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ABSTRACT

16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S
analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S
sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are
not optimized for the increased read length and error rate of long-read data. Here we present Emu, a novel approach that
employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA
reads. Results produced from one simulated data set and two mock communities prove Emu capable of accurate microbial
community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate
a real-world application of our new software by comparing clinical sample composition estimates generated by an established
whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.

Introduction
Sequencing the 16S subunit of the ribosomal RNA gene has been a reliable way to characterize diversity in a community of
microbes since Carl Woese used this technique to identify Archaea in 19771. Today, high-throughput sequencing machines
used for this analysis are dominantly Illumina devices. Although cost-effective and accurate, Illumina sequencers are limited
to joined paired-end reads of roughly 500 nucleotides (bps). Since the 16S gene is approximately 1,550 bps, analysis is then
restricted to target amplification of just a subset of the hypervariable regions. This prevents distinction between highly similar
species, and ultimately produces taxonomic profiles that can in most cases only be measured down to the genus level.

Recent developments in sequencing technology, from providers like Pacific Biosciences and Oxford Nanopore Technologies
(ONT), permit amplification of sequences spanning the entire 16S gene. However, these long-reads come with one notable
drawback: high rates of sequencing error. While Illumina reads contain no more than one error per 100 base pairs, long-read
sequences yield errors in 10-15% of the nucleotide positions.

The canonical pipeline for 16S analysis operates in two main steps. First, the set of raw sequences is de-noised to identify
a smaller set of core sequences, where each set is believed to represent a distinct taxonomic unit in the community. Various
algorithms are available for this process2, yet all are calibrated to the level of error associated with Illumina reads. Second, the
representative sequences are compared to a database and assigned a taxonomic label. Since reads are already corrected for error
at this point, a database lookup tool such as BLAST3 is effective here. Yet, the error-correction presented by these pipelines are
simply not designed for error-rates of 10-15% produced by current long-read sequencers. Thus, these pipelines are not able to
produce accurate results from such reads.

Since ONT sequencers are comparatively recent to the marketplace, 16S method development for these devices has only
just begun4. In the absence of dedicated tools, some publications have chosen to use a more general read-mapping software
such as BWA-MEM5 or the LAST aligner6 to align reads directly to raw 16S sequences in one of the major databases7–9.
Another approach involves use of Kraken 210 and its Bayesian cousin Bracken11, since this combination compared favorably to
the default classifier in QIIME 212 for 16S short reads.
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NanoClust13 became the first published method purpose-built for taxonomic abundance profiling using full-length 16S
amplicon sequencing from ONT machines. As its name implies, this method follows steps that resemble the de-noising/database-
lookup procedure discussed above. Here, the two-stage procedure is implemented in Nextflow14 and uses external tools for
demultiplexing, quality-filtering, clustering, polishing and taxon assignment. As with Illumina software, taxon assignment is
lightweight since this step includes only a small number of ostensibly high-quality representative sequences. Yet due to use of
consensus sequences, this method is susceptible to overlook identification of species that are truly present in the error-prone
dataset.

In terms of classification from shotgun long sequences, Centrifuge15 and MetaMaps16 are commonly used. Centrifuge,
although not designed specifically for long or high-error reads, was tested on a set of ONT shotgun sequencing reads in its
publication. The results show it to be an effective tool for this purpose, with particular emphasis on recall when a minimum
threshold of 5 mapped reads is applied to the species identified. ONT now includes Centrifuge as a step in WIMP17, 18 (What’s
in my Pot?), a long-read 16S workflow provided on its EPI2ME analysis platform.

MetaMaps was designed for long, high-error reads and is intended for taxonomic binning of shotgun sequencing reads.
In order to address the error profile in the data, MetaMaps uses an approximate read-mapping algorithm to identify multiple
candidate species and locations for each read. It then applies an expectation-maximization (EM) algorithm to adjust the relative
confidence in each mapping based on the mapping density of other reads in the sample. This has the effect of smoothing out
some of the noise that is inherently created by the ONT error profile, resulting in a more accurate relative abundance estimation.
While effective for whole-genome sequences, the approximate mapping algorithm in MetaMaps does not achieve the required
resolution for 16S analysis and is thus not suitable for this scenario. However, this and other EM algorithms that have been
used previously in related settings for disambiguating ambiguous read mappings19, 20, provoke interest in an EM method for
error-correction of long 16S reads.

Here, we present Emu, a microbial community profiling software tool tailored for full-length 16S data with high error rates.
It capitalizes on the benefits of increased read length, while incorporating a crucial error-correction step. Emu’s algorithm
involves a two-stage process. First, proper alignments are generated between reads and the supplied reference database. Emu
then implements an EM-algorithm to iteratively refine species-level relative abundances based on total read-mapping counts.
This results in microbial community profile estimations from full-length 16S reads which are more accurate than existing
methods at both the genus and species level.

Results
To demonstrate the performance of Emu, two studies were completed. First, a quantitative comparison using three distinct
communities, where an actual or de facto ground truth could be used for evaluating accuracy and comparing methods. Second,
a demonstration of Emu’s applicability to understanding dynamics in actual microbial communities. In this real-world model,
human vaginal microbiome clinical samples were processed with two separate pipelines: 16S long reads analyzed with Emu,
and whole genome shotgun sequences processed with Bracken.

Quantitative comparison
To quantify the output of Emu in relation to several existing methods, three communities were used. The first is a single data set
of simulated ONT reads which follows the distribution of a published mock community. The other two are synthetic mock
communities, each of which were sequenced with both ONT and Illumina devices. Performance of each method was evaluated
at both the genus and species level using three metrics: the L1-norm of the taxonomic abundance profile, the count of true
positive taxa (TP), and the count of false positive taxa (FP). Computational resources required by each method were measured
by recording the run time and memory usage for each software.

The set of methods used for comparison include those discussed above: Kraken 2, Bracken, NanoClust, and Centrifuge.
We also include QIIME 212 and the primary alignment generated by minimap221. Although minimap2 is not a composition
estimator or read-level classifier in itself, it is included because it is instrumental in the Emu algorithm: mnimap2 is the
read-mapping software Emu uses to compute likelihood scores and iteratively estimate relative abundance. Including minimap2
in the comparison separates the effect of the EM impelementation in Emu from the read-mapping output it uses as a starting
point. QIIME 2 is a suite of software with high adoption primarily used with Illumina sequencing data, and is included mainly
to illustrate the efficacy of ONT reads with a method trusted on Illumina reads. Identical reference databases were built for
each software to ensure even comparison across methods (see Methods for details).

Ground truth relative abundance values for synthetic communities are based on sample-specific imputed values rather
than on estimated CFU-counts during production. This was done to correct for fluctuations in true abundance which may
occur during handling, storage or library preparation (including potential primer bias during 16S amplification). The two
ZymoBIOMICS community profiles are reasonably similar to their abundance claims, but the synthetic gut community is
subject to greater variation by nature of the microbes included and the skewed distribution. Therefore, this dataset-specific
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imputed ground truth is necessary to reliably evaluate community composition. Details on this process are described in the
Establishing ground truth section in Methods below, and for these two communities the term ground truth herein refers to this
imputed value.

MBARC-26 simulated mock community dataset
ONT reads were simulated following the composition of a published mock community, MBARC-2622, which contains 23
bacterial and 3 archaeal strains. Detailed information on the reference sequences and distribution of simulated reads are
contained in Supplementary Table 1.

ZymoBIOMICS mock community standard dataset
A previous study compared 16S sample composition accuracy across a series of hypervariable regions as well as the full-length
gene using the ZymoBIOMICS community standard catalog number D360523. We retrieved the ONT full-length dataset
and one of the Illumina datasets for our analysis. We selected the Illumina dataset with targeted regions V4-V6 to represent
short-read data since the study showed this dataset to produce classification results among the most accurate for this community
specifically.

Synthetic mock gut microbiome dataset
Finally, to challenge our software, a synthetic community mimicking the human gut microbiome was created and sequenced
with both ONT and Illumina devices, as described in the Gut Microbiome Mock Community Sample Creation section in
Methods. To represent a real-world scenario with unknown species, Romboutsia hominis is included in the sample, even though
this new species is not present in our database. The derived relative abundances of 21 species present in the sample are described
in Supplementary Table 1. One notable difference between the two datasets for this community is that Bifidobacterium dentium
is not considered to be a True Positive in the ONT sequences. This is a result of a recently noted issue with the standard ONT
forward primer, which contains three mismatching bases to the family Bifidobacteriaceae and thus fails to amplify microbes of
this taxa8. As a result the ONT data do not contain reads from this microbe, so considering it a true positive for this data set
is inaccurate. This is one example of why an imputed ground truth was used for the mock communities. This situation also
highlights the need for additional research into primers in this region to identify reliably universal primers or characterize any
sensitivity gaps.

Performance
Results of all methods on the simulated data set and two synthetic mock communities are contained in Table 1. Computational
resources required by each method are listed in Supplementary Table 2. Complete abundance profile output from all methods
on all data sets are provided in Supplementary File 2. All results generated utilize the default Emu database.

MBARC-26 simulation: For the MBARC simulated data, we see in Fig. 1 that Emu outperforms every method. Not only
does Emu express the lowest L1 distance, but it is also the only method to correctly identify all 26 species without producing
any false positives. Notably, there is a substantial difference in both L1 distance and false positive counts between Emu
and minimap2. This reflects the accuracy gains produced by the EM algorithm compared to a simple similarity-based taxon
assignment approach. It is evident from the memory and run time data between these two methods (Supplementary Table
2) that the majority of computation resources used by Emu are in fact due to its use of minimap2 for alignment generation.
NanoCLUST results differ from other methods shown in that it has no false positives, but fails to identify several of the present
taxa; in other words, it is generally conservative in its identifications.

ZymoBIOMICS: Emu on ONT reads expresses the lowest L1 distance across the methods tested at both the genus and species
levels. While almost all methods accurately detect the 8 species in the sample, the number of false positives reported varies. Of
the methods with perfect sensitivity, NanoCLUST returns the fewest false positives and Emu returns the second fewest. It is
also important to note that the abundance accuracy and sensitivity measured in the ONT dataset proves superior to those of the
Illumina dataset, especially at the species level. When restricting to only the Illumina results, Emu again proves the lowest L1
distance. While we do not recommend using Emu on Illumina 16S reads, this shows Emu to be a sensible approach regardless
of the read-error profile. Fig. 2 provides a graphical representation of accuracy measures.

Synthetic gut microbiome: Emu on ONT reads once again shows best or near-best for these metrics on the synthetic gut
microbiome community. This is an intentionally challenging community containing several microbes which, even based on
putative input abundance, are below 0.01% relative abundance. This is a particular form of stress-test for Emu because the
EM algorithm specifically down-weights low-abundance taxa that are closely related to those in higher abundance (reflecting
likelihood of sequencing error accounting for the match). Nonetheless, at the species level Emu has the best L1 distance.
Additionally, Emu is only one species shy of the highest TP count but has far fewer FPs than every method aside from
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Table 1. Performance summary of 16S relative abundance estimates on ONT and Illumina sequences for all three
communities. The row headers for TP contain the estimated number of actual true positives for each data set: for [x,y]: x
denotes the expected TP for Nanopore data set, and y for Illumina data set.

Oxford Nanopore Technologies Illumina
Emu minimap2 Kraken 2 Bracken NanoCLUST Centrifuge QIIME 2 Emu minimap2 Kraken2 Bracken QIIME 2

M
B

A
R

C
-2

6
ge

nu
s L1-norm 2E-3 2E-2 3.3 71.5 176.8 1.4 15.9

TP [24] 24 24 24 19 4 24 22
FP 0 11 339 15 0 484 8

sp
ec

ie
s L1-norm 0.01 0.08 14.2 79.5 176.8 11.4 96.4

TP [26] 26 26 25 19 5 26 16
FP 0 48 626 43 0 860 28

Z
ym

oB
IO

M
IC

S
ge

nu
s L1-norm 0.1 1.7 24.8 23.8 2.3 45.0 75.0 4.6 6.9 39.4 30.4 30.6

TP [8,8] 8 8 8 8 8 8 7 8 8 8 8 7
FP 0 4 77 61 0 245 5 9 24 65 64 1

sp
ec

ie
s L1-norm 1.8 15.1 65.3 65.7 24.2 111.1 113.6 33.6 37.9 117.6 89.4 93.3

TP [8,8] 8 8 8 8 8 8 1 8 8 8 8 1
FP 6 34 219 191 1 480 15 79 111 262 195 2

Sy
nt

h.
G

ut
ge

nu
s L1-norm 2.2 6.7 41.4 79.4 33.8 30.3 67.0 34.1 34.7 89.7 77.1 44.8

TP [18,19] 18 18 18 14 14 18 14 17 18 17 16 14
FP 17 73 505 80 2 1007 31 12 515 291 59 3

sp
ec

ie
s L1-norm 43.7 44.1 75.8 83.2 50.0 66.5 116.8 50.7 52.2 126.4 120.3 113.3

TP [20,21] 18 19 19 12 14 19 8 16 17 15 12 6
FP 42 223 1156 166 4 2372 56 69 1147 539 110 4

NanoCLUST. Although NanoCLUST does report the lowest FP counts, it also detects fewer TPs than others. Results are
visualized in Supplementary Fig. 1.

Research Application: Human Vaginal Microbiome
Variation in vaginal microbiota is associated with several urogenital diseases including bacterial vaginosis24, 25, a variety of
sexually transmitted infections (e.g. HIV26), and uncategorized phenotypes such as reproductive success24, 27. Vaginal microbial
communities can be classified into six so-called "community state types" (CSTs) I, II, III, IV-A, IV-B, and V, which are defined
by relative abundance of several Lactobacillus species and the presence of anaerobic bacteria28, 29. We generated community
composition from 12 vaginal samples, 6 with diagnosed bacterial vaginosis and 6 controls, using Emu and an established
whole-genome shotgun (WGS) metagenomic approach. We compared CST characterizations between the two pipelines to test
Emu’s ability to reproduce accepted community clusters.

Experimental design 12 vaginal swabs were obtained from the German Centre for Infections in Gynecology and Obstetrics
at Helios Hospital Wuppertal and prepared in the Institute of Medical Microbiology, Virology, and Hospital Hygiene at the
University of Duesseldorf. Samples 1-6 originate from control group patients and samples 7-12 from patients with diagnosed
bacterial vaginosis. Each sample was sequenced by whole-genome and 16S ONT workflows. The whole-genome reads were
processed into species- and genus-level abundance profiles using Kraken 2 and Bracken, while the 16S reads were processed
with Emu.

16S and WGS data comparison Comparison of 16S and WGS sequencing data is not trivial, even when sequencing libraries
are prepared from the same nucleic acid prep. Amplification and sequencing bias generally associated with marker gene
sequencing approaches may occur prior to bioinformatic analysis30. Still, this comparison is useful to present the benefits
and limitations of 16S sequencing. Since swabs contained a significant portion of host DNA (98-99% of reads classified as
human by Kraken 2 and Bracken), the number of bacterial reads was lower in WGS than 16S sequencing. To reduce bias due to
imbalance in sensitivity between the two methods, a species detection threshold of 0.01% was set for Emu.

Table 2 displays the most abundant bacterial genuses and four Lactobacillus species which are used as markers for inference
of vaginal CST. 16S and WGS results are highly concordant, showing the same dominant CST-marker species across 11 of the
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Figure 1. Performance on simulated nanopore reads (MBARC). (a) Species-level error between theoretical and estimated
relative abundances, where darker blue denotes an underestimate by the software, darker red denotes an overestimate, and white
represents no error. Color scheme is capped at ±10, resulting in error greater than ±10% observing the maximum error colors.
Displayed are the 20 species claiming the largest abundance in any of the Emu, minimap2, Kraken 2, Bracken, NanoCLUST,
Centrifuge, or QIIME 2 results. “Other” represents the sum of all species not shown in figure for the respective column. (b)
Species-level L1-norm, precision, sensitivity, and F-score for the seven methods evaluated in panel a.

12 samples. Sample 10 is the only sample with differing assignment between methods. According to Bracken, it is dominated by
L. crispatus, yet Emu shows dominance by Megasphaera spp. This discrepancy could be explained by the differing sequencing
depths between 16S and WGS datasets. In WGS, Kraken 2 only classified as 170 reads as bacterial, whereas the 16S dataset
consisted of 170,608 reads.

Previous literature claims healthy vaginal microbial communities to be dominated by Lactobacillus species27, 28, which
aligns with the estimates conducted by Emu. Vaginal dysbiosis, on the other hand, has been associated with high abundance of
generas Gardnerella, Prevotella, Megasphaera, Aerococcus31.

The most notable discrepancy between WGS and 16S amongst these genera is the relative abundance of G. vaginalis, where
WGS depicts this species in significant higher abundance while 16S misses it almost altogether. This is a result of the same
primer mismatch problem noted earlier for the family Bifidobacteriaceae, which G. vaginalis belongs to. Even with this bias,
the inference community state between the Emu and Bracken workflows is consistent across samples. A heatmap displaying
complete abundance profiles produced by both pipelines for each of the 12 samples is shown in the Supplementary Fig 2.

Discussion
Of the software tools in our 16S comparisons, only NanoCLUST and Emu are designed for species-level abundance estimation
using full-length 16S reads, so they should be expected to perform best in this analysis. In both mock communities, ONT
reads are able to deliver notably lower L1 distances than that of Illumina reads at the species level. While this difference in L1
decreases when moving up taxonomic ranks, lower L1 distances are still achieved by ONT reads when compared to Illumina at
the genus level. This highlights the effectiveness of full-length 16S reads over short read 16S analysis, as the entire 16S gene is
utilized rather than restricting sequences to a subset of the hypervariable regions.

An especially notable strength of Emu is its ability to correct for initial misclassification due to ONT sequencing through
the expectation-maximization algorithm. To see this we can compare Emu’s abundance estimates to minimap2. Emu returns
lower L1 distance and significantly fewer false positives, at both the genus- and species-levels, across all three communities.

This error correction step is especially powerful when it comes to distinguishing between very closely related species, where
the high error rate of the ONT sequences are most likely to result in confusion. The Bacillus species in our ZymoBIOMICS

5/14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.02.442339doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442339
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2. Performance on ZymoBIOMICS community standard. a Species-level error between calculated ground truth
and estimated relative abundances, where darker blue denotes an underestimate by the software, darker red denotes an
overestimate, and white represents no error. All Oxford Nanopore Technologies (ONT) errors are measured in relation to the
ground truth of the ONT dataset, while Illumina errors are measured in relation to the ground truth for the Illumina dataset.
Color scheme is capped at±10, resulting in error greater than±10% observing the maximum error colors. Displayed are the 20
species claiming the largest abundance in any of the Emu, minimap2, Kraken 2, Bracken, NanoCLUST, Centrifuge, or QIIME 2
results on the ONT or Illumina sample. “Other” represents the sum of all species not shown in figure for the respective column.
b Species-level L1-norm, precision, sensitivity, and F-score for the methods evaluated in panel a. True positives are restricted
to species with relative abundance ≥0.01% to align with guidance from ZymoBIOMICS on maximum levels of contamination.

mock community illustate this situation. The species that is present as per the manufacturer is B. subtilis, but B. halotolerans
differs from it by fewer than 15 bases over the length of the 16S gene. With 10-15% error in ONT reads a healthy fraction of
reads map almost equally well to either one. Specifically, Of the reads claiming a minimap2 primary alignment to a Bacillus
species, roughly 75% are correctly assigned to B. subtilis, 20% to B. halotolerans, and 5% are distributed amongst 19 other
species. Fig. 3 shows how the EM algorithm addresses this as it iteratively reconsiders the statistical evidence by alternately
reweighting mapping scores and abundance estimates. In the final estimate, Emu estimates 96% of the Bacillus reads as B.
subtilis, while only falsely identifying 4 Bacillus species to account for the remaining 4%. Initially, several Bacillus species
are inaccurately identified, but the majority are corrected after 10 iterations. It is also important to note that while minimap2
underestimates B. subtilis in the sample, every other method tested does so to an even greater extent.

Due to the nature of probabilistic models, the EM method generates a long tail of species with extremely low abundances.
To avoid this long inaccurate list in the results, the built-in threshold for Emu is the equivalent abundance of 1 read for samples
with less than 10,000 reads, and 10 reads for anything larger, meaning that for microbes truly present in a sample at lower
abundance than this, Emu will not be expected to detect it. This occurs in our synthetic gut mock community where Emu
does not detect C. leptum since our best estimate of the ground truth is that only 5 reads are present. While this abundance
threshold greatly reduces false positives reported by Emu, for use cases where identification of very low abundance taxa is the
priority it could be a limitation. All this to say that, of course, the desired sensitivity of the community profile is an important
consideration when selecting an appropriate tool.

Additionally, since Emu is a full-length alignment-based approach, more computational resources (memory and time) are
required compared to alternative methods. This is highlighted in Supplementary Table 2, and may prevent certain users from
incorporating Emu into their pipeline depending on access to appropriate computing resources.

Finally, these results contain a subtle but important lesson about the practical impact false positives can have for researchers
when it comes to ecological dynamics of a community. Given an environment and its resident microbiome, a common question
is whether the individual microbes are strictly competing for the same resources (as plants might do for sunlight, for example)
or whether there is a more complex dynamic, such as mutualism or a predator-prey relationship (as with animals). In the former
case, we tend to see a small number of species or even a single highly dominant member. Yet in the latter, more diversity is
generally observed and mutualistic bacteria will co-occur frequently; in the human nasal microbiome, D. pigrim and a species
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Table 2. Relative abundance of dominant and marker taxons assigned by EMu from 16S rRNA ONT data and by Bracken
from whole genome shotgun ONT data. Dominant genera are defined as those showing over 10% abundance in at least one
sample. CST-marker species of Lactobacillus are defined in28, 29. Values are rounded, so true zero values display as "-".

Control group Vaginosis group
Sample 1 2 3 4 5 6 7 8 9 10 11 12
Dominant genuses

Lactobacillus
Em. .99 1.00 1.00 .99 1.00 1.00 .40 .96 .16 .06 .00 .68
Br. .88 .95 .95 .60 .98 .97 .11 .64 .05 .57 .02 .34

Gardnerella
Em. - - - .00 - - - - .00 .00 - -
Br. .03 .02 .03 .37 .01 .02 .57 .03 .44 .31 .07 .48

Prevotella
Em. .00 .00 - - - - .03 .00 .04 .01 .04 .02
Br. .01 .01 .01 .01 .00 .01 .09 .09 .13 .12 .53 .05

Megasphaera
Em. .00 .00 .00 .00 .00 .00 .00 .00 .32 .51 .00 .25
Br. - - - - - - .00 .00 .06 - .00 .05

Aerococcus
Em. .00 .00 - - - - .29 - .01 .15 .00 .02
Br. - .00 - - - - .11 .00 .01 - .00 .01

CST marker species

L. crispatus
Em. .00 .50 .99 .00 1.00 .99 .00 .96 .00 .00 .00 .00
Br. .06 .63 .92 .06 .89 .96 .03 .64 .02 .61 .01 .04

L. gasseri
Em. .00 .00 .00 .98 .00 .00 .00 - - .00 - .00
Br. - - - .46 - - .00 - - - - .00

L. iners
Em. .99 .47 .00 .00 .00 .00 .34 .00 .16 .06 .00 .68
Br. .86 .28 .01 .01 .00 - .06 .01 .03 - .00 .29

L. jensenii
Em. - .02 .01 - - .01 .05 - - - - -
Br. - .02 .02 .05 - .01 .01 - - - - -

Inferred CST Em. 3 1 1 2 1 1 4 1 4 4 4 4
Br. 3 1 1 2/4 1 1 4 1 4 1/4 4 4

of Cornybacterium operate in this way32. In this case, a systematic tendency to overstate the number of organisms present, or to
confuse a single taxon for several closely related ones, could lead to a qualitatively different understanding of the functional
interactions at work.

Among the Lactobacillus CST-marker species in the vaginal samples, Emu suggests a single species tends to comprise over
98% of the total, whereas Bracken indicates the norm is for multiple Lactobacillus species to coexist. Co-occurence patterns
have real significance for health researchers; one hypothesis is that a community with multiple anchoring Lactobacilli contains
functional redundancy and thus resiliency to perturbation29. But if sequencing error is likely to cause one microbe to appear
as a mixture of two, the resulting data could be grossly misleading. The Bacillus species in the ZymoBIOMICS community
demonstrate the same pitfall.

The potential for long, single molecule reads to deliver higher-resolution pictures of microbial communities remains enticing,
but the high rate of sequencing error has presented a formidable obstacle. Specifically, while short reads are constrained in
sensitivity below the genus level, long reads are not: their difficulty is with specificity. In the case of long-reads applied to 16S
amplicon sequencing, Emu represents an important improvement in minimizing this trade-off and has the potential to show the
communities of well-studied environments in a new light.

In conclusion, Emu is the current top performer for species-level profiling from full-length nanopore reads and facilitates
accurate characterization of microbial community composition from 16S rRNA genes.

Methods

Overview of Emu algorithm
To generate an accurate microbial community composition estimate from noisy full-length 16S reads, an expectation-
maximization (EM) algorithm with a composition-dependent prior is developed in Emu. The algorithm starts with a frequency
vector F , which contains the proportion of the sample that is dedicated to each species in the database. With each iteration
of the algorithm, vector F is redistributed to increase the likelihood of the estimate. This process continues until F achieves
only marginal gains with each proceeding cycle. At this point, vector F is trimmed to remove low-frequency species, then
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Figure 3. Relative error after consecutive expectation-maximization (EM) iterations on ZymoBIOMICS ONT reads
Relative error of the Emu algorithm after 1, 2, 3, 4, 5, 10, 15, and 20 EM iterations on our ZymoBIOMICS sample sequenced
by a Oxford Nanopore Technologies device. The 20 most abundant species in the computational estimate are displayed. X-axis
denotes the number of completed EM iterations for the results portrayed in the respective column. Darker blue represents an
underestimate by the method, while darker red represents an overestimate. Color scheme is capped at ±3, resulting in error
greater than ±3% observing the maximum error color.

redistributed for one final time, and returned as the sample composition estimate. Fig. 4 contains a walk through of the entire
Emu algorithm, as well as a toy example.

Initial probabilities
To apply the EM framework, we need: 1.an initial sample composition estimate for vector F , and 2.alignment likelihoods
P(r|s) between each sample read r and database reference sequence sεS. Since we do not have any pre-existing knowledge
regarding the sample composition, F starts as an evenly distributed vector F(t)tεT = 1

|T | , where T is the set of all taxonomy
identifications in S. To identify alignment likelihoods P(r|s), we start by generating pairwise sequence alignments between rεR
and sεS with minimap2, where R represents all reads in the sample. We determine the likelihood for nucleotide alignment
types: mismatch (X), insertion (I), and softclippings (S), by counting the number of occurrences of each nucleotide alignment
type in the primary alignments. We define these probabilities with a simple proportion:P(c) = nc

ΣcεCnc
, where C=[X,I,S] and nc

is the sum of occurrences of that type amongst all the primary alignments. Note that excluding deletions and matches from
the alignment probabilities is an empirical decision that was made after initial experimentation. This trial conducted by first
ignoring all deletions to guarantee equal length between all alignments for a given read. Then, matches were removed as well,
to avoid penalizing alignments for matching nucleotides.

Now that the likelihood for each type of the nucleotide alignment is defined, the likelihood for each pairwise alignment
rεR, sεS is calculated as P(r|s) = ∏cεC P(c)nc(r,s) , where nc(r,s) is the number of alignment type c observed in the alignment
between r and s. In the event that no alignment is generated between r and s, then P(r|s) = 0. Since we are interested in the
most-likely taxonomy of r rather than the most-similar sequence s, we keep only the highest P(r|s) for all s with species-level
taxonomy identification t. Thus, the alignment probability between each read r and species taxonomy id t is calculated with
P(r|t) = max

sεt
(∏cεC P(c)nc(r,s)), where sεt represents all s with taxonomy id t. With initial probabilities set in place, the can now

improve our sample composition estimation with an EM probabilistic model.
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Figure 4. Pictorial representation of Emu algorithm. a The complete Emu algorithm. Follow the grey-arrowed path until
expectation-maximization (EM) iterations are complete, then pink arrows are followed to the final composition estimate. The
method starts by establishing probabilities for each alignment type C = [X(mismatch), I(insertion),S(so f tclipping)], through
occurrence counts in the primary alignments. Next, alignment probability P(r|t) is calculated for each read, taxonomy pair (r, t)
by assuming the maximum alignment probability between r and t. Meanwhile, an evenly-distributed composition vector F is
initialized. The EM phase is entered by determining P(t|r), the probability that r emanated from t, for all P(r|t). F is updated
accordingly and the total log likelihood of the estimate is calculated. If the total log likelihood is a significant increase over the
previous iteration (>.01), then EM iterations continue. Otherwise, the loop is exited, and F is trimmed to remove all entries less
than the set threshold. Now following the pink arrows, one final round of estimation is completed with the trimmed F to
produce the final sample composition estimate. b A toy example of sample composition estimation by Emu. Sample reads R
are mapped to database reference sequences S with minimap2. Utilizing the CIGAR counts in the primary alignments,
nucleotide alignment probabilities X : 2

5 , I : 1
5 ,S : 2

5 are formed. The maximum alignment probability for each r, t is kept, and
evenly-distributed vector F is initialized. Sample composition F is redistributed in each EM iteration, until the algorithm
completes and returns F as the final relative abundance estimation.

Redistribute sample composition

The likelihood r emanated from species t is constructed for each P(r|t) using Bayes’ Theorem, P(t|r) = P(r|t)∗F(t)
ΣtεT P(r|t)∗F(t) . With

these probabilities, F is redistributes as F(t)tεT = ΣrεRP(t|r)
|R| . The accuracy of this estimate is evaluated by total log likelihood,

L(R) = ΣrεRlog[ΣsεSP(r|t)∗F(t)], which increases with each iteration. If this L(R) improvement from the previous iteration is
substantial (> .01), then this re-estimation step is repeated with the updated F . Otherwise, redistribution is complete, and we
move to the final phase of the algorithm.

Trim noise for final estimation
Due to the nature of the probabilistic structure in an EM model, vector F is likely to contain a long tail of species claiming low
abundance. To avoid this long list of false positives in the output, any abundance below the set threshold will be modified to
0 at this stage. The default threshold for Emu is the abundance equivalent to 1 read for samples with under 1,000 reads and
10 reads for larger samples; however, the user can modify this parameter. Once F is trimmed, Emu enters one final round of
abundance redistribution. The resulting final F is exposed as the sample composition estimation.

Simulated read generation
Just under one million ONT reads were simulated using DeepSimulator33, with default settings on a synthetic metagenomic
community structure. The composition was established following the composition of published mock community MBARC-2622.
Reference 16S rRNA sequences were obtained from 16S RefSeq nucleotide sequence records34. For strains not present in the
RefSeq 16s rRNA sequence database, all strains under the same species as the desired strain were used instead.
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Creation of gut microbiome mock community
Each gut bacterium was activated and proprogated individually in brain heart infusion (BHI) medium supplemented with hemin
(5 mg/L) and yeast extract (10 g/L). Plate counting method was used to determine viable cells of cultures after 4 hours of
anaerobic cultivation at 37 °C; all bacterial strains were combined with equal volume of 100 µL. Cultures were then centrifuged
at 12,000 g for 10 min before extra bacterial lysis with lysozyme followed by DNA extraction using MasterPure™ Complete
DNA and RNA Purification Kit. DNA was quantified by Qubit kit.

Sequencing mock communities
ZymoBIOMICS
Detailed description of steps taken to sequence the ZymoBIOMICS sample can be found in the Materials and Methods
section of the study which produced these sequences23.

Synthetic gut mock
Library construction and sequencing of V4 region of the 16S ribosomal RNA gene were performed using the NEXTflex 16S V4
Amplicon-Seq Kit 2.0 (Bioo Scientific, Austin, TX) with 20 ng of input DNA, and sequences were generated on the Illumina
MiSeq platform (Illumina, San Diego, CA).

Library construction and sequencing of the full-length 16S gene were performed with MinION nanopore sequencer (Oxford
Nanopore Technologies, Oxford, UK) and 16S Barcoding Kit 1-24 (SQK-16S024, Oxford Nanopore Technologies, Oxford,
UK).The PCR amplification and barcoding was completed with 15 ng of template DNA added to the LongAmp Hot Start Taq
2X Master Mix (New England Biolabs, Ipswich, MA). Initial denaturation at 95°C was followed by 35 cycles of 20 s at 95°C,
30 s at 55°C, 2 min at 65°C, and a final extension step of 5 min at 65°C. Purification of the barcoded amplicons was performed
using the AMPure XP Beads (Beckman Coulter, Brea, CA) as per ONT’s instructions. Samples were then quantified using
Qubit fluorometer (Life Technologies, Carlsbad, CA) and pooled in equimolar ratio to a total of 50-100 ng in 10 µ l. The pooled
library was then loaded into an R9.4.1 flow cell and run as per the manufacturer’s instructions. The MINKNOW software
19.12.5 was used for data acquisition.

Emu 16S database
The default database of Emu is a combination of rrnDB version 5.635 and NCBI 16S RefSeq downloaded on September 17,
202034. Duplicate species-level entries, defined as entries with identical sequences and species-level identification, were
removed. The resulting database contains 49,301 sequences from 17,555 unique microbial species. Database taxonomy was
also retrieved from NCBI on the same date as the RefSeq download. This database can be reproduced by utilizing the build
custom database option in Emu on both the rrnDB and RefSeq sequences separately, then concatenating the results.

This combination of two databases was constructed since established databases proved insufficient for species-level
classification of full-length 16S reads. This insufficiency is shown through an analysis comparing abundance estimation results
calculated by Bracken with 5 different databases: the three 16S databases built into Kraken 2 (Greengenes, RDP, and SILVA),
the custom Emu database described above, and the standard default database of Kraken. First, classification results for our
ZymoBIOMICS ONT reads were generated with the four 16S databases through Kraken 2 as well as the standard Kraken
database through Kraken. Then Bracken was utilized for abundance estimation of each of the five classification results, with
defined read-length 1500. Emu default database accuracy outperformed each of the other databases tested at both the genus-
and species-level in terms of L1 distance. While nearly all reads were classified at the species-level with both the Emu and
Kraken default databases, RDP and SILVA were unable to make any calls at this low taxonomic rank. Full results regarding
accuracy and number of reads classified are expressed in Supplementary Table 3.

16S quantitative comparison
Prior to each software analysis, barcodes were removed from each mock community dataset. For our two ONT datasets,
the trim_barcodes function in Guppy Basecalling Software v4.4.236 was applied to align with the default method of ONT
sequencers. For our two Illumina datasets, Trimmomatic v0.39 was used instead. Since each method requires different
formatting for database retrieval, the default database of Emu was built for each software per instructions by the developers.
Reads categorized as “unclassified” were removed prior to calculating relative abundance for each method. Supplementary
Note 1 contains a detailed list of all commands used.

Minimap2
Since minimap2 is a sequence alignment program, we converted results to classifications by restricting the minimap2 v2.17
output to only the top database hit for each input read, and classifying the read as such. Preset option for ONT was utilized for
our long-read data, while the genomic short-read mapping preset was used for our Illumina data. Subsequently, taxonomy
counts were generated from the primary alignment output, and relative abundance of each species was calculated as the number
of species occurrences divided by the total number of aligned reads.
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Kraken 2
Kraken 2 v2.1.1 was used to generate a custom database matching our Emu default, then ultimately produce classification
results. To calculate relative abundance from Kraken 2 classification, the “clade counts” column from the Kraken 2 report
(kreport) was utilized. For species-level results, only rows with “rank:S” were kept. Relative abundance for each species was
then defined as the “clade counts” for that species divided by the total number of “clade counts” in the reduced kreport. This
process is then repeated at the genus-level by restricting the kreport to only those rows with “rank:G”.

Bracken
Since Bracken was designed for abundance estimation of Kraken results, Bracken v2.5.0 was used to gather microbial abundance
estimates of our Kraken 2 results described above. For full-length ONT reads, our custom Kraken 2 database was converted to
a Bracken database with read lengths 1,500. The same process was applied for Illumina data, except read lengths 250 and 300
were used for ZymoBIOMICS and synthetic gut microbiome mock, respectively. Bracken abundance estimations were then
generated for each dataset at the genus and species level.

NanoCLUST
Since NanoCLUST utilizes a BLAST database, a custom BLAST database was created to match our Emu default database.
NanoCLUST v1.9 was then run on each of our long-read samples with the docker profile option. Since NanoCLUST generates
relative abundance estimates at each taxonomic rank by default, no further processing was necessary.

Centrifuge
Centrifuge v1.0.4 was used to build a custom database and generate taxonomic classification of our 3 long-read samples. The
kreport generation functionality within Centrifuge was then incorporated to create Kraken-style reports for each Centrifuge
classification result. Genus- and species-level relative abundance results were calculated from these kreports in the same manor
as Kraken 2 results described above.

QIIME 2
QIIME 2 results were produced with the classify-sklearn Naive Bayes classifier workflow of QIIME 2 2020.11.1. First, a
QIIME 2 artifact representation of the default Emu database was generated with the appropriate QIIME 2 import command.
Then, reference sequences were extracted appropriately based on the primer used for each sample and fit to the reference
taxonomy to produce a QIIME 2 classifier. The already demultiplexed sample reads were denoised (Illumina) or dereplicated
(ONT), and then classified with the appropriate pre-fit classifier. The taxonomic classifications were then collapsed to genus
and species levels, and relative abundances were calculated separately for the two taxonomic rank results.

Establishing ground truth
Since the true microbial composition of each sequencing output is unknown, we used the following methods to establish a
ground truth for our non-simulated data sets. First, our ZymoBIOMICS community. The ZymoBIOMICS Microbial Community
DNA Standard used to create our ZymoBIOMICS datasets contains eight bacterial species of which assembled 16S reference
genomes are provided. Thus, a “Zymo-exclusive” database containing only the assembled reference genomes for these eight
species was created. The ZymoBIOMICS samples were then mapped (BWA-MEM for short-read, minimap2 for long-read)
to this “Zymo-exclusive” database for accurate classification of each read. Mirroring our minimap2 workflow, reads were
classified as the top hit and relative abundance was derived from these results.

A similar workflow was used to establish a ground truth for our synthetic gut microbiome community. This community
was created by combining strains from 20 unique bacterial and archaeal species. However, whole-genome sequencing and
de novo assembly of the isolated Entercoccus faecium strains, confirmed contamination with Entercoccus faecalis. Thus, the
restricted database for this sample is limited to only the 21 species known to be in the sample, of which reference sequences
were retrieved from NCBI 16S RefSeq, resulting in 45 sequences and 20 of the 21 species. However, since Romboutsia hominis
is present in the sample, but not RefSeq, the sequence for the 16S gene of Romboutsia hominis was selected from GenBank37,
and included in the exclusive database. Mapping, classification, and sample composition calculation follow the workflow for
establishing ground truth of the ZymoBIOMICS community. It is important to note that this community is subject to other
undocumented contamination. Supplementary Table 1 lists the established microbial compositions for each of our samples.

Accuracy evaluation metrics
L1-norm, or the distance between the true and inferred sample, is used to evaluate sample composition accuracy for each
software. This equation can be summarized as ∑sεS |Es− Is|, where set S consists of the union between all the species in the
database and ground truth, and Es and Is are the respective expected and inferred relative abundances for species s. A perfect
L1 distance is 0, while an entirely inaccurate sample composition estimate would return a L1 distance of 200. In addition,
we evaluate the performance of each software with precision, sensitivity, and F-score. For this explanation, TP represents
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true positives, FP represents false positives, and FN represents false negatives. Precision states the proportion of claimed true
positives that are truly present in the sample: T P

T P+FP . Sensitivity expresses the percentage of expected positives that were
detected by the software: T P

T P+FN . The F-score is simply the harmonic mean between the two values: 2·precision·sensitivity
precision+sensitivity . Since

the ZymoBIOMICS sample is guaranteed to contain <0.01% foreign microbial DNA, all ZymoBIOMICS results are trimmed
to include only taxa with abundance ≥ 0.01%, prior to calculated performance metrics.

Computational resources
All software analysis was completed on a Ubuntu 18.04.4 LTS system. The /usr/bin/time command was used to gather time
and memory statistics. Reported CPU time is calculated by summing the user and sys time, and RAM requirements with the
maximum resident size. The only except is NanoCLUST, where, computational requirements were extracted from the Nextflow
execution report instead. Here, run time was gathered from the “CPU-Hours” output, and maximum resident set size from the
maximum RAM reported in the “Memory” section. Computational requirements recorded for Bracken is an accumulation of
both the Bracken and Kraken 2 commands, since both are required to produce the Bracken abundance estimation. Computational
requirements for the QIIME 2 workflow are left out of this analysis as QIIME 2 involves several commands, making for an
uneven comparison.

Clinical vaginal samples
Data generation
Total DNA and RNA was extracted using ZymoBIOMICS DNA/RNA Miniprep Kit R2002. 16S Nanopore sequencing library
was prepared from 10 ng of total DNA using 16S Barcoding Kit SQK-RAB204. Whole genome Nanopore library was prepared
from remaining total DNA using Native Barcoding Expansion 1-12 (PCR-free) Kit EXP-NBD104 and Ligation Sequencing Kit
SQK-LSK109. Data was sequenced on MinION flow cells type R9 (FLO-MIN106D) in two runs (16S run and whole genome
run). Data was aquired with MINKNOW core v. 4.0.5. Basecalling and demultiplexing was done using Guppy v. 4.0.15.

Data analysis and databases
Computational analysis of vaginal samples was performed on a machine with CentOS Linux release 7.9.2009. Whole genome
sequencing data were analyzed with Kraken v.2.1.1 and Bracken v.2.5.

Kraken 2 database was built from a custom metagenomic database, which includes all latest complete and reference
genomes derived from RefSeq database in divisions bacteria, fungi, protozoa and viral of RefSeq (state 26.12.2019). The host
portion of the metagenomic database is represented by 1000 genomes project reference sequence and two well-characterized
human assemblies (GCA_001524155.4 and GCA_002009925.1).

Retrieved Bracken abundances at both genus- and species-level were recalculated considering only bacteria in order to align
with 16S results. Therefore, total Bracken results belonging to superkingdom "Bacteria" was assumed as 100% abundance for
each sample.

Emu was run on 16S sequencing data with a species detection threshold of 0.01%. Species- and genus-level abundances were
retrieved from Emu output. CSTs were inferred from abundance profile considering dominance of four marker Lactobacillus
species.

Data availability
All sequenced samples used in this study are publicly available on Sequence Read Achieve (SRA). Both ZymoBIOMICS data
sets are under BioProject ID PRJNA587452 with SRA accessions SRR10391201 for ONT and SRR10391187 for Illumina.
Our gut mock community is under BioProject ID PRJNA725207. The 12 vaginal samples used for our real-world application
demonstration are uploaded under BioProject ID PRJNA723982. Additionally, our simulated sequences are publicly available
on OSF under project 56UF7 (https://osf.io/g5xwr/).

Study of vaginal microbiomes was IRB-approved by the ethics committee of the Medical Faculty of Heinrich Heine
University.

Code availability
Emu and all associate code are available on GitLab: https://gitlab.com/treangenlab/emu. Emu can be installed via Bioconda:
https://anaconda.org/bioconda/emu.
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