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Abstract 15 

The COVID-19 pandemic has emphasized the importance of detecting known and emerging pathogens from clinical and 16 
environmental samples. However, robust characterization of pathogenic sequences remains an open challenge. To this 17 
end, we developed SeqScreen, which can accurately characterize short nucleotide sequences using taxonomic and 18 
functional labels, and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial 19 
pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with 20 
high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed pathogen 21 
characterization and is available for download at: www.gitlab.com/treangenlab/seqscreen 22 

Introduction 23 

Rapid advancements in synthesis and sequencing of genomic sequences and nucleic acids have ushered in a new era of 24 
synthetic biology and large-scale genomics. While the democratization of reading and writing DNA has greatly enhanced 25 
our understanding of large-scale biological processes[1], it has also introduced new challenges[2]. Robust characterization 26 
of genetically engineered or de novo synthesized pathogens has never been more relevant, and the importance of detecting 27 
and tracking naturally evolving and emerging pathogenic sequences from the environment cannot be overstated. Open 28 
challenges that represent barriers to accurate detection include, but are not limited to, (i) the role of abiotic and 29 
environmental stress response genes in virulence, (ii) the presence of seemingly pathogenic sequences in commensals, (iii) 30 
host-specific pathogen virulence, and (iv) interplay of different genes to generate pathology[3]. Accurate and sensitive 31 
detection of pathogenic markers has also been confounded by the difficulty of characterizing multifactorial microbial 32 
virulence factors in the context of the biology of the host[4]. The limited number of publicly available databases to 33 
annotate and identify specific pathogenic elements within sequencing datasets further exacerbates the problem. 34 
Furthermore, due to difficulties with automated annotations and the lag between experimental results and sequence 35 
annotations, identifying sequences involved in pathogenesis is an ongoing challenge[5,6]. Gene Ontology (GO) terms 36 
were not designed to solely capture the nuanced biological processes and molecular functions specific to pathogens, and 37 
the pathogenesis GO term (GO:0009405), which labels >275K UniProt accessions, was recently made obsolete, with the 38 
final notice given in March 2021 (https://github.com/geneontology/go-annotation/issues/3452). Thus, there exists an 39 
urgent need in the community for a tool that can accurately characterize genomic sequences in the context of functional 40 
pathogen detection and identification, thereby sensitively capturing sequences of concern (SoCs) in each sample[3]. 41 
With respect to computational approaches for pathogen characterization, much recent progress has been made specific to 42 
taxonomic classification from isolates and metagenomic datasets. For example, probabilistic models leveraging k-mer 43 
genotyping and logistic regression analysis to identify k-mers indicative of antibiotic resistance have shown promise [7]. 44 
Other tools incorporating statistical frameworks for predicting markers of pathogenicity from sequencing data include 45 
PathoScope[8,9]  and SURPI[10]. The former utilizes sequence quality and mapping quality as parts of a Bayesian model 46 
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to rapidly compute posterior probabilities of matches against a database of known biological agents, while the latter uses 47 
either Scalable Nucleotide Alignment Program (SNAP)[11]  based alignments to bacterial or viral databases and in some 48 
cases RAPSearch[12] for more sensitive identification. Both tools also had separate releases, Clinical PathoScope[13] and 49 
SURPI+[14], specifically focused on pathogen characterization from clinical samples. Another k-mer based tool by 50 
CosmosID[15], precomputes reference databases (reference genomes as well as virulence and antimicrobial resistance 51 
markers) to create a phylogeny tree of microbes as well as variable-length k-mer fingerprint sets for each branch and leaf 52 
of the tree. Sequencing reads are then scanned against these unique fingerprint sets for detection and taxonomic 53 
classification. The statistics derived are then refined using predefined internal thresholds and statistical scores to exclude 54 
false positives and fine grain taxonomic and relative abundance estimates. Evaluations of this approach have shown that 55 
CosmosID achieves a high level of sensitivity in antibiotic resistance gene detection for predicting staphylococcal 56 
antibacterial susceptibility[16]; however, this is not an open-source tool and was not further evaluated in this study. 57 
 58 
However, despite recent progress, all of the aforementioned methods either: i) assume the presence of the entire genome, 59 
ii) ignore functional information, or iii) are ill-equipped to analyze individual short sequence lengths typical of 60 
synthesized oligonucleotides. Previous benchmarking studies on microbial identification from metagenomes have shown 61 
that there exists a crucial tradeoff between taxonomic resolution and accuracy given the current state-of-the-art tools[17]. 62 
Furthermore, taxonomic id is often a poor proxy for pathogenicity. While modern computational methods have tackled 63 
aspects of this problem by focusing of various types of pathogenic markers, there exists a gap in computational tools and 64 
annotation frameworks able to accurately identify known and emerging pathogens from environmental samples [18].  It is 65 
precisely this gap that we aimed to fill with SeqScreen. Previously, we introduced a proof-of-concept framework[19] for 66 
robust taxonomic and functional characterization of nucleotide sequences of interest. Here, we build upon the earlier 67 
framework and present a robust and comprehensive tool based on ensemble machine learning and functions of sequences 68 
of concern (FunSoCs) for pathogen identification and detection. Our system, SeqScreen, combines alignment-based tools, 69 
ensemble machine learning classifiers, curated databases, and novel curation-based labelling of protein sequences with 70 
pathogenic functions, to identify sequences of concern in high throughput sequencing data. Through careful, manual 71 
assignment of pathogenic functions based on published investigations of each sequence, SeqScreen depends on high 72 
quality training data to predict FunSoCs accurately. The SeqScreen FunSoC database has been pre-computed with our 73 
ensemble machine learning classifiers, so the SeqScreen software does not train the machine learning classifier or run 74 
machine learning in real time, making the analysis more streamlined and the results consistently reproducible and 75 
reviewable. SeqScreen aspires to be the first tool to combine human interpretability and machine learning-based 76 
classification in a human-in-the-loop construct to provide a holistic solution towards classifying pathogens and offers a 77 
novel functional framework for pathogen identification in contrast to existing tools. 78 

Results 79 

Comparison of FunSoCs to previous pathogen detection frameworks 80 
Previous pathogen detection methods have mainly relied on the Virulence Factor Database (VFDB) as a training and 81 
validation dataset to detect markers of pathogenicity from Next Generation Sequencing (NGS) data[20,21]. VFDB 82 
contains a set of more than 3400 core sequences that aim to capture Virulence Factors (VFs) from 30 different genera of 83 
medically relevant bacterial pathogens[22]. There have been five updates describing VFDB since the original 84 
announcement published in 2005, with the latest being in 2019[22–26]. A close inspection of VFDB sequences revealed 85 
some limitations to basing our tool on this framework. There is little rationale provided for why these sequences and not 86 
others are included. No Gene Ontology terms, or other functional annotations, are used to describe individual sequences. 87 
VFDB contains many proteins that contribute to flagellar production. Flagellar components are recognized by pattern 88 
recognition receptors of the innate immune system and can thus precipitate an inflammatory reaction, but they are found 89 
in both pathogenic and non-pathogenic species. In any case, the flagellar synthases could only remotely be considered 90 
pathogenic. A vast majority of the sequences also were involved in secretomes or general secretion pathways and did not 91 
fully capture the diversity of VFs. To address these limitations, our curation team developed the FunSoC framework that 92 
improved upon the functional inclusion criteria and developed a new set of proteins consisting of 1433 training sequences 93 
that contained different GO terms that represented the underlying FunSoCs with each sequence having at least one 94 
FunSoC annotation. Fig. 1 A shows the overlap between the distinct GO terms from the VFDB core sequences, and the 95 
training set used in our study. The SeqScreen training dataset contained 12086 GO terms compared to just 657 retrieved 96 
from the VFDB sequences. The lack of functional information in VFDB was also observed by comparing the annotation 97 
scores (Fig. 1 B) of sequences as specified in UniProt. The annotation score of VFDB core sequences was 98 
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overwhelmingly 1 (out of 5), whereas the sequences in our training dataset were carefully curated to include proteins that 99 
had annotation scores above 3 with a median score of 4, indicating a higher degree of confidence in its functional 100 
annotation within UniProt. Hence, the FunSoCs offered a high-quality, manually curated training dataset consisting of 101 
proteins with a wider variety of functional annotations that underly different mechanisms of microbial pathogenicity. 102 
 103 
Pipeline Overview and Module Descriptions 104 
The SeqScreen pipeline was built using Nextflow[27], a domain-specific language for creating scalable and portable 105 
workflows. SeqScreen combines various stages in separate Nextflow modules and is available as an open-source tool on 106 
bioconda (https://anaconda.org/bioconda/seqscreen). Fig. 2 illustrates the various modules and five main workflows in 107 
SeqScreen. SeqScreen can be run in two different modes -default (i.e., fast) mode and -sensitive mode.  The default fast 108 
mode runs a limited set of pipelines that are tuned to rapidly annotate sequences in an efficient performance-centric 109 
approach. The sensitive mode (using the --sensitive flag) uses much more accurate and sensitive BLASTN-based 110 
alignments[28] and outlier detection[29] steps for taxonomic characterization. Further, for sensitive functional annotations 111 
it uses BLASTX to identify hits to the curated UniRef100 database. The modular nature of the pipeline offers advantages 112 
in terms of ease of updating or replacing specific software modules in the future versions if new bioinformatics tools and 113 
databases are shown to outperform its current modules and workflows. SeqScreen accepts nucleotide FASTA files as 114 
input, assuming one protein-coding sequence is present within each query sequence of the FASTA file. Each input file is 115 
verified for the correctness of the FASTA format and then passed on to the initialization workflow in sensitive mode, 116 
which first converts ambiguous nucleotides to their corresponding unambiguous options and performs six-frame 117 
translations of nucleotide to amino acid sequences for input into downstream modules like RAPSearch2[12], which 118 
accepts amino acid sequence as input. After initialization, the sequences pass through various downstream modules that 119 
add taxonomic and functional annotations to the sequences that inform its FunSoC assignment. The downstream modules 120 
depend on the mode the user runs SeqScreen in; -default (DIAMOND[30] and Centrifuge[31]) or -sensitive (BLASTX, 121 
MUMmer[32]+REBASE [33]and MEGARes[34]).  FunSoC assignment of query sequences is carried out by transferring 122 
the FunSoC labels of the target proteins in our database identified during functional annotation. This database containing 123 
mappings from individual UniProt Ids to FunSoCs to is precomputed from the predictions of the ensemble machine 124 
learning classifier. Training data for the classifier was obtained from manual curations of literature and databases by our 125 
team of expert biocurators. The precomputed FunSoC database obviates the need to run the classifier in real-time thereby 126 
increasing the efficiency of the SeqScreen pipeline. All analyses in this study were performed with SeqScreen -default 127 
mode, other than the SeqMapper-focused analysis that was run in sensitive mode. Each of the individual workflows of the 128 
SeqScreen pipeline are discussed in more detail below. 129 
 130 
SeqScreen workflow #1: Initialize 131 
Each run is initialized by first checking the input fasta file and verifying it to be error free. Some common errors that are 132 
screened for include headers with empty sequences, duplicate headers, and invalid or ambiguous bases. SeqScreen also 133 
checks for suspiciously long sequences depending on a user-controlled parameter (--max_seq_size). In addition to quality 134 
control for input sequences, the sensitive mode also contains the six-frame translation module to convert the nucleotide 135 
sequence into amino acids to input to the SeqMapper module. 136 
 137 
SeqScreen workflow #2: SeqMapper 138 
The SeqMapper workflow is part of the sensitive mode of SeqScreen and includes additional features, such as detecting 139 
Biological Select Agents and Toxins (BSAT) sequences through efficient sequence alignment methods. We use a two-140 
pronged approach by analyzing both the nucleotide and amino acid sequence alignments to BSAT reference genomes 141 
using Bowtie2[35] and RAPSearch2[12], respectively. While this workflow is only limited to reporting hits to BSAT 142 
genes and proteins, downstream workflows are used to capture and collate whether a gene is of interest at a functional 143 
level (e.g., functional differentiation between BSAT housekeeping and toxin hits are not delineated at this step). This 144 
workflow is sensitive to detect BSAT sequences, but not precise in differentiating BSAT sequences from their near 145 
neighbors. The BSAT sequences were primarily derived from the following website: 146 
https://www.selectagents.gov/sat/list.htm and the full contents of the BSAT Bowtie2 database is available at: 147 
https://rice.box.com/s/6c5xl0qcu66xbuf3n8yp4fkf9cfwn3wv. In addition to the above databases, users can also optionally 148 
obtain other features of interest, such as HMMs identified by HMMER[36] from Pfam[37] proteins by using the optional 149 
HMMER module in SeqScreen.  150 
 151 
SeqScreen workflow #3: Protein and Taxonomic Identification 152 
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In the taxonomic classification workflows for both fast and sensitive modes we rely on widely used state-of-the-art 153 
alignment-based tools to classify sequences. SeqScreen obtains alignments to both DNA and amino acid databases. While 154 
aligning to amino acid databases provides taxonomic information as well as functional information, aligning to nucleotide 155 
databases provides additional sensitivity, especially for non-coding regions. The taxonomic classification module for fast 156 
mode is an ensemble of DIAMOND and Centrifuge, two established and widely used tools for protein alignment and 157 
taxonomic classification. First, DIAMOND is used to align the input sequences to a reduced version of the UniRef100 158 
database. DIAMOND is an open-source software that is designed for aligning short sequence reads and performs at 159 
approximately 20,000 times the speed of BLASTX with similar sensitivity. Our reduced version of the UniRef100 160 
database[38] only contains proteins with a high annotation score. Not including poorly annotated proteins both decreases 161 
the runtime and increases the specificity of SeqScreen functional annotations. SeqScreen then runs Centrifuge, a novel 162 
tool for quick and accurate taxonomic classification of large metagenomic datasets. Centrifuge classifications are given 163 
higher weights and are always assigned a confidence score of 1.0. SeqScreen always picks the taxonomic rank with the 164 
highest score for Centrifuge and assigns it to the sequence. In the case where Centrifuge fails to assign a taxonomic rank 165 
to a particular sequence, we assign DIAMOND’s predictions to it. To incorporate DIAMOND’s predictions, we consider 166 
all taxonomic ids that are within 1% of the highest bit-score as the taxonomy labels for a sequence (Supplementary 167 
Figure SF1). The sensitive taxonomic classification workflow uses BLASTX and BLASTN for aligning to amino acid 168 
and nucleotide databases, respectively. For BLASTX, we again use our reduced version of the UniRef100 database 169 
(Supplementary Data SD1). BLASTN results are processed through outlier detection to identify which of the top hits are 170 
significantly relevant to the query sequence. The sensitive mode parameters are set so that if a cut is made, all hits above 171 
the cut line are returned; otherwise, all hits are returned. All hits within the outlier detection cutoff (BLASTN) or within 172 
1% (sensitive parameter cutoff=1) of the top bitscore will be saved as the top hits for a given query sequence. Next, all 173 
hits reported by BLASTN and BLASTX are sorted by bitscore and listed for a query. Taxonomic IDs are ordered so that 174 
BLASTN are reported first, followed by BLASTX. Order-dependent taxonomic assignments will then be based on the 175 
first taxonomic ID reported (typically BLASTN hit). Default E-values (--evalue) and max target seqs (--max_target_seqs) 176 
for BLASTN and BLASTX are set to 10 and 500, respectively. Since both parameters limit the number of matches to the 177 
query sequence, modification of these parameters may be necessary for short and ubiquitous sequences. For BLASTN and 178 
BLASTX, the reported confidence values are based on bitscores (bitscore / max bitscore), as inspired by orthology 179 
estimation[39]. 180 
 181 
SeqScreen workflow #4: Functional Annotation 182 
Using the predicted UniProt IDs and their bit scores from DIAMOND, SeqScreen obtains a list of all predicted UniProt 183 
IDs whose bit score is at most 3% less than the highest bit score and compiles all the associated GO terms for each 184 
UniProt ID. To assign FunSoCs to each input sequence, we have developed a database which contains a mapping of all 185 
UniProt IDs to FunSoCs. The construction of SeqScreen database is described in detail in Supplementary Data SD1. 186 
 187 
SeqScreen workflow #5: SeqScreen Reports 188 
Following the computational workflows, SeqScreen produces a tab-separated report file with the predictions of each input 189 
sequence as well as an interactive HTML report. The HTML report allows users to search and filter the results based on a 190 
variety of criteria such as FunSoC presence, GO term presence, and sequence length. The HTML report is a convenient 191 
way to browse the results of large inputs as it loads results in small chunks so that arbitrarily large results can be viewed 192 
(Fig. 3 and Supplementary Figure SF2).  193 

Ensemble Machine Learning for FunSoC Predictions 194 
FunSoCs encompass sequences involved in the mechanisms of microbial pathogenesis, antibiotic resistance, and 195 
eukaryotic toxins (e.g., arachnids, cnidarians, insects, plants, serpents) threatening to humans, livestock, or crops. We 196 
identified 32 groups of sequences that could be categorized under the FunSoC framework (Supplementary Table ST1) 197 
that each protein could potentially be assigned to, thereby indicating pathogenicity. We decided to formulate this as a 198 
multi-class, multi-label (i.e., each protein/sequence can be associated with one or more of the 32 FunSoCs) ML 199 
classification problem.  In order to annotate potentially large numbers of query sequences with FunSoCs, we reasoned that 200 
utilizing a lookup table containing pre-predicted FunSoC labels (obtained from the ML models) for the proteins in the 201 
UniProt database would enable efficient extraction of labels for corresponding hits from the query to the table. Towards 202 
this, we tested 11 ML models (Supplementary Table ST2) based on three different strategies that use different feature 203 
selection criteria as well as a two-step pipeline that aims to filter proteins that are not associated with any FunSoCs. These 204 
models were trained on proteins manually curated and labelled with FunSoCs.  For the purposes of our discussion, we 205 
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show the top three performing models as visualized in Fig. 4. To gain a more nuanced understanding of the models’ 206 
performances, we considered the average precision and recall of the models on the positive labels specifically, i.e., 207 
proteins that were labelled with a “1” (minority class) for a particular FunSoC. This is an important measure to understand 208 
how well they learn to predict the minority positive class given the data imbalance which mirrors a practical application of 209 
SeqScreen where the expected number of non-pathogenic sequences in a sample is larger than specific pathogenic 210 
markers. Our test splits were reflective of this imbalance, for example, the test split for the FunSoC virulence activity had 211 
23292 samples labelled “0” and 29 samples labelled “1”.  Table 1 shows the results of different models for each of the 212 
metrics. Although the accuracy of the methods is similar, we observed significant differences in the positive label 213 
precision and recall. Two Stage Detection + Classification Neural Networks (TS NN) and Two Stage Detection + 214 
Classification Balanced Support Vector Classifier (TS Bl.SVC) represented two different ends of the spectrum of 215 
precision and recall, the former being more precise (P: 0.88, R: 0.69) and the latter being more sensitive (P: 0.73, R:0.88). 216 
We also found that Balanced Support Vector Classifier + Neural Network Classification using Oversampling (Bl. 217 
SVC+NN(OS)) represented an intermediate version of the other two models with precision and recall being more 218 
balanced (P: 0.87, R: 0.81). The majority vote classifier built on these three classifiers to provide a further improvement in 219 
the specificity with a slight loss in terms of recall (P: 0.90, R:  0.82). To get a more detailed perspective of the 220 
performance of the models on each of the FunSoCs, we plotted the positive label precision and recall per FunSoC. As 221 
seen in Fig. 5, the Majority Voting classifier combined the strengths of these individual classifiers to balance precision 222 
and recall across these FunSoCs.  223 

Use case #1: Screening for known pathogens  224 
We now present a use case with three pairs of hard-to-distinguish bacteria that often confound current metagenomic 225 
classification tools to show how SeqScreen analyzes and distinguishes hard-to-classify pathogens. Fig 6. describes the 226 
FunSoCs found to be associated with each of the eight bacterial isolate genomes. All isolates showed presence of different 227 
antibiotic resistance genes, indicating their ubiquitous presence in most bacteria. In Fig. 6 (a,b) we show a comparison of 228 
the commensal strain of E. coli K-12 MG1655 versus the pathogenic strain E. coli O157:H7. The two strains showed 229 
presence of four FunSoCs, namely cytotoxicity, secreted effector, secretion, and antibiotic resistance. SeqScreen was able 230 
to accurately predict the additional presence of Shiga toxin subunit B (stxB)[40] in pathogenic E. coli O157:H7 with the 231 
cytotoxicity FunSoC and differentiate it from E. coli K-12 MG1655. In addition, E. coli O157:H7 also showed the 232 
presence of the secreted effector protein EspF(U), which was labelled with the secreted effector and virulence regulator 233 
FunSoCs. Another example is shown in Fig. 6 (c,d) where Clostridium botulinum and Clostridium sporogenes are shown 234 
to be differentiated by four specific FunSoCs associated with C. botulinum. Though the organisms have a high degree of 235 
overall sequence similarity, C. botulinum contains the BotA toxin which is absent from C. sporogenes. We observed the 236 
presence of four FunSoCs associated with C. botulinum, which included disable organ, cytotoxicity, degrade ecm and 237 
secreted effector associated with hits to the BotA and neurotoxin accessory protein (orf-X2) genes, indicating the presence 238 
and the successful detection and annotation of pathogenic genes in C. botulinum. In contrast, C. sporogenes showed a 239 
unique hit to the secretion FunSoC, while both organisms were marked with a hit to the bacterial counter signaling and 240 
antibiotic resistance FunSoCs. Fig. 6 (e,f) shows that FunSoCs can also be used to differentiate between Streptococcus 241 
pyogenes (Group A Streptococcus, causative agent of Strep throat) and Streptococcus dysgalactiae (Group C/G 242 
Streptococcus), a near neighbor with pathogenic potential. S. pyogenes had the streptopain (speB) and exotoxin type H 243 
(speH) genes associated with the induce inflammation FunSoC, whereas S. dysgalactiae had the immunoglobulin G-244 
binding protein (spg) gene with the counter immunoglobulin FunSoC, thereby differentiating it from S. pyogenes. Both 245 
bacteria showed presence of cytotoxicity, secretion, and antibiotic resistance. In addition to pathogens, we show in Fig. 6 246 
(g,h) that the FunSoC based framework can also capture well-characterized commensals like Streptococcus salivarius and 247 
Lactobacillus gasseri. We see that both these bacteria reported the least number of FunSoCs, validating the negative 248 
control experiment. S.salivarius contained a hit the secretion FunSoC from genes encoding competence proteins. In 249 
differentiating near neighbor pathogens, SeqScreen selectively annotated regions in genomes that contributed to 250 
pathogenicity across various categories.  251 
                            252 
In addition to FunSoCs assignments, we evaluated how existing alignment approaches handle the identification of 253 
pathogen near neighbors. To motivate our experiments, we initially considered the widely used BSAT list to triage 254 
isolates (see Methods section on SeqMapper), as it is representative of a current strategy for pathogen screening 255 
approaches in the DNA synthesis industry. We mapped C. sporogenes (SRR8758382) reads against the BSAT database 256 
using the Bowtie2 module of the SeqMapper workflow, and 98.28% of the reads hit to C. botulinum. The high percentage 257 
of hits to C. botulinum underlines the shortcoming of simplistic triaging methods to accurately differentiate between near 258 
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neighbors and pathogens. We further considered popular taxonomic classifiers to analyze how accurately near neighbor 259 
pathogens were separated. We compared the results of six different tools, Mash dist[41], Sourmash[42], PathoScope[8], 260 
Kraken2[43], MetaPhlAn3[44], KrakenUniq[45] and Kaiju[46], with the following three pairs of near-neighbors and 261 
pathogens: E. coli K-12 MG1655 and E. coli O157:H7, C. sporogenes and C. botulinum, and S. dysgalactiae and S. 262 
pyogenes. Table 2 shows the results of running the taxonomic tool on these bacteria with their complete databases and the 263 
top hits for each are reported. Strain level differences between the two E. coli near neighbor was hard for almost all the 264 
tools to distinguish. Kaiju and MetaPhlAn3 could only predict E. coli at species level for both strains, and since those 265 
tools were designed to only report down to the species level, strain-level pathogenicity will always be missed. Kraken2 266 
incorrectly predicted non-pathogenic E. coli K-12 MG1655 as the pathogenic strain E. coli O157:H7. PathoScope and 267 
KrakenUniq incorrectly predicted the non-pathogenic E. coli K-12 MG1655 strain as E. coli BW2952 and E. coli 268 
O145:H28. Mash dist and Sourmash were the only tools that reported the true E. coli K-12 strain. The tools performed 269 
considerably better when predicting for E. coli O157:H7, as Mash dist, Sourmash, PathoScope, Kraken2 and KrakenUniq 270 
were able to predict the strain correctly. When considering the two Clostridium near neighbors, PathoScope, Kraken2 and 271 
KrakenUniq misclassified C. sporogenes as C. botulinum. In contrast, C. botulinum was incorrectly called C. sporogenes 272 
by Mash dist, Sourmash and MetaPhlAn3. While predicting for the Streptococcus near neighbors, all tools predicted 273 
S.pyogenes correctly and only PathoScope misclassified S. dysgalctiae as S. pyogenes, while other tools called it 274 
accurately. In summary, our experiments demonstrated that none of the tools were able to correctly predict all pathogens 275 
and near neighbors at the species and strain levels. SeqScreen provides a more detailed framework beyond species or 276 
strain-level taxonomic classifications to aid the user in interpreting the pathogenicity potential of a query sequence, 277 
including exact protein hits, GO terms, multiple likely taxonomic labels with confidence scores, and FunSoC assignments.  278 
 279 
Use case #2: Screening for novel pathogens  280 
To highlight the advantage of using SeqScreen’s FunSoC based pathogen detection pipeline in contrast to relying on 281 
taxonomic labels, our next set of experiments and results evaluated how the absence of the exact set of species or strain 282 
entries in the database corresponding to the bacterial genome query would impact the classifications by these tools. This 283 
was done to simulate a query of a novel pathogen genome by removing the entries corresponding to the query bacterial 284 
genome from the database. We chose two tools for this experiment, Mash dist and PathoScope, as modifying their 285 
databases for this experiment was readily achievable and both performed well in the previous use case. Table 3 shows the 286 
results of the classifiers using these modified databases. As expected, the closest near neighbor of the query genome is 287 
selected when a pathogen is not present in the database, which while representing the expected behavior, is not suitable 288 
for sensitive flagging of pathogenic sequences. As is the case with the complete databases, both the tools misclassified the 289 
E. coli strains with PathoScope only being able to classify E. coli K-12 MG1655 at species level and Mash dist instead 290 
reporting a hit to the pathogenic E. coli O16:H48 strain. For the Clostridium species, both the tools called the pathogen as 291 
its non-pathogenic near neighbor, emphasizing the difficulty of identifying these pathogens in a simulated novel pathogen 292 
environment. In the case of Streptococcus, S. dysgalactiae was classified as S. sp. NCTC 11567 by Mash dist and S. 293 
intermedius by PathoScope, whereas S. pyogenes was classified as its near neighbor S. dysgalactiae by Mash dist and S. 294 
infantarius by PathoScope. In contrast, as seen in Fig. 4, retaining genus specific hits from SeqScreen was sufficient to 295 
observe functional differences between the near neighbor pathogens. This experiment showed that current approaches 296 
may still fail to separate near neighbor pathogens and hence a novel FunSoC-based functional framework could help fill 297 
the gap and capture sequence level pathogenic markers.  298 
 299 
Use case #3: Screening human clinical samples for an unknown pathogenic virus  300 
As a final use case to further illustrate SeqScreen’s ability to identify pathogenic sequences in clinical samples, we ran 301 
SeqScreen on the sequencing data obtained from the peripheral blood mononuclear cells (PBMC) of three COVID-19 302 
patients and three healthy patients as reported in the study by Xiong et al[47]. We reasoned that the samples from 303 
COVID-19 patients should contain certain reads with functional markers that would indicate presence of the SARS-CoV-304 
2 virus. To better understand SeqScreen’s application in analyzing clinical samples for unknown pathogenic viruses, we 305 
chose to run an older version of SeqScreen (v1.2) on these samples, retaining the same analysis functionality with a 306 
database that predated the COVID-19 pandemic and the inclusion of SARS-CoV-2 virus. This was done for two main 307 
reasons. First, we wanted to evaluate SeqScreen’s ability to retrieve functional pathogenic information by simulating an 308 
experiment with an unknown virus along with a database that did not contain the causative virus. Second, we wanted to 309 
highlight SeqScreen’s ability to detect GO terms and FunSoCs directly from metatranscriptomes of clinical samples with 310 
low levels of the novel pathogen. For this study, we focused on GO terms that were specific to the COVID-19 samples 311 
and viral proteins (i.e., GO terms that were not assigned to bacterial, eukaryotic, or archaeal proteins or observed in the 312 
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healthy controls). Only three GO terms met these criteria within one of the COVID-19 samples (CRR119891). All three 313 
of the GO terms, suppression by virus of host ISG15 activity (GO:0039579), induction by virus of catabolism of host 314 
mRNA (GO:0039595), and suppression by virus of host NF-kappa B transcription factor activity (GO:0039644) were 315 
indicative of SARS-CoV-2 virus activity. SeqScreen assigned replicase polyprotein 1ab from Bat coronavirus 279/2005 316 
(UniProt ID: P0C6V9, e-value: 5.8e-29) to one sequence read and reported these three GO terms in sample CRR119891. 317 
Searching for other coronavirus taxonomic assignments in that sample revealed one additional read that SeqScreen 318 
assigned to spike glycoprotein from Bat coronavirus HKU3 (UniProtID: Q3LZX1, e-value: 1.3e-09). No other 319 
coronavirus reads were identified in the samples, consistent with the report from the original publication in Xiong et al 320 
that very few to no SARS-CoV-2 reads were identified in the PBMC samples. In the SeqScreen v1.2 database, the 321 
associated FunSoC with the replicase polyprotein 1ab was evasion and the FunSoCs predicted for the spike protein were 322 
adhesion and invasion, which reflect the biological functions of the two proteins and indicate presence of virulence. To 323 
compare SeqScreen v1.2 results to another tool, we ran HUMAnN2[48] on the six PBMC metatranscriptomes to check for 324 
presence of virulence markers and pathways. The HUMAnN2 results did not point to any evidence for presence of 325 
COVID-19 specific markers in this sample nor the others (Supplementary Data SD2), which is expected given the focus 326 
of the tool on reporting enriched genes and pathways, rather than rare pathogenic sequences. As SeqScreen extensively 327 
characterizes individual short protein-coding sequences and is geared towards identifying functional markers of 328 
pathogenicity, it can sensitively detect trace amounts of pathogenic signal in clinical samples. The reads identified as 329 
SARS-CoV-2 were confirmed to such when aligned to the database containing SARS-CoV-2 using BLAST[28] as seen in 330 
Fig. 7. 331 

Discussion 332 
The challenge of pathogen identification and detection from sequence level features is significant and requires a nuanced, 333 
multi-layered approach. A given genus or species often includes both pathogenic and non-pathogenic strains. These may 334 
not be well-defined by taxonomic considerations[4] since sequences with similar taxonomic labels may contain 335 
pathogenic elements as well as non-pathogenic markers. Even at the strain level, addition or subtraction of a single gene 336 
may affect the overall pathogenicity of the microbe. SeqScreen provides a novel approach to this important problem and 337 
focuses on read-level analyses that facilitate the detection of low abundance pathogenic markers from metagenomic 338 
samples. Not only does SeqScreen analyze partial and full-length genes specific to FunSoCs, sequences annotated with a 339 
subset of high-confidence FunSoCs can be analyzed to detect pathogenic presence in the sample. Taxonomic classifiers 340 
often are ambiguous about similar pathogens and near neighbors within the same genus or species, such as commensal E. 341 
coli K-12 MG1655 and pathogenic E. coli O157:H7, as well as C. botulinum and C. sporogenes, and S. dysgalactiae and 342 
S. pyogenes. We show that FunSoCs can be used as unique signatures to distinguish these pairs. We also saw that 343 
commensal bacteria such as L. gasseri had no FunSoCs associated with it, other than antibiotic resistance which has been 344 
previously reported[49], validating our negative control and highlighting SeqScreen’s ability to accurately identify 345 
commensals. Note, several the commensals analyzed in this study contain genes that can cause infection in humans, but 346 
these microbes are rarely disease-causing agents. 347 
  348 
A notable, novel feature of SeqScreen for pathogen detection and characterization is the addition of FunSoCs as a labeling 349 
system for each sequence in the query. FunSoCs are molecular activities of pathogens that contribute to its pathogenesis in 350 
human, crop, or livestock hosts. Using controlled vocabularies and other data mined from popular protein databases, we 351 
showed that our models can capture FunSoCs with a high level of precision. To improve the balance between precision 352 
and recall over most of the FunSoCs, we proposed a majority voting ensemble classifier. SeqScreen utilizes a lookup table 353 
created by classifying all UniProt proteins using the ensemble classifier to annotate query sequences with FunSoCs. 354 
SeqScreen’s FunSoC curations are not the first attempt to collate sequences of concern in a specific computational 355 
framework and/or database. Prior efforts such as the Virulence Factor Database (VFDB), Pathosystems Resource 356 
Integration Center (PATRIC)[50], and Pathogen-Host Interaction database (PHI-base)[51] all offer resources for 357 
identification of virulence factors and pathogenic sequences. VFDB is a database of virulence factors that have been 358 
widely used but is limited due to many of the sequences not having clearly available annotations or justification for their 359 
pathogenic status. PATRIC primarily focused on annotation of isolates/pathogens but not individual sequences, and PHI-360 
base describes the pathogen-host interactions but does not focus on pathogenic effects on the host. SeqScreen was 361 
designed to specifically overcome some of the major limitations through an iterative ensemble learning framework that 362 
leverages functional information combined with curations to identify FunSoCs 363 
 364 
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Our experimental results underscore the importance of using a function-based framework in contrast to the prevailing 365 
taxonomy-based classifiers and pathogen detection tools. SeqScreen’s FunSoC based pathogen detection approach is 366 
sensitive to specific gene-based differences between closely related strains and accurately identifies pathogenic markers. 367 
Out of the tools we evaluated, only Kaiju was able to accurately distinguish all the near neighbors from pathogens at the 368 
species level. The protein-based classification strategy used by Kaiju is different from other k-mer based tools, but similar 369 
to SeqScreen’s functional based characterization framework, indicating the advantages of using the functional units in 370 
proteins to identify pathogens. SeqScreen provides an advantage in that it also reports the most likely strain-level 371 
assignments and protein-specific functional information for each sequence, including GO terms and FunSoCs, to 372 
accurately identify pathogenic markers in each sequence without relying solely on taxonomic markers. We also observed 373 
through inspecting the FunSoC lookup table that SeqScreen preserves FunSoC labels even when the proteins are distantly 374 
related (up to 40% sequence similarity). Hence, the FunSoC abstraction represents a robust framework to detecting novel 375 
pathogens as it does not rely on specific taxonomic labels in the database but on learning latent features that connect 376 
similar pathogenic makers. SeqScreen also provides a more detailed framework beyond species or strain-level taxonomic 377 
classifications to aid the user in interpreting the pathogenicity potential of a query sequence, including exact protein hits, 378 
GO terms, multiple likely taxonomic labels with confidence scores, and FunSoC assignments. 379 
 380 
The task of mapping biological (e.g., functional annotations) and textual features (e.g., keywords and abstract metadata) to 381 
these FunSoCs is non-trivial for three reasons. The first concerns identifying from the literature a sufficiently large 382 
training set of sequences associated with each FunSoC. Second, variability in annotation across subject matter experts and 383 
inconsistencies in database annotations often makes it challenging to incorporate relevant features. Third, the amount of 384 
labelled data available per FunSoC is disproportionate which makes accurate multi-label and multi-class classification 385 
difficult. Also, the positive labels are far fewer when compared to the negative labels making the accurate prediction of 386 
positive labels non-trivial due to class imbalance. 387 
 388 
One known limitation of SeqScreen is that it heavily depends on annotated sequences for identification of FunSoCs. As of 389 
April 2021 (UniProt release 2021_02), there are 1.5 million proteins with evidence at the protein or transcript level (less 390 
than 0.75%), with 64 million proteins with functions inferred from homology and over 212 million proteins total. Through 391 
several years of curating, our team was able to characterize thousands of proteins specific to pathogenic function, 392 
augmenting information contained in UniProt, and enabling robust pathogenic sequence screening of sequences of high 393 
concern. However, coordinated community efforts are needed to further extend out and improve annotation quality of 394 
proteins in these key databases. We also note that while we have shown SeqScreen to be an accurate pathogen detection 395 
tool, explicitly identifying and labelling pathogens is not possible with only FunSoC information, as seen in Fig. 4, and 396 
the presence of genes underlying the FunSoC annotations should be considered when interpreting results. SeqScreen 397 
identifies and flags sequences having functions of concern (or FunSoCs) but stops short of performing pathogen 398 
identification, as it was designed to only characterize individual DNA sequences. In future work, we aim to extend our 399 
FunSoC-based machine learning (ML) framework towards pathogen identification by analyzing sequences at the whole 400 
genome level.  401 
 402 
Finally, while SeqScreen can accurately screen oligonucleotides and short DNA sequences for FunSoCs, large 403 
metagenome-scale pathogen analysis is still an open challenge. Currently, the accuracy and sensitivity of SeqScreen 404 
annotation comes at a substantial cost of runtime and memory requirements compared to other tools and pipelines. To 405 
address this, one possible solution is to use a read or database subsampling method such as RACE[52] that may be able to 406 
preserve the full complement of taxonomic and functional diversity while drastically reducing runtime.  407 
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Conclusions 408 
SeqScreen describes a novel, comprehensive sequence characterization and pathogen detection framework based on a 409 
multimodal approach that combines conventional alignment-based tools, machine learning and expert biocuration to 410 
produce a new paradigm for novel pathogen detection tools beneficial to both synthetic DNA manufacturers and 411 
microbiome scientists alike. SeqScreen is the first open-source, modular framework for transparent and collaborative 412 
research to improve DNA screening practices beyond simple screens against BSAT agents and toxins.  413 

Methods 414 

Pipeline Implementation 415 
The SeqScreen pipeline is implemented as a modular architecture combining various individual workflows for taxonomic 416 
and functional characterization as well as identification of Functions of Sequences of Concern (FunSoCs) in short DNA 417 
sequences. The pipeline is implemented using Nextflow for scalable and reproducible deployment and the scripts are 418 
written in Perl and Python. The five main workflows available as part of SeqScreen are (i) Initialization (fasta 419 
verification) (ii) SeqMapper (Identification of BSAT agents) (iii) Protein and Taxonomic identification (iv) Functional 420 
annotation (v) FunSoC identification and SeqScreen report generation. Further information on databases, dependencies 421 
and parameters can be found at GitLab: https://gitlab.com/treangenlab/seqscreen/-/wikis/home. The modules used depend 422 
on the mode (default or sensitive) that SeqScreen is run. In the slower sensitive mode, BLAST(N/X) approaches are used 423 
to get an accurate protein and taxonomic identification and functional annotations. In contrast, default mode is faster as it 424 
uses DIAMOND (--evalue 10 –block-size 200 –more-sensitive) for protein identification. The taxonomic classification 425 
workflow in this mode combines both centrifuge and DIAMOND results. In addition to different modes, SeqScreen also 426 
has optional modules like HMMER which can be activated with a flag (--hmmscan) which runs the sequence against the 427 
Pfam HMMs. To increase the efficiency of analysis, SeqScreen also supports multithreading as well as SLURM execution 428 
(--slurm) for runs on High Performance Computing (HPC) nodes. FunSoCs are assigned to sequences by transferring 429 
labels from protein hits. The output includes a report in TSV format that captures the taxonomic and functional as well as 430 
FunSoC annotations for each read in the sample. SeqScreen also provides a HTML view of the FunSoCs for each of the 431 
sequences in the sample with additional filters for users to view and select sequences and/or FunSoCs of interest. 432 
 433 
Functional Benchmarking 434 
Data for the functional benchmarking was downloaded from the CAFA website 435 
(https://www.biofunctionprediction.org/cafa/). The CAFA 3[53] training data was downloaded from the website 436 
(https://www.biofunctionprediction.org/cafa-targets/CAFA3_training_data.tgz). From the training set, a subset of 250 437 
proteins having appropriate lengths (at least 200 aa) were chosen for the benchmarking. A set of (250) proteins of sub-438 
lengths 34 aa, 50 aa, 67 aa and 80 aa was derived from this set of proteins for sub-lengths benchmarking. To create the 439 
sub-lengths for the respective proteins, we randomly selected a starting residue from each of the 250 proteins and 440 
considered the stretch of residues up to the desired lengths as the sub-protein. The proteins were then run through each of 441 
the tools: PANNZER2[54], eggNOG-mapper[55] and DeepGOPlus[56]. Further details about the dataset, tools and 442 
commands and databases the tools were run with are shown in the Supplementary Data SD3.1 and Supplementary 443 
Table ST4. 444 
 445 
 446 
Taxonomic Benchmarking 447 
Seven simulated datasets used in previous tool benchmarking and comparison studies were considered for 448 
benchmarking[57,58]. These reflected characterized real metagenomes found in various environments like human (e.g., 449 
buccal, gut) and in the natural or built environment (e.g., city parks/medians, houses, soil, subway), using the same 450 
methodology. All reads were 100-bp (Illumina) and simulated using ART [59] at 30X coverage and post-processed to 451 
remove ambiguously mapped reads at the species levels using MEGAN[60]. The reads thus obtained map unambiguously 452 
to a single species in the RefSeq database. SeqScreen’s performance on taxonomy and additional information can be 453 
found in Supplementary Data SD3.2 and Supplementary Table ST4. 454 
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Ensemble Machine Learning for FunSoC Prediction 455 
One of the major applications of SeqScreen is its ability to combine functional and taxonomic information for pathogen 456 
detection. To assign pathogenic functions to query sequences in each sample, SeqScreen labels relevant sequences with 457 
FunSoCs. Each FunSoC captures a process contributing either to pathogenesis or countermeasure resistance. Proteins 458 
representing the FunSoCs were identified primarily through literature review with some database perusal (VFDB, PHI-459 
base). The expert human biocurators developed queries using terms from controlled vocabularies and in specified UniProt 460 
fields to obtain sequence sets for each FunSoC.  Examples of these UniProt queries are provided in Supplementary Data 461 
SD4. After initial formulation with UniProt queries, the biocurator FunSoC annotations were verified through manual 462 
literature reviews thereby maximizing the number of sequences specific to the FunSoC category while eliminating false 463 
positives. An updated database of SeqScreen biocurated FunSoCs is maintained in Supplementary Data SD5. The 464 
proteins of each FunSoC were then used as a training set. The training set sizes for each FunSoC ranged from 4,722 for 465 
disable organ to 24 for counter immunoglobulin. These also included proteins that had annotation scores less than 3, 466 
which were pruned out in the preprocessing step to get high-quality labelled training data. We used these proteins as the 467 
training dataset for our Machine Learning models to capture underlying mappings between the sequence features and 468 
FunSoCs.  Each of the curated proteins is assigned a binary label for each of the 32 FunSoCs. This can be visualized as a 469 
matrix M where an entry mij marked as 1 represents that Proteini is annotated as having FunSoCj, or in other words Proteini 470 
is positively labelled for FunSoCj. On the contrary, mij marked as 0 means that Proteini does not belong to FunSoCj and is 471 
negatively labelled for that FunSoC. Every sequence of the collected set of labelled proteins is positively labeled for at 472 
least one FunSoC. 473 
 474 
Dataset Curation and Preprocessing 475 
To build a training and testing dataset for our models, proteins were obtained that were not positively associated with 476 
each FunSoC. This was done to avoid tagging every sequence analyzed by SeqScreen with a particular FunSoC. The 477 
great majority of biological sequences are benign, so we decided to append the set of curated proteins with a selected 478 
set of proteins from SwissProt and labelled them with 0’s for each FunSoC. This forced the model to learn it could 479 
neglect assigning FunSoCs to proteins. Further, these proteins were only selected if they had an annotation score 480 
greater than 3, to control for the quality of annotation. Once this set of proteins and their respective negative labels 481 
were added to the initial list of curated proteins, we extracted relevant features from each of the proteins to be included 482 
as features. GO annotations and keywords for each protein were extracted from UniProt. Once extracted, a large binary 483 
feature matrix F was constructed for the total set of proteins. The rows represent each protein in the dataset and the 484 
columns represent all possible features of the dataset, (i.e., a union of all the individual features of each protein in the 485 
dataset). Each entry fij in the feature matrix F, is a binary value representing presence or absence of a particular featurej 486 
for a proteini. Apart from controlling for annotation scores, to further help reduce the effect of noise and non-specific 487 
keywords or GO terms from our datasets, we decided to preprocess the feature set to exclude any sparse features that 488 
occurred in less than 10 proteins. This reduced the total number of features from over 50k to around 16k features. This 489 
was the final feature matrix used for downstream Machine Learning tasks. 490 
 491 
Machine Learning Models 492 
The challenge of assigning FunSoCs to proteins is a multi-class, multi-label classification problem where a given 493 
protein can be assigned to any (or none) of 32 different FunSoCs. These are often independent of one another and can 494 
be learned individually. Multi-class and multi-label classifications are hard as often these classes have different 495 
amounts of training data available. This might make certain labels harder to predict than others and result in a poor 496 
classifier that is biased to certain well curated class labels. This also makes accuracy a tricky metric to handle given the 497 
imbalance in data labels. From our feature matrix we observed that the number of proteins labelled negatively (i.e., 0) 498 
for all FunSoCs greatly outnumbered those with at least one positive label. Though this mirrors the label imbalance in 499 
real data, it poses a challenge in learning tasks as the models tend to learn features only from the majority class thereby 500 
achieving high accuracy by classifying everything as negative. To address this, we investigate incorporating class 501 
weights and sampling techniques into our models.  Another challenge often encountered in such tasks is overfitting. By 502 
choosing a relatively high number of examples (25% of the training) we carefully monitored the validation and training 503 
accuracy to ensure they were similar. We also used regularization techniques such as L1-regularization (Support 504 
Vector) and dropout (Neural Networks) to balance weights and reduce overfitting in our models. 505 
 506 
Recently, the explainability of predictive models for machine learning has been emphasized in microbiome 507 
research[61,62]. To follow this idea of producing explainable results, we used feature selection or two-step modular 508 
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approaches that aided the interpretability of the models. Though we analyzed 10 models for our FunSoC prediction 509 
task, here we describe the top three best-scoring approaches combined with a majority voting scheme. Fig. 3 illustrates 510 
the architectures and parameters of the top three models as part of the ensemble classifier.  The first is a two-stage 511 
modular pipeline that uses neural networks. For the purposes of this discussion, we describe stage 1 as the detection 512 
stage and stage 2 as the classification stage. In the detection stage, we use a multi-layer perceptron with one hidden 513 
layer consisting of 200 neurons. The network has a binary output which encodes whether the input sequence is 514 
associated with at least one FunSoC. Proteins without FunSoCs are eliminated from downstream classification. 515 
Proteins that have at least one FunSoC reach the classification stage which detects FunSoCs associated with a sequence 516 
in a multi-label fashion. The architecture of the detection stage consists of one hidden layer with 500 neurons. The 517 
output layer contains one neuron per FunSoC that outputs a binary label. For both detection and classification, all 518 
internal layers use ReLU activation while the output layers have sigmoid classification. The binary cross-entropy loss 519 
function is shown in Eqn. 1. where y (0 or 1) is the class label and p is the predicted probability that the observation 520 
belongs to class y. This is used in conjunction with the Adam optimizer[63] and the models also incorporate a dropout 521 
layer with rate 0.2.  522 
 523 
Binary cross-entropy loss:    𝐿 = 	−	(	𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)	)																												(1) 524 
 525 
The second model is analogous to the two-stage neural network pipeline except for two major differences. First, the 526 
neural networks are replaced with Linear-Support Vector Classifiers (LinearSVC). The LinearSVCs are tuned with 527 
training label weights to account for class imbalance and have a binary output for detecting the presence of at least one 528 
FunSoC. Second, the classification architecture now consists of different LinearSVCs, one for each FunSoC. Each 529 
classification LinearSVC has a binary output indicating the presence of that FunSoC. Both the detection and 530 
classification LinearSVCs uses squared hinge loss with L1 penalty (shown in Eq. 2, where Yi  is the output label, Xi  is 531 
the feature vector of sample i and β is the vector of weights, n is the number of samples and p is the number of 532 
features), a c-value (C) of 0.01 and 4000 iterations for convergence during training. 533 
 534 
Cost function:           𝐿 = 	𝐶 ∑ 0𝑌!max(0,1 − 𝛽"𝑋!) + (1 − 𝑌!)max(0,1 + 𝛽"𝑋!)9

#$
!%& 	+ 		∑ :𝛽':(

'%& 										(2) 535 
 536 
The third best performing model deviates from the two-stage detection and classification pipeline and instead 537 
incorporates a feature detection step prior to classification to help with interpretability. The model is a combination of 538 
LinearSVCs and neural networks and uses one of each for each FunSoC. In the first step, LinearSVCs are used as a 539 
feature selection tool to extract important features for each FunSoC. Since the L1 penalty was used for classification, it 540 
assigns a weight of zero to features that are not discriminative towards the FunSoC classification. The LinearSVCs 541 
were also augmented with class weights to make the feature selection sensitive to the minority positive labels in each 542 
FunSoC. The LinearSVC used an L1 penalty, a c-value of 0.01 and 3000 iterations. Once the features are selected, this 543 
new feature set is fed as an input to the neural network for classification. The neural network has one hidden layer with 544 
100 neurons and uses ReLU activation for internal layers and sigmoid activation for the output layer, a dropout layer 545 
with rate 0.2 and binary cross-entropy loss. To further lessen the effects of class imbalance, after feature selection 546 
random oversampling of the minority class was done prior to training the neural network to balance the number of 547 
positive and negative samples in the training set. 548 
 549 
The LinearSVCs for all the models were directly incorporated using their scikit-learn[64] implementations. To 550 
implement the neural networks, the Keras[65] package was used. Parameter tuning was carried out by varying the c-551 
value (C) and testing using different kernels for other non-linear SVCs whereas the number of layers, depth of the 552 
neural network, activations, dropout rate, and including class weights was tested for the neural network model. The 553 
parameters reported above were consistently the best performing across the parameter space while maintaining a 554 
relatively simple architecture and were chosen as the final parameters.  The architecture for the three top models is 555 
visualized in Supplementary Figures SF3, SF4 and SF5 556 
 557 
To combine the strengths of all the classifiers discussed above, we also analyzed an additional model that employed an 558 
ensemble majority vote on the outputs of the three models. The ensemble classifier was developed after visualizing 559 
performances of the three individual classifiers on hard-to-classify FunSoCs like develop in host, nonviral invasion, toxin 560 
synthase and bacterial counter signaling to try and balance the disparity between precision and recall. To have a model 561 
that does not suffer from sub-optimal performances on multiple FunSoCs we reasoned that a majority vote classifier 562 
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would be a better overarching model for a consistent performance across FunSoCs for downstream applications, 563 
especially pathogen detection. 564 
 565 
A primary focus during the development of the ML models was to make the feature selection and classification 566 
strategies as explainable as possible instead of applying it as “black box” techniques. The interpretability of the models 567 
was also imperative for iterative curation where the features and labels could be passed on to the biocurators to 568 
potentially curate and refine more examples of proteins belonging to the respective FunSoCs. These refined labels were 569 
then fed back into the ML models to obtain the final FunSoC assignments. To minimize variability of our ML results 570 
and make SeqScreen analysis more reproducible, ML-based predictions are pre-computed on all of UniProt and is 571 
included in the SeqScreen database as a lookup file. This allows users to explicitly view and check the FunSoCs 572 
associated with individual UniProt hits and corroborate their biological accuracy.  573 
 574 
Pathogen Sequence Identification 575 
In this work, we provide motivating experiments that underlie an important application of SeqScreen towards pathogen 576 
detection. We run SeqScreen on isolate reads obtained from four pairs of well characterized but hard-to-distinguish 577 
pathogens namely E. coli K-12 MG1655 and pathogenic E. coli O157:H7, as well as distinguishing C. botulinum from C. 578 
sporogenes, and S. dysgalactiae from S. pyogenes in addition to identifying the commensals S. pyogenes and L. gasseri. 579 
To carry out accurate FunSoC annotations, the reads were preprocessed to remove low quality bases and adapters using 580 
Trimmomatic[66]. In addition to evaluating SeqScreen, we also ran the set of bacterial reads through Mash dist, 581 
Sourmash, PathoScope, Kraken2, KrakenUniq, MetaPhlAn3, and Kaiju. These tools (except PathoScope) were run as part 582 
of the MetScale v1.5 pipeline (https://github.com/signaturescience/metscale) using default parameters and a quality trim 583 
threshold of 30 with Trimmomatic, k value of 51 with Sourmash, and all other MetScale v1.5 default parameters, tool 584 
containers, and databases for analyzing paired-end Illumina reads. We evaluated the results on their respective complete 585 
databases as well as a modified version of their database (for Mash dist and PathoScope) in which the entries 586 
corresponding to the query genome were removed to simulate a novel or emerging pathogen.  In case of E. coli the 587 
respective strains were removed while in the case of the other bacteria the species (and all strains) were omitted from the 588 
database. To facilitate manipulating the Mash database, we created the Mash database from a new version of RefSeq 589 
(downloaded November 2020, Release 202). The RefSeq genomes were downloaded using the tool ncbi-genome-590 
download available on conda (https://github.com/kblin/ncbi-genome-download). The genomes downloaded included 591 
complete genomes as well as chromosomal sequences (--assembly-levels complete,chromosome parameter) 592 
 593 
Sequences from Peripheral Blood Mononuclear Cells in COVID-19 Patients 594 
Sequencing data from three samples of healthy individuals (CRR125445, CRR125456, CRR119890) and three samples of 595 
COVID-19 samples (CRR119891, CRR119892, CRR119893) from the study Xiong et al [47]were considered for our 596 
analysis. After preprocessing reads through quality control and human read removal (see detailed methods here: 597 
https://osf.io/7nrd3/wiki/home/), each sample was passed through SeqScreen v1.2 to obtain the respective set of proteins, 598 
FunSoCs, and GO terms outputs. GO terms were parsed with the CoV-IRT-Micro scripts 599 
(https://github.com/AstrobioMike/CoV-IRT-Micro), and GO terms were identified that were unique to both the COVID-600 
19 patient samples and viral proteins. The SeqScreen tsv final report was used to connect proteins to GO terms and find 601 
all coronavirus reads in the samples. HUMAnN2 was run on the COVID-19 samples to obtain enriched genes and 602 
pathways to compare SeqScreen against. 603 
 604 
Availability and requirements 605 
Project name: SeqScreen v1.4.11 606 
Project home page: https://gitlab.com/treangenlab/seqscreen 607 
Operating system(s): Linux 608 
Programming language(s): Nextflow, Perl and Python 609 
Other requirements: Requirements and Dependencies are listed in the GitLab wiki page. Dependencies can be 610 
downloaded by installing SeqScreen via Bioconda: https://anaconda.org/bioconda/seqscreen 611 
License: GNU GPL V3 612 
Restrictions to use by non-academics: None 613 
 614 
 615 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


13 

References 616 

1. Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: Putting the synthetic in synthetic 617 
biology. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press; 2017; doi: 618 
10.1101/cshperspect.a023812. 619 
2. . Biodefense in the Age of Synthetic Biology. Biodefense in the Age of Synthetic Biology. National 620 
Academies Press;  621 
3. Leo Elworth RA, Diaz C, Yang J, de Figueiredo P, Ternus K, Treangen T. Synthetic DNA and biosecurity: 622 
Nuances of predicting pathogenicity and the impetus for novel computational approaches for screening 623 
oligonucleotides. PLoS Pathogens. Public Library of Science; 2020; doi: 10.1371/JOURNAL.PPAT.1008649. 624 
4. Agents NRC (US) C on SM for the D of a GS-BCS for the O of S. Sequence-Based Classification of Select 625 
Agents. Sequence-Based Classification of Select Agents. National Academies Press;  626 
5. Diggans J, Leproust E. Next Steps for Access to Safe, Secure DNA Synthesis. Frontiers in Bioengineering 627 
and Biotechnology. Frontiers Media S.A.; 2019; doi: 10.3389/fbioe.2019.00086. 628 
6. Salzberg SL. Next-generation genome annotation: We still struggle to get it right. Genome Biology. BioMed 629 
Central Ltd.;  630 
7. Mahé P, Tournoud M. Predicting bacterial resistance from whole-genome sequences using k-mers and 631 
stability selection. BMC Bioinformatics. BioMed Central Ltd.; 2018; doi: 10.1186/s12859-018-2403-z. 632 
8. Francis OE, Bendall M, Manimaran S, Hong C, Clement NL, Castro-Nallar E, et al.. Pathoscope: Species 633 
identification and strain attribution with unassembled sequencing data. Genome Research. Genome Res; 2013; 634 
doi: 10.1101/gr.150151.112. 635 
9. Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL, Castro-Nallar E, et al.. PathoScope 2.0: A 636 
complete computational framework for strain identification in environmental or clinical sequencing samples. 637 
Microbiome. BioMed Central Ltd.; 2014; doi: 10.1186/2049-2618-2-33. 638 
10. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, et al.. A cloud-compatible 639 
bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical 640 
samples. Genome Research. Cold Spring Harbor Laboratory Press; 2014; doi: 10.1101/gr.171934.113. 641 
11. Zaharia M, Bolosky WJ, Curtis K, Fox A, Patterson D, Shenker S, et al.. Faster and More Accurate 642 
Sequence Alignment with SNAP. 2011;  643 
12. Zhao Y, Tang H, Ye Y. RAPSearch2: A fast and memory-efficient protein similarity search tool for next-644 
generation sequencing data. Bioinformatics. Bioinformatics; 2012; doi: 10.1093/bioinformatics/btr595. 645 
13. Byrd AL, Perez-Rogers JF, Manimaran S, Castro-Nallar E, Toma I, McCaffrey T, et al.. Clinical 646 
PathoScope: Rapid alignment and filtration for accurate pathogen identification in clinical samples using 647 
unassembled sequencing data. BMC Bioinformatics. BioMed Central Ltd.; 2014; doi: 10.1186/1471-2105-15-648 
262. 649 
14. Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al.. Laboratory validation of a 650 
clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Research. Cold 651 
Spring Harbor Laboratory Press; 2019; doi: 10.1101/gr.238170.118. 652 
15. : CosmosID/cosmosid-cli: Command line client and Python libraries for CosmosID API.  653 
16. Yan Q, Mi Wi Y, Thoendel MJ, Raval YS, Greenwood-Quaintance KE, Abdel MP, et al.. Evaluation of the 654 
cosmosid bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data 655 
analysis. Journal of Clinical Microbiology. American Society for Microbiology; 2019; doi: 656 
10.1128/JCM.01182-18. 657 
17. Randle-Boggis RJ, Helgason T, Sapp M, Ashton PD. Evaluating techniques for metagenome annotation 658 
using simulated sequence data. FEMS Microbiology Ecology. Oxford University Press; 2016; doi: 659 
10.1093/femsec/fiw095. 660 
18. Li LM, Grassly NC, Fraser C. Genomic analysis of emerging pathogens: Methods, application and future 661 
trends. Genome Biology. BioMed Central Ltd.;  662 
19. Albin D, Muthu P, Godbold G, Lindvall M, Diep M, Porter A, et al.. SeqScreen: A biocuration platform for 663 
robust taxonomic and biological process characterization of nucleic acid sequences of interest. Proceedings - 664 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


14 

2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019. Institute of Electrical 665 
and Electronics Engineers Inc.;  666 
20. Gupta A, Kapil R, Dhakan DB, Sharma VK. MP3: A software tool for the prediction of pathogenic proteins 667 
in genomic and metagenomic data. PLoS ONE. Public Library of Science; 2014; doi: 668 
10.1371/JOURNAL.PONE.0093907. 669 
21. de Nies L, Lopes S, Busi SB, Galata V, Heintz-Buschart A, Laczny CC, et al.. PathoFact: a pipeline for the 670 
prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome. BioMed 671 
Central Ltd; 2021; doi: 10.1186/S40168-020-00993-9. 672 
22. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: A comparative pathogenomic platform with an 673 
interactive web interface. Nucleic Acids Research. Oxford University Press; 2019; doi: 674 
10.1093/NAR/GKY1080. 675 
23. Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: An enhanced web-based resource for comparative 676 
pathogenomics. Nucleic Acids Research. 2008; doi: 10.1093/NAR/GKM951. 677 
24. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al.. VFDB: A reference database for bacterial virulence 678 
factors. Nucleic Acids Research. 2005; doi: 10.1093/NAR/GKI008. 679 
25. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: Toward the genetic diversity and molecular 680 
evolution of bacterial virulence factors. Nucleic Acids Research. 2012; doi: 10.1093/NAR/GKR989. 681 
26. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: Hierarchical and refined dataset for big data analysis - 682 
10 years on. Nucleic Acids Research. Oxford University Press; 2016; doi: 10.1093/NAR/GKV1239. 683 
27. di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables 684 
reproducible computational workflows. Nature Biotechnology. Nature Publishing Group;  685 
28. SF A, W G, W M, EW M, DJ L. Basic local alignment search tool. Journal of molecular biology. J Mol 686 
Biol; 1990; doi: 10.1016/S0022-2836(05)80360-2. 687 
29. Shah N, Altschul SF, Pop M. Outlier detection in BLAST hits. Algorithms for Molecular Biology. BioMed 688 
Central Ltd.; 2018; doi: 10.1186/s13015-018-0126-3. 689 
30. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature Methods. 690 
Nature Publishing Group;  691 
31. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive classification of metagenomic 692 
sequences. Genome Research. Cold Spring Harbor Laboratory Press; 2016; doi: 10.1101/gr.210641.116. 693 
32. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile 694 
genome alignment system. PLOS Computational Biology. Public Library of Science; 2018; doi: 695 
10.1371/JOURNAL.PCBI.1005944. 696 
33. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: 697 
enzymes, genes and genomes. Nucleic Acids Research. Oxford Academic; 2015; doi: 10.1093/NAR/GKU1046. 698 
34. Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al.. MEGARes 2.0: a database for 699 
classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. 700 
Nucleic Acids Research. Oxford Academic; 2020; doi: 10.1093/NAR/GKZ1010. 701 
35. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. NIH Public Access; 702 
2012; doi: 10.1038/nmeth.1923. 703 
36. Eddy SR. Profile hidden Markov models. Bioinformatics. Oxford University Press;  704 
37. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al.. Pfam: The protein families 705 
database. Nucleic Acids Research. Nucleic Acids Res;  706 
38. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant 707 
UniProt reference clusters. Bioinformatics. Oxford Academic; 2007; doi: 10.1093/bioinformatics/btm098. 708 
39. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, et al.. EDGAR 2.0: an enhanced software platform 709 
for comparative gene content analyses. Nucleic acids research. Oxford University Press; 2016; doi: 710 
10.1093/nar/gkw255. 711 
40. Shaikh N, Tarr PI. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: Integrations, excisions, 712 
truncations, and evolutionary implications. Journal of Bacteriology. American Society for Microbiology 713 
(ASM); 2003; doi: 10.1128/JB.185.12.3596-3605.2003. 714 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


15 

41. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al.. Mash: Fast genome and 715 
metagenome distance estimation using MinHash. Genome Biology. BioMed Central Ltd.; 2016; doi: 716 
10.1186/s13059-016-0997-x. 717 
42. Titus Brown C, Irber L. sourmash: a library for MinHash sketching of DNA. The Journal of Open Source 718 
Software. The Open Journal; 2016; doi: 10.21105/joss.00027. 719 
43. Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. 720 
Microbiome. BioMed Central; 2020; doi: 10.1186/s40168-020-00900-2. 721 
44. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al.. Integrating taxonomic, 722 
functional, and strain-level profiling of diverse microbial communities with biobakery 3. eLife. eLife Sciences 723 
Publications Ltd; 2021; doi: 10.7554/ELIFE.65088. 724 
45. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: Confident and fast metagenomics classification using 725 
unique k-mer counts. Genome Biology. BioMed Central Ltd.; 2018; doi: 10.1186/s13059-018-1568-0. 726 
46. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. 727 
Nature Communications. Nature Publishing Group; 2016; doi: 10.1038/ncomms11257. 728 
47. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al.. Transcriptomic characteristics of bronchoalveolar 729 
lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerging Microbes and Infections. 730 
Taylor and Francis Ltd.; 2020; doi: 10.1080/22221751.2020.1747363. 731 
48. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al.. Species-level 732 
functional profiling of metagenomes and metatranscriptomes. Nature Methods. Nature Publishing Group; 2018; 733 
doi: 10.1038/s41592-018-0176-y. 734 
49. Lara-Villoslada F, Sierra S, Martín R, Delgado S, Rodríguez JM, Olivares M, et al.. Safety assessment of 735 
two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714. Journal of 736 
Applied Microbiology. John Wiley & Sons, Ltd; 2007; doi: 10.1111/J.1365-2672.2006.03225.X. 737 
50. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al.. The PATRIC Bioinformatics 738 
Resource Center: Expanding data and analysis capabilities. Nucleic Acids Research. Oxford University Press; 739 
2020; doi: 10.1093/nar/gkz943. 740 
51. Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SY, et al.. PHI-base: The pathogen-host 741 
interactions database. Nucleic Acids Research. Oxford University Press; 2020; doi: 10.1093/nar/gkz904. 742 
52. Coleman B, Geordie B, Chou L, Elworth RAL, Treangen TJ, Shrivastava A. Diversified RACE Sampling 743 
on Data Streams Applied to Metagenomic Sequence Analysis. bioRxiv. bioRxiv;  744 
53. Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, et al.. The CAFA challenge reports 745 
improved protein function prediction and new functional annotations for hundreds of genes through 746 
experimental screens. Genome Biology. BioMed Central Ltd.; 2019; doi: 10.1186/s13059-019-1835-8. 747 
54. Törönen P, Medlar A, Holm L. PANNZER2: A rapid functional annotation web server. Nucleic Acids 748 
Research. Oxford University Press; 2018; doi: 10.1093/nar/gky350. 749 
55. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al.. Fast genome-wide 750 
functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution. 751 
Oxford University Press; 2017; doi: 10.1093/molbev/msx148. 752 
56. Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence. Cowen L, 753 
editor. Bioinformatics. Oxford University Press; 2019; doi: 10.1093/bioinformatics/btz595. 754 
57. Ounit R, Lonardi S. Higher classification sensitivity of short metagenomic reads with CLARK-S. 755 
Bioinformatics. Oxford Academic; 2016; doi: 10.1093/BIOINFORMATICS/BTW542. 756 
58. E A, C M, S C, D J, C B, N B, et al.. Geospatial Resolution of Human and Bacterial Diversity with City-757 
Scale Metagenomics. Cell systems. Cell Syst; 2015; doi: 10.1016/J.CELS.2015.01.001. 758 
59. W H, L L, JR M, GT M. ART: a next-generation sequencing read simulator. Bioinformatics (Oxford, 759 
England). Bioinformatics; 2012; doi: 10.1093/BIOINFORMATICS/BTR708. 760 
60. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Research. Cold 761 
Spring Harbor Laboratory Press; 2007; doi: 10.1101/GR.5969107. 762 
61. Prifti E, Chevaleyre Y, Hanczar B, Belda E, Danchin A, Clément K, et al.. Interpretable and accurate 763 
prediction models for metagenomics data. GigaScience. Oxford University Press; 2020; doi: 764 
10.1093/gigascience/giaa010. 765 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


16 

62. Carrieri AP, Haiminen N, Maudsley-Barton S, Gardiner L-J, Murphy B, Mayes A, et al.. Explainable AI 766 
reveals changes in skin microbiome composition linked to phenotypic differences. bioRxiv. Cold Spring Harbor 767 
Laboratory; 2020; doi: 10.1101/2020.07.02.184713. 768 
63. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learning 769 
Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning 770 
Representations, ICLR;  771 
64. Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, 772 
Weiss R, et al.. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg 773 
Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. Journal of Machine 774 
Learning Research. 2011.  775 
65. Chollet F, others. Keras.  776 
66. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. 777 
Bioinformatics. Oxford University Press; 2014; doi: 10.1093/bioinformatics/btu170. 778 
  779 

 780 
Acknowledgements 781 

Our appreciation goes out to Chris Hulme-Lowe, Danielle LeSassier, Nicolette Albright, Katharina Weber, Veena Palsikar, 782 
Oana Lungu, Curt Hewitt, Pravin Muthu, Cynthia DiPaula, Isaac Mayes, Don Bowman, Christopher Grahlmann, and Leslie 783 
Parke for their efforts in assisting with the development of the UniProt queries, internal organization of the curation data, 784 
and assistance in software development and testing at Signature Science, LLC. We would also like to acknowledge project 785 
team contributions of Jason Hauzel, Kristófer Thorláksson, Manoj Deshpande, Brendan Joyce, Garrit Nickel, Steffen 786 
Matheis, Larissa Wagnerberger, Vijayadhaarani Vijayaarunachalam, Mikael Lindvall, and Adam Porter at Fraunhofer CMA 787 
USA for their support in software quality assurance and development of the HTML report generator, Jeremy Selengut of 788 
the University of Maryland for sharing his insights into viral pathogenesis, Jim Gibson of Signature Science, LLC for 789 
graphics development, and Letao Qi, Jacob Lu, and Chris Jermaine of Rice University for insightful discussions and work 790 
specific to the machine learning algorithms. Thanks to Jody Proescher, Ron Jacak, Kristina Zudock and Briana Vecchio-791 
Pagan from Johns Hopkins University Applied Physics Lab for their helpful discussions about pathogenesis ontologies and 792 
assistance with deployment and testing of our software on their servers. SeqScreen software development has significantly 793 
benefited from the feedback of Elizabeth Vitalis and Ian Fiddes at Inscripta and Cory Bernhards’ team at U.S. Army Combat 794 
Capabilities Development Command Chemical Biological Center. We are thankful for all the time and effort provided be 795 
end users to test early versions of our software, recommend improvements, and guide its application to current challenges 796 
in pathogen detection, synthetic biology, and genome engineering. Finally, we would like to thank IARPA and all our 797 
SeqScreen end users for their helpful feedback and support over the course of the Fun GCAT program. 798 
 799 
Funding 800 

All of the co-authors were either fully or partially supported by the Fun GCAT program from the Office of the Director of 801 
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the Army Research Office 802 
(ARO) under Federal Award No. W911NF-17-2-0089. The views and conclusions contained herein are those of the 803 
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or 804 
implied, of the ODNI, IARPA, ARO, or the US Government. L.E. was partially supported by a training fellowship from 805 
the Gulf Coast Consortia, on the NLM Training Program in Biomedical Informatics & Data Science (T15LM007093). 806 
 807 
 808 
Ethics approval and consent to participate 809 

Not applicable 810 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


17 

Consent for publication 811 

Not applicable 812 

Competing Interests 813 

The authors declare that they have no competing interests 814 

 815 
 816 
Author Contributions 817 

K.T. and T.T. designed the SeqScreen concept. A.B., B.K., D.A, T.T., M.D., L.E., Z.Q., and D.N. developed the software. 818 
G.G, A.K., and K.T. designed and implemented the biocuration framework. A.B., B.K. T.T. and S.S. designed and 819 
implemented the machine learning framework. N.S. and M.P. designed outlier detection.  A.B., B.K., Z.Q., E.R produced 820 
results for benchmarking. A.B., L.E., G.G., S.S., N.S., M.P, K.T., and T.T. contributed to writing the manuscript. All 821 
authors read and approved the manuscript. 822 
 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.05.02.442344doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.02.442344
http://creativecommons.org/licenses/by-nd/4.0/


18 

 844 

 845 

 846 

FIGURES 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 
 863 
 864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 

 876 
 877 
 878 

Fig. 1. Comparison of VFDB to SeqScreen Biocurator Database. A. Venn-diagram shows the number of GO terms captured by 
VFDB Core sequences, the SeqScreen training dataset labelled by biocurators, and their overlap. B. Box-plot showing the comparison 
of annotation scores (1-5) of the associated UniProt/UniParc IDs between VFDB Core sequences and SeqScreen training data. The p-
value was calculated using the Mann-Whitney U test. 
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 880 
 881 
 882 
Fig. 2. SeqScreen overview. (A.)  SeqScreen Workflow: This figure outlines the various modules and workflows of the SeqScreen 883 
pipeline. Boxes in green indicate that these modules are only run in the sensitive mode. The boxes in yellow are run in the fast mode, 884 
while the ones in blue are common to both modes. In addition to the two different modes, SeqScreen also contains optional modules 885 
that can be run based on the parameters provided by the user. (B.) SeqScreen Human-in-the-loop Framework: Includes initial 886 
annotation and curation of training data by manual curation. The data is used to train Ensemble ML models. The results obtained and 887 
selected feature weights are passed on back to biocurators to fine tune features and uniport queries which form a new set of refined 888 
training data for the Ensemble model. 889 
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 896 
Fig. 3: HTML report output from SeqScreen. This is a screenshot of the interactive HTML page that outputs each query sequence 897 
in the file, the length, the gene name (if found), and GO terms associated with it. It also outputs the presence (or absence) of each of 898 
the 32 FunSoCs by denoting a 1 (or 0) in the given field. 899 
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 908 
 909 
Fig. 4. Majority Voting Ensemble Classifier used to create FunSoC Database. The top three models combined are Bl. SVC + 910 
NN(OS): Balanced Linear Support Vector Classifier + Neural Networks (Over Sampled), TS NN: Two-stage Neural Network and TS 911 
Bl.SVC: Two-stage Balanced Linear Support Vector Classifier. The binary predictions of each of the classifiers over each FunSoC are 912 
combined in a majority voting scheme to predict the final labels for the SeqScreen FunSoC database which is then used to annotate 913 
query sequences. Training data is split into Train (56.75%), Validation (18.25%) and Test (25%). The two-stage methods fist detect 914 
presence of at least one FunSoC and then carry out the multi-class multi-label predictions. Dropouts (Neural Networks) and L1-915 
regularization (Support Vector Classifier) are used to control for overfitting. Two of the models use random oversampling (Bl. SVC + 916 
NN(OS) , after feature selection) and class weights (TS Bl. SVC) to deal with class imbalance in the training data. 917 
 918 

 919 

 920 
 921 
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Fig. 5.  Positive label precision and recall per FunSoc for the four ML models Bl. SVC+NN (OS) (in blue), TS NN (in green), TS 922 
Bl. SVC (in orange), and MV ensemble (in red). Precision is in solid lines and Recall is in dotted lines. TS Bl. SVC shows the best 923 
overall recall, whereas TS NN consistently has the highest precision across most of the 32 FunSoCs. In hard-to-classify FunSoCs like 924 
nonviral invasion and bacterial counter signaling TS NN performs poorly indicating a model with a high degree of variance. 925 
Similarly, TS Bl. SVC suffers from poor precision in most cases. The Majority Vote Classifier improves on the Bl. SVC+NN (OS) 926 
and finds an optimal balance between precision and recall across all FunSoCs. 927 
 928 
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 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 

Fig. 6. Pathogen identification of hard-to-classify pathogens: FunSoCs Assigned to Genes by SeqScreen. Abbreviated gene names 
are listed in pink cells if at least one read from the gene had a UniProt e-value < 0.0001, was assigned a FunSoC, and was from the 
expected genus (i.e., Escherichia or Shigella, Clostridium, Streptococcus, Lactobacillus). FunSoCs with at least one gene that met the 
criteria for detection in at least one isolate were included in the table. The removal of genes from genera that were not expected in these 
bacterial isolates allowed for removal of genes that were likely derived from likely contaminating organisms (e.g., PhiX Illumina 
sequencing control). An expanded table for cells denoted by (*) and complete gene names are listed within each cell in Supplementary 
Table ST3. (a and b) E. coli O157:H7 is shown to have presence of the shiga toxin (stxB) as seen in the cytotoxicity FunSoC, as well as 
an additional hit to the secreted effector protein (espF(U)), labelled with secreted effector and virulence regulator FunSoCs, compared to 
E.coli K12 MG1655. (c and d) C. botulinum showed four distinct FunSoCs (disable organ, cytotoxicity, degrade ecm and virulence 
regulator) and presence of the botA and orf-X2 genes compared to C. sporogenes. (e and f) S. pyogenes showed presence of the induce 
inflammation FunSoC in contrast to the near neighbor pathogen S. dysgalactiae with the counter immunoglobulin FunSoC. (g and h). S. 
salivarius and L. gasseri are well-known commensals that are generally considered harmless. Both show presence of antibiotic resistance 
genes, while S. salivarius also contains some genes associated with secretion. The commensals have hits to the least number of FunSoCs. 
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 948 
 949 
 950 
Fig. 7: Two trimmed fastq reads identified by SeqScreen v1.2 in sample CRR119891, and their alignment to the SARS-CoV-2 951 
genome: BLAST results of the specific reads in the samples of COVID-19 infected patients from Xiong et al.[47] against SARS-CoV-952 
2 genome. These reads were identified by SeqScreen as belonging to SARS-CoV-2 (without it being present in the SeqScreen DB).  953 
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TABLES 966 
 967 
 968 
Table 1. The Accuracy, Exact Match Ratio, Micro and Macro F1 Score, Macro Recall and Precision of the different ML 969 
models. The models we considered were Balanced SVC (Feature Selection) + Neural Network Classification using Oversampling (Bl. 970 
SVC+NN (OS)), Two Stage Detection + Classification Neural Networks (TS NN), Two Stage Detection + Classification Balanced 971 
Support Vector Classifier (TS Bl. SVC), and the Majority Vote Ensemble Classifier (MV ensemble). TS NN had the highest positive 972 
label (PL) precision and TS Bl.SVC had the highest positive label (PL) Recall, while Bl. SVC+NN (OS) had the best balance between 973 
precision and recall. Majority Vote Ensemble improved on the results of the three classifiers as conveyed by both the high precision 974 
and recall the method achieves. 975 
 976 

 
Model 

 
Accuracy 

Exact 
Match 
Ratio 

Micro  
F1 Score 

Macro  
F1 Score 

Macro  
Recall 

Macro 
Precision 

Mean 
PL  
Precision  

Mean 
PL  
Recall 

Bl. SVC+NN 
(OS) 

 
0.9997 

 
0.9924 

 
0.9859 

 
0.8210 

 
0.8039 

 
0.8716 

 
0.8759 

 
0.8180 

TS NN 0.9997 0.9924 0.9359 0.6934 0.6445 0.8011 0.8893 0.6988 

TS Bl.SVC 0.9996 0.9893 0.8692 0.7047 0.8310 0.6492 0.7382 0.8869 

MV ensemble 0.9997 0.9934 0.9424 0.7998 0.8016 0.8453 0.9003 0.8273 

 977 

 978 

 979 
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 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 
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 991 

Table 2. Pathogen and near neighbor classification. SRA represents the SRA id of the sample, True Organism represents the actual 992 
bacterial strain or species, and the remaining columns indicate the results for the indicated method using the parameters detailed in the 993 
Methods section. Green cells indicate that the tool assigned a correct strain-level call, yellow indicates a correct species-level call, and 994 
red indicates an incorrect species-level call. The following tools and databases were run: Mash dist (RefSeq 10k), Sourmash (RefSeq + 995 
GenBank), PathoScope (PathoScope DB), Kraken 2 (Mini and full Kraken2 DB produced the same results), KrakenUniq (MiniKraken 996 
8GB), MetaPhlAn3 (default) and Kaiju (index of NCBI nr + euk). The E. coli strains were challenging for most tools. The pathogenic 997 
E. coli O157:H7 was correctly called by Mash dist, Sourmash, PathoScope, Kraken2 and KrakenUniq. MetaPhlAn and Kaiju could only 998 
make a species level assignment. In contrast, the commensal E. coli K12 MG1655 was the most challenging as only Mash dist and 999 
Sourmash got the strain level assignment correct. MetaPhlAn3 and Kaiju could make only species level assignments, and PathoScope, 1000 
Kraken2, and KrakenUniq called it as strains E. coli BW2952, E. coli O157:H7, and E. coli O145:H28, respectively.Even with a 1001 
complete database, C. sporogenes was wrongly classified as C. botulinum by PathoScope, Kraken2, and KrakenUniq. Mash dist, 1002 
Sourmash, and Kaiju predicted C. sporogenes correctly while MetaPhlAn3 was ambigous. C. botulinum was incorrectly classified as C. 1003 
sporogenes by Mash dist, Sourmash, S. dysgalactiae was predicted as S.pyogenes by PathoScope. All tools correctly called S. pyogenes.  1004 
 1005 
 1006 
 1007 
 1008 
 1009 

Legend 1010 
 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

SRA True 
Organism Mash dist Sourmash PathoScope Kraken2 KrakenUniq MetaPhlAn3 Kaiju 

DRR198806 E. coli K12 
MG1655 

Equivalent hits 
for E. coli 
K12 and SQ37 

E. coli K12 E. coli 
BW2952 

E. coli  
O157:H7 

E. coli 
O145:H28 

E. coli 
and Shigella 
sp. FC2383 

E. coli 

DRR198804 E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
O157:H7 

E. coli 
and Shigella 
sp. FC2383 

E. coli 

SRR8758382 C. sporogenes C. 
sporogenes 

C. 
sporogenes 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum  
and C. 
sporogenes 

C. 
sporogenes 

SRR8981313 C. botulinum C. 
sporogenes 

C. 
sporogenes 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum 

C. 
botulinum  

C. 
botulinum 

SRR12825903 S. dysgalactiae S. 
dysgalactiae 

S. 
dysgalactiae S. pyogenes S. 

dysgalactiae 
S. 
dysgalactiae 

S. lutetiensis 
and S. 
infantarius 

S. 
dysgalactiae 

ERR1735064 S. pyogenes S. pyogenes S.pyogenes S. pyogenes S. pyogenes S. pyogenes S. pyogenes S. pyogenes 

Correct strain-level call 

Correct species-level call 

Incorrect species-level call 
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Table 3. Simulating a novel pathogen. Mash dist and PathoScope were run on pathogen sequences and their near neighbors with the 1018 
corresponding truth species removed in their respective databases to simulate an example of classifying a novel pathogen not in the 1019 
database. SRA represents the SRA id of the sample, True Organism represents the actual bacterial strain or species, Mash dist 1020 
represents the Mash results on each of the samples (with the truth organism species or strain removed from its sketch database), and 1021 
Pathoscope represents the PathoScope results on each of the samples (with the truth organism species or strain removed from its 1022 
database). In three of the cases, C. sporogenes, C. botulinum and S. pyogenes, Mash dist classified the organism as it near neighbor - C. 1023 
botulinum, C. sporogenes and S. dysgalactiae, respectively. S. dysgalactiae was classified as S. sp. NCTC 11567 whereas the commensal 1024 
E. coli K12 and pathogenic E. coli 0157:H7 were classified as E. coli O16:H48 and E. coli 2009C-3554, respectively.  PathoScope only 1025 
classified two pathogens, C. sporogenes and C. botuinum, as their nearest neighbor counterparts. S. dysgalactiae was classified as S. 1026 
intermedius, whereas S. pyogenes was classified as S. infantarius. E. coli K12 was only classified at the species level, while the 1027 
pathogenic strain E. coli O157:H7 was classified as E. coli xuzhou21. 1028 
 1029 
 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

SRA True Organism Mash dist PathoScope 
DRR198806 E. coli K12 MG1655 E. coli O16:H48  E. coli 
DRR198804 E. coli O157:H7 E. coli 2009C-3554 E. coli Xuzhou21 
SRR8758382 C. sporogenes C. botulinum C. botulinum 
SRR8981313 C. botulinum C. sporogenes C. sporogenes 
SRR12825903 S. dysgalactiae S. sp. NCTC 11567  S. intermedius 
ERR1735064 S. pyogenes S. dysgalactiae S. infantarius 
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