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Abstract 

 

Animals actively sample their environment through actions such as whisking, sniffing, and 

saccadic eye movements. Computationally, sensorimotor control may be viewed as an 

interplay between two processes that place different demands on their neural circuits: a 

rapid/competitive process for promptly selecting each upcoming action, and a 

slow/integrative process weighing the outcomes of multiple prior actions to build a model of 

the environment. Using saccadic eye movements as a model system, we addressed the 

hypothesis that frontal and parietal cortex are computationally specialized for these two 

functions. Through biophysical modelling, we predicted neural signatures of the competitive 

and integrative processes. We localized these signals to the frontal eye fields and intra-

parietal cortex, respectively, using whole-brain, high-temporal-resolution neuroimaging 

(MEG). This frontal/parietal specialization can be linked to the differential characteristics of 

cortical circuits, and thus may represent a more general organizing principle of sensorimotor 

function in the primate brain. 
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Introduction 

 

Far from being passive recipients of sensory information, both humans and animals actively 

sample the environment using their sensory organs. They integrate information across many 

individual samples to build a model of the sensory environment. In rodents, active sampling 

processes include whisking and sniffing; in primates, the most important and best-studied 

process is the control of saccadic eye movements. 

 

As an observer views a visual scene, several saccadic eye movements per second are 

generated in order to direct the eye’s small focal window to points of potential interest. 

Information from multiple fixations is integrated to construct a ‘model’ of the full visual 

field1,2. This model in turn influences the selection of targets for future saccades3. Therefore, 

the process of active sampling may be viewed as an interplay between two concurrent 

processes with distinct characteristics. 

 

Firstly, the brain must generate the sampling action. Since only one saccade is made at once, 

each individual saccade must be selected by a process of competition between 

representations of alternative possible saccadic targets4; the process is by necessity winner-

take-all in that the eyes can only fixate one location at a time5 and must operate on a fast 

timescale, driven by dynamics that ensure a new saccade is made every few hundred 

milliseconds6. 

 

Secondly, the brain must integrate the limited information gained from many individual 

saccades – not only to construct the visual scene, but also to inform the selection of targets 

for future saccades.  Behavioural modelling suggests that the likely information value of 

future saccades is represented in a salience map7,8 that can be regarded as a Bayesian prior 

distribution over potential saccadic targets3,9. Far from having winner-take-all dynamics, this 

salience map must capture the relative or probabilistic distribution over all possible saccades. 

It therefore must integrate information across multiple previous saccades. 

 

What are the neural substrates of these two processes, and are they anatomically separated? 

At least three regions in macaque neocortex are involved in the selection of saccadic targets: 
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the frontal eye field (FEF) and the posterior parietal cortex (specifically regions LIP and 7a, of 

which LIP is the more extensively studied). These regions, and their human homologues, have 

attracted extensive interest not only in terms of their role in selecting saccades per se, but 

also as a model system for decision-making10, and a possible substrate for selective attention. 

However, consensus on the differential roles of frontal and parietal regions remains elusive. 

This study addresses the hypothesis that the distinction between the rapid, action selection 

process and the slower integration process defines the division of labour between the frontal 

and parietal eye fields in the primate brain.  

 

One reason for hypothesising this division of labour is theoretical. Neurons in LIP have longer 

time constants and stronger local connectivity than those in FEF11 – properties that make LIP 

a suitable substrate for ‘bump attractor’ dynamics12 that could integrate information across 

many saccades13. In contrast, models of FEF generally embody competitive processes in 

which neurons representing alternative saccades compete in a winner-take-all dynamic 14,15. 

Thus, structural differences in the network properties of cortex between the parietal and 

frontal regions, by determining neural time constants, could lead to an anatomical division of 

labour. 

 

A second line of evidence favouring the hypothesis is neurological. Unilateral damage to the 

frontal eye fields results in an active motoric bias (gaze vergence) towards the ipsilateral 

field16, as if a competitive process selecting between targets had become unbalanced; 

conversely unilateral damage to the parietal cortex results in a paucity of voluntary saccades 

and attention towards the ipsilateral field (neglect syndrome17), as if the part of the salience 

map or prior covering the contralateral field had been permanently set to zero. 

 

Despite these observations, extensive electrophysiological work has demonstrated the 

response functions of individual neurons in FEF and LIP, in saccade selection paradigms, to be 

strikingly similar10,18–20. Using evidence accumulation paradigms cleverly designed to extend 

the saccade selection process over hundreds of milliseconds (most commonly based on 

random dot kinematograms), both FEF and LIP have been shown to contain spatially-selective 

neurons that respond more strongly when a saccade is planned to their preferred location in 

the visual field. Responses in both areas are consistent with a model in which each neuron’s 
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firing rate at a given moment represents the log odds that its preferred location will be the 

target of the next saccade, effectively ramping up to target selection or down to target 

rejection18,21. When activity in neurons selective for one of the targets reaches a threshold, a 

saccade is released towards that target. The process can be described mathematically as a 

sequential probability ratio test10 which, when noise is also modelled, maps onto the well-

studied drift-diffusion model of decision making22. The model, which was developed in the 

context of perceptual decision tasks (random dot kinematograms) holds for more abstract 

forms of evidence accumulation such as the weather prediction task23 and value-based 

decision-making24. 

 

Despite this elegant model, a series of surprising studies in monkey LIP and the homologous 

rat posterior parietal cortex (PPC) have recently shown that inactivation of parietal 

cortex25,26, unlike FEF27 (or the homologous frontal orienting field or FOF in the rat), has no 

impact on performance in the classic RDK evidence accumulation tasks (or analogous 

auditory tasks in the rat). This calls into question the causal role of parietal cortex in evidence 

accumulation, instead suggesting that frontal and parietal contributions to eye movement 

selection may not be as similar as initial neurophysiological evidence suggested28. 

 

The paradox that LIP neurons track the log odds of each saccadic target with such fidelity, but 

apparently play no causal role in the process of evidence accumulation, could be resolved by 

hypothesising (as above) that whilst both LIP and FEF neurons follow the evidence 

accumulation process leading up to each individual saccade, the causal role of FEF is to 

resolve competition between alternative ‘next’ saccades, whilst the causal role of LIP is to 

accumulate evidence across multiple saccades. In the inactivation studies described25,26, as in 

most evidence accumulation tasks, evidence accumulation is completed within the context of 

a single saccade selection episode. There is no need to integrate information across multiple 

eye movements. Each trial starts with a ‘flat prior’ – previous trials tell the observer nothing 

about the correct response on the current trial – and ends with the selection of a single 

action. In this context, a representation of action probabilities for the current action is 

identical to the optimal cross-saccade map, but there is no need to carry information over 

between saccades. Indirect support for this argument comes from a study29 in which rats 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442155
http://creativecommons.org/licenses/by/4.0/


 6 

with parietal inactivation showed a reduced perceptual attraction bias (evidence of the 

influence of a prior) in an interval judgement task. 

 

We designed an experiment, using whole brain high-temporal-resolution imaging with 

magnetoencephalography (MEG) to directly test the hypothesis that LIP integrates the value 

of saccades across multiple previous saccades to build up a prior, in contrast to the 

specialization of FEF for the selection of the next action (saccade). We modified the classic 

random dot motion task30 in two ways, which our modelling indicated should drive 

independent signals relating to competition between saccadic targets, evidence 

accumulation overall, and the influence of prior beliefs. Importantly, as prior beliefs may not 

be detectable in event-related MEG activity, but rather encoded via synaptic plasticity31, we 

used the method of rapid frequency tagging to detect changes in the gain on perceptual 

information as a function of prior beliefs. Using MEG, we were able to localize these 

processes both in space (to the frontal and parietal cortical regions) and in time (to the 

periods of target selection, and pre-trial preparation, respectively). 

 

Results 

 

To spatially and temporally localise the processes of (i) selecting individual saccades via 

competition and (ii) integrating across multiple saccades to form a prior, we modified the 

classic random-dot kinematogram (RDK) task30 in two ways (fig 1A). 

 

In the classic RDK task participants observe mixtures of randomly and coherently-moving dots 

and accumulate evidence over hundreds of milliseconds to determine the direction of 

coherent motion, responding with a congruent saccade. We introduced within-trial 

competition between left- and right options to drive the competitive neural process 

hypothesised to occur in FEF, and we introduced longer term, cross-trial integration 

favouring left- or right- response, to drive the computation of a prior hypothesised to occur 

in parietal cortex. 

 

Within-trial competition. In classic RDK stimuli a single set of coherent dots move to the left 

or right. In our modified version, all trials included some level of evidence for both choice 
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options (left and right) concurrently, and participants reported the dominant motion 

direction (fig1B). This means that the level of competition (ratio of left to right dots, fig1D) 

was manipulated orthogonally to the signal-to-noise or total coherence (total number of left 

and right dots, compared to random dots, fig1C). This manipulation allowed us to test for the 

hallmark of a competitive process in frontal and parietal neural activity, namely that it should 

depend upon the strength of evidence for the losing option as well as the evidence for the 

winning option22. In particular, a neural mean-field instantiation of a drift diffusion-like 

competitive process32 makes precise predictions about the independent effects of 

competition and coherence on brain activity33. 

 

Cross-trial integration (prior). In classic RDK tasks, the dot direction on each trial is 

independent. Each option (left, right) is equally likely, and so subjects do not have to retain 

any information about the current trial after the trial ends. In our modified version, we 

introduced long-term correlations in the dot-motion direction. The probability that the next 

correct choice would be ‘right’ was not fixed at 50%, but took values of 20%, 50% or 80% for 

blocks of about 25 trials (changes in prior probability were un-signalled and occurred with a 

uniform hazard rate of 0.04 (fig1E, ‘true probability’ (solid grey line)). Since the dominant 

direction on previous trials could be useful for determining the direction on the current trial, 

participants could benefit from integrating information across trials to construct a prior over 

the dominant motion direction on the next trial (fig1E, ‘belief strength’ (purple trace)). We 

modelled this evidence integration process using a Bayesian ideal observer model [similar to 
34,35], which captured local variations in prior probability, and learning delays. We used the 

expected value from the Bayesian ideal observer (see ‘Methods’ eq5) of p(right = correct), 

and modelled belief strength as |p(right) – 0.5|, meaning that it became strong when there 

was a high prior probability of either leftward or rightward saccade. This allowed us to test 

whether these prior beliefs were reflected in brain activity, either as an influence on the 

decision process itself or in the 1s foreperiod prior to evidence presentation on each trial. 
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Figure 1: Adapted dot-motion task. A) Stimuli within a trial varied along two orthogonal dimensions; number of 

dots moving left, and right (all other dots moved randomly). B) The correct response is given by the dominant 

motion direction. C,D) 2-d stimulus space can also be parameterized as varying along two dimensions: total 

coherence (middle panel), or the total percentage of coherent motion to the left or right, and competition (right 

panel), the unsigned difference between proportion of coherent dots moving left and right. E) Additionally, the 

cross trial prior probability p(correct direction = right) varied across the experiment, with pseudo-random, 

unsignalled ‘blocks’ of trials in which the dominant direction was right 20%, 50% or 80% or the time (grey line). 

Bayesian learning models were used to estimate direction and strength of beliefs and observer should have 

about the current trial based on previous trials (purple line) F) Structure of a single trial: A get-ready cue 

indicated dots were about to appear. All trials began with 1 second of random motion, which temporally 

separated stimulus onset from evidence onset, meaning we were able to distinguish visual evoked neural 

responses from evidence accumulation processes. This also provided a temporally extended foreperiod in which 

neural activity reflecting prior beliefs could be measured. Random motion was followed by a 2.5s evidence 

accumulation period, in which coherent motion was present. When the dots disappeared, participants had a 1s 

response interval to make a saccade in the direction of perceived dominant motion. Participants were given 

unambiguous feedback on the correct answer (small centrally-presented hemisphere on the correct side), so they 

could learn the cross-trial prior independently of the quality of evidence on each trial. During the 1s foreperiod 

and 2.5s period of evidence accumulation, the two potential saccadic targets were ‘tagged’ with high frequency 

flicker to selectively entrain neural oscillations.  
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Choice behaviour is predicted by both within- and across-trial task features 

Participants (n = 29, final analysis n = 26, for information on participant exclusions see 

‘Methods’) performed 600 trials of a modified random-dot motion task with added within-

trial competition and cross-trial integration, divided into 4 blocks with short breaks, while 

MEG was recorded. All participants also completed a practice session of 300 trials, outside 

the scanner, on a separate day. 

 

We first confirmed that participants’ choice behaviour was influenced by both the total 

coherence (signal to noise) and the competition between left- and rightward motion, by 

fitting logistic regressions to participants’ saccade directions (left, right) as a function of 

percent coherent motion and proportion of coherent dots that moved right. As expected, 

there was an interaction such that participants were more likely to saccade right when a 

greater proportion of the coherent dots moved rightwards and this effect increased as the 

total amount of coherent motion increased (t(25) = 9.74, p < 2*10-10, fig2A). 

 

Next, we tested whether participants learned and used the across-trial regularities in the 

stimulus sequence (the prior). We first confirmed that feedback from previous trials 

influenced participants’ decision on the current trial using lagged logistic regression (figS1), 

indicating that participants were indeed retaining information across at least two previous 

trials. To quantify how this across-trial information should be integrated to inform behaviour 

we used a Bayesian learning model34 to compute, for every trial in a stimulus sequence, the 

prior belief that an ideal observer should have, based on the feedback observed on all 

previous trials. For visualisation (fig2B), we divided trials using a tertile split according to 

whether the Bayesian prior strongly favoured rightward or leftward motion, or neither 

(neutral prior). On ‘neutral prior’ trials, the point of subjective equality (PSE) closely matched 

the point of objective equality (mean 49.7% right motion). Strong priors in either direction 

biased the PSE by 10-15% (strong left prior; PSE 55% right motion, strong right prior PSE 

42.3% right motion, fig2B, inset). 
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Figure 2: Within- and across-trial influences on behaviour. A) Increasing overall coherence (darker lines) produces 

a parametric performance improvement (steeper logistic curve). Dots indicate mean observed data, lines 

indicate logistic fits. B) Prior belief influences choice behaviour on current trial, leading to a shift in the point of 

subjective equality (dashed vertical lines). Inset: Raincloud plot showing values of p(Saccade right) for individual 

subjects on trials where 50% of dots moved right. C) Prior belief shifts point of subjective equality (dashed lines) 

most strongly when the least information is available on the current trial (coherence is lowest). 

 

A multiple logistic regression confirmed that participants’ choice behaviour was influenced 

both by the proportion of dots moving right (t-test on regression coefficients across the 

group: t(25) = 14.79, p < 1*10-14 ) and by the prior based on previous trials (t(25) = 2.80, p = 

0.0091). These two effects did not interact (t(25) = 0.45, p = 0.66). This is evidence that 

decision-relevant properties of the currently-viewed stimulus (the proportion of coherent 

dots that moved right), and the beliefs participants had developed based on previously-

viewed stimuli, made independent contributions to their choice behaviour. 

 

We next determined whether properties of the current stimulus would determine the degree 

of influence prior belief had on choice behaviour; Bayesian theory suggests participants 

should rely more upon the prior when evidence in the current trial is weak36 (low total 
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coherence) due to precision weighting. To visualise this effect, we repeated the Bayesian 

ideal observer analysis but divided the trials according to the level of total coherent motion 

on the current trial (fig1C). Based on the same tertile splits as above, prior belief biased 

current choice strongly when there was little decision-relevant motion, (at 10% coherence, 

PSE moved from ≈50% to 10%/90%) but had little effect when a lot of motion was decision-

relevant (at 90% coherence, PSE moved from ≈50% to 48%/52%).  

 

The effect shown in figure 2c was statistically confirmed using logistic regression. Percent 

total coherent motion had opposite effects on the influence of current evidence and prior 

belief on choice; when total coherent motion was high, the current evidence (proportion of 

coherent dots moving right) influenced behaviour more (Wilcoxon test on logistic regression 

coefficients for (coherence*prior) interaction across the group: Z = 4.7, p < 3*10-6, non-

parametric test due to first-level outliers, see ‘Methods’) but prior belief influenced 

behaviour less (Z = -2.52, p = 0.012). This contrasts with the previous analysis where we 

found no interaction between the prior belief and the degree to which competition 

influenced choice behaviour. This confirms that participants selectively weighted the two 

sources of evidence available to them; up-weighting the impact of their prior belief – shaped 

by what they had seen previously - when little sensory evidence was currently available to 

guide their choice. This precision-weighting resembles the optimal Bayesian strategy for the 

task36.  

 

Neural models and neuroimaging 

Next, we turned to our MEG data to assess whether the competitive process of selecting the 

current saccade and the integrative process of forming a prior across many saccades could be 

teased apart in space (frontal eye fields vs parietal cortex), time, and neural mechanism 

(impacts on event-related fields vs input gains respectively). 

 

Biophysical model of the decision process 

A key signature of a competitive selection process is that the decision variable depends on 

the strength of evidence for the unselected option, as well the selected option22. For this 

reason, in our modified random dots task, evidence for the chosen and unchosen dots 

direction was manipulated independently, allowing us to identify signals driven by 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442155
http://creativecommons.org/licenses/by/4.0/


 12 

competition independently of signal to noise. To model neural mass signals detectable by 

MEG, we adapted a model of competitive selection between options, similar in algorithmic 

terms to the drift diffusion model and specified at the biophysical level, that has previously 

been described by Wang and colleagues32,33. This model has been successfully used in a 

value-based choice task33 to predict the independent effects of total value (analogous to total 

coherence in our task) and value difference (analogous to competition in our task) on the 

event related field (ERF) as measured in MEG  (fig3A,B), and has previously been fit to brain 

activity in both parietal32 and frontal cortex33,37,38. We adapted a neural mean-field version of 

this model to make predictions about how neural responses would vary with competition, 

coherence and prior for our task.   

 

Briefly, the model comprises two neuronal pools coding for different choice options, with 

strong recurrent excitation within a pool and strong inhibition between pools. The between-

pool inhibition mediates a winner-take-all competition between options resulting in one pool 

reaching a high-firing attractor state and the other pool a quiescent attractor state. The 

inputs to the two pools were proportional to the number of dots moving left, and the 

number of dots moving right. 

 

To model the effect of the prior as a driving input, the input to each pool occurred in three 

phases; the first representing a participant’s prior belief about the upcoming stimulus, the 

second reflecting undifferentiated activity due to random dot motion during the 1-second 

‘incoherent motion’ epoch, and the third reflecting properties of the stimulus itself – i.e., the 

number of dots moving left and right - during the 2.5-second ‘coherent motion’ epoch 

(fig3A). The timing of the driving inputs reflects electrophysiological findings that the initial 

response of neurons in both FEF and LIP39,40 to target presentation, prior to evidence 

accumulation, weakly reflect the influence of prior beliefs on saccade selection31,41. 
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Figure 3: A) Input to neural mean-field model. Each node received weak variable input corresponding to prior 

knowledge (purple), weak fixed input corresponding to motion in all directions (yellow) and strong variable input 

corresponding to coherent motion (red). B) Properties of neural mean-field model. Each node contained 

recurrent excitatory connections and inhibitory connections to the other node. C) Regions-of-interest used to 

reconstruct activity in FEF (based on Wang & Kastner atlas42) and IPS (based on a combination of data and 

anatomy – see ‘Methods’). Top row: Neural mean-field model predicts a parametric increase in activity as a 

function of stimulus coherence (D), and of stimulus competition (E). Second row: Low-frequency FEF activity 

displays parametric modulations as a function of coherence (F,G) and competition (H,I), consistent with 

predictions of neural mean-field model. Third row: As middle row, but for IPS low-frequency activity (J-M). 

Bottom row: N) General linear model reveals effects of both coherence and competition in neural mean-field 

model in post-stimulus period. O,P) Significant effects of coherence and competition are observed in both FEF 

and IPS in the same post-stimulus window. 
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The neural mean-field model generated three distinct predictions about the activity that 

should be observed in a competitive system. Firstly: Increasing total coherence (sum of dotsL 

and dotsR) should produce a parametric increase in neural activity following target onset 

(fig3D) in the time window 100-500ms following onset of coherent motion. Secondly: As 

competition decreases (i.e. greater absolute difference between dotsL and dotsR), there 

should be a parametric increase in neural activity following target onset (fig3E) in the same 

time window. Thirdly: Weakly increasing input due to prior knowledge in the prestimulus 

period (fig 3A, figS2A) should not significantly alter prestimulus activity, but rather bias the 

initial conditions of the competitive accumulation process such that activity evoked by the 

much stronger stimulus-driven input parametrically increased with prior strength, even 

though the prior input was no longer active, presumably due to the weak prior input biasing 

the state of the network before the stronger inputs began. 

 

Event-related field in both Frontal Eye Field and Parietal cortex reflects the competitive 

process of selecting the current saccade 

We next identified whether the pattern of results predicted by the neural mean-field model 

were observed in Frontal Eye Field and parietal cortex. We transformed subjects’ MEG data 

to source space using LCMV beamforming43, and extracted time series from regions-of-

interest (ROIs) in the Frontal Eye Field42 and parietal cortex (fig3C, see ‘Methods’ for ROI 

definitions). We extracted the time-varying power in the low frequency range (2.8 – 8.4 Hz) 

as a proxy for the event related field or ERF, the magnetic field arising from local field 

potentials in cortex44. We used low frequency power as a proxy because the ERF itself 

becomes sign-ambiguous after beamforming, but data in the time-frequency domain does 

not. We focussed on low frequencies rather than higher frequencies because the network 

model is dominated by low-frequency responses and does not exhibit higher frequency 

oscillations33.  This analysis revealed two transient responses in both regions (fig3F,H,J,L); the 

first shortly after onset of incoherent motion, the second 100-500ms after onset of coherent 

(i.e., choice-relevant) motion.  

 

Concordant with ramping activity observed in electrophysiological studies10,18, in both FEF 

and parietal cortex there was a clear parametric modulation of the low-frequency MEG signal 

100-500ms after the onset of coherent motion as a function both of total coherence 
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(fig3F,G,J,K) and stimulus competition (fig3H,I,L,M). As predicted, stronger evoked activity 

was observed with higher levels of total coherence; this is consistent with the observation 

that ramping evidence-accumulation signals in single-unit studies rise faster for higher 

coherence levels in standard dot motion tasks10.  Stronger evoked activity was observed for 

lower levels of stimulus competition, indicating that the presence and strength of evidence 

conflicting with a decision affects the decision process – a hallmark of a competitive system. 

Statistically, a linear multiple regression with parameters coherence, competition and prior 

strength confirmed that the amplitude of the evoked response varied as a function of both 

coherence and competition; specifically, and as predicted by the neural mean-field model 

(fig3N) activity increased as a function of stimulus coherence (FEF; t(25) = 3.42, p = 0.002, 

Parietal; t(25) = 4.67, p = 9e-5), and decreased as a function of competition (FEF; t(25) = 2.13, 

p = 0.043, Parietal; t(25) = 2.18, p = 0.039, fig3O,P). Both effects were tested in a time 

window 100-500ms after the onset of coherent motion, defined based on the predictions of 

the biophysical model. To test whether there was any difference in timing of effects between 

FEF and parietal cortex, we used permutation testing (permuting the waveforms between 

ROIs within subjects), and found no significant difference in timing between regions 

(Coherence; p = 0.12, Competition; p = 0.92). 

 

The qualitative correspondence of the MEG activity to a neural mean-field model of a 

competitive decision process suggests that both Frontal Eye Fields and parietal cortex could 

be engaged in resolving saccadic choices via competition by mutual inhibition, compatible 

with previous observations of evidence accumulation signals in both regions. However, 

evidence from inactivation studies25,26 suggests that the activity in parietal cortex is not 

necessary for saccade selection whereas activity in FEF is. The signal observed in parietal 

cortex may, we hypothesised, play a parallel role in integrating this information in a cross-

saccade prior. 

 

Contrary to our predictions, prior strength did not significantly modulate the low-frequency 

MEG signal in either FEF or parietal cortex (FEF; t(25) = -1.22, p = 0.23, Parietal; t(25) = 0.80, 

p = 0.43, figS2). However, the absence of an effect of prior should perhaps be interpreted 

with caution, as for any null result; perhaps the effect was too subtle to be detected in the 

present paradigm. 
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A prior integrating across multiple saccades is represented in parietal cortex via gain 

modulation 

 

Although participants’ behaviour was influenced by the prior, we were unable to detect 

activity corresponding to the prior in low frequency MEG signal (approximating the event 

related field, mainly driven by synchronised post-synaptic potentials) from FEF or parietal 

cortex. However, theory suggests that the model of the prior as a driving input is a poor 

match for the physiological mechanisms by which prior beliefs are represented and influence 

choice: representations sustained over inactive periods or delays may be more efficiently 

represented by non-spiking mechanisms45. 

 

For example, in an extension of the biophysical model used above, prior beliefs were 

modelled as modifications to the synaptic weights from evidence-tuned inputs to the 

decision pools31. These gain modulations could manifest through short term synaptic 

plasticity on the timescale of seconds. It has been proposed that short term synaptic 

plasticity may act as an activity-silent store for working memories (or in this case, a prior) that 

is later reactivated as a bump attractor12,46, a proposed mechanism for working memory31. 

 

To probe for possible gain changes between visual inputs and the parietal cortex, we 

exploited the method of rapid frequency tagging47. During the time that moving dot stimuli 

were present on the screen the two saccade targets were rhythmically flickering at two 

different high frequencies (41 and 45Hz, fig1F) that were indistinguishable to observers. 

Flicker at such high frequencies is typically not perceived (they are for example close to the 

refresh rate of a standard 60Hz computer monitor – note that here we used a 1kHz projector 

to present stimuli). Indeed, no participant reported awareness that the stimuli were 

flickering. Flickering stimuli have previously been shown to produce detectable rhythmic 

activity in M/EEG signals48 including at higher frequencies above 40Hz49,50, presumably by 

producing synchronised neural activity in visual cortex that propagates through the visual 

streams51,52. Parietal neurons are known to increase their neuronal gain when an attentional 

or saccadic target is present in their receptive field19,53–55. Therefore, when one or other 

target is expected to be the saccadic target (for example due to a prior belief) we would 

expect the tag frequency for that target to propagate more effectively into parietal cortex; 
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additionally we would expect the effect to be seen mainly in the contralateral hemisphere 

due to the lateralized representation of the visual field in occipital and parietal cortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A) Illustration of frequency tagging in a single trial. Onset of moving dots and visual flicker at saccade 

targets produces detectable high-frequency activity in the MEG signal (grey trace). Sliding-window fourier 

analysis tracks the power envelope at this frequency (green trace). B) Parietal region of interest, identical to fig 

3C. C) Time course of frequency tagging activity as a function of prior belief (contralateral, weak, or ipsilateral to 

region). D) Direction of prior belief modulates parietal activity before onset of coherent motion. E) Time course of 

frequency tagging activity as a function of congruence of prior belief and dominant direction of moving dots 

(congruent, incongruent). Dashed box indicates time-window where cluster values were maximal. F) Individual 

datapoints averaged across time-window denoted by cluster test. G) Time course of tag activity as a function of 

dominant dot-motion direction. No significant dot-motion-related activity modulation was observed. 

 

In the MEG data we recovered clear spectral peaks at the 41Hz and 45Hz tag frequencies 

(figS3A) that were present during the foreperiod, detectable from about 500ms after flicker 

onset (see ‘Methods’) and persisted during the entire stimulus period (fig4A). The frequency 
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tagging effect was strongest in parietal and occipital regions and notably absent in frontal 

regions (figS3B), suggesting the signal propagated forward from occipital cortex but only 

through a few synapses. There was a clear lateralized effect such that the tag frequency 

presented at the right target was strongest in the left hemisphere of the brain, and vice 

versa. For each region of interest (left parietal, right parietal) we defined ‘frequency tag 

activity’ as the time-resolved power at the specific flicker frequency of the contralateral 

flickering saccade target, corrected for the main effects of flicker frequency and hemisphere 

(for full description see ‘Methods’). 

 

We defined regions of interest (ROIs) in the parietal cortex in each hemisphere based on the 

conjunction of parietal cortex defined by the Harvard-Oxford cortical structural atlas and 

regions showing a strong response at the tag frequencies (fig 4B, for full details see 

‘Methods’). This conjunction ROI overlapped substantially with two regions of interest 

thought to be homologous to eye-movement regions LIP and 7a in the macaque56; however 

the spatial resolution of MEG is not sufficient to say with certainty which intra-parietal sub-

regions were the source.  

 

The cross-saccade prior is represented prior to evidence accumulation 

 

If the parietal cortex represents a prior expectation based on the integration of previous 

saccades, this should be in evidence in the foreperiod, when only incoherent motion was 

present. We defined a time window from 500ms after flicker onset (the point at which tag 

activity was first evident in parietal cortex – fig3A) until the onset of coherent motion. We 

divided trials with a tertile-split into those on which the prior strongly favoured the 

contralateral target, strongly favoured the ipsilateral target, or was close to neutral. 

 

To model participants’ prior beliefs, we used a Bayesian ideal observer model (see ‘Methods’ 

for full description). The ‘ground truth’ or generative probability of rightwards motion was 

either high (70 or 90%), low (30 or 10%), or neutral 50%; these probabilities changed (un-

signalled) about every 25 trials (see fig1 and ‘Methods’). The Bayesian ideal observer model 

estimated the probability that the dominant motion direction on the upcoming trial would be 

right or left, based on the feedback from previous trials. The advantage of this approach over 
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using ‘ground truth’ prior probabilities is to capture local fluctuations in probabilities, and 

learning delays. A simple lagged regression also showed that participants’ judgements were 

affected by the outcome of at least two prior trials (figS1). 

 

Concordant with our hypothesis, we found that during the foreperiod, frequency tagging 

activity reflected the direction of the prior – activity was strongest on trials when the prior 

favoured the contralateral target (linear contrast comparing tertiles strong-contra, weak, and 

strong-ipsi: t(25) = 2.27, p = 0.028, fig4C,D). To test for a parametric effect of prior strength 

on frequency tag strength, we conducted a linear regression of tag strength on prior strength 

(defined as the prior probability of contralateral motion on the upcoming trial, p(contra)) – 

this failed to reach significance (group t-test on regression coefficients, (t(25) = 1.50, 

p=0.073) suggesting that either the representation of the prior is largely categorical, or that 

we had insufficient sensitivity to detect a parametric effect.  

 

Gain modulation in parietal cortex is sensitive to dot motion, in the context of the prior 

 

Whilst the frequency-tag data provided evidence of gain modulation relating to prior beliefs, 

it did not track evidence accumulation (absolute or relative coherence on a single trial basis) 

in the same way as the ERF (figS6). This is compatible with a model in which the prior is 

represented as activity-silent synaptic plasticity31, or by tonic changes in baseline firing rate 

as in a bump attractor12 since tonic activity would likely not be detected in the band-passed 

MEG signal. 

 

The gain modulation signal relating to prior beliefs was observed in the foreperiod of the 

task, during which the only lateralized effect is prior belief. If parietal cortex integrates 

incoming evidence with the prior belief to form a posterior, that will become the prior for the 

next trial (belief updating), we might expect to see a further gain-modulation signal 

representing the evidence, or decision, relative to the prior, reflecting this update process. 

 

We coded trials as ‘congruent’ – i.e., the target favoured by the prior was also favoured by 

within-trial evidence – or ‘incongruent’. Indeed, stronger activity at the contralateral tagging 

frequency was observed on congruent than incongruent trials, during the evidence 
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accumulation phase of the trial (fig4E; linear regression followed by cluster-based 

permutation test on regression coefficients, tmaxsum = 21.0023, cluster p = 0.0238 see 

‘Methods’). Interestingly, this effect was observed to be strongest in a later time window 

(800-1150ms after stimulus onset) than the decision-related activity in FEF. This suggests 

that, in the context of a paradigm in which information can be integrated across many 

saccades, evidence coding in parietal cortex represents the combination of this evidence with 

the prior, akin to the formation of a posterior distribution that could be used to guide 

selection of future saccades 34. 

 

At no point did we observe a main effect of the ultimate saccade direction in parietal cortex 

(fig4G); this is perhaps unsurprising as the frequency tagging stimulus ended at the end of 

the coherent motion period, several hundred ms before the saccade was made.  

 

Time course of neural effects suggests a sequential interplay between frontal and parietal 

cortex 

 

An advantage of MEG over other human neuroimaging methods is its high temporal 

resolution. Combined with the fact that MEG is a whole-brain method, this allowed is to 

examine the sequence of effects unfolding between between FEF and LIP (fig5). 

 

To directly compare the sequence of events we ran a series of ANOVAs plotting the effect 

sizes for each of the factors affecting activity in FEF and IPS as a function of time. A clear 

sequence of events emerged: initially the prior is represented via gain modulation in parietal 

cortex, then the evolution of activity in both FEF and parietal cortex reflects the evidence 

accumulation process as captured in a competitive mean field model, and finally the 

interaction of evidence and prior is again reflected in gain modulation in the parietal cortex., 

Before the onset of coherent motion, differences in activity across trials must relate to the 

prior. In this ‘foreperiod’ time window, we indeed observed a lateralized effect in parietal 

cortex as a function of the participants’ prior belief. Then, shortly after stimulus onset we 

observed parametric effects of stimulus coherence and stimulus competition in frontal eye 

field, predicted by the neural mean-field model and likely the signature of the choice process 

itself. Finally, having resolved competition between choice options, we observed a later 
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effect in parietal cortex which related to congruence between the participants’ initial prior 

(i.e., a prediction about the upcoming stimulus direction) and their eventual decision; 

namely, a strong suppression of activity when the stimulus is incongruent with the prior 

belief. This likely reflects the integration of evidence form the current trial with the prior 

belief – perhaps reflecting a belief update process whereby information about the current 

trial is used to modify the state of parietal cortex to guide future saccades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Summary of neural effects in frontal and parietal cortex. A) Time courses of significant statistical 

effects; repeated measures ANOVAs comparing contralateral, weak, and ipsilateral prior belief in parietal cortex 

(top row), all levels of stimulus coherence (middle row, orange) and stimulus competition (middle row, green) in 

FEF, and comparing ‘evidence (dots) congruent with belief’ trials with ‘evidence (dots) incongruent with belief’ 

trials in parietal cortex (bottom row). Shaded boxes indicate preselected analysis windows (top and middle rows, 

see fig3F,H, J,L and 4C) and window delineated by cluster permutation test (bottom row, see fig4E). Coloured 

dashed lines indicate maxima of the respective F-statistics. B) Putative schematic of computations in frontal and 

parietal cortex and how they influence one another. 

 

The above is consistent with a model in which activity in both FEF and parietal cortex reflect 

the evidence accumulation process, but a prior integrating over multiple previous saccades 

and their outcomes is also represented, in parietal cortex, by the modulation on input 

gains31. This prior is represented even outside the time period in which evidence for different 

saccades is being weighed. The representation of the prior that is present before each 
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saccade (in the foreperiod in our experimental task) serves to bias the saccade selection 

process, influencing choice behaviour (fig2B,C). During evidence accumulation, competitive 

dynamics lead to the selection of one or other saccadic target. As in previous 

electrophysiological studies, we see the neural correlates of this process in both FEF and 

parietal cortex, but inactivation studies25,26 suggest that only the FEF is causally involved in 

the perceptual decision. Once the saccade selection process is resolved (but before the 

saccade is physically executed), an ‘update’ signal is observed in parietal cortex, perhaps 

reflecting the integration of the new evidence into the prior belief to form a posterior. 

 

Discussion 

 

Optimal exploration of the visual environment through eye movements requires the brain 

both to select among currently competing saccadic targets, and to integrate information 

across saccades to construct a Bayesian prior in order to plan future saccades. Using whole-

brain imaging at high temporal resolution with MEG, combined with computational 

modelling, we demonstrated a temporal cascade of computations, consistent with an 

ongoing temporal interplay of activity across frontal and parietal cortex; a network account of 

optimal visual exploration. 

 

Selecting the next saccade by resolving competition 

The MEG mean field signals in both the Frontal Eye Field and parietal cortex reflect 

competition between currently-presented choice options. In our modified random dots task, 

evidence for the unchosen option was manipulated independently of the chosen option, 

allowing us to identify a competition-driven signal as well as the classic signal relating to the 

total evidence (overall coherence level) in these regions. These signals matched the 

predictions of a biophysical model of choice. 

 

A limitation of our results in frontal eye field was the inability to resolve lateralized effects. 

Activity in the frontal eye fields as a whole resembled the neural mean-field model as a 

whole. Since neurons in FEF predominantly code for saccades to the contralateral 

hemispace57,58 we also expected lateralised activity in FEF to resemble the mean-field of a 

single evidence-accumulator in our model, i.e., a parametric modulation of activity as a 
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function of overall evidence for a single choice option, but we did not observe this (figS2,S3). 

This may be due to several factors, most notably MEG-specific signal processing limitations. 

Left and right FEF are relatively proximate and their mean-field signals are likely to be 

temporally correlated, conditions which make neural sources difficult to separate by 

beamforming43. Furthermore, although coding for contralateral hemispace is the norm, some 

FEF neurons also possess ipsilateral response fields59. It may be that contralateral dominance 

is not strong enough to be detectable in the mean field.  

 

Prior beliefs as modulations to input gain 

We were unable to detect changes in the mean field driven by prior beliefs, although these 

beliefs did affect behaviour. However, using the method of rapid frequency tagging, we did 

find evidence that parietal cortex represented a cross-saccade prior through modification of 

input gains, perhaps via synaptic plasticity31. Driving oscillations at 41 or 45Hz propagated 

more effectively into the parietal cortex from the target favoured by the prior belief, than the 

unfavoured target. This effect was evident during the foreperiod in which no evidence was 

presented for either option (all dots moving incoherently). This effect was hemispherically 

lateralised; when participants had a belief the upcoming dots would move right, frequency 

tagging activity was strongest in left IPS, and vice versa. 

 

The fact that inputs to parietal cortex reflect a cross-saccade prior is consistent with rodent 

work showing that parietal cortex tracks stimulus history29. It may be that the pre-stimulus 

representation of belief in parietal cortex serves to bias the decision process later observed 

in FEF. 

 

Later in the trial, after decision-related activity in the neural mean-field model and the FEF 

had quiesced, so – we infer – the decision process had presumably been resolved, we then 

observed modulation of IPS activity by belief-decision congruence. On trials where 

participants had a strong prior belief, late IPS activity was strongest in the hemisphere 

contralateral to that belief when their eventual decision was congruent with their pre-trial 

belief, and suppressed when the eventual decision violated their pre-trial belief. This 

congruence effect may reflect an updating of the prior or salience map to be used on future 

trials. 
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A network account of frontal and parietal eye fields 

Overall, our findings imply that evidence accumulation is indeed occurring in both regions. 

However, the apparent paradox that parietal inactivation does not affect evidence 

accumulation25,26 may be resolved by the insight that evidence accumulation in the two 

regions is for different computational purposes; in FEF, to resolve competition between 

options, and in parietal cortex to learn the across-trial statistics. As the outputs of these 

computations need to be integrated to produce optimal behaviour, this also explains the co-

activation of the dorsal attention network commonly observed in fMRI. The slow dynamics of 

the BOLD response may cause the network to appear to co-activate, where in fact a 

temporally-precise cascade of events – from parietal cortex, to frontal, back to parietal – 

occurs in a short window (fig5). 

 

Network structure may be constrained by intrinsic dynamics 

Neurally representing each type of task-relevant information – currently available and 

previously learned – requires computations that operate on different intrinsic timescales, and 

display different neural dynamics. Resolution of competition between two currently-available 

choice options requires a fast, winner-take-all neural system that rapidly converges to one of 

two stable attractor states. In contrast, representation of previously-learned knowledge must 

maintain a broadly similar state over a long timescale and incrementally change as new 

datapoints are incorporated. It is attractive to think that the division of labour between FEF 

and parietal cortex is partly a result of the different intrinsic properties of cortical networks in 

these different brain regions, thus linking structure to function. Recent work in which 

multiple neurons were recorded in parallel in FEF and LIP has shown that the intrinsic 

timescale of activity in LIP is slower than FEF, lending LIP to the kind of ‘bump attractor’ 

dynamics that can integrate information over longer timescales12. 

 

Inactivation studies have suggested a double dissociation of function between FEF and 

parietal cortex, with only FEF essential for within-trial evidence accumulation25 and only 

parietal cortex important for cross trial integration29. However, in the neurophysiological 

literature, signals in both LIP and FEF reflect evidence accumulation within each trial18,19. The 

present results suggest that these findings can be reconciled as follows: both parietal and 

frontal eye fields showed neural signals that were consistent with the predictions of the 
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winner-take-all biophysical competition model (fig3), whereas only parietal cortex showed 

neural signals consistent the predictions of the across-trial Bayesian learning model (fig4). It 

is possible that the apparent ‘fast-timescale’ signature of winner-take-all decision making in 

parietal cortex (fig3J-M) is in fact a consequence of the decision being primarily resolved in 

FEF and then rapidly relayed back to parietal cortex via top-down projections. 

 

Our findings may therefore be relevant for understanding why the cortical network for a 

single behaviour (saccade selection, or attention allocation) is distributed across frontal and 

parietal cortex rather than localised to one region; an organising principal that seems 

inefficient at first glance. It is known that brain regions have different intrinsic time 

constants60 and these time constants follow principles of cortical hierarchy61; sensory cortical 

activity changes on a fast timescale and ‘higher-order’ areas are slower. Recent work has also 

shown that monkey LIP neurons tend to have slower intrinsic timescales than FEF neurons11. 

Since optimal allocation of attention requires the integration of fast and slow computations, 

it may be efficient to distribute these computations across regions with maximally different 

intrinsic timescales, then integrate the outputs via long-range connections. The need to 

integrate computations on different timescales may be why the cortical eye movement 

network has the topology it does; indeed, it may be why distributed topologies are a feature 

of many brain networks.  
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Methods 

 

Behavioural task 

 

Participants (N=34) performed a variant of the classic dot-motion task. 1 second after a 

preparatory cue a field of 100 dots covering 4.2 degrees of visual angle (on-screen width 

8.8cm, screen distance 120cm) was presented at fixation for 3.5 seconds. For the first second 

all dots moved randomly (uniform distribution over motion directions). After one second 

some dots changed direction and moved either to the right or left. There were five levels of 

overall coherence (sum of left-moving and right-moving dots): 10%, 30%, 50%, 70% and 90%, 

and three levels of competition: Coherently-moving dots either moved 90% or 70% in the 

direction of dominant motion, or 50% in each direction (i.e., no correct answer). Two saccade 

targets subtending 4 degrees of visual angle were concurrently presented at 6.8 degrees 

eccentricity, 0.8 degrees below the horizontal midline. Participants were instructed to 

maintain fixation until the dots disappeared, then to make a saccade to the saccade target on 

the side of dominant motion as quickly as possible. After 1s feedback (a semicircle at fixation) 

was given indicating the correct side. 

 

Across trials the correct side was drawn from a generative distribution with p(right) either 

20%, 50%, or 80%. The generative distribution changed randomly across a block with a fixed 

probability of 4%, i.e., a switch approximately every 25 trials. On trials with no correct answer 

(i.e., where equal numbers of dots moved left and right) feedback was drawn from the same 

generative distribution as the dots, however a programming error led to the feedback in this 

condition being the reverse of what was intended. This error affected approximately 8% of all 

trials. 

 

All participants were trained on the task in a separate session outside the MEG for 300 trials 

(approximately 40 minutes). 5 participants were excluded due to low accuracy in the practice 

session and 29 participants completed the MEG session. During MEG acquisition data were 

recorded in four runs of max 20 minutes, each consisting of 150 trials. Total task time was 

approximately 80 minutes. 
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Power calculation 

 

Sample size was determined by simulation. Based on the z-scores and sample size from the 

MEG analysis in33, we calculated the effect size d as the z-score divided by the square root of 

the sample size. We then simulated a population of 10,000 virtual participants with this 

effect size, randomly sampled subsets of 10-60 participants from this population, calculated 

the sub-sample z-score, and computed statistical power for each sub-sample size as the 

proportion of z-scores for that sample size that exceeded 1.65 (equivalent to p < 0.05 in a 

one-tailed test). Simulation results indicated statistical power of 80.5% at our final sample 

size of N=26. 

 

Neural Models 

 

Neural mean-field model 

 

To model decision dynamics in Frontal Eye Field and parietal cortex we implemented a mean-

field reduction of a spiking network model62. Full details of the biophysical parameters of the 

model are given in33. Briefly, the model consists of two connected neuronal pools each 

coding for one motion option (left, right), with within-pool excitatory connections and across-

pool inhibition. Each unit receives noisy background inputs simulating endogenous cortical 

noise, plus three task-related inputs: Firstly; a weak (0 to 1.6Hz) input to one pool in the pre-

stimulus period, simulating an initial bias in the decision process due to parietal input. 

Secondly; a weak (5Hz) input to both pools during the incoherent motion period, capturing 

the presence of low levels of motion in both decision-relevant directions. Thirdly; a strong 

input (ranging from 10.1Hz to 18.1Hz) to each pool in the coherent motion period 

proportional to the number of dots in each motion direction.  

 

We focused on the synaptic inputs (I1, I2) to facilitate comparability with the MEG data, since 

MEG is known to be primarily sensitive to postsynaptic potentials (Hamalainen 1993). For 

optimal comparison with the MEG data which was bandpass-filtered and transformed to the 

frequency-domain, removing the DC component, we used the temporal derivative of the 

signal from the mean-field model. 
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Bayesian learning model 

 

Because the modified dots task had temporal structure (dominant motion direction on trial j 

could be predicted, but not perfectly, from trials 1… t-1), performance could be facilitated by 

tracking the true generative distribution of dominant motion directions, including when it 

changed. To model participants’ learning strategies we used a Bayesian ideal observer model; 

a ‘virtual participant’ that was fed the sequences of feedback given to the human participants 

and constructed, via Bayesian inference, a belief about the generative distribution on the 

upcoming trial. 

 

Model details 

 

On each trial, the prior probability that the dominant motion direction would be ‘right’ 

followed a Bernoulli distribution with parameter 𝑞!, i.e. the prior probability that the correct 

answer would be ‘right’ on trial 𝑡 was 𝑞!. 

 

The prior distribution over 𝑞! was initiated as a uniform on the range (0,1) on the first trial, 

and thereafter obtained from the posterior over 𝑞!"#, based on the outcomes 𝑥#:!"#, 

combined with a uniform ‘leak’; the posterior and ‘leak’ distributions were weighted by a 

factor H representing the true hazard rate: 

 

𝑝(𝑄! = 𝑞|𝑋#:!"#) = (1 − 𝐻) ∙ 𝑝(𝑄!"# = 	𝑞|𝑋#:!"#) + 𝐻 ∙ 𝑈(0,1) 

Eq. 1 

 Where: 

 

𝐻 = 𝑝(𝑞! ≠ 𝑞!"#) = 	1 257  

Eq. 2 

i.e. it was assumed that participants know approximately the true value of 𝐻	following 

extensive pre-training. 
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The posterior 𝑝(𝑄! = 𝑞|𝑥#:!) was obtained iteratively from the prior	𝑝(𝑄! = 𝑞|𝑥#:!"#) and 

the likelihood: 

𝑝(𝑄! = 𝑞|𝑋!) = 𝑝(𝑋!|𝑥~𝐵(𝑞)) 

 

Eq. 3 

 

… using Bayes’ theorem: 

 

𝑝(𝑄! = 	𝑞|𝑋#:!"#) ∝ 	𝑝(𝑋!|𝑥~𝐵(𝑞)) ∙ 	𝑝(𝑄! = 𝑞|𝑋#:!"#) 

Eq. 4 

 

where the posterior over 𝑞! was normalized to integrate to 1. 

 

Where a scalar value for the ‘prior’ is used in data analysis, this is the expected value of 𝑞! 

based on the prior distribution 

 

𝐸(𝑞!) = 	<𝑝(𝑄! = 𝑞|𝑋#:!"#) ∙ 𝑞	𝑑𝑞 

Eq. 5 

 

Analysis of saccade data / behavioural data 

 

Custom matlab code extracted saccade direction (left, right, or no saccade) based on the 

eyetracker data. Due to a technical error one participant’s eyetracker data were over-written 

and saccade information was reconstructed from the horizontal EOG.  

 

To analyse saccade data we fit logistic regression models. Firstly, we asked whether the 

probability of saccading to the right on trial t depended on the proportion of coherent dots 

moving right on trial t (%R = 10,30,50,70 or 90%), the total coherence on trial t (coh = 

10,30,50,70 or 90%), and the interaction of these (%R-mean(%R) x coh) (fig1A).  

Secondly, we asked whether the probability of saccading to the right on trial t depended on 

the proportion of dots moving right on trial t (%R = 10,30,50,70 or 90%), the participants’ 
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prior belief about the dots on trial t formed from observing feedback on trials 1,2… t-1 𝐸(𝑞!) 

as defined in Eq 5 above), and the interaction of these (fig1B).  

 

Thirdly, we asked whether the observed effects of proportion dots moving right and prior 

belief on saccade direction were altered as a function of the level of stimulus coherence. To 

test this we fit a first-level logistic regression with evidence (%R = 10,30,50,70 or 90%), and 

prior belief 𝐸(𝑞!) at each level of total coherence (coh = 10,30,50,70 or 90%). We then 

computed linear contrasts over the effects for evidence and prior belief across the five levels 

of total coherence. Due to the presence of outliers at the first level (generalized extreme 

studentized deviate many-outlier procedure63) we used nonparametric Wilcoxon signed rank 

tests at the second level to test against the null hypothesis of zero median. 

 

MRI acquisition 

 

To enable localisation of cortical source generators of the MEG signal, a high-resolution 

structural MRI was acquired for each participant using a Siemens 3T PRISMA MRI scanner 

with voxel resolution of 1 × 1 × 1 mm3 on a 232 × 256 × 192 grid. The anatomical MRI scan 

included the face and nose to improve co-registration with the MEG data (see ‘MEG 

processing and analysis’). MRIs could not be acquired for 3 participants due to drop-out and 

screening contraindications. All imaging analysis was therefore conducted on the remaining 

26 datasets. 

 

MEG acquisition 

 

Data were recorded at 1.2KHz with an Elekta Neuromag VectorView 306 MEG system with 

102 magnetometers and 102 pairs of orthogonal planar gradiometers. Head position 

indicator (HPI) coils were placed at four locations on the head to record head position 

relative to the MEG sensors at the start of each run. Head landmarks (pre-auricular points 

and nasion) and 200 points on the scalp, face and nose were digitized using a Polhemus 

Isotrack II system. EEG Electrodes were placed above and below the left eye and on the 

temples to record horizonal and vertical EOG, and on each wrist to record ECG. 
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Rapid Frequency Tagging 

 

During presentation of the dot-motion stimulus, the two saccade targets flickered rapidly at 

41Hz and 45Hz (counter-balanced across subjects). The targets flickered sinusoidally between 

black and white (greyscale) at a refresh rate of 1.44KHz. To achieve this high rate of 

presentation we used a PROPixx DLP LED projector (VPIxx Technologies Inc., Saint-Bruno-de-

Montarville, Canada). In post-experiment debriefing no participant reported awareness of 

the flicker. 

 

MEG processing and analysis 

 

MEG analysis was performed using fieldtrip64, OSL (https://github.com/OHBA-analysis/osl-

core), and custom MATLAB scripts. 

 

Data were first Maxwell filtered using the MaxFilter program (Elekta Instrument AB, 

Stockholm, Sweden); Maxfilter is a method for separating parts of the recorded MEG signal 

that arise from external noise and neuronal activity respectively. MRI and MEG data were co-

registered using RHINO (Registration of Headshapes Including Nose in OSL).  Data were 

downsampled to 200Hz, bandpass filtered between 1 and 80Hz and bandstop filtered around 

the line-noise frequency of 50Hz. Trials containing outlier values were automatically detected 

and removed using function osl_detect_artefacts with default settings, and Independent 

Component Analysis was used to automatically remove additional artifacts associated with 

eye-blinks, ECG, and line noise. 

 

A single-shell forward model was constructed from each participant’s anatomical MRI. Sensor 

data were projected onto an 8mm grid using an LCMV vector beamformer43,65 carried out on 

each 20-minute MEG run separately. The grid was constructed using a template (MNI152) 

brain, then each participants’ anatomical MRI was warped to the template brain and the 

inverse warp applied to the grid. This ensures comparability of source reconstructions across 

participants. Because MaxFilter considerably reduces the dimensionality of the data – to 

approximately 64 – the data covariance matrix was reduced to 50 dimensions using PCA. 

Eigenvalue decomposition of magnetometer and gradiometer channels was performed in 
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order to normalise each sensor type to ensure that both sensor types contributed equally to 

the covariance matrix calculation66.  

 

Frontal Eye Field and parietal cortex low-frequency ROI analysis 

 

Frontal Eye Field was defined with reference to a probabilistic atlas of human visual and 

oculomotor cortical regions42. This atlas was used to construct ‘virtual channels’ for left and 

right FEF based on a symmetric orthogonalization method67. 

 

The parietal ROI was defined with respect to both anatomy (the Harvard Oxford cortical atlas) 

and function (band-limited power at the specific frequency-tag frequencies) – see ‘Frequency 

tagging analysis’. 

 

Because source analysis creates an inherent sign ambiguity (i.e., a given current in a given 

direction can be equally well expressed as an equal, opposite current in the opposite 

direction) all MEG analysis was performed in the frequency domain. Oscillatory power was 

then computed via time-frequency analysis using a 500ms sliding window multiplied with a 

Hanning taper, at 0.8Hz frequency resolution. We then averaged across the low-frequency 

2.8-8.4Hz band as a proxy for evoked activity. This resulted in FEF-specific single-trial time 

series. 

 

Inspection of the MEG data revealed two evoked responses with comparable durations; one 

100-500ms following the onset of the incoherent motion, and one 100-500ms following the 

onset of coherent motion. To visualise the effects of task variables on these evoked 

responses we took the average low-frequency power across each time window for each level 

of coherence (10%, 30%, 50%, 70%, 90% of dots moved either left or right, fig1E,F), 

competition (50%, 70% or 90% of coherently-moving dots moved in the same direction, 

fig1H,I), and prior strength (unsigned value output from Bayesian model 𝑎𝑏𝑠(𝐸(𝑞!) − 0.5), 

figS2). Because the latter is a continuous variable we performed a tertile split into ‘weak’ 

(p(right) close to 0.5), ‘medium’, and ‘strong’ (p(right) close to 0 or 1) values for visualisation 

purposes. 
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To determine the effect of stimulus variables (coherence competition) and prior belief 

strength on low-frequency power in the FEF and parietal cotex we applied linear regressions 

with these three predictor variables in two ways: Firstly, for visualisation, at every time point 

(fig3F,H,J,L,O). Secondly, for statistical purposes, over the average power values in a 

preselected box from 100-500ms after coherent motion onset (fig3G,I,K,M,P), based on the 

results from the neural mean field model (fig3D,E,N). 

 

Frequency tagging analysis 

 

To analyse the effect of the rapidly flickering saccade targets on posterior brain regions we 

used a combination of anatomical and data-driven selection criteria to focus on the brain 

regions that produced the strongest tagging response. We selected a 3s time-window from 

800ms before the onset of coherent motion to 2.2s seconds afterwards - i.e., almost the 

entire period the targets were flickering - and calculated the fourier transform at all voxels 

for all participants and averaged across all artifact-free trials. We then compared power at 

the left-target frequency (41Hz for half the participants and 45Hz for the other half) with 

power at the right-target frequency, which revealed strong effects of tagging in voxels in 

parietal and occipital regions. We then used an anatomical atlas to create weighted maps 

defined by the conjunction of statistically significant differences between tag-frequency 

power and the parietal cortex anatomical label. The left parietal ROI consisted of all voxels in 

left parietal cortex that showed significantly greater power at the left-hemisphere tagging 

frequency than the right, and the reverse was true for the right parietal ROI. We multiplied 

these weight maps with the source-space data to create ‘virtual channels’ in left and right 

parietal cortex. We then performed time-frequency analysis on each virtual channel at the 

relevant tag frequency (41Hz or 45Hz, depending on the flicker rate of the contralateral 

frequency tag), using a longer 1000ms sliding window to increase frequency resolution. This 

produced time-resolved estimates of power at the relevant tag frequency in the left and right 

parietal ROIs. 

 

For the analysis of prior belief (fig4C,D) we expected effects prior to coherent motion onset 

and therefore focused on the 1-second epoch of incoherent motion, focusing on a time 
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window 500-100ms before coherent motion onset due to low SNR in the first part of the 

incoherent motion epoch as frequency tagging activity ramped up (fig4A).  

 

We performed a tertile split on the prior, but – as we expected hemispherically lateralised 

effects due to the retinotopic organisation of parietal cortex – we used the signed prior, 

splitting into ‘strong left’, ‘weak’, and ‘strong right’. We then averaged tag power values in 

the selected time window, at each level of prior and compared these using a 1 x 3 ANOVA 

with linear contrast. We also conducted a linear regression using the parametric prediction of 

the prior probability of dots moving right, 𝐸(𝑞!) as per Eq. 5, as explanatory variable, in the 

same time window. 

 

Because we did not have a strong a priori prediction about the time window in which parietal 

activity might be driven by belief-decision congruence we used a nonparametric cluster-

based permutation test68 over all time points to determine whether there was a difference 

between the congruent and incongruent conditions. We again performed a tertile split on 

the prior; strong left, weak, strong right, and a three-way split on the dot directions; mostly 

left motion (10% or 30% right), equal motion (50% right), or mostly right motion (70% or 90% 

right). We then defined trials where the dominant motion direction and prior agreed as 

‘congruent’, and trials where they were opposite as ‘incongruent’, and performed the 

cluster-based permutation test on the participant conditional means. 

 

Time course analysis 

 

To illustrate how the computational components of active sampling evolve in time we 

calculated, for every time point in the task epoch (from the onset of incoherent motion until 

the cessation of coherent motion) repeated measures ANOVAs comparing relevant task 

variables. We compared, respectively; frequency tagging activity in parietal cortex as a 

function of prior strength (strong contralateral, weak, strong ipsilateral), low-frequency 

activity in FEF and parietal cortex as a function of stimulus properties (coherence; 10%, 30%, 

50%, 70%, 90%, competition; low, medium, high), and parietal frequency tagging activity as a 

function of prior/stimulus congruence (congruent, incongruent). To illustrate the temporal 

cascade of events we found the time point at which each F-statistic was maximal.  
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Supplementary Information 

 

Lagged logistic regression reveals integration kernels over previous trials 

 

Figure S1: Lagged logistic regression of 

current and previous task variables on 

current choice. Error bars indicate 

standard error of the mean across 

participants. 

 

 

To determine whether participants indeed integrated information from previous trials we 

performed a logistic regression with dependent variable; saccade direction (left, right), and 

independent variables; proportion of coherent dots moving right, interaction of proportion 

coherent dots moving right with coherence (effectively the absolute number of dots moving 

right) and post-trial feedback. To determine whether task parameters on previous trials 

influenced choice on the current trial we included the above regressors at ‘lags’ ranging from 

zero (i.e., the task parameters on the current trial t) to 10 (parameters on trial t-10). 

 

Lagged multiple regression revealed that absolute number of right-moving dots on the 

current trial strongly predicted choice on the current trial (t(25) = 10.51, p = 3.2e-11), but on 

previous trials (lags > 0) did not predict current choice. In contrast, feedback on trial t did not 

predict choice on trial t (t(25) = 0.56, p = 0.6); this was entirely expected since feedback 

followed choice. However, feedback on trial t-1 (t(25) = 5.2, p = 2e-5) and trial t-2 (t(25) = 2.8, 

p = 0.009) did predict choice on trial t. Proportion of dots right on current or previous trials 

did not predict current choice beyond the other regressors (all t < 1.8). 

 

The above strongly indicates that participants’ choice on trial t was influenced by the 

stimulus properties on trial t, and the history of post-trial feedback on previous trials t-1 and 

t-2. 

 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2021. ; https://doi.org/10.1101/2021.05.03.442155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442155
http://creativecommons.org/licenses/by/4.0/


 43 

No evidence that prior belief strength modulates low-frequency activity in frontal or parietal 

cortex 

 

 

Fig S2: Signals related to strength of prior 

belief. All plotting conventions as fig3, main 

text. A) Neural mean-field model predicts a 

parametric increase in activity as a function 

of strength of prior belief. B,C: FEF low-

frequency power. D,E: Parietal cortex low-

frequency power. F,G: Results from general 

linear model. 

 

 

 

 

 

 

Our neural mean field model (fig3A, main text) operationalised prior belief as a weak input in 

the prestimulus period. However, rather than showing strong changes in prestimulus signal, 

the model rather exhibited changes in stimulus-evoked activity, presumably by biasing the 

prestimulus state. A strong prestimulus input produced the strongest stimulus-evoked 

activity (figS1A). However, in contrast to this prediction we did not observe significant 

changes in stimulus-evoked activity in the MEG data. In FEF we observed a non-significant 

effect in the opposite direction; stimulus-evoked activity was strongest on trials where 

participants had a weak prior belief close to 50/50 (general linear model, t(25) = -1.22, p = 

0.23, figS2B,C). In parietal cortex no trend was observed in either direction (t(25) = 0.8, p = 

0.43, figS2D,E). 
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Spatial and spectral resolution of band-limited power at the two tag frequencies 

 

 

 

 

 

 

 

 

Figure S3: A) Average fourier spectrum of left and right parietal cortex ROIs displays clear peaks at the 41Hz and 

45Hz tagging frequencies (dashed blue vertical lines). Note grey box indicates line noise filter. B) Unthresholded 

statistical map of differences between ‘power at left tag frequency’ and ‘power at right tag frequency’. Only 

parietal and lateral occipital regions showed lateralised differences in tag frequency power, presumably due to 

weaker SNR in frontal sources. 
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Effects of stimulus variables (coherence, competition) on frequency-tagging activity in 

parietal cortex 

 

For comparison with the analysis of stimulus-driven effects (fig3) we applied the same model 

to the frequency tagging data from parietal cortex, pooled across left and right hemisphere 

ROIs. As we were able to observe lateralized effects of the prior in parietal cortex (fig4), we 

also tested for a lateralized effect of evidence, i.e., whether ‘more dots moving towards the 

contralateral side’ produced a stronger tag response than ‘more dots moving towards the 

ipsilateral side. 

 

Visually inspection suggested no strong effects of either coherence (figS4A,B) or competition 

(figS4C,D) on or signed/lateralized competition (figS4E,F) in the frequency tagging signal. To 

confirm this we fit a general linear model with these three effects to the frequency tagging 

data on single trials, then comparing the beta-weights from the first level model to zero. No 

significant effects were observed (coherence, t(25) = -0.37, p = 0.72; competition, t(25) = -

0.93, p = 0.36; lateralized competition, t(25) = 1.02, p = 0.32). 

 

 

Figure S4: Analysis of parietal 

cortex frequency tagging data 

analogous to low-frequencies (fig3) 

A) Parietal frequency tagging time 

series as a function of stimulus 

coherence. B) Averaged across 100-

500ms time window, dashed box in 

A. C,D) As A,B, but as a function of 

stimulus competition. E,F) As A,B, 

but as a function of ‘signed 

competition’, i.e., proportion of 

coherent motion moving 

contralateral to region of interest. 
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Ability to detect lateralised task processing in Frontal Eye Fields and Parietal Cortex 

 

Frontal Eye Field and LIP neurons predominantly code for saccades to the contralateral 

hemispace57,58. Therefore we might have expected the left- and right- hemisphere regions of 

interest to show lateralized effects in addition to the overall evidence accumulation signals 

reported in figure 3.  

 

To obtain lateralized predictions, we looked at the inputs to individual pools in the neural 

mean-field model, rather than the mean field produced by summing all inputs (see main 

text). In the model our prediction was confirmed; as contralateral coherent motion 

increased, the simulated evoked response grew larger (figS5A,B). However, we did not 

observe a comparable effect in the FEF MEG data (fig S5C-F). Observation of the evoked-

response window suggested a U-shaped pattern, where strong evidence for either motion 

direction (10%, 90% conditions) produced a large evoked reponse, whereas high competition 

(50% condition) produced the weakest evoked response. 

 

Fitting a general linear model with % coherent dots moving right as a regressor confirmed an 

absence of evidence for left and right FEF acting as individual evidence accumulators. No 

significant linear effect was observed in either the left FEF (t(25) = -0.61, p = 0.55) or right FEF 

(t(25) = -0.96, p = 0.35). In fact qualitatively the left FEF data appear to show a quadratic 

effect entirely consistent with the main effect of competition (fig3); trials with the largest 

number of dots moving in one direction produced the strongest evoked responses, and 

50/50 trials with maximum competition produced the weakest. 

 

In parietal cortex (figS5G-J) a different pattern was observed: Here a linear effect of 

proportion coherent dots moving right was observed in the left (t(25) = 3.32 p = 0.003) but 

not the right hemisphere (t(25) = -0.86 p = 0.40). 

 

The absence of evidence for our two predictions in FEF could be due to a lack of 

hemispherically-lateralised decision processing in FEF. It may be the case that neurons 

accumulating evidence for both choice options are present in both hemispheres. However, 

an alternative possibility is that we are unable to fully disentangle signals from left and right 
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FEF via beamforming43. Similarly, in parietal cortex neurons responding to left- and right 

visual fields are not completely segregated, with the left hemisphere showing a more 

lateralized response than the right69, perhaps consistent with the fact that the lateralized 

signal in parietal cortex was strong in the left hemisphere. However, again the limitations of 

beamforming may partly explain the difficulty in detecting lateralized responses. 

 

 

Figure S5: A) Simulated synaptic inputs for right-motion accumulator of neural mean-field model, as a function of 

percentage coherent dots moving right. B) As A, but left-motion accumulator. C) Source-reconstructed activity 

from left FEF, same colour convention. D) Individual participant data in stimulus-evoked window. E-F) As C-D, but 

right FEF. G-J) As C-F but parietal cortex. 

 

Additionally, although we did not detect an overall effect of the prior on evidence 

accumulation signals in the ERF, for completeness we tested whether a lateralized effect of 

the prior could be found. To generate predictions we re-ran our neural mean-field model 

with five levels of pre-stimulus input, ranging from ‘strong left’ (strong input to left motion 

pool, no input to right motion pool), to ‘strong right’ (reversed). This produced a linear 

modulation of the simulated evoked response that was proportional to the strength of the 

pre-stimulus input (figS6A,B). 
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To compare with our MEG data we fit a general linear model, with prior belief predicted by 

the Bayesian model as a regressor. However, our prediction was not confirmed (figS6C-F). In 

contrast to the neural mean-field model, no evidence was observed of linear trends in the 

MEG data as a function of prior belief (left, t(25) = 1.46, p = 0.16, right, t(25) = -0.52, p = 0.61, 

figS6C,F). Qualitatively, a quadratic effect was observed whereby weak prior belief produced 

a strong evoked response and strong belief in either direction produced a weak response. 

This could reflect an overall process by which a competitive system in FEF is engaged more 

strongly when the prior is weak; however, this prediction was outside the scope of our 

model. 

 

Figure S6: A) Simulated synaptic inputs for right-motion accumulator of neural mean-field model as a function of 

prior belief. B) Source reconstructed activity in left FEF. C) Individual participant data in stimulus-evoked window. 

D-F) As A-C, but left-motion accumulator and right FEF. 

 

In parietal cortex we observed a different pattern: Here, no significant linear effect was 

observed in left parietal cortex (t(25) = 0.88, p = 0.39, figS6G,H). A significant trend was 

observed in right parietal cortex (t(25) = 2.18, p = 0.039, figS6I,J), but this was in the opposite 

direction to the prediction from the neural mean field model, with strong ipsilateral 

(rightward) belief showing the largest response. 
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