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Abstract 22 

Background: 23 

The kingdom fungi is crucial for life on earth and is highly diverse. Yet fungi are challenging to 24 

characterize. They can be difficult to culture and may be morphologically indistinct in culture. 25 

They can have complex genomes of over 1 Gb in size and are still underrepresented in whole 26 

genome sequence databases. Overall their description and analysis lags far behind other 27 

microbes such as bacteria. At the same time, classification of species via high throughput 28 

sequencing without prior purification is increasingly becoming the norm for pathogen 29 

detection, microbiome studies, and environmental monitoring. However, standardized 30 

procedures for characterizing unknown fungi from complex sequencing data have not yet 31 

been established. 32 

Results: 33 

We compared different metagenomics sequencing and analysis strategies for the 34 

identification of fungal species. Using two fungal mock communities of 44 phylogenetically 35 

diverse species, we compared species classification and community composition analysis 36 

pipelines using shotgun metagenomics and amplicon sequencing data generated from both 37 

short and long read sequencing technologies. We show that regardless of the sequencing 38 

methodology used, the highest accuracy of species identification was achieved by sequence 39 

alignment against a fungi-specific database. During the assessment of classification 40 

algorithms, we found that applying cut-offs to the query coverage of each read or contig 41 

significantly improved the classification accuracy and community composition analysis 42 

without significant data loss.  43 
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Conclusion: 44 

Overall, our study expands the toolkit for identifying fungi by improving sequence-based 45 

fungal classification, and provides a practical guide for the design of metagenomics analyses. 46 

 47 

Introduction 48 

Fungi are ubiquitous yet their presence and impact are often overlooked. It has been 49 

estimated that 2.2-3.8 million species inhabit planet earth [1] but only about 4% of these are 50 

catalogued [2]. Mora et al. estimated that there are 7.8 million and 298,0000 animal and 51 

plants species on earth with 12.3% and 72.4% of these characterised scientifically, 52 

respectively [3], which points towards a more central role in cultural awareness. In contrast, 53 

fungi are introduced to our consciousness via a brief mention in high school textbooks, or as 54 

largely side subjects in botany and microbiology courses at university [4,5]. Fungi play diverse 55 

roles throughout evolution and are particularly active in mediating the breakdown and uptake 56 

of nutrients. They constitute a major disease load to humans, causing millions of deaths per 57 

year, and wreak devastating crop losses via a constant toll of disease and epidemics and are 58 

an existential threat to many frog species [6,7]. On the other hand, fungi are or are used to 59 

manufacture delicious foods and beverages, and have saved countless lives via antibiotic 60 

production [8,9]. Therefore, a recent call was made to expand fungal research and improve 61 

our awareness of this special kingdom [10]. 62 

To progress our understanding of fungal biology we need to be able to classify more species 63 

more precisely. Fungi have been an independent kingdom since 1969 [11] with addition of 64 

further phyla in early 2000 [12–16]. Historically, its taxonomy was based on morphological 65 
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and reproductive traits but this has been surpassed by DNA-based classification which 66 

revolutionized mycology, not only refining the conventional taxonomic tree [17,18] but also 67 

standardizing the identification of new species. In the absence of whole genome data, DNA-68 

based classification primarily exploits the internal transcribed spacer (ITS) within the 69 

ribosomal RNA genes as a highly polymorphic marker to distinguish species. It is easily 70 

amplified and sequenced due to highly conserved flanking sequences and contains a high 71 

degree of variation between even closely related species. Although a mature pipeline 72 

comprising ITS amplification, IIllumina sequencing and data analysis has been established[19], 73 

several studies reported biases from the sequencing technology used and from unevenly 74 

amplified fungal marker regions [20–22]. Recently, novel strategies exploiting long-range 75 

amplification and long-read sequencing have been developed to improve these classifications 76 

[23,24]. In addition, whole genome shotgun sequencing and rapidly expanding genome 77 

databases allow mapping of newly generated DNA sequences directly to the database. This 78 

strategy allows exploitation of genetic variation throughout the genome and abandonment 79 

of the marker gene amplification step, which increases classification accuracy and reduces 80 

the biases from the estimation of relative abundance [25]. 81 

Although advanced sequencing methods allow novel strategies for fungal identification 82 

particularly from mixed samples, new demands are placed on data analysis pipelines to 83 

improve the accuracy of fungal classification. Different algorithms have been developed to 84 

classify DNA sequences at distinct taxonomic ranks based on sequence databases with 85 

taxonomic information [26–30]. For example, alignment algorithms such as Basic Local 86 

Alignment Search Tool (BLAST) [27] detect matches of each sequence to subjects of the target 87 

database along with the taxonomic information assigned to each entry. Alternatively, 88 

sequence features represented by short unique subsequences named k-mers can be derived 89 
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from sequence data and mapped to databases to identify taxa with the highest number of 90 

cross-mapping k-mers[28]. Several studies have critically assessed algorithms for species 91 

classification on simulated datasets or bacterial community datasets [31–33], but 92 

comparisons of sequencing strategies for complex fungal communities alignment using real 93 

data and different identification pipelines are extremely rare. In addition to search algorithms, 94 

the choice of database also influences classifications dramatically, but only a few studies have 95 

researched their impact [34–36]. Therefore, more comprehensive benchmarking of both 96 

classification algorithms and databases are needed to optimise identification pipelines. 97 

Here, we assessed different combinations of algorithms and databases during processing of 98 

both short- and long-read sequencing data for the identification of taxa from complex mock 99 

fungal communities. We identified key factors that influence the accuracy of classifications, 100 

both for mock community datasets and public datasets. Optimisation of these methods also 101 

lead to more accurate community composition analysis. Our results provide guidelines for the 102 

design of sequence-based community analysis for fungal species.  103 

 104 

Results 105 

Construction of mock fungal community datasets 106 

We constructed two mock communities from the same set of 44 fungal species 107 

(Supplementary Table S1). Most of these are human-associated pathogenic yeasts while some 108 

are basidiomycete pathogens. One community comprised pooled DNA (PD) from each species 109 

and the second was composed of DNA extracted from equal quantities of fungal biomass (PB) 110 

of each species that were mixed together prior to extraction. We generated four sequence 111 
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datasets for each community using Illumina and nanopore technologies, sequencing both 112 

shotgun metagenomes and targeted amplicons respectively. The data derived from each 113 

strategy are summarized in Table 1. 114 

 115 

Alignment algorithm against a specific fungal database resulted in the most accurate fungal 116 

classifications 117 

We compared different analysis strategies for each shotgun dataset. For nanopore datasets, 118 

we directly used the quality-controlled reads for classification. For Illumina data, we quality 119 

filtered all reads and assembled them into contigs before classification to maximize the 120 

classification accuracy. We performed both alignment and k-mer based classifications on 121 

these data using BLAST and Kraken2 [27,29] using a ‘winner-takes-all’ strategy in which the 122 

top hit was taken as the identity of the query sequence. For each algorithm, we compared the 123 

use of two reference databases: the non-redundant NCBI nucleotide database (nt) [37] and 124 

the RefSeq fungi database (RFD) [38] which only contains curated fungal genomes. We first 125 

assessed the performance of each alignment tool on both databases for each data input. We 126 

compared the concordance in the results of each pipeline at the genus level. We define 127 

concordance as the percentage of fungal genera identified by both analyses in a pairwise 128 

comparison (Figure 1A). The concordance between analyses on each dataset varied between 129 

69% and 86% and generally, Illumina data resulted in higher concordance than did nanopore 130 

data.  131 

We then aimed to identify the combination of algorithm and database that yielded the most 132 

accurate species identification. We used classified proportion and precision to evaluate each 133 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.02.442318doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442318
http://creativecommons.org/licenses/by-nc-nd/4.0/


classification, where  Classified Proportion =
# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑.

# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑟𝑒𝑎𝑑𝑠
 , and  134 

Precision =
# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

# 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 .  135 

The number of total basepairs is calculated as total read length for nanopore reads and total 136 

coverage of Illumina reads to each contig [32,33]. We plotted the precision and classified 137 

proportion for each pipeline and found three regular patterns (Figures 1B and 1C): First, for 138 

each dataset, BLAST resulted in higher precision but lower classification proportion by 139 

comparison to Kraken2. Second, Illumina contigs returned higher classification proportion 140 

and precision than nanopore reads. Third, classification against the RFD database yielded 141 

higher precision than those against the nt database. In summary, BLAST alignments against 142 

the RFD database yielded the best classification strategy.  143 

 144 

Applying cut-offs to query coverage improves classification accuracy on shotgun 145 

metagenomics datasets 146 

We next aimed to improve our classification scheme by filtering the BLAST search results. We 147 

reasoned that restricting alignment metrics would reduce the number of false classifications. 148 

To investigate changes in classification accuracy after restricting BLAST output parameters, 149 

we first BLASTed shotgun metagenomics reads against the RFD database without applying 150 

any filter, then applied progressive cut-offs on different parameters of the BLAST results. We 151 

evaluated changes in the results based on the metrics precision, remaining rate and 152 

completeness. Precision is described above and estimates the accuracy of the classification; 153 

remaining rate captures the percentage of the input data remaining after the application of 154 

each cut-off; and completeness is the number of taxa captured relative to the total number 155 

of taxa within the mock community. We initially applied cut-offs on query length and two 156 
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alignment metrics; E-value - the number of expected hits of similar quality that could be found 157 

by chance alone; and pident – the percentage of identical matches within the region of 158 

alignment between query and subject. As shown in Figure 2A, applying progressive cut-offs 159 

to query length did not improve the precision, whilst both completeness and remaining rate 160 

diminished dramatically from very small cut-off values. Cut-offs applied to alignment E-values 161 

removed <20% of the BLAST results, whereas precision showed minor improvement, 162 

especially on nanopore datasets (Figure 2B). For Illumina data, applying cut-offs to the E-value 163 

increased the precision by around 2% but at the cost of diminished completeness. E-value 164 

cut-offs performed better on nanopore datasets, improving precision by 3% (PD) or 4% (PB) 165 

with non-identification of only a single genus from the mock community, at 10-250 or almost 166 

10-400 respectively. Progressive cut-offs on pident yielded the best results of all three filters. 167 

For Illumina data, precision was improved by up to 8% for PB data, and completeness 168 

remained at 100% in almost all cases (Figure 2C). For nanopore datasets, pident cut-offs 169 

improved the precision by up to ~3% before sharp decreases, with a concurrent filtering of 170 

~60% BLAST result as shown by the remaining rate. Given the characteristically high error rate 171 

of nanopore reads, we also applied cut-offs on quality scores to these data. Cut-offs applied 172 

to Phred scores did not alter the precision, while a significant proportion of the dataset was 173 

lost through filtering (Supplementary Figure S1). Overall, our results suggest that applying 174 

each filter to BLAST results performs well on either Illumina or nanopore data but not both, 175 

and that cut-offs based on query length or quality scores did not affect the precision 176 

significantly. 177 

Given the results above, we investigated how the alignment parameters were calculated and 178 

explored other variables to improve the classifications. The BLAST E-value is calculated as E = 179 

mn2-S in which S is the bits score derived from the number of gaps and mismatches in the 180 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.05.02.442318doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442318
http://creativecommons.org/licenses/by-nc-nd/4.0/


alignment, and m and n are the query length and database total length respectively [39]. 181 

Therefore, the E-value is influenced exponentially by the alignment quality. We next 182 

investigated query coverage, a metric based on how much of the query sequence aligned to 183 

the subject. We calculated the query coverage as the number of identical matches divided by 184 

the read or contig length, and applied progressive cut-offs on this parameter for each 185 

dataset/algorithm analysis. As shown in Figure 2D, applying cut-offs on query coverage 186 

improved the precision of all four analyses significantly, and did not cause losses of 187 

completeness at smaller cut-off values. For example, at a 10% cut-off on query coverage, the 188 

precision of all four analyses was 98-99% while the completeness remained at 100% and the 189 

removed BLAST results ranged from 10-25%. This result not only supported our hypothesis 190 

that the total length of the alignment matters as much as the alignment quality, but also 191 

suggested a novel approach to improve the accuracy of fungal classification. 192 

 193 

Improving taxa identification from published metagenomics datasets using query coverage 194 

as a filtering parameter 195 

After improving classifications by applying cut-offs to the query coverage on the mock 196 

community datasets, we extended this strategy to try to improve the classification of 197 

published shotgun metagenomics datasets. We re-analysed ten nanopore and six Illumina 198 

shotgun metagenomics datasets [40–43]. These included host-associated fungal samples 199 

(nanopore) and host-depleted microbiome data (Illumina). Since the environmental datasets 200 

contain unknown species, we followed the concept of classification precision. We calculated 201 

the percentage of the dataset that was classified into taxa known to be included in the sample. 202 

For example, in re-analysing human clinical samples [42], we included the pathogen 203 
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(Pneumocystis) and the host human (Homo) as the true taxa, and calculated the total 204 

proportion of query sequences classified to these taxa before and after applying cut-offs on 205 

query coverage. Table 2 shows the improvement in taxonomic classification from the 206 

published datasets after applying query coverage cut-offs. We initially applied a 20% cut-off 207 

on the query coverage for all analyses, but the data loss in most cases was too high. Therefore, 208 

we applied query cut-offs that filtered around 20% of the blast result based on our results 209 

from the mock fungal community datasets (Figure 2D).  210 

For all Illumina datasets, we downloaded the quality-controlled sequences and re-analysed 211 

them using the assembly and BLAST pipeline described above against the NCBI nt database. 212 

For the nanopore human datasets [42], we used the BLAST results taken directly from the 213 

original articles for analysis. For the infected wheat datasets [41], we downloaded the 214 

sequences and re-analysed them against the RefSeq fungal database. The precision increased 215 

for nearly all datasets after applying query coverage cut-offs (Table 2). For the Illumina 216 

microbiome datasets, we first assessed the change of proportions in fungal taxa after applying 217 

cut-offs on query coverages using the species lists identified by Donovan et al. [44] as 218 

confirmed taxa. We observed only marginal increase in percentages for the confirmed fungal 219 

communities, due to their low total proportions in the original samples. We then calculated 220 

the improvement in precision for the bacterial communities. The Illumina datasets were 221 

generated from swine and mouse gut microbiome samples, so we assessed the change in 222 

proportions of their core bacterial genera (a group of bacteria commonly present in swine 223 

and mouse guts [45,46]). The percentages of confirmed core bacterial genera improved by up 224 

to 5.7% after applying cut-offs on query coverage (Table 2). In addition, in the nanopore 225 

human datasets, the total percentage of reads classified as Homo in the three healthy 226 

individual samples were improved by applying cut-offs to query coverage. These results 227 
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indicated that this strategy may be broadly applicable not only to fungal species, but also to 228 

the classification of other eukaryotes and bacteria. One Illumina dataset (d1) and one 229 

nanopore dataset (a5) showed decreased percentages of confirmed taxa after applying query 230 

coverage cut-offs, which might be because the core microbiome species are not representing 231 

the species identified in the Illumina sample, or due to the low coverage and high error rate 232 

of nanopore data. 233 

 234 

Benchmarking classification pipelines for amplicon datasets identified advantages of each 235 

strategy 236 

We next assessed different strategies for the classification of ITS amplicon datasets. We 237 

amplified the ITS region from both mock communities using two different primer pairs and 238 

three technical replicates for each sample. Taking advantage of nanopore technology, we 239 

performed long-amplicon sequencing of a roughly 3 kb ribosomal RNA gene region covering 240 

part of the 28S subunit, ITS1, 5.8S subunit, ITS2 and part of the 18S subunit [19]. For Illumina 241 

sequencing we used the well-established ITS1F-ITS2 amplicon of about 300 bp in length [47]. 242 

Similar to the analysis of the shotgun datasets, we applied both k-mer and alignment-based 243 

approaches to the classification of nanopore amplicon data. We used the pair-wise alignment 244 

algorithm minimap2 as the alignment algorithm instead of BLAST due to its speed and 245 

efficiency. We tested four different databases for classification of long amplicons; the NCBI 246 

18S and 28S databases, and two ITS databases from NCBI and UNITE, respectively [38,48]. 247 

Overall, we found that the k-mer algorithm returned much higher classification proportion 248 

than alignment for each nanopore dataset, but the highest precision (~97%) were achieved 249 

by combining the minimap2 alignment algorithm with the NCBI ITS database (Figure 3A). For 250 
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Illumina amplicon datasets, we applied the QIIME2 pipeline which is one of the most widely 251 

used strategies for ITS classification and community composition analysis[49]. The QIIME2 252 

pipeline groups similar Illumina amplicons into sequence features before classification to 253 

reduce the demand on computational resources [50]. Since all individual Illumina reads are 254 

grouped into sequence features and all the sequence features are classified, the classification 255 

proportion of the Illumina amplicon datasets are 100%. We plotted precision rates from the 256 

QIIME2 analysis of both the PD and PB samples with their means (Figure 3B). The mean 257 

precision from either Illumina dataset were lower than that from k-mer analysis of the 258 

respective nanopore datasets.  259 

Although the precision from the amplicon datasets were higher than that from shotgun 260 

datasets, the ITS classification did not identify all genera within the mock community, as 261 

shown by our completeness analysis (Figure 3C). The nanopore amplicons identified 68% (PD) 262 

and 63% (PB) of the total genera in the mock community, whereas the Illumina amplicon 263 

datasets covered only 25% and 41% of the genera respectively. We suspect that the low 264 

completeness from ITS classifications was due partially to the low quality of this particular 265 

dataset (Table 1) and partially due to non-uniform amplification from the different primer 266 

pairs. However, there were fewer nanopore amplicon reads than in the Illumina amplicon 267 

datasets and the completeness from the nanopore data was higher (Figure 3C). This supports 268 

the argument that long amplicons identify a wider range of species and are more accurate in 269 

species classification than short amplicons [51,52]. 270 

 271 

Cut-offs on query coverage also improve community composition analysis  272 
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We next analysed community compositions using the most accurate classification method for 273 

each dataset. Community composition refers to the identity and relative abundances of all 274 

taxa in a community. Given the observation that use of a restricted database resulted in 275 

higher classification precision, we constructed a database containing only the genomes from 276 

species within the mock community and aligned all of the data to the mock community 277 

database using BLAST. This forces the precision to 100% as any classification will belong to a 278 

species from the mock community. We then BLASTed each dataset against this database and 279 

calculated the relative abundance of each genus. We defined this as the ‘gold standard’ for 280 

community composition analysis of the mock fungal community (Figure 4A). We then 281 

compared the community composition determined from each combination of algorithms and 282 

databases with the gold standard for each dataset, and measured their differences using 283 

three statistical distance tests: Bhattacharyya distance, relative Euclidean distance and 284 

relative entropy [53–55]. Consistently, BLASTing sequences against the RFD database 285 

produced community compositions with the highest similarity to the gold standard analysis 286 

(Figure 4B).  287 

To assess whether query coverage cut-offs also improved the community composition 288 

analysis of shotgun metagenomics data, we plotted the changes in statistical distance after 289 

progressive application of query coverage cut-offs (Figure 4). After applying cut-offs on the 290 

query coverage, the community composition improved in all cases especially for lower cut-off 291 

values. The community compositions from PB-Illumina datasets improved and turned out to 292 

be the most similar to the gold standard at query-coverage cut-offs greater than 3 - 4%, which 293 

is consistent with the changes in precision rate shown in Figure 2D. Overall, our results 294 

illustrated that applying cut-offs on query coverage did not only improve the classification 295 

accuracy, but also the community composition analysis. 296 
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 297 

Discussion: 298 

Here we investigated the taxonomic classification from sequencing data, one of the key steps 299 

in all metagenomic workflows, with a particular focus on fungi. After assessing various 300 

combinations of algorithms and databases following different sequencing strategies, we 301 

found that the combination of BLAST with the specific RFD database always resulted in the 302 

most precise classification for all mock fungal community datasets. These classifications were 303 

further improved when applying cut-offs on query coverage including positive flow on effects 304 

on downstream community composition analysis from shotgun metagenomics datasets.  305 

Despite that sampling and DNA extraction substantially influence the outcome of species 306 

classifications [56–58], choosing an appropriate sequencing strategy is the primary step 307 

towards accurately profiling a sample. For shotgun datasets, our results suggested that both 308 

short and long shotgun datasets have comparable accuracy and both higher than the 309 

amplicon datasets. However, Illumina shotgun datasets require additional steps to assemble 310 

reads into contigs before querying them against a database, and to map all reads back to the 311 

assembly to quantify the coverage. These processes are necessary to achieve accurate 312 

classification from longer contigs [59], but result in a longer sequence-to-result turnover than 313 

the long read shotgun data. In the analysis of the amplicon data, long range amplicons 314 

performs better in the classification accuracy and completeness compare to the short ITS data, 315 

consistent with other studies [51,52]. Comparing to the results from shotgun datasets, the 316 

overall completeness from the result of amplicon datasets is much lower. We think that is 317 

because we used much less amplicon data for benchmarking classification pipelines, and the 318 
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incomplete database which do not contain all taxa present in our mock community. Overall, 319 

the long read shotgun datasets returned the most accurate fungal classification. 320 

Next, our data supported that alignment algorithm (BLAST) outperform the k-mer based 321 

approach (kraken2) in the accuracy of classification [32,60], and also compared progressive 322 

cut-offs to major alignment parameters for shotgun metagenomics data. We found that 323 

applying read length or read quality cut-offs did not improve the precision of the classification 324 

for all shotgun datasets. This observation is different with the previous study based on 325 

simulated data, which claimed that the long reads improves the accuracy of classification [60]. 326 

Cut-offs on pident slightly improved the classification accuracy for illumina datasets, but the 327 

error-prone nature of the nanopore data (~10% error rate) is also reflected in the result, as it 328 

causes the breakdown of precision when pident cut-offs reach 90% (Figure 2C). 329 

We found that query coverage cut-off that filter out 20% blast result worked best. Unlike the 330 

E-value weighing the gaps and mismatch as the major factor effecting alignment quality, the 331 

query coverage weighs the query length as well as the number of identical matches in the 332 

assessment of the alignment quality. In this case, we can eliminate more spurious alignments 333 

that are due to a small proportion of reads with high fidelity to the reference, which are 334 

commonly found in reads containing conserved genes and repeated sequences. Interestingly, 335 

to reach the same 20% filtering threshold, we set up higher cut-offs on the query coverage 336 

(10 -20%) in mock community datasets than the real environmental datasets, including few 337 

extremely low thresholds of query coverage in the Illumina shotgun datasets. We compared 338 

other studies that use simulated data to generate metagenomics contigs for classification, 339 

and found that they used 90% query coverage cut-offs as the parameter[62–64]. Together 340 

with the different result of read length and read quality cut-offs, this observations highlighted 341 
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the difference between the use of real environmental data and the simulated data in 342 

benchmarking studies, especially for the classification of complex microbial communities. 343 

PD and PB samples showed slightly different results in comparing statistical distance with the 344 

gold standard. After applying cut-offs on query coverage, both Bhattacharyya distance and 345 

Euclidean distance between the best practice and the gold standard classification only 346 

showed marginal decrease in PD samples, and slowly reversed as the cut-offs increase. We 347 

think that is because about 1/3 of reads were classified as Candida in the pooled DNA sample, 348 

so the difference on the relative abundance of one Candida genus between the gold standard 349 

community composition and the best practice is much higher and much more influential to 350 

the final distance than that from other genera.  351 

Following the importance of the alignment quantity represented by the query coverage, the 352 

next question is, how to bring the low quality but high quantity alignment into consideration? 353 

Therefore, the winner-takes-all selection strategy itself can be re-designed, as the highly 354 

conserved genome regions from different species generate highly close alignment scores 355 

between the best alignment and other top alignments. In this case, a weighing statistics and 356 

the relative probability for multiple top taxonomic assignments can be explored and 357 

introduced to replace the best-hit-takes-all strategy. This will be particularly useful in 358 

connection with the rapid expansion of the fungal genome databases. 359 

Next to the right classification tool, chosen the appropriate database significantly influences 360 

analysis outcomes [33,34]. Based on our observation, we suggest that ‘prior knowledge’ 361 

about the dataset should guide the choice of the appropriate database as this will improve 362 

the accuracy of taxonomic classifications. For example, our results suggested that the 363 

restricted database resulted in more accurate fungal classifications for shotgun 364 
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metagenomics datasets. This strategy might be appropriate if queries are initial binned into 365 

kingdoms before a more in-depth analysis with kingdom specific databases. Also, Kaehler et 366 

al. [65] incorporated environment-specific taxonomic abundance information into the 367 

analysis of  amplicon datasets and showed that these improve classification accuracy.  Similar 368 

approaches can be applied to metagenomic datasets. In addition, machine learning strategies 369 

become increasingly popular for analysing genomic data. Here taxonomic classifiers could be 370 

trained on existing labelled sequence datasets before being applied to communities with 371 

similar composition to the training datasets or to identify target species from complex 372 

communities [60,66]. 373 

 374 

Conclusion 375 

In this study, we perform an in-depth analysis on how different sequencing strategies, 376 

classification algorithms and databases impact fungal classifications using complex real-life 377 

mock community sequencing datasets. We find that alignment algorithm (BLAST) with 378 

targeted fungal database (RFD) achieve the best classification accuracy and community 379 

composition estimates. These can be further improved by applying cut-offs on query coverage. 380 

Taken together, the findings from our benchmarking workflows have important implications 381 

for mycology studies for multiple stages of metagenomics analysis, and provided a guide to 382 

other researchers aiming to study fungal metagenomics.  383 

 384 

Methods 385 

Code availability 386 
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All detailed commands and scripts used in each step were summarized in 387 

https://github.com/Yiheng323/Benchmarking-taxonomic-classification-strategies-using-388 

mock-fungal-communities. 389 

Fungal harvesting, DNA extraction and construction of mock communities 390 

Selected fungal strains were cultured onto Sabouraud dextrose agar and incubated for 48 391 

hours at 27ºC. 392 

For the species in the PD community, an inoculating loop full of fungal cells were scraped into 393 

a 1.5 mL microfuge tube and crushed with a pestle and liquid nitrogen. Genomic DNA was 394 

then extracted using the Zymo Research Quick-DNA Fungal/Bacterial Miniprep Kit (cat. no. 395 

D6005 Zymo Research, Irvine, CA, USA). First, BashingBeadTM Buffer was added to the crushed 396 

fungal cells and vortexed. The mixture was then filtered through a Zymo-SpinTM III-F Column 397 

and the filtrate was combined with Genomic Lysis Buffer. The mixture was filtered through a 398 

Zymo-SpinTM IICR Column and washed with DNA Pre-Wash buffer and g-DNA Wash Buffer. 399 

The DNA was eluted in nuclease free water. DNA concentration was measured using the 400 

DeNovix dsDNA Broad Range Kit (DeNovix, Wilmington, DE, USA) and 250 ng of DNA from 401 

each strain were then pooled together. 402 

For the PB community, two inoculating loops of fungi of each species in teg mock community 403 

were scraped into a ceramic mortar. Liquid nitrogen was then poured into the mortar and the 404 

fungal mixture was crushed into a fine powder. DNA was then extracted using the Qiagen 405 

DNeasy PowerMax Soil Kit (cat. no. 12988-10 Qiagen, Hilden, Germany). PowerBead Solution 406 

and Solution C1 were added to the crushed fungal community, vortexed and centrifuged. The 407 

supernatant was then added to Solution C2, mixed and centrifuged, which was then repeated 408 

with Solution C3. The resulting supernatant was combined with Solution C4 and centrifuged 409 
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through a column. The column was then washed twice with Solution C5. Final DNA was eluted 410 

in nuclease free water and the concentration measured using the DeNovix dsDNA Broad 411 

Range Kit.  412 

Library preparation and sequencing 413 

The ITS1 regions of the rRNA gene were amplified with the universal fungal primers, ITS1F 414 

(CTTGGTCATTTAGAGGAAGTAA) and ITS2 (GCTGCGTTCTTCATCGATGC)[47]. Sequencing of 415 

PCR amplicons was conducted with MiSeq® System of Illumina (Illumina, San Diego, CA, USA) 416 

by the Australian Genome Research Facility. The Illumina bcl2fastq 2.18.0.12 pipeline was 417 

used to generate the sequence data. Pair-ends reads 2 × 300bp were generated up to 0.15 418 

GB per sample for amplicon data. The Illumina amplicon data are then directly imported into 419 

QIIME2 for analysis. For shotgun Illumina datasets, we employed the same sequencing 420 

pipeline as the amplicon data, with MiSeq® and bcl2fastq 2.18.0.12 pipeline for the 2 x 300bp 421 

paired end reads. Raw shotgun Illumina reads were trimmed adapters with Trimomatic [67]. 422 

Quality controlled, paired end reads were merged and assembled to metagenomics contigs 423 

using IDBA_UD [68], which is more suitable for datasets with uneven sequencing depths of 424 

each species. After assembly, raw reads were mapped back to the contigs using bwa-mem 425 

[69], and the bam files were generated and sorted from sam files using samtools [70]. 426 

Bedtools [71] was used for generating coverage for each contig, and we used python numpy 427 

and pandas module to calculate the average coverage for each contig. 428 

For Nanopore sequencing of both shotgun and amplicon sequencing, we used Ligation 429 

Sequencing 1D SQK-LSK108 and Native Barcoding Expansion (PCR-free) EXP-NBD103 Kits from 430 

ONT (UK), as adapted by Hu and Schwessinger [72], which was adapted from the 431 

manufacturer's instructions with the omission of DNA fragmentation and DNA repair. DNA 432 
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was first cleaned up using a 1× volume of Agencourt AMPure XP beads (cat. no. A63881, 433 

Beckman Coulter, Indianapolis, IN, USA) following manufacturer’s instructions. We then 434 

eluted the beads binded DNA in 51 μl nuclease free water and quantified using NanoDrop® 435 

and Quibit™ Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA was end-436 

repaired (NEBNext Ultra II End-Repair/dA-tailing Module, cat. No. E7546), 1x volume beads 437 

cleaned (AMPure XP beads) and eluted in 31 μl nuclease free water. Barcoding reaction was 438 

performed by adding 2 μl of each native barcode and 20 μl NEB Blunt/TA Master Mix (cat. No. 439 

M0367) into 18 μl DNA, mixing gently and incubating at room temperature for 10 minutes. A 440 

1× volume (40 μl) Agencourt AMPure XP clean-up was then performed and the DNA was 441 

eluted in 15 μl nuclease free water. Ligation was then performed by adding 20 μl Barcode 442 

Adapter Mix (EXP-NBD103 Native Barcoding Expansion Kit, ONT, UK), 20 μl NEBNext Quick 443 

Ligation Reaction Buffer, and Quick T4 DNA Ligase (cat. No. E6056) to the 50 μl pooled 444 

equimolar barcoded DNA, mixing gently and incubating at room temperature for 10 minutes. 445 

The adapter-ligated DNA was cleaned-up by adding a 0.4× volume (40 μl) of Agencourt 446 

AMPure XP beads, incubating for 5 minutes at room temperature and resuspending the pellet 447 

twice in 140 μl ABB provided in the SQK-LSK108 kit. The purified-ligated DNA was 448 

resuspended by adding 15 μl ELB provided in the SQK-LSK108 kit and resuspending the beads. 449 

The beads were pelleted again and the supernatant sequencing library was transferred to a 450 

new 0.5 ml DNA LoBind tube (Eppendorf, Germany). Nanopore sequencing was carried out 451 

by MinION MK1b device using R9.4.1 Flowcells. Raw fast5 files are barcode demultiplexed by 452 

deepbiner (ONT), then basecalled by Guppy (v3.6.0, ONT, UK). Quality passed reads in fastq 453 

files were trimmed adapters and barcodes using qcat (ONT, UK). For the long amplicon data, 454 

we filtered out reads less than 2000 base pairs. All sequencing data was submitted to NCBI 455 

Short Read Archive (SRA) under the bioproject PRJNA725368 including eight accessions: 456 
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SRX10705648, SRX10705649, SRX10705650, SRX10705651, SRX10705695, SRX10705696 and 457 

SRX10705697. 458 

Genome assembly 459 

While generating the reference genome database, we found that there were no reference 460 

genomes for Candida rugosa, Candida mesorugosa and Cryptococcus magnus, so we 461 

performed nanopore sequencing on pure DNA from each species and assembled their draft 462 

genomes. These assemblies were of sufficient contiguity and quality (Supplementary Table 463 

S2), so we added the new draft genomes into the reference database.  464 

The nanopore data of Candida rugosa, Candida mesorugosa and Cryptococcus magnus was 465 

generated individually using Ligation Sequencing 1D SQK-LSK108 kit alone, and from 466 

independent flowcells. Data from each flowcell was basecalled and quality filtered using the 467 

same pipeline as described above. We got roughly 40X coverage for Candida rugosa and 468 

Candida mesorugosa, and 20X coverage for Cryptococcus magnus. Draft genomes were 469 

assembled with Flye [73] using default parameters and an estimated genome size of 20Mb. 470 

After assembly, the contigs were polished ten times with Racon [74] using nanopore reads, 471 

followed by one polishing with Medaka (ONT). Polished assembly was assessed completeness 472 

using BUSCO [75]. The assembly statistics were reported from Flye.  473 

Database constructions 474 

For shotgun metagenomics analysis, we used three BLAST database and three kraken 475 

databases. Two databases (nt and RFD) are from the same NCBI source, downloaded in May 476 

2019. BLAST and kraken2 nt databases were downloaded using the updateblastdb.pl script 477 

from BLAST+ package[76] and the kraken2 program [29], respectively. The fasta files of RefSeq 478 
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fungal database was downloaded from the NCBI and converted to BLAST database using 479 

makblastdb command from the BLAST+ package[76], and was added to the kraken2 database 480 

library using kraken2 command [29]. We also build the standard kraken2 database for 481 

masking the contaminated regions within the fungal genomes using kraken2 command [29]. 482 

To generate the mock community database with only the species from the mock community, 483 

we downloaded the genomes of all species in the mock community from the NCBI according 484 

to their accessions (Supplementary Table S1), and concatenated them with the three newly 485 

assembled genomes of Candida rugosa, Candida mesorugosa and Cryotococcus magnus. 486 

Following the previous pipeline [77], we then performed a kraken2 search to identify the 487 

potential contaminated regions in the concatenated fasta, and masked those regions using 488 

bedtools [71]. We also masked the low complexity regions using the dustmasker from BLAST+ 489 

package [76]. To enable new genomes to be indexed by blastn, we updated the taxonomic 490 

map file by adding the fasta headers of the three new genomes and manually assigned their 491 

taxonomic ID in the file. Lastly, we used the makeblastdb program to construct the mock 492 

community database.  493 

For amplicon data analysis, we used two versions of fungal ITS database from the NCBI and 494 

UNITE, plus the fungal 18S, 28S database from the NCBI. All of them are downloaded as fasta 495 

format in February 2020 and added to the kraken2 database library using kraken2 command 496 

[29]. 497 

Data analysis 498 

For Shotgun metagenomics datasets, we first used blastn (version 2.10.1) and kraken2 499 

(version 2.0.8) to assign the NCBI taxonomic ID for each Illumina contig or Nanopore read. 500 

During the classification, we found one contamination species Purpureocillium lilacinum 501 
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always present in all samples with a significant abundance (10-20%). Therefore, we added this 502 

species into the true species list. The best hit from BLAST or species with the highest k-mer 503 

counts for each read and/or contig was retained for further analysis. After classification, we 504 

used python pandas module to merge information from different output files, and used ete3 505 

module [78] to assign taxonomic information to each read or contigs. The relative abundance 506 

of each classification were calculated based on the total length of Nanopore reads of total 507 

coverage of Illumina contigs. We used python numpy and math module for all statistical 508 

analysis. 509 

For amplicon datasets, we sequenced each sample with three technical replicates. The 510 

classification workflow was different for datasets with different sequencing technologies. We 511 

only used QIME2 workflow plus the UNITE database for the Illumina amplicon data, since it is 512 

the only widely used method for classification. The paired end reads were denoised using the 513 

DADA2[79] plugin and assigned taxonomic information using the q2-feature-classifier [80] 514 

plugin. The QIME2 classifier was trained by the database sequence before classification. The 515 

classification output .qzv files were visualized by the QIME2 view website 516 

(https://view.qiime2.org/) and the feature-frequency csv file was extracted from the website. 517 

We then used python numpy and math module for the mathematical analysis and used 518 

seaborn module for generating figures.  519 

For nanopore amplicon datasets, we used kraken2 as the k-mer based algorithm and 520 

minimap2 as the alignment based algorithm. The kraken2 command is the same as the 521 

kraken2 analysis for the shotgun metagenomics datasets, only using different databases. For 522 

the minimap2 analysis, we extracted the accessions of the best hits from the output files, and 523 

searched their corresponding taxonomic ID from the NCBI taxonomic map (downloaded from 524 
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https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/nucl_wgs.accession2taxid.gz, in 525 

June 2020) using python pandas module. We then merge information from different output 526 

files, and used ete3 module again to assign taxonomic information to each read. 527 
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Figure Legends 556 

Table 1. The characteristics for each dataset. 557 

Table 2. Assignment of published sequence data to genera after application of cut-offs to 558 

query coverage. 559 

Figure 1. Analysis of shotgun metagenomics data. (A) Swarmplot showing the concordance in 560 

genus identification after varying either the alignment algorithm or querying different 561 

databases on different data inputs. nt = NCBI nucleotide database; RFD = RefSeq Fungi 562 

database; data inputs are indicated below the line (PD = pooled data; PB = pooled biomass); 563 

(B) Identification of fungal genera from PD samples. The classified proportion and precision 564 

were derived from different combinations of search algorithms and databases as indicated 565 

(box); (C) Identification of fungal genera from PB samples. The classification proportion and 566 
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precision were derived from the different combinations of search algorithms and databases 567 

as indicated.  568 

Figure 2. Dynamics in precision, completeness and remaining rate after applying progressive 569 

cut-offs on BLAST alignment metrics. (A) Cut-offs applied to query length. (B) Cut-offs applied 570 

to alignment E-values. (C) Cut-offs applied to the percentage of identical matches. (D) Cut-571 

offs applied to query coverage. 572 

Figure 3. Benchmarking of amplicon datasets. (A) Scatter plot represented genus level 573 

classification proportion and precision for nanopore amplicon data. (B) Genus level precision 574 

of Illumina amplicon data. Classification proportion of Illumina data were 100% due to the 575 

nature of the QIIME2 pipeline (based on the UNITE ITS database). (C) Genus level 576 

completeness of both nanopore and Illumina amplicon datasets. The nanopore results are 577 

from minimap2 algorithm and uniteITS database.  578 

Figure 4. Improving community composition analysis by applying query coverage cut-offs. (A) 579 

Experimental flowchart for analysing community compositions. (B) Statistical similarity 580 

measures between gold standard community composition and each combination of 581 

algorithms and databases. Lower values correspond to greater similarity between the 582 

samples and the gold standard. (C) Change in Bhattacharyya distance after applying cut-offs 583 

to query coverage for each dataset as indicated. The query coverage gap between each dot 584 

point is 0.5%. (D) Change in relative Euclidean distance after applying cut-offs to query 585 

coverage for each dataset. The gap between each dot point is 0.5%. (E) Change in relative 586 

entropy after applying cut-offs on query coverage for each dataset. The gap between each 587 

dot point is 0.5%. 588 

Supplementary Table S1. Metadata of the mock fungal community 589 
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Supplementary Table S2. Assembly statistics of the draft genomes of Candida rugosa, 590 

Candida mesorugosa and Cryptococcus magnus in the mock fungal community. 591 

Supplementary Figure S1. Change of alignment metrics after applying cut-offs on Phred score. 592 
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Table 1. The characteristics for each dataset.  

Sample 
Sequencing 

Tech 
Sequencing 

Strategy 
# Basepairs # reads 

# Assembled 
contigs 

# Mapped 
basepairs (Gb) 

PD 

Illumina 
Shotgun 3.91 Gb 14525058 338823 3.69 

Amplicon 66.9/95.8/106.4 Mba 39374/9614/10236b N/A N/A 

Nanopore 
Shotgun 1.96 Gb 1273484 N/A N/A 

Amplicon 71.5/72.5/86.5 Mb 26212/ 26680/ 31826b N/A N/A 

PB 

Illumina 
Shotgun 3.67 Gb 13623120 345009 3.44 

Amplicon 55.7/38.1/71.9 Mba 23613/13828/27093b N/A N/A 

Nanopore 
Shotgun 3.78 Gb 1043343 N/A N/A 

Amplicon 54.5/49.4/42.0 Mb 20163/ 18273/ 15502b N/A N/A 
 

a The total basepairs of each technical replicate were calculated before importing into QIIME2 pipeline. 
b Number of nanopore reads or paired-end Illumina reads for technical replicate 1/replicate 2/replicate 3 after quality control. 
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Sample ID Sample description Sequencing tech
Cut-offs on query 

coverage (%)
Filtered results (%)

Percentage of confirmed genera 
BEFORE applying cut-offs (%)

Percentage of confirmed genera 
AFTER applying cut-offs (%)

a1

Human sputum 
samples42

Nanopore

59 20.2 85.9 86.5

a2 53.2 20.1 97.9 98.5

a3 54 20.5 96.5 97.4

a4 45.5 20.1 16.2 19.8

a5 58.5 20 71.1 66.9

a6 50.4 20.1 93.6 94.7

b1

Field infected wheat 
samples41

5 20 60.4 75.1

b2 0.77 19.9 34.8 43

b3 12 19.7 67 82

b4 0.61 20 5.8 6.2

c1
Pig gut microbiome 

samples43

Illumina

2.4 20.1 32 35.4

c2 3.3 20.2 34.2 36.6

c3 2.6 20.2 35.2 38.3

d1
Mouse gut 

microbiome samples40

3.4 19.8 29.1 24.3

d2 14 20.1 63.7 69.4

d3 4.5 20.2 38.6 42.3

Table 2. Assignment of published sequence data to genera after application of cut-offs to query coverage. 
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