted by experts for some 

cells (about 1145), as well. To provide the necessary diversity, various smears have been 

imaged. Hence, two different cameras and two different microscopes were used. The Raabin-

WBC dataset can be used for different machine learning tasks such as classification, detection, 

segmentation, and localization. We also did some primary deep learning experiments on 

Raabin-WBC, and we showed how the generalization power of machine learning methods, 

especially deep neural networks, was affected by the mentioned diversity. 
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Introduction 

The issue of precise and early diagnosis is the most important step in the medical treatment 

process. According to the World Health Organization, about 2 billion people currently do not 

have access to basic medical and pharmaceutical services [1]. In the meantime, laboratory tests 

play an essential role in the diagnosis and treatment of the diseases. It is estimated that about 

70% of the decisions related to the diagnosis and treatment of the disease, as well as the 

discharge and admission of a patient, rely on the results of laboratory tests [2]. In this regard, 

the differential count of white blood cells is one of the common laboratory tests necessary to 

be considered in various diseases such as blood disorders (such as leukemia, anemia, 

polycythemia, etc.) and immune system related diseases (such as autoimmune anemias, allergy. 

etc.) and are of utmost significance [3].  

 White blood cells called leukocytes fall into two groups of phagocytes and lymphocytes. 

While phagocytes comprise cells of the innate immune system and function rapidly after 

infection, lymphocytes mediate the acquired immune response. Phagocytes, themselves, can 

be divided into granulocytes (neutrophils, basophils, and eosinophils) and monocytes. In Table 

1[4] and Figure 1, you can see the characteristics and images of the five categories of white 

blood cells, respectively. Table 2 [5], also, shows some examples of the diseases that occur 

with an increase or decrease in the number of white blood cells. For example, in allergic 

diseases, one of the types of white blood cells (specifically basophils) increases, or in blood 

malignancies, we can see an increase in the number of precursors of blood cells and changes 

in their shape and size. Therefore, determining the correct type and number of white blood cells 

is very important for diagnosing various diseases.  

Table 1. Characteristics of white blood cells [4].  

Size (μm) Cytoplasm Nucleus % in 

blood 

WBCs 

12-16 Pale pink to tan with pink-

purple granules 

Divided into 2 to 5 segments 

and stains dark purple 

(multi-lobed nucleus) 

60% Neutrophils 

14-16 Full of pale pink tan with 

large orange and red 

granules 

Blue and is divided inti 2 

segments 

3% Eosinophils 

14-16 Pale pink-tan but contains 

large purple/blue-black 

granules obscure nucleus 

Have 2 lobes that stains 

purple and is difficult to see 

1% Basophils 

14-20 Stain a blue-gray color 

with” ground glass” 

cytoplasm with tiny 

granules, Vacuoles are 

sometimes present. 

Have singular nucleus 

(convoluted shape) kidney 

shaped, bean shaped or 

horseshoe shaped with deep 

indentation 

6% Monocytes 

8-15 Little to no cytoplasm 

with pale blue in color. 

Occasional purple-reddish 

granules 

Have large, round or oval, 

dark staining nucleus. 

30% Lymphocytes 
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Figure 1. Five types of white blood cells in normal peripheral blood 

 

At present, manual (microscopic evaluation) and automated methods (using automatic 

hematology devices) are used to evaluate blood cells. Automated methods include devices 

which evaluate blood cells based on light scattering or electrical impedance such as Sysmex 

XP-300, Nihon Kohden Blood Cell Counter, and DH36 3-Part Auto Hematology Analyzer. 

In electro-optical analyzers, a light-sensing detector measures the optical scattering. The 

size of the detected pulses corresponds to the size of the blood cells. Furthermore, in electrical 

impedance or Coulter principle cell counter, the passage of cells through an aperture in which 

an electric current is applied causes change in electrical resistance and is counted as voltage 

pulse. Pulses the height of which corresponds to the volume of the cell are counted, and this is 

considered as the basis of Coulter's principle working [4]. 

 One of the serious drawbacks of these devices apart from their high cost is  the simple act 

of counting cells without them being evaluated qualitatively from a structural and 

morphological point of view. As a result, after evaluating the blood sample by the mentioned 

cell counters, it is necessary to prepare a smear and evaluate it microscopically by the 

laboratory staff in order to achieve an accurate and correct diagnosis.  

Table 2. White blood cells alterations and related different diseases [5]. 

Decrease Increase White Blood Cell 

AIDS, Influenza, Sepsis, Aplastic Anemia Acute $ Chronic Leukemia, Hypersensitivity 

reaction, Viral infection 

Lymphocyte 

Aplastic Anemia, Hairy cell leukemia, Acute 

infections 

Autoimmune disease, Fungal and Protozoan 

infection 

Monocyte 

Chediak-Higashi syndrome, Kostmman 

syndrome, Autoimmune Neutropenia 

Chronic inflammation, Infection Neutrophil 

Cushing syndrome, Shock or trauma driven 

stress 

Allergic reaction, Parasitic infection, Malignancy Eosinophil 

Hyperthyroidism & Acute infections Leukemias Basophil 

 

On the other hand, issues such as lack of specialists and laboratory equipment, heavy 

workload, inexperience, and incorrect diagnosis affect the test results. Incorrect diagnosis 

affects the treatment regime, and consequently, can result in incorrect treatment and increase  

the associated costs. However, the use of new technologies such as artificial intelligence and 

image processing allows quantitative and qualitative evaluation to improve the quality of 

diagnosis [6].  

Over the past 20 years, the techniques for automated imaging of the blood-stained slides 

have been introduced by computer-connected microscopes capable of assessing blood cell 

morphology. With the development of technology, implementing modern machine learning 

techniques (such as neural networks) and image processing, companies such as Cellavision, 

Westmedica, Siemens, etc. have made it possible to differentiate count of normal from 
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abnormal blood cells [7]. In fact, today, deep neural networks are one of the most widely used 

machine learning methods for classification and segmentation of the medical images. Shahin, 

A et al. [8] used DNN in order to classify white blood cells. In addition, these networks are 

used for the classification of the red blood cells to detect a sickle cell anemia [9]. Deep neural 

networks are also used for segmentation of the pancreas in the CT scan images [10,11] and 

segmentation of the MRI images [7]. 

Data have the most important role to play in the development of machine learning models. 

In order to train deep neural networks and increase their generalizability, we need a lot of 

diverse precise data and confident labels. The process of labeling medical data should be 

carried out by professionals and is, therefore, a time consuming and challenging procedure. As 

a result, medical databases are of high significance in smartening medical diagnoses. 

Unfortunately, researchers, today, have limited access to a variety of medical data for various 

reasons. Examples of available medical image databases are [12] and [13]. The database [12] 

contains 82 3D CT scans in which the Grand Truth of pancreas for all slices were manually 

extracted by medical students and finalized by a specialist radiologist. Camelyon [13] is 

another dataset with 1399 whole-slide images (WSIs) of the lymph node smear samples with 

and without metastases, which was evaluated twice. 

The morphological diversity of white blood cells is very high and in some cases, it is very 

challenging, even for an expert, to distinguish some classes from each other. On the other hand, 

many artificial intelligence articles have adopted two approaches to evaluate their proposed 

method regarding segmentation and classification of white blood cells: They have either 

collected small databases to the best of their ability [14, 15, 16, and 17] or used the small 

databases available [18, 19, and 20]. Therefore, a database with a large amount of diverse data 

and reliable labelling is truly necessary to evaluate and compare different methods with each 

other. Such a reference database will allow more artificial intelligence scientists to enter the 

field and will help the advancement of intelligence differentiation of white blood cells. The 

most important characteristics of the Raabin-WBC dataset that distinguishes it from similar 

datasets are as follows: 

 Large number of data: We tried to collect as much data as possible for each class in 

order for them to be appropriate for all machine learning techniques, especially deep 

learning. (Approximately 40,000 white blood cell images) 

 Precise labels: We considered more detailed labels than five types of white blood cells. 

In fact, labels contain the most important subgroup of each type. For example, we 

considered the meta and band which are subgroups of neutrophils and are valuable in 

respect of diagnosis. In the next section, more information about the labels will be 

presented. 

 Double labeling: For more insurance, most of the cells are labeled by two experts.  

 Free public access: Since we aim at helping the development of AI in hematology, the 

Raabin-WBC dataset is freely available for all. 

 Data cleaning: In the process of data collection, the existence of duplicate cell images 

is not inevitable. The first problem is that the duplicate cell images are not exactly the 

same. For example, there is a possibility of the cell being somewhat moved. The second 

issue is that having more than two versions of one cell image is also possible. Hence, 

we developed a fast graph-based image processing method that can accurately remove 
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as many duplicate cells as possible. Despite this, it is still probable for some duplicate 

images to exist, albeit being significantly different. 

 The nucleus and cytoplasm ground truth: The ground truth of the nucleus and 

cytoplasm are extracted for 1145 selected cells. In order to extract the nucleus ground 

truth, we developed a software which uses image processing tricks to make the ground 

truth extraction process much easier. 

 Diversity of the microscope and camera: Although most of the data were collected 

by a fixed type of microscope and camera, we collected some data with another type of 

camera and microscope, as well. In the section of experiments, you will see how new 

test data help to evaluate the generalization power of our trained models. In other words, 

the diversity of the dataset assists us in selecting a model that has correctly learned the 

manifold of cell images. 

The rest of the paper is as follows: In section 2, we will elaborate more on the details regarding 

the dataset. In section 3, the data collection process will be explained completely. In section 4, 

we will do some machine learning experiments and discuss the generalization power of the 

models. 

The characteristics of Raabin-WBC  

In this section, more information is provided about the Raabin-WBC dataset. About 73 

peripheral blood films were used for collecting this dataset. After imaging stained blood films, 

we tried to mine the most possible useful information from raw data. For instance, the bounding 

box of all white blood cells and artifacts were extracted, cropped and labeled, successively. It 

is worth noting that a significant number of WBCs and artifacts were labeled by two experts. 

Furthermore, we provided the ground truth of the nucleus and cytoplasm for some of the 

cropped cells. The full details of the data collection steps are explained in section 3. In table 3, 

some general and useful information of the Raabin-WBC dataset is provided. Note that these 

numbers have been computed after cleaning phase. 

Table 3. Raabin-WBC information table. 

Number of all films (smear) 73 

Number of CML films 1 

Number of normal-anemia films 2 

Number of normal-eosinophilia films 2 

Number of normal films 68 

Number of microscopic large images 20936 

Number of bounding boxes (including WBCs and 

artifacts) 

40763 

Number of 0 labeled WBCs 10385 

Number of 1 labeled WBCs 4971 

Number of 2 labeled WBCs 25408 

Number of lymphocytes’ ground truths (including 

nucleus and cytoplasm) 

242 

Number of monocytes’ ground truths (including 

nucleus and cytoplasm) 

242 

Number of neutrophils’ ground truths (including 

nucleus and cytoplasm) 

242 

Number of eosinophils’ ground truths (including 

nucleus and cytoplasm) 

201 
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Number of basophils’ ground truths (whole cell) 218 

 

Labels.     In Raabin-WBC dataset, more detailed labels are considered than just five general 

types of white blood cells. For example, beside the mature neutrophil, we have evaluated two 

other ancestors of this white blood cell: Metamyelocytes and Band. An increase in the number 

of band forms and metamyelocytes is one of the features of reactive neutrophilia (an increase 

in the number of circulating neutrophils to levels greater than 7.5 × 109/L)[5].  In addition, 

lymphocytes are divided into small (the main agents of the acquired immune system including 

B & T cells) and or activated lymphocytes (activated small lymphocyte referred to as large 

lymphocytes or lymphoblasts). The Burst label belongs to smudge cells that are leukocyte 

remnants formed during blood smear preparation. Beside the leukocytes we considered drying 

artifacts as new labels for  artifacts are commonly seen after staining the samples. In figure 2 

the diagram of the labels is presented. 

In table 4, the number of labels associated with two experts is shown. The rows and columns 

of the table belong to the first and second experts, respectively, noting that 9015 cells have not 

been labeled yet. We asked our experts to label the cells as unrecognizable if they had any 

doubts. Indeed, we have 1099 cells labeled as not recognized by the two experts. In table 4, 

you can see the amount of disagreement for each pair of different labels (Non-diagonal 

elements of the matrix). For example, large and small lymphocytes are confused a lot. Also, 

seem bands have often been mistaken with mature neutrophils. Other examples of confusing 

pairs are Artifact and burst, large lymphocyte and monocyte, and small lymphocyte and burst. 

The high numbers in the rows and columns labeled as not recognized indicate that it is very 

challenging to identify the type of white blood cell. 

 

Figure 2. Raabin-wbc dataset labels diagram. 

 

Table 4. The number of labels associated with two experts. The rows and columns belong to the first and second 

experts, respectively. 
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Artifact 
3489 0 0 14 2 1 0 0 6 4 96 225 

Band 
0 311 0 2 0 0 2 0 32 0 16 71 

Basophil 
0 0 308 0 0 0 0 0 0 0 2 0 
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Burst 
29 0 0 2673 1 11 0 4 1 32 96 525 

Eosinophil 
0 0 0 9 1466 0 0 0 1 1 13 607 

Large lymph. 
0 0 0 1 0 2153 0 4 1 172 23 163 

Meta 
0 0 0 1 0 0 11 1 2 0 6 12 

Monocyte 
0 0 0 2 0 24 0 874 1 0 36 104 

Neutrophil 
0 134 0 29 3 1 0 2 11726 1 109 1078 

Small lymph. 
1 0 0 1 0 31 0 0 0 1833 20 370 

Not recognized 
65 5 0 9 5 744 10 81 127 332 1099 268 

Not labeled 
5 0 0 0 0 1 0 0 9 4 3 9015 

 

 

Data structure.   Raabin-WBC dataset consists of images that were taken from blood films 

(similar to figure 5).  Corresponding to each microscopic image, a dictionary (.json format) file 

containing the following information about that image was provided: 

 Information about the blood elements in the image including their coordinates and 

labels. Most of the elements are labeled by two experts. 

 Information about the blood smears including staining method and the type of the 

disease. Note that all blood smears have been prepared from normal samples. Only a 

Chronic Myeloid Leukemia (CML) sample has been used to extract basophils. 

 Information about the microscope includes the type of microscope and its magnification 

size. 

 The type of the camera used. 

There is also a subset of the database called double-labeled Raabin-WBC which includes 

cropped images of the five main types of WBCs and were labeled the same by both of the 

experts. We will explain more about this sub-dataset in the experiment section. 

 

Data Collection 

The steps of data collection (figure 3) include preparing blood smears and photographing them, 

extracting the bounding box of white blood cells, data cleaning, and finally labeling the data 

and extracting ground truths. More details are explained in the rest of this section. 
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Figure 3. The main steps of Raabin-WBC dataset collection. 

 

Preparation of blood smears and Imaging.   72 normal peripheral blood films (male and 

female samples from ages 12 to 70) have been used to collect neutrophils, eosinophil, 

monocyte, and lymphocyte images. On the other hand, due to the very low presence of 

basophils in normal specimens (<1-2%) [6], basophils of one CML-positive sample have been 

imaged. Owing to the widespread use of Giemsa in medical labs [6], all samples were stained 

by Giemsa. Since there is no personal information about the sample donors, we were offered 

no chance to seek their permission for imaging.  All samples were collected from the laboratory 

of Razi Hospital in Rasht, Gholhak Laboratory, Shahr-e-Qods Laboratory and Takht-e Tavous 

Laboratory in Tehran, Iran. Then, the process of imaging the slides was performed by the help 

of two microscopes called Olympus CX18 and Zeiss at a magnification of 100x. Since 

determining the Diff area to evaluate and count different types of white blood cells is of utmost 

importance, an expert lab staff had supervised the cell imaging process.  

With the smart phones being widely used in the society, a rapidly growing trend has emerged 

with the aim of adapting them to medical diagnostics [21, 22]. The availability, ease of use and 

low cost of high-pixel density cameras available in smart phones make their imaging potential 

widely known in various science fields [23, 24, 25, 26, 27, 28, 29]. Therefore, in compiling 

this database, the cameras available on smart phones have been used, the details of which are 

given in Table 5. Smartphones can be adapted for microscopic imaging using some accessory 

equipment [30, 31, 32]. In order to prepare this database with the aim of facilitating the use of 

smart phones in microscopic imaging, an adapter was designed and made by 3D printing to 

mount the smart phone to the microscope ocular lens (figure 4). The designed adapter has 

somewhat managed to minimize the drawbacks of the commercial models available in the 

market such as restrictions on the size of the phone and ocular lenses, as well as the difficulty 

of the adjustment. 

Table 5. Smartphone camera specifications used for data collecting. 

Smartphone Release 

date 

Sensor Model Sensor 

Type 

No. of 

Pixels 

Aperture Sensor 

Size 

Pixel 

Size 

Samsung 

Galaxy S5 

2014 Samsung 

S5K2P2XX 

ISOCELL 

CMOS 16 MP f/2.2 

31mm 

1/2.6" 1.12µm 

LG G3 2014 Sony IMX135 

Exmor RS 

CMOS 13 MP f/2.4 

 29mm 

1/3" 1.12µm 
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Figure 4. Designed adapter to mount smartphone to ocular lens of microscope. 

Extraction of white blood cells from images.   In total, about 23,000 images were taken from 

blood films. There exist many red blood cells in each blood smear image. It is also probable 

that one or more other blood elements such as white blood cells and sometimes color spots 

exist in the image. The bounding box of these blood elements should be somehow identified. 

For this purpose, two approaches have been considered. Due to the distinct color of the nucleus 

in white blood cells, in the first approach, a number of white blood cells were extracted 

manually as Grand Truth data, and a color filter was trained to separate the white blood cells 

from the background. The aforementioned color filter was applied to the main images, and the 

approximate position of the white blood cells was marked. Finally, a 512 by 512 square with 

the center of the cell is considered as a bounding box. In the second approach, extracted 

bounding boxes with the help of the first approach were used, and a Faster RCNN network 

[33], which is able to determine the exact location of the white blood cells in the original image, 

was trained. Eventually, about 43,000 blood elements were obtained. 

 

Data cleaning.    In the process of imaging from blood smears, a white blood cell may be 

placed in more than one image (figure 5); therefore, duplicate cell images exist among cropped 

images. The most important problem is that the two images of one cell are not necessarily very 

similar, and therefore, a simple mean square error on the value of the pixels is not enough to 

detect duplicate cell images. Indeed, a cell can be repeated more than twice. In figure 6, an 

example of three images of one cell is represented. As you can see the qualities of the three 

images are different. 
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Figure 5. An example of two overlapped microscopic images. 

 

 

Figure 6 : One sample that had been repeated three times. 

 

Manual comparison of these images in pairs is practically impossible. Hence, an artificial 

intelligence algorithm, fast and accurate, has been developed to remove duplicate cell images. 

We used Python ImageHash library, in this regard. First, for all pairs of cropped images, the 

Average Hash (AHash) and Perceptual Hash (PHash) values are calculated very quickly. Paired 

images, the AHash and PHash distances of which are less than those of the specific thresholds, 

are the same, and one of them should be removed. The thresholds of the Average Hash and 

Perceptual Hash are set manually through trial and error (See appendix1 for more details). 

Since an image may exist more than twice, a two-by-two comparison is not sufficient. For this 

purpose,  a solution to the problem is presented from Graph's point of view. In fact, we have a 

graph with N nodes (N is the number of cropped cell images from blood film). There exist 

edges between the nodes that satisfy the sameness of condition. In this case, the connected 

components of the graph form equal images. Connected components of a graph can be 

calculated with the help of the breadth-first search algorithm very swiftly (See appendix2 for 

more details). If a connected component has n> 1 images, n-1 of them must be removed. To 
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enhance the quality of the database, the image with the highest resolution remains out of n 

images, and the rest are deleted. The OpenCV [34] library is used to compare the image 

resolution. In this regard, Sobel horizontal and vertical filters [35] are applied to the images 

and the gradient magnitude is calculated for each pixel. Finally, the image with the highest 

average gradient magnitude is the sharpest one. 

As described in section 2, to preserve more information, we prepared our data in the form of 

large images not in the form of cropped images (like figure 5). For each large image, the 

coordinate and the labels of the containing cells are provided. We tried to remove as many 

duplicates as possible from large images. Indeed, the large image in which all containing cells 

are inside the other images should be removed. For example, in figure 5, the image b should 

be removed. 

Labeling Process 

This section describes the labeling process, which involves determining the cell types and the 

ground truth of the nucleus and cytoplasm. As you can see in table 1, the characteristics of 

nucleus and cytoplasm can significantly affect determining the type of the cell. Some papers 

[36, 16] extract different features from the nucleus and the cytoplasm to classify white blood 

cells. These features usually describe the shape and the color of the nucleus and the cytoplasm. 

Cell type labeling. For labeling cells, two applications were developed for Android (Figure 7). 

One application is for labeling cropped cells (Figure 7-part b) and the other one is for selecting 

the location and type of the cells (Figure 7-part a). Furthermore, a desktop application with the 

help of Python Tkinter library [37] was developed in order to assign the location and type of 

the cells (Figure 8). It is worth mentioning that most of the images were labeled by two experts. 
 

 

Figure 7. The user interface of the two android applications that were designed to selecting and labeling the 

white blood cells.  
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Figure 8. The user interface of the desktop application designed for labeling white blood cells. 

 

Ground truth of the nucleus and the cytoplasm.   In recent years, many researchers have 

investigated segmenting the cytoplasm and nucleus of the white blood cells [3, 15, 16, 17, 18, 

20]. Hence, we tried to prepare the ground truths of the cytoplasm and the nucleus for a proper 

number of cropped white blood cells. For this purpose, 1145 cropped images including 242 

lymphocytes, 242 monocytes, 242 neutrophils, 201 eosinophils, and 218 basophils were 

randomly selected, and their ground truths were extracted by an expert. It is worth mentioning 

that we only prepared the ground truth of the whole cell for basophils, and we were not able to 

produce the basophils’ cytoplasm and nucleus ground truth. This is because the basophils are 

usually covered by very purple granules, and the border between cytoplasm and nucleus is not 

easily obvious. Figure 10 shows some samples of the cells along with their ground truths.  

To produce the nuclei’s ground truth, a new published software called Easy-GT [38] was 

employed. This software has been developed to extract the ground truth of the nucleus. In Easy-

GT software, the nucleus is determined by a relatively accurate segmentation method, and if 

necessary, the user can adjust the ground truth of the nucleus by modifying the final threshold 

[38] (Figure 9). In the segmentation process, the RGB image is first color-balanced [38] and 

converted to CMYK color space. Secondly, the two-class Otsu’s thresholding algorithm [39] 

applied to the M channel gives us a threshold (𝑡ℎ2𝑐𝑙𝑎𝑠𝑠). Again, the three-class Otsu 

thresholding algorithm is applied to the M channel and the two lower and upper thresholds 

(𝑡ℎ𝑙𝑜𝑤
3𝑐𝑙𝑎𝑠𝑠 , 𝑡ℎ𝑢𝑝

3𝑐𝑙𝑎𝑠𝑠) are extracted. Finally, the ultimate threshold value is obtained by computing 

the convex combination of  𝑡ℎ2𝑐𝑙𝑎𝑠𝑠 and 𝑡ℎ𝑢𝑝
3𝑐𝑙𝑎𝑠𝑠.  

To make the ground truth of the cytoplasm, a light pen was used, and the ground truth of the 

whole cells were specified by an expert. Finally, by removing the nucleus part obtained from 

Easy-GT, only the cytoplasm remains.    
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Figure 9. The user interface of Easy-GT software [38]. This software is developed in order to extraction of 

nucleus ground truth in white blood cells. 
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Figure 10. Some samples of ground truths that provided in Raabin-WBC dataset. First row is original cropped 

image of white blood cells. Second row is ground truths. (a), (b), (c), (d), and (e) are lymphocyte, monocyte, 

neutrophil, eosinophil, and basophil, respectively. 

 

Experiments 

In this section, we are going to do some machine learning experiments on Raabin-WBC data. 

Due to the diversity of information in the database, many research lines can be defined. Yet, 

we consider the most common possible experiment.  We classify five classes of white blood 

cells, and we leave the rest to those who are interested in this field. For this purpose, we used 

the double-labeled cropped cells, and considered only five main classes including mature 

neutrophils, lymphocytes (small and large), eosinophils, monocytes, and basophils. We called 

this sub-dataset Double-labeled Raabin-WBC. In the following, we will compare this database 

with some existing 5-class databases and train some deep popular neural networks. We will 

also discuss the generalization power of the models. 

 

A comparison with similar Datasets.   Various datasets of normal peripheral blood with 

different properties exist, but in general, most of them have a small number of samples. This is 

due to the fact that in the medical field, data collection and labeling are complicated. On the 

other hand, in the field of Hematology, AI models are usually sensitive to some specifications 

of the dataset such as the number of data, the staining technique, the microscope and camera 

used, and the magnification. So, by altering the aforementioned characteristics, the accuracy of 

the models may be reduced. In table 6, the characteristics of some datasets have been presented 

and compared with Double-labeled Raabin-WBC. As you can see, our database is far better in 

several ways including data number, label assurance, Ground Truth, camera and microscope 

variety. Most importantly, this database is available to everyone for free. 
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Table 6. Comparing some datasets with double-labeled Raabin-WBC. Double-labeled Raabin-WBC does not contain the 

repeated samples as well as includes only five general cells (lymphocyte, monocyte, neutrophil, eosinophil, and basophil).  

Dataset 

Number of WBCs 

Access Staining 
Microscope 

& Zoom 
Camera Label 

Ground Truths 

Lymp.       Mon. Neut. Eos. Bas. Total Nucleus 
Cytoplasm or 

whole cell 

LISC [17] 59 55 56 42 54 266 Public Gismo-right 
Axioskope40 

Zoom : 100X 

Sony-

SSCDC50AP 

One 

Expert 
266 266 

BCCD[15] 33 19 208 86 3 349 Public Gismo-right 
Regular light microscope 

Zoom : 100X 

CCD color 

camera  

One 

Expert 
⨉ ⨉ 

Hegde et al.[36]  33 23 30 22 14 122 Private Leishman 
OLYMPUS CX31 
Zoom : 100X 

N/A 
One 
Expert 

122 ⨉ 

MISP [16] 36 33 38 42 0 149 Public N/A 
Canon optical microscope 
Zoom : 100X 

Canon V1 
One 
Expert 

⨉ ⨉ 

ALL-IDB[14] 60       3 18 2 1 84 Public N/A 
N/A 

Zoom : 300X–500X 

Canon 

PowerShot G5 
N/A ⨉ ⨉ 

Zheng et al. 

[18] 
(CellaVision) 

37 18 30 12 3 100 Public N/A 
N/A 

Zoom : N/A 
N/A 

One 

Expert 
100 100 

Zheng et al. 

[18] 
53 48 176 22 1 300 Public 

A new 
developed 

method [] 

N800-D motorized 
autofocus 

Zoom : N/A 

Motic moticam 

pro 252A 

One 

Expert 
300 300 

Double-labeled 

Raabin-WBC  
3609 795 10862 1066 301 17965 public Giemsa 

1. Olympus Cx18 

2. Zeiss microscope 
Zoom : 100 

1. 1.Camera 

phone Samsung 
galaxy S5 

2. 2.Camera 

phone LG G3 
 

Two 

experts 
1145 1145 

 

 

Utilized models.   Some popular pre-trained deep neural networks have been trained on 

Double-labeled Raabin-WBC in order to classify five types of white blood cells. VGG16 [40] 

which is the oldest CNN used simply consists of alternating convolutional and pooling layers. 

From deep residual network families, Resnet18 [41], Resnet34 [41], Resnet50 [41], and 

Resnext50 [42] were tested. In Resnet architecture, the identity shortcut connections that 

skipped one or more layers are used [41]. Resnext is an extension of Resnet in which the 

residual block is replaced by a new aggregation component [42]. In mentioned aggregation 

component, the input feature map is projected to some lower-dimensional representations, and 

their outputs are combined by summing [42]. DenseNet121 [43] is another chosen CNN which 

consists of dense blocks. In each dense block, each layer is fed from all previous layers, and its 

outputs are transferred to all next layers.  

Another used deep architecture is MobileNet-V2 [44] which is suitable for mobile devices. The 

building block of MobileNet-V2 is an inverted residual block, and non-linearities are removed 

from narrow layers. MnasNet1 [45] and ShuffleNet-V2 [46] are other light-weight CNNs for 

mobile devices. In MnasNet, reinforcement learning is employed to find an efficient 

architecture [45]. In ShuffleNet-V2 [46] at the beginning of the basic blocks, a split unit divides 

the input channels into two branches, and at the end of the block, concatenation and channel 

shuffling occur. Beside the aforementioned neural networks, we also utilized a feature-based 

method [47] in which the nucleus was segmented at first, and its convex hull was then obtained. 

After that, shape and color features were extracted using the segmented nucleus and its convex 

hull. Finally, WBCs were categorized by an SVM model. 

Classification results.   The generalization power of the models described in the former section 

is to be examined at two levels. For this purpose, we split data into three groups of training 

data, test-A, and test-B, the properties of which can be observed in table 7. The quality of the 

images in the test-A dataset is similar to that of the training dataset, but the images in the test-
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B dataset have different qualities in terms of camera type and microscope type. Unfortunately, 

the test-B data only contains double-labeled neutrophils and lymphocytes.  
 

Table 7. The number of samples in Training data, Test-A, and Test-B.  

Sets Lymph. Mono. Neut. Eos. Bas. 

Training data 2427 561 6231 744 212 

Test-A 1034 234 2660 322 89 

Test-B 148 0 1971 0 0 

  

 

Table 8. The results of the different pre-trained models as well as Tavakoli et al. [47]’s method on test-A dataset. 

 

 

Since the training data are not balanced, in other words, the number of cells in each class is 

imbalanced. Hence, the training set was augmented and moderated using augmentation 

methods such as horizontal flip, vertical flip, rescaling, and a combination of them. In order to 

evaluate the models, four metrics are considered for each class: precision (P), sensitivity (S), 

F1-score, and accuracy (Acc). The aforementioned criteria are obtained through the equations 

(1), (2), (3), and (4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐×𝑆𝑒𝑛𝑠

𝑃𝑟𝑒𝑐+𝑆𝑒𝑛𝑠
  (3) 

Acc 

(%) 

Baso Eosi Neut Mono Lymph 

Methods F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

99.06 100 100 100 97.09 98.45 95.77 99.5 99.36 99.66 96.12 95.30 96.96 99.08 99.23 98.84 ResNet18 [41] 

99.01 100 100 100 96.97 99.38 94.67 99.49 99.14 99.85 95.67 94.44 96.93 99.09 99.52 98.66 ResNet34 [41] 

99.10 100 100 100 97.69 98.45 96.94 99.57 99.40 99.74 95.88 94.44 97.36 98.99 99.52 98.47 ResNet50 [41] 

99.17 100 100 100 98.30 98.76 97.85 99.64 99.55 99.74 95.32 91.45 99.53 98.99 100 98.01 ResNext50 [42] 

98.59 100 100 100 95.20 98.45 92.15 99.21 98.76 99.66 95.14 96.15 94.14 98.79 98.65 98.93 MnasNet1 [45] 

99.12 100 100 100 98.16 99.38 96.97 99.53 99.40 99.66 95.67 94.44 96.93 99.08 99.32 98.85 MobileNet-V2 [44] 

98.87 100 100 100 96.82 99.38 94.40 99.42 99.14 99.70 94.48 91.45 97.72 98.99 99.61 98.38 DenseNet121 [43] 

99.03 100 100 100 98.30 98.76 97.85 99.55 99.36 99.74 95.24 94.02 96.49 98.70 99.32 98.09 ShuffleNet-V2 [46] 

98.09 100 100 100 93.35 98.14 89.01 99 98.57 99.43 93.01 91.03 95.09 98.26 98.26 98.26 VGG16 [40] 

94.65 96.05 95.51 96.59 80.66 91.30 72.24 96.78 95.60 98 85.59 86.32 84.87 96.14 95.07 97.23 Tavakoli et al. [47] 
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𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (4) 

 

In equations 1-4, TP, FP, TN, and FN are true positive, false positive, true negative, and false 

negative, respectively. In tables 8 and 9, the results on test-A and test-B datasets are presented. 

Also, in the last row of the tables 8 and 9, the results of the feature-based classification 

presented in the paper [47] have been displayed. In figure 11 the plots of the accuracy and the 

loss of training data and validation data related to nine pre-trained models are shown. 

 

Table 9. The results of the different pre-trained models as well as Tavakoli et al. [47]’s method on test-

B dataset. 

Acc 

(%) 

Neut. Lymp. 

Method F1 

(%) 

S 

(%) 

P 

(%) 

F1 

(%) 

S 

(%) 

P 

(%) 

8 3 2 100 34 94 21 ResNet18 [41] 

32 43 27 100 38 94 24 ResNet34 [41] 

8 4 2 100 35 95 21 ResNet50 [41] 

9 5 3 100 38 90 24 ResNext50 [42] 

6 0 0 100 33 88 20 MnasNet1 [45] 

4 0 0 100 59 50 72 MobileNet-V2 [44] 

12 15 8 100 51 64 43 DenseNet121 [43] 

5 0 0 100 54 75 42 ShuffleNet-V2 [46] 

66 79 65 100 93 89 96 VGG16 [40] 

90 96 92 100 69 54 94 Tavakoli et al. [47] 

 

 

The results are surprising, and all methods have an acceptable outcome on test-A data. Yet, the 

performance of most of the models on test-B data has experienced a dramatic decrease. The 

feature-based method [47] had the least performance reduction, despite having the lowest 

accuracy on the test-A data. Among deep neural networks, the VGG16 [40] network has 

relatively more generalizability. It can be said that the feature-based method could extract more 

meaningful features from cell images than the deep neural networks.  If we had not tested the 

models on test-B data, we would have thought that we have trained a strong classification 

model; yet, this was not the case. In this experiment, we do not want to conclude that deep 

neural networks have less generalization power than feature-based methods. If we applied some 

appropriate pre-processing on the images before training or used some smarter image 

augmentation methods, the performance of deep neural networks would be better. In this 

experiment, you can easily understand the role of the dataset in the training of machine learning 

models. 
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Figure 9. The plots of the accuracy and loss of training data and validation data related to nine pre-trained models. 

All training processes were carried out using a single NVIDIA GeForce RTX 2080 Ti graphic 

card and were handled by Python 3.6.9 and Pytorch library version 1.5.1. We considered 15 

epochs for the training process and the starting learning rate, and the batch size were 0.001 and 

10, respectively. The learning rate was decayed by the ratio of 0.1 and step size 7. Stochastic 

gradient decent was utilized as an optimization method. We used torchvision library in order 

to load pre-trained networks on the ImageNet dataset [48].  The output size of the last linear 

layer was changed from 1000 to 5. 

Conclusion 

 

By evaluating the peripheral white blood cells, a wide range of benign diseases such as anemia 

and malignant ones such as leukemia can be detected. On the other hand, early detection of 

some of these abnormalities, such as acute lymphoid leukemia, despite its lethality, can help 

its treatment process. Therefore, it is important to adopt methods that can be effective in early 

detection of the disease. The role of machine learning methods in intelligent medical 

diagnostics is becoming more and more prominent these days. Indeed, deep neural networks 

are revolutionizing the medical diagnosis process and are considered as one of the stare-of-the-

arts.   

Since deep neural networks usually have a huge number of training parameters, the overfitting 

problem is not highly unlikely. Therefore, the diversity of training data is necessary and cannot 

be ignored. In medical diagnostics, in particular, this diversity gets bolder, for the medical 

devices can be very diverse. For example, in the  field of hematology, the type of microscope 
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and camera is very influential. To this end, we tried to collect a huge free available dataset of 

white blood cells from normal peripheral blood so as to relatively satisfy the mentioned 

diversity. This multipurpose dataset can serve as a reference dataset for the evaluation of 

different machine learning tasks such as classification, detection, segmentation, and 

localization.  
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Appendix 1 

In this section, we aim at explaining the image hash algorithms that we used for removing the duplicate 

images.  The Average hash (A-hash) and Perceptual hash (P-hash) were employed to evaluate the 

similarity of the two cells. The Average hash has a very simple algorithm including the following steps: 

 The image is resized to 8*8 pixels and converted to grayscale. 

 The mean value of the pixels is computed: The pixels above this value take the value of 1, and 

the others take the value of zero. Indeed, we have a binary sequence with a length of 64 in row 

major order, for instance. 

 The final hash is computed by converting the binary sequence to base 64. 

The average hash is very fast and also robust against changes in brightness, contrast, color, size, and 

aspects of ratio. The perceptual hash which is more robust than the average hash  includes the following 

steps: 

 The image is resized to 32*32 pixels and converted to grayscale. 

 The discrete cosine transform is computed and resized to 8*8 pixels. 

 The mean value of the pixels is computed and similar to the average hash a binary sequence is 

obtained. 

 The binary sequence is converted to base 64. 

In order to compare two images, first, the desired hash is computed for each image. Then, the hamming 

distance between two hashes should be computed. After doing some experiments, we concluded that 

using the average and perceptual hash simultaneously provides  better performance. We set two 

thresholds for the average and perceptual hash through trial and error (11 for A-hash and 14 for P-hash). 

Paired images  with A-hash and P-hash distances less than tuned thresholds, are the same, and one of 

them should be removed.  

Appendix 2 

In this section we will explain more about the graph theory topics we used for removing duplicate 

images. Consider we have an undirected graph 𝐺(𝑉, 𝐸) that 𝑉 and 𝐸 are the sets of vertices and edges, 

respectively. A connected component is a subgraph 𝐺′(𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸) in which there is a path 

between all pairs of nodes in 𝑉′.  Both depth-first search (DFS) and breadth-first search (BFS) can be 

used to find all connected components of the graph [1]. We used BFS for this purpose. The pseudocode 

of the algorithm are as follows: 
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For each s ∈ V do 

    If s is not visited 

        Let Q be an empty queue. 

        Let Connected_Component be an empty list. 

        Mark s as visited. 

        Q.enqueue(s) 

        Connected_Component.append(s) 

        While Q is not empty do 

            v=Q.dequeue() 

            for all neighbors w of v do 

                if w is not visited 

                           Q.enqueue(w) 

                           Connected_Component.append(w) 

                           Mark w as visited. 

         Print(Connected_Component) 
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