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Abstract 7 

From decision making to perception to language, predicting what is coming next is crucial. It is also 8 

challenging in stochastic, changing, and structured environments; yet the brain makes accurate predictions 9 

in many situations. What computational architecture could enable this feat? Bayesian inference makes 10 

optimal predictions but is prohibitively difficult to compute. Here, we show that a specific recurrent neural 11 

network architecture enables simple and accurate solutions in several environments. This architecture relies 12 

on three mechanisms: gating, lateral connections, and recurrent weight training. Like the optimal solution 13 

and the human brain, such networks develop internal representations of their changing environment 14 

(including estimates of the environment’s latent variables and the precision of these estimates), leverage 15 

multiple levels of latent structure, and adapt their effective learning rate to changes without changing their 16 

connection weights. Being ubiquitous in the brain, gated recurrence could therefore serve as a generic 17 

building block to predict in real-life environments.  18 
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Introduction 19 

Being able to correctly predict what is coming next is advantageous: it enables better decisions (Dolan & 20 

Dayan, 2013; R. S. Sutton & Barto, 1998), a more accurate perception of our world, and faster reactions 21 

(De Lange et al., 2018; Dehaene et al., 2015; Saffran et al., 1996; Sherman et al., 2020; Summerfield & de 22 

Lange, 2014). In many situations, predictions are informed by a sequence of past observations. In that case, 23 

the prediction process formally corresponds to a statistical inference that uses past observations to estimate 24 

latent variables of the environment (e.g. the probability of a stimulus) that then serve to predict what is likely 25 

to be observed next. Specific features of real-life environments make this inference a challenge: they are 26 

often partly random, changing, and structured in different ways. Yet, in many situations, the brain is able to 27 

overcome these challenges and shows several aspects of the optimal solution (Dehaene et al., 2015; Dolan 28 

& Dayan, 2013; Gallistel et al., 2014; Summerfield & de Lange, 2014). Here we aim to identify the 29 

computational mechanisms that could enable the brain to exhibit these aspects of optimality in these 30 

environments. 31 

We start by unpacking two specific challenges which arise in real-life environments. First, the joint 32 

presence of randomness and changes (i.e., the non-stationarity of the stochastic process generating the 33 

observations) poses a well-known tension between stability and flexibility (Behrens et al., 2007; Soltani & 34 

Izquierdo, 2019; R. Sutton, 1992). Randomness in observations requires integrating information over time 35 

to derive a stable estimate. However, when a change in the estimated variable is suspected, it is better to 36 

limit the integration of past observations to update the estimate more quickly. The prediction should thus be 37 

adaptive, i.e. dynamically adjusted to promote flexibility in the face of changes and stability otherwise. Past 38 

studies have shown that the brain does so in many contexts: perception (Fairhall et al., 2001; Wark et al., 39 

2009), homeostatic regulation (Pezzulo et al., 2015; Sterling, 2004), sensorimotor control (Berniker & 40 

Kording, 2008; Wolpert et al., 1995), and reinforcement learning (Behrens et al., 2007; Iglesias et al., 2013; 41 

Soltani & Izquierdo, 2019; R. S. Sutton & Barto, 1998). 42 

Second, the structure of our environment can involve complex relationships. For instance, the sentence 43 

beginnings "what science can do for you is ..." and "what you can do for science is ..." call for different 44 

endings even though they contain the same words, illustrating that prediction takes into account the ordering 45 

of observations. Such structures appear not only in human language but also in animal communication 46 

(Dehaene et al., 2015; Hauser et al., 2001; Robinson, 1979; Rose et al., 2004), and all kinds of stimulus-47 

stimulus and stimulus-action associations in the world (Saffran et al., 1996; Schapiro et al., 2013; Soltani & 48 

Izquierdo, 2019; R. S. Sutton & Barto, 1998). Such a structure is often latent (i.e. not directly observable) 49 

and it governs the relationship between observations (e.g. words forming a sentence, stimulus-action 50 

associations). These relationships must be leveraged by the prediction, making it more difficult to compute. 51 
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In sum, the randomness, changes, and latent structure of real-life environments pose two major 52 

challenges: that of adapting to changes and that of leveraging the latent structure. Two commonly used 53 

approaches offer different solutions to these challenges. The Bayesian approach allows to derive statistically 54 

optimal predictions for a given environment knowing its underlying generative model. This optimal solution 55 

is a useful benchmark and has some descriptive validity since, in some contexts, organisms behave close 56 

to optimally (Ma & Jazayeri, 2014; Tauber et al., 2017) or exhibit several qualitative aspects of the optimal 57 

solution (Behrens et al., 2007; Heilbron & Meyniel, 2019; Meyniel et al., 2015). However, a specific Bayes-58 

optimal solution only applies to a specific generative model (or class of models (Tenenbaum et al., 2011)). 59 

This mathematical solution also does not in general lead to an algorithm of reasonable complexity (Cooper, 60 

1990; Dagum & Luby, 1993). Bayesian inference therefore says little about the algorithms that the brain 61 

could use, and the biological basis of those computations remains mostly unknown with only a few proposals 62 

highly debated (Fiser et al., 2010; Ma et al., 2006; Sahani & Dayan, 2003). 63 

Opposite to the Bayes-optimal approach is the heuristics approach: solutions that are easy to compute 64 

and accurate in specific environments (Todd & Gigerenzer, 2000). However, heuristics lack generality: their 65 

performance can be quite poor outside the environment that suits them. In addition, although simple, their 66 

biological implementation often remains unknown (besides the delta-rule (Eshel et al., 2013; Rescorla & 67 

Wagner, 1972; Schultz et al., 1997)). 68 

Those two approaches leave open the following questions: Is there a general, biologically feasible 69 

architecture that enables, in different environments, solutions that are simple, effective, and that reproduce 70 

the qualitative aspects of optimal prediction observed in organisms? If so, what are its essential mechanistic 71 

elements? 72 

Our approach stands in contrast with the elegant closed-form but intractable mathematical solutions 73 

offered by Bayesian inference, and the simple but specialized algorithms offered by heuristics. Instead, we 74 

look for general mechanisms under the constraints of feasibility and simplicity. We used recurrent neural 75 

networks because they can offer a generic, biologically feasible architecture able to realize different 76 

prediction algorithms (see (LeCun et al., 2015; Saxe et al., 2021) and Discussion). We used small network 77 

sizes in order to produce simple (i.e. low-complexity, memory-bounded) solutions. We tested their generality 78 

using different environments. To determine the simplest architecture sufficient for effective solutions and 79 

derive mechanistic insights, we considered different architectures that varied in size and mechanisms. For 80 

each one, we instantiated several networks and trained them to approach their best possible prediction 81 

algorithm in a given environment. We treated the training procedure as a methodological step without 82 

claiming it to be biologically plausible. To provide interpretability, we inspected the networks’ internal model 83 

and representations, and tested specific optimal aspects of their behavior—previously reported in humans 84 

(Heilbron & Meyniel, 2019; Meyniel et al., 2015; Nassar et al., 2010, 2012)—which demonstrate the ability 85 

to adapt to changes and leverage the latent structure of the environment. 86 
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Results 87 

The framework: sequence prediction and network architectures 88 

All our analyses confront simulated agents with the same general problem: sequence prediction. It 89 

consists in predicting, at each time step in a sequence where one time step represents one observation, the 90 

probability distribution over the value of the next observation given the previous observations (here we used 91 

binary observations coded as ‘0’ and ‘1’) (Fig. 1a). The environment generates the sequence, and the 92 

agent’s goal is to make the most accurate predictions possible in this environment. Below, we introduce 93 

three environments. All of them are stochastic (observations are governed by latent probabilities) and 94 

changing (these latent probabilities change across time), and thus require dynamically adapting the stability-95 

flexibility tradeoff. They also feature increasing levels of latent structure that must be leveraged, making the 96 

computation of predictions more complex. 97 

How do agents learn to make predictions that fit a particular environment? In real life, agents often do 98 

not benefit from any external supervision and must rely only on the observations. To do so, they can take 99 

advantage of an intrinsic error signal that measures the discrepancy between their prediction and the actual 100 

value observed at the next time step. We adopted this learning paradigm (often called unsupervised, self-101 

supervised, or predictive learning in machine learning (Elman, 1991; LeCun, 2016)) to train our agents in 102 

silico. We trained the agents by exposing them to sequences generated by a given environment and letting 103 

them adjust their parameters to improve their prediction (see Methods). 104 

During testing, we kept the parameters of the trained agents frozen, exposed them to new sequences, 105 

and performed targeted analyses to probe whether they exhibit specific capabilities and better understand 106 

how they solve the problem. 107 

Our investigation focuses on a particular class of agent architectures known as recurrent neural networks. 108 

These are well suited for sequence prediction because recurrence allows to process inputs sequentially 109 

while carrying information over time in recurrent activity. The network architectures we used all followed the 110 

same three-layer template, consisting of one input unit whose activity codes for the current observation, one 111 

output unit whose activity codes for the prediction about the next observation, and a number of recurrent 112 

units that are fed by the input unit and project to the output unit (Fig. 1b). All architectures had self-recurrent 113 

connections. 114 
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 115 

Figure 1. Problem to solve and network architectures. (a) Sequence prediction problem. At each time step t, the environment 116 
generates one binary observation xt. The agent receives it and returns a prediction pt: its estimate of the probability that the next 117 
observation will be 1 given the observations collected so far. The agent’s goal is to make the most accurate predictions possible. 118 
The agent can measure its accuracy by comparing its prediction pt with the actual value observed at the next time step xt+1, 119 
allowing it to learn from the observations without any external supervision. (b) Common three-layer template of the recurrent 120 
neural network architectures. Input connections transmit the observation to the recurrent units and output connections allow the 121 
prediction to be read from the recurrent units. (c) Three key mechanisms of recurrent neural network architectures. Gating allows 122 
for multiplicative interaction between activities. Lateral connections allow the activities of different recurrent units i and j to interact. 123 
Recurrent weight training allows the connection weights of recurrent units to be adjusted to the training environment. i’ may be 124 
equal to i. (d) The gated recurrent architecture includes all three mechanisms: gating, lateral connections, and recurrent weight 125 
training. Each alternative architecture includes all but one of the three mechanisms. 126 

Figure supplement 1. Graphical model of the generative process of each environment. 127 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.05.03.442240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442240
http://creativecommons.org/licenses/by-nc-nd/4.0/


p. 6 

We identified three mechanisms of recurrent neural network architectures that endow a network with 128 

specific computational properties which have proven advantageous in our environments (Fig. 1c). One 129 

mechanism is gating, which allows for multiplicative interactions between the activities of units. A second 130 

mechanism is lateral connectivity, which allows the activities of different recurrent units to interact with each 131 

other. A third mechanism is the training of recurrent connection weights, which allows the dynamics of 132 

recurrent activities to be adjusted to the training environment. 133 

To get mechanistic insight, we compared an architecture that included all three mechanisms, to 134 

alternative architectures that were deprived of one of the three mechanisms but maintained the other two 135 

(Fig. 1d; see Methods for equations). Here we call an architecture with all three mechanisms ‘gated 136 

recurrent’, and the particular architecture we used is known as GRU (Cho et al., 2014; Chung et al., 2014). 137 

When deprived of gating, multiplicative interactions between activities are removed, and the architecture 138 

reduces to that of a vanilla recurrent neural network also known as the Elman network (Elman, 1990). When 139 

deprived of lateral connections, the recurrent units become independent of each other, thus each recurrent 140 

unit acts as a temporal filter on the input observations (with possibly time-varying filter weights thanks to 141 

gating). When deprived of recurrent weight training, the recurrent activity dynamics become independent of 142 

the environment and the only parameters that can be trained are those of the output unit; this architecture 143 

is thus one form of reservoir computing (Tanaka et al., 2019). In the results below, unless otherwise stated, 144 

the networks all had 11 recurrent units (the smallest network size beyond which the gated recurrent network 145 

showed no substantial increase in performance in any of the environments), but the results across 146 

architectures are robust to this choice of network size (see the last section of the Results). 147 

Performance in the face of changes in latent probabilities 148 

We designed a first environment to investigate the ability to handle changes in a latent probability (Fig. 149 

2a; see Fig. 1—figure supplement 1 for a graphical model). In this environment we used the simplest kind 150 

of latent probability: p(1), the probability of occurrence (or base rate) of the observation being 1 (note that 151 

p(0)=1-p(1)), here called ‘unigram probability’. The unigram probability suddenly changed from one value to 152 

another at so-called ‘change points’, which could occur at any time, randomly with a given fixed probability. 153 

This environment, here called ‘changing unigram environment’, corresponds for instance to a simple 154 

oddball task (Aston-Jones et al., 1997; Kaliukhovich & Vogels, 2014; Ulanovsky et al., 2004), or the 155 

probabilistic delivery of a reward with abrupt changes in reward probabilities (Behrens et al., 2007; Vinckier 156 

et al., 2016). In such an environment, predicting accurately is difficult due to the stability-flexibility tradeoff 157 

induced by the stochastic nature of the observations (governed by the unigram probability) and the possibility 158 

of a change point at any moment. 159 
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 160 
Figure 2. Gated recurrent networks perform quasi-optimally in the face of changes in latent probabilities. (a) Sample 161 
sequence of observations (dots) and latent unigram probability (line) generated in the changing unigram environment. At each 162 
time step, a binary observation is randomly generated based on the latent unigram probability, and a change point can occur with 163 
a fixed probability, suddenly changing the unigram probability to a new value uniformly drawn in [0,1]. (b) Prediction performance 164 
in the changing unigram environment. For each type of agent, 20 trained agents (trained with different random seeds) were tested 165 
(dots: agents; bars: average). Their prediction performance was measured as the % of optimal log likelihood (0% being chance 166 
performance and 100% optimal performance, see equation (1) for the log likelihood) and averaged over observations and 167 
sequences. The gated recurrent network significantly outperformed every other type of agent (p < 0.001, two-tailed two 168 
independent samples t-test with Welch's correction for unequal variances). 169 

 170 

To assess the networks’ prediction accuracy, we compared the networks with the optimal agent for this 171 

specific environment, i.e. the optimal solution to the prediction problem determined using Bayesian 172 

inference. This optimal solution knows the environment’s underlying generative process and uses it to 173 

compute, via Bayes’ rule, the probability distribution over the possible values of the latent probability given 174 

the past observation sequence, , known as the posterior distribution. It then outputs as 175 

prediction the mean of this distribution. (For details see Methods and (Heilbron & Meyniel, 2019).) 176 

We also compared the networks to two types of heuristics which perform very well in this environment: 177 

the classic 'delta-rule' heuristic (Rescorla & Wagner, 1972; R. S. Sutton & Barto, 1998) and the more 178 

accurate 'leaky' heuristic (Gijsen et al., 2021; Heilbron & Meyniel, 2019; Meyniel et al., 2016; Yu & Cohen, 179 

2008) (see Methods for details). To test the statistical reliability of our conclusions, we trained separately 20 180 

agents of each type (each type of network and each type of heuristic). 181 

We found that even with as few as 11 units, the gated recurrent networks performed quasi-optimally. 182 

Their prediction performance was 99% of optimal (CI ±0.1%), 0% corresponding to chance level (Fig. 2b). 183 

Being only 1% short of optimal, the gated recurrent networks outperformed the delta rule and leaky agents, 184 

which performed 10 times and 5 times further from optimal, respectively (Fig. 2b). 185 

For mechanistic insight, we tested the alternative architectures deprived of one mechanism. Without 186 

either gating, lateral connections, or recurrent weight training, the average performance was respectively 6 187 
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times, 4 times, and 12 times further from optimal (Fig. 2b), i.e. the level of a leaky agent or worse. The drops 188 

in performance remain similar when considering only the best network of each architecture instead of the 189 

average performance (Fig. 2b, compare rightmost dots across rows). 190 

These results show that small gated recurrent networks can achieve quasi-optimal predictions and that 191 

the removal of one of the mechanisms of the gated recurrent architecture results in a systematic drop in 192 

performance. 193 

Adaptation to changes through the adjustment of the effective learning rate 194 

In a changing environment, the ability to adapt to changes is key. Networks exposed to more changing 195 

environments during training updated their predictions more overall during testing, similarly to the optimal 196 

agent (see Fig. 3—figure supplement 1) and, to some extent, humans (Behrens et al., 2007, Figure 2e; 197 

Findling et al., 2021, Figure 4c). At a finer timescale, the moment-by-moment updating of the predictions 198 

also showed sensible dynamics around change points. 199 

Fig. 3a illustrates a key difference in behavior between, on the one hand, the optimal agent and the gated 200 

recurrent network, and on the other hand, the heuristic agents: the dynamics of their update differ. This 201 

difference is particularly noticeable when recent observations suggest that a change point has just occurred: 202 

the optimal agent quickly updates the prediction by giving more weight to the new observations; the gated 203 

recurrent network behaves the same but not the heuristic agents. We formally tested this dynamic updating 204 

around change points by measuring the moment-by-moment effective learning rate, which normalizes the 205 

amount of update in the prediction by the prediction error (i.e. the difference between the previous prediction 206 

and the actual observation; see Methods, equation (2)). 207 

Gated recurrent networks turned out to adjust their moment-by-moment effective learning rate as the 208 

optimal agent did, showing the same characteristic peaks, at the same time and with almost the same 209 

amplitude (Fig. 3b, top plot). By contrast, the effective learning rate of the delta-rule agents was (by 210 

construction) constant, and that of the leaky agents changed only marginally. 211 

When one of the mechanisms of the gated recurrence was taken out, the networks’ ability to adjust their 212 

effective learning rate was greatly degraded (but not entirely removed) (Fig. 3b, bottom plots). Without 213 

gating, without lateral connections, or without recurrent weight training, the amplitude was lower (showing 214 

both a lower peak value and a higher baseline value), and the peak occurred earlier. 215 

This shows that gated recurrent networks can reproduce a key aspect of optimal behavior: the ability to 216 

adapt the update of their prediction to change points, which is lacking in heuristic agents and alternative 217 

networks. 218 
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 219 

Figure 3. Gated recurrent but not alternative networks adjust their moment-by-moment effective learning rate around 220 
changes like the optimal agent. (a) Example prediction sequence illustrating the prediction updates of different types of agents. 221 
Within each type of agent, the agent (out of 20) yielding median performance in Fig. 2b was selected for illustration purposes. 222 
Dots are observations, lines are predictions. (b) Moment-by-moment effective learning rate of each type of agent. 20 trained 223 
agents of each type were tested on 10,000 sequences whose change points were locked at the same time steps, for illustration 224 
purposes. The moment-by-moment effective learning rate was measured as the ratio of prediction update to prediction error (see 225 
Methods, equation (2)), and averaged over sequences. Lines and bands show the mean and the 95% confidence interval of the 226 
mean. 227 

Figure supplement 1. Attunement of the effective learning rate to the change point probabilities. 228 

 229 

Internal representation of precision and dynamic interaction with the prediction 230 

Beyond behavior, we sought to determine whether a network's ability to adapt to changes relied on 231 

idiosyncratic computations or followed the more general principle of precision-weighting derived from 232 

probability theory. According to this principle, the precision of the current prediction (calculated in the optimal 233 

agent as the negative logarithm of the standard deviation of the posterior distribution over the latent 234 

probability, see equation (3) in Methods) should influence the weight of the current prediction relative to the 235 

next observation in the updating process: for a given prediction error, the lower the precision, the higher the 236 

subsequent effective learning rate. This precision-weighting principle results in an automatic adjustment of 237 

the effective learning rate in response to a change, because the precision of the prediction decreases when 238 

a change is suspected. 239 
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In line with this principle, human participants can estimate not only the prediction but also its precision as 240 

estimated by the optimal agent (Boldt et al., 2019, Figure 2; Meyniel et al., 2015, Figure 4B), and this 241 

precision indeed relates to the participants’ effective learning rate (McGuire et al., 2014, Figure 2C and S1A; 242 

Nassar et al., 2010, Figure 4C and 3B, 2012, Figure 5 and 7c). 243 

We tested whether a network could represent this optimal precision too, by trying to linearly read it from 244 

the network's recurrent activity (Fig. 4a). Note that the networks were trained only to maximize prediction 245 

accuracy (not to estimate precision). Yet, in gated recurrent networks, we found that the read precision on 246 

left-out data was highly accurate (Fig. 4a, left plot: the median Pearson correlation with the optimal precision 247 

is 0.82), and correlated with their subsequent effective learning rate as in the optimal agent (Fig. 4a, right 248 

plot: the median correlation for gated recurrent networks is -0.79; for comparison, it is -0.88 for the optimal 249 

agent).  250 

To better understand how precision information is represented and how it interacts with the prediction 251 

dynamically in the network activity, we plotted the dynamics of the network activity in the subspace spanned 252 

by the prediction and precision vectors (Fig. 4b). Such visualization captures both the temporal dynamics 253 

and the relationships between the variables represented in the network, and has helped understand network 254 

computations in other works (Mante et al., 2013; Sohn et al., 2019). Here, two observations can be made. 255 

First, in the gated recurrent network (Fig. 4b, second plot from the right), the trajectories are well 256 

separated along the precision axis (for the same prediction, the network can represent multiple precisions), 257 

meaning that the representation of precision is not reducible to the prediction. By contrast, in the network 258 

without gating (Fig. 4b, rightmost plot), these trajectories highly overlap, which indicates that the 259 

representation of precision and prediction are mutually dependent. To measure this dependence, we 260 

computed the mutual information between the read precision and the prediction of the network, and it turned 261 

out to be very high in the network without gating (median MI=5.2) compared to the gated recurrent network 262 

(median MI=0.7) and the optimal agent (median MI=0.6) (without lateral connections, median MI=1.3; 263 

without recurrent weight training, median MI=1.9), confirming that gating is important to separate the 264 

precision from the prediction. 265 

Second, in the gated recurrent network, the precision interacts dynamically with the prediction in a 266 

manner consistent with the precision-weighting principle: for a given prediction, the lower the precision, the 267 

larger the subsequent updates to the prediction (Fig. 4b, vertical dotted line indicates the level of prediction 268 

and arrows the subsequent updates). 269 
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 270 

Figure 4. Gated recurrent networks have an internal representation of the precision of their estimate that dynamically 271 
interacts with the prediction following the precision-weighting principle. (a) Left to right: Schematic of the readout of 272 
precision from the recurrent activity of a network (obtained by fitting a multiple linear regression from the recurrent activity to the 273 
log precision of the optimal posterior distribution); Accuracy of the read precision (calculated as its Pearson correlation with the 274 
optimal precision); Pearson correlation between the read precision and the network’s subsequent effective learning rate (the 275 
optimal value was calculated from the optimal agent’s own precision and learning rate); Example sequence illustrating their anti-276 
correlation in the gated recurrent network. In both dot plots, large and small dots show the median and individual values, 277 
respectively. (b) Dynamics of the optimal posterior (left) and the network activity (right) in three sequences (green, yellow, and 278 
pink). The displayed dynamics are responses to a streak of 1s after different sequences of observations (with different generative 279 
probabilities as shown at the bottom). The optimal posterior distribution is plotted as a color map over time (dark blue and light 280 
green correspond to low and high probability densities, respectively) and as a line plot at two times: on the left, the time tstart just 281 
before the streak of 1s, and on the right, a time tA/tB/tC when the prediction (i.e. mean) is approximately equal in all three cases; 282 
note that the precision differs. The network activity was projected onto the two-dimensional subspace spanned by the prediction 283 
and precision vectors (for the visualization, the precision axis was orthogonalized with respect to the prediction axis). In the gated 284 
recurrent network, the arrow Δp shows the update to the prediction performed in the next three time steps starting at the time 285 
tA/tB/tC defined from the optimal posterior. Like the optimal posterior and unlike the network without gating, the gated recurrent 286 
network represents different levels of precision at an equal prediction, and the lower the precision, the higher the subsequent 287 
update to the prediction—a principle called precision-weighting. In all example plots (a-b), the displayed network is the one of the 288 
20 that yielded the median read precision accuracy. 289 
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These results indicate that in the network without gating, precision is confounded with prediction and the 290 

correlation between precision and effective learning rate is spuriously driven by the prediction itself, whereas 291 

in the network with gating, there is a genuine representation of precision beyond the prediction itself, which 292 

interacts with the updating of predictions. However, we have so far only provided correlational evidence; to 293 

show that the precision represented in the network plays a causal role in the subsequent prediction update, 294 

we need to perform an intervention that acts selectively on this precision. 295 

Causal role of precision-weighting for adaptation to changes 296 

We tested whether the internal representation of precision causally regulated the effective learning rate 297 

in the networks using a perturbation experiment. We designed perturbations of the recurrent activity that 298 

induced a controlled change in the read precision, while leaving the networks’ current prediction unchanged 299 

to control for the effect of the prediction error (for the construction of the perturbations, see Fig. 5 bottom 300 

left diagram and legend, and Methods). These perturbations caused significant changes in the networks’ 301 

subsequent effective learning rate, commensurate with the induced change in precision, as predicted by the 302 

principle of precision-weighting (Fig. 5, middle plot). Importantly, this causal relationship was abolished in 303 

the alternative networks that lacked one of the mechanisms of the gated recurrent architecture (Fig. 5, right 304 

three plots; the slope of the effect was significantly different between the gated recurrent network group and 305 

any of the alternative network groups, two-tailed two independent samples t-test, all t(38) > 4.1, all p < 0.001, 306 

all Cohen’s d > 1.3). 307 

These results show that the gated recurrent networks’ ability to adapt to changes indeed relies on their 308 

precision-dependent updating and that such precision-weighting does not arise without all three 309 

mechanisms of the gated recurrence. 310 
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 311 

Figure 5. Precision-weighting causally determines the adjustment of the effective learning rate in gated recurrent 312 
networks only. Causal test of a network's precision on its effective learning rate. The recurrent activity was perturbed to induce a 313 
controlled change δ in the read precision, while keeping the prediction at the current time step—and thus the prediction error at 314 
the next time step—constant. This was done by making the perturbation vector orthogonal to the prediction vector and making its 315 
projection onto the precision vector equal to δ (bottom left diagram). We measured the perturbation's effect on the subsequent 316 
effective learning rate as the difference in learning rate “with perturbation” minus “without perturbation” at the next time step (four 317 
plots on the right). Each dot (and joining line) corresponds to one network. ***: p < 0.001, n.s.: p > 0.05 (one-tailed paired t-test). 318 

 319 

Leveraging and internalizing a latent structure: bigram probabilities 320 

While the changing unigram environment already covers many tasks in the behavioral and neuroscience 321 

literature, real-world sequences often exhibit more structure. To study the ability to leverage such structure, 322 

we designed a new stochastic and changing environment in which the sequence of observations is no longer 323 

generated according to a single unigram probability, p(1), but two ‘bigram probabilities’ (also known as 324 

transition probabilities), p(0|0) and p(1|1), which denote the probability of occurrence of a 0 after a 0 and of 325 

a 1 after a 1, respectively (Fig. 6a; see Fig. 1—figure supplement 1 for a graphical model). These bigram 326 

probabilities are also changing randomly, with independent change points. 327 

This ‘changing bigram environment’ is well motivated because there is ample evidence that bigram 328 

probabilities play a key role in sequence knowledge in humans and other animals (Dehaene et al., 2015) 329 

even in the face of changes (Bornstein & Daw, 2013; Meyniel et al., 2015). 330 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.05.03.442240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442240
http://creativecommons.org/licenses/by-nc-nd/4.0/


p. 14 

 331 

Figure 6. Gated recurrent networks correctly leverage and internalize the latent bigram structure. (a) Schematic of the 332 
changing bigram environment’s latent probabilities (left) and sample generated sequence (right, dots: observations, lines: latent 333 
bigram probabilities). At each time step, a binary observation is randomly generated according to the relevant latent bigram 334 
probability, p0|0 or p1|1 depending on the previous observation. p0|0 denotes the probability of occurrence of a 0 after a 0 and p1|1 335 
that of a 1 after a 1 (note that p1|0=1-p0|0 and p0|1=1-p1|1). At any time step, each of the two bigram probabilities can suddenly 336 
change to a new value uniformly drawn in [0,1], randomly with a fixed probability and independently from each other. (b) Example 337 
prediction sequence illustrating each network’s ability or inability to change prediction according to the local context, compared to 338 
the optimal prediction (dots: observations, lines: predictions). (c) Prediction performance of each type of agent in the changing 339 
bigram environment. 20 new agents of each type were trained and tested as in Fig. 2b but now in the changing bigram 340 
environment (dots: agents; bars: average). The gated recurrent network significantly outperformed every other type of agent (p < 341 
0.001, two-tailed two independent samples t-test with Welch's correction for unequal variances). (d) Internalization of the latent 342 
structure as shown on an out-of-sample sequence: the two bigram probabilities are simultaneously represented in the gated 343 
recurrent network (top), and closely follow the optimal estimates (bottom). The readouts were obtained through linear regression 344 
from the recurrent activity to four estimates separately: the log odds of the mean and the log precision of the optimal posterior 345 
distribution on p0|0 and p1|1. In (b) and (d), the networks (out of 20) yielding median performance were selected for illustration 346 
purposes. 347 

Figure supplement 1. Performance across training and test environments. 348 
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We assessed how well the networks could leverage the latent bigram structure after having been trained 349 

in this environment. For comparison, we tested the optimal agent for this environment as well as two groups 350 

of heuristics: delta-rule and leaky estimation of unigram probabilities (as in Fig. 2b), and now also delta rule 351 

and leaky estimation of bigram probabilities (see Methods for details). 352 

The gated recurrent networks achieved 98% of optimal prediction performance (CI ±0.3%), outperforming 353 

the heuristic agents estimating bigram probabilities, and even more so those estimating a unigram 354 

probability (Fig. 6c). To demonstrate that this was due to their internalization of the latent structure, we also 355 

tested the gated recurrent networks that had been trained in the changing unigram environment: their 356 

performance was much worse (Fig. 6—figure supplement 1). 357 

At the mechanistic level, all three mechanisms of the gated recurrence are important for this ability to 358 

leverage the latent bigram structure. Not only does the performance drop when one of these mechanisms 359 

is removed (Fig. 6c), but also this drop in performance is much larger than that observed in the changing 360 

unigram environment (without gating: -11.2% [CI ±1.5% calculated by Welch’s t-interval] in the bigram 361 

environment vs. -5.5% [CI ±0.6%] in the unigram environment, without lateral connections: -18.5% [CI 362 

±1.8%] vs. -2.9% [CI ±0.2%]; without recurrent weight training: -29.9% [CI ±1.6%] vs. -11.0% [CI ±2.1%]; for 363 

every mechanism, there was a significant interaction effect between the removal of the mechanism and the 364 

environment on performance, all F(1,76) > 47.9, all p < 0.001). 365 

Fig. 6b illustrates the gated recurrent networks’ ability to correctly incorporate the bigram context into its 366 

predictions compared to networks lacking one of the mechanisms of the gated recurrence. While a gated 367 

recurrent network aptly changes its prediction from one observation to the next according to the preceding 368 

observation as the optimal agent does, the other networks fail to show such context-dependent behavior, 369 

sometimes even changing their prediction away from the optimal agent. 370 

Altogether these results show that gated recurrent networks can leverage the latent bigram structure, but 371 

this ability is impaired when one mechanism of the gated recurrence is missing. 372 

Is the networks’ representation of the latent bigram structure impenetrable or easily accessible? We 373 

tested the latter possibility by trying to linearly read out the optimal estimate of each of the latent bigram 374 

probabilities from the recurrent activity of a gated recurrent network (see Methods). Arguing in favor of an 375 

explicit representation, we found that the read estimates of each of the latent bigram probabilities on left-out 376 

data were highly accurate (Pearson correlation with the optimal estimates, median and CI: 0.97 [0.97, 0.98] 377 

for each of the two bigram probabilities). 378 

In addition to the point estimates of the latent bigram probabilities, we also tested whether a network 379 

maintained some information about the precision of each estimate. Again, we assessed the possibility to 380 

linearly read out the optimal precision of each estimate and found that the read precisions on left-out data 381 
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were quite accurate (Pearson correlation with the optimal precisions, median and CI: 0.77 [0.74, 0.78] for 382 

one bigram probability and 0.76 [0.74, 0.78] for the other probability). 383 

Fig. 6d illustrates the striking resemblance between the estimates read from a gated recurrent network 384 

and the optimal estimates. Furthermore, it shows that the network successfully disentangles one bigram 385 

probability from the other since the read estimates can evolve independently from each other (for instance 386 

during the first 20 time steps, the value for 1|1 changes while the value for 0|0 does not, since only 1s are 387 

observed). It is particularly interesting that both bigram probabilities are simultaneously represented, given 388 

that only one of them is relevant for the moment-by-moment prediction read by the network’s output unit 389 

(whose weights cannot change during the sequence). 390 

We conclude that gated recurrent networks internalize the latent bigram structure in such a way that both 391 

bigram probabilities are available simultaneously, even though only one of the two is needed at any one 392 

time for the prediction. 393 

Leveraging a higher-level structure: inference about latent changes 394 

In real life, latent structures can also exhibit different levels that are organized hierarchically (Bill et al., 395 

2020; Meyniel et al., 2015; Purcell & Kiani, 2016). To study the ability to leverage such a hierarchical 396 

structure, we designed a third environment in which, in addition to bigram probabilities, we introduced a 397 

higher-level factor: the change points of the two bigram probabilities are now coupled, rather than 398 

independent as they were in the previous environment (Fig. 7a; Fig. 1—figure supplement 1 shows the 399 

hierarchical structure). Due to this coupling, from the agent’s point of view, the likelihood that a change point 400 

has occurred depends on the observations about both bigrams. Thus, optimal prediction requires the ability 401 

to make a higher-level inference: having observed that the frequency of one of the bigrams has changed, 402 

one should not only suspect that the latent probability of this bigram has changed but also transfer this 403 

suspicion of a change to the latent probability of the other bigram, even without any observations about that 404 

bigram. 405 

Such a transfer has been reported in humans (Heilbron & Meyniel, 2019, Figure 5B). A typical situation 406 

is when a streak of repetitions is encountered (Fig. 7b): if a long streak of 1s was deemed unlikely, it should 407 

trigger the suspicion of a change point such that p(1|1) is now high, and this suspicion should be transferred 408 

to p(0|0) by partially resetting it. This reset is reflected in the change between the prediction following the 0 409 

just before the streak and that following the 0 just after the streak (Fig. 7b, |pafter!pbefore|). 410 
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 411 
Figure 7. Gated recurrent but not alternative networks leverage a higher-level structure, distinguishing the case where 412 
change points are coupled vs. independent. Procedure to test the higher-level inference: (a) For each network architecture, 20 413 
networks were trained on sequences where the change points of the two latent bigram probabilities are coupled and 20 other 414 
networks were trained on sequences where they are independent (the plots show an example training sequence for each case); 415 
(b) The networks were then tested on sequences designed to trigger the suspicion of a change point in one bigram probability and 416 
measure their inference about the other bigram probability: |pafter!"before| should be larger when the agent assumes change points 417 
to be coupled rather than independent. The plot shows an example test sequence. Red, blue, solid, and dashed lines: as in (c), 418 
except that only the gated recurrent network (out of 20) yielding median performance is shown for illustration purposes. (c) 419 
Change in prediction about the unobserved bigram probability of the networks trained on coupled change points (red) and 420 
independent change points (blue) for each network architecture, averaged over sequences. Solid lines and bands show the mean 421 
and the 95% confidence interval of the mean over networks. Dotted lines show the corresponding values of the optimal agent for 422 
the two cases. Only the gated recurrent architecture yields a significant difference between networks trained on coupled vs. 423 
independent change points (one-tailed two independent samples t-test, ***: p < 0.001, n.s.: p > 0.05). 424 

 425 

We tested the networks’ ability for higher-level inference in the same way, by exposing them to such 426 

streaks of repetitions and measuring their change in prediction about the unobserved bigram before and 427 

after the streak. More accurately, we compared the change in prediction of the networks trained in the 428 
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environment with coupled change points to that of the networks trained in the environment with independent 429 

change points, since the higher-level inference should only be made in the coupled case. 430 

We found that gated recurrent networks trained in the coupled environment changed their prediction 431 

about the unobserved bigram significantly more than networks trained in the independent environment, and 432 

this was true across a large range of streak lengths (Fig. 7c, top plot). The mere presence of this effect is 433 

particularly impressive given that the coupling makes very little difference in terms of raw performance (Fig. 434 

6—figure supplement 1, the networks trained in either the coupled or the independent environment perform 435 

very similarly when tested in either environment). All mechanisms of the gated recurrence are important to 436 

achieve this higher-level inference since the networks deprived of either gating, lateral connections, or 437 

recurrent weight training did not show any effect, no matter the streak length (Fig. 7c, bottom three plots; 438 

for every mechanism, there was a significant interaction effect between the removal of the mechanism and 439 

the training environment on the change in prediction over networks and streak lengths, all F(1,6076) > 43.2, 440 

all p < 0.001). 441 

These results show that gated recurrent networks but not alternative networks leverage the higher level 442 

of structure where the change points of the latent probabilities are coupled. 443 

Gated recurrence enables simple solutions 444 

Finally, we highlight the small number of units sufficient to perform quasi-optimally in the increasingly 445 

structured environments that we tested: the above-mentioned results were obtained with 11 recurrent units. 446 

It turns out that gated recurrent networks can reach a similar performance with even fewer units, especially 447 

in simpler environments (Fig. 8a and 8b, left plot). For instance, in the unigram environment, gated recurrent 448 

networks reach 99% of their asymptotic performance with no more than 3 units. 449 

By contrast, without either gating, lateral connections, or recurrent weight training, even when the 450 

networks are provided with more units to match the number of trained parameters in the 11-unit gated 451 

recurrent networks, they are unable to achieve similar performance (Fig. 8a and 8b, right three plots, the 452 

twin x-axes indicate the number of units and trained parameters). 453 
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 454 

Figure 8. Low-complexity solutions are uniquely enabled by the combination of gating, lateral connections, and recurrent 455 
weight training. (a) and (b) Prediction performance of each network architecture in the changing unigram environment and the 456 
changing bigram environment, respectively, as a function of the number of recurrent units (i.e. space complexity) of the network. 457 
For each network architecture and each number of units, 20 networks were trained using hyperparameters that had been 458 
optimized prior to training, and prediction performance was measured as the % of optimal log likelihood on new test sequences. 459 
Solid lines, bands, and dotted lines show the mean, 95% confidence interval of the mean, and maximum performance, 460 
respectively. At the maximum displayed number of units, all of the alternative architectures have exceeded the complexity of the 461 
11-unit gated recurrent network shown on the left and in previous Figures, both in terms of the number of units and the number of 462 
trained parameters (indicated on the twin x-axes), but none of them have yet reached its performance. 463 

Figure supplement 1. Training speed of the gated recurrent networks in the changing unigram and bigram environments. 464 

 465 

With an unlimited number of units, at least in the case without gating (i.e. a vanilla RNN, short for recurrent 466 

neural network), the networks will be able to achieve such performance since they are universal 467 

approximators of dynamical systems (Cybenko, 1989; Schäfer & Zimmermann, 2006). However, our results 468 

indicate this could require a very large number of units even in the simplest environment tested here (see 469 

Fig. 8a and 8b, without gating at 1000 units). Indeed, the slow growth of the vanilla RNNs’ performance with 470 
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the number of units is well described by a power law function, of the form: (100-p) = c(1/N)α, where p is the 471 

% of optimal performance and N is the number of units. We fitted this law in the unigram environment using 472 

the obtained performance from 2 to 45 units and it yielded a goodness-of-fit R2=92.4% (fitting was done by 473 

linear regression on the logarithm of N and (100-p)). To further confirm the validity of the power law, we then 474 

extrapolated to 1000 units and found that the predicted performance was within 0.2% of the obtained 475 

performance for networks of this size (predicted: 97.8%, obtained: 97.6%). Based on this power law, more 476 

than 104 units would be needed for the vanilla RNN to reach the performance exhibited by the GRU with 477 

only 11 units. 478 

Note that, in terms of computational complexity, the number of units is a fair measure of space complexity 479 

(i.e. the amount of memory) across the architectures we considered, since in all of them it is equal to the 480 

number of state variables (having one state variable  per unit, see Methods). What varies across 481 

architectures is the number of trained parameters, i.e. the degrees of freedom that can be used during 482 

training to achieve different dynamics. Still, the conclusion remains the same when an alternative network 483 

exceeds the complexity of an 11-unit gated recurrent network in both its number of units and its number of 484 

trained parameters. 485 

Therefore, it is the specific computational properties provided by the combination of the three 486 

mechanisms that afford effective low-complexity solutions. 487 

Discussion 488 

We have shown that the gated recurrent architecture enables simple and effective solutions: with only 11 489 

units, the networks perform quasi-optimally in environments fraught with randomness, changes, and 490 

different levels of latent structure. Moreover, these solutions reproduce several aspects of optimality 491 

observed in organisms, including the adaptation of their effective learning rate, the ability to represent the 492 

precision of their estimation and to use it to weight their updates, and the ability to represent and leverage 493 

the latent structure of the environment. By depriving the architecture of one of its mechanisms, we have 494 

shown that three of them are important to achieve such solutions: gating, lateral connections, and the 495 

training of recurrent weights. 496 

Can small neural networks behave like Bayesian agents? 497 

A central and much-debated question in the scientific community is whether the brain can perform 498 

Bayesian inference (Knill & Pouget, 2004; Bowers & Davis, 2012; Griffiths et al., 2012; Rahnev & Denison, 499 

2018; Lee & Mumford, 2003; Rao & Ballard, 1999; Sanborn & Chater, 2016; Chater et al., 2006; Findling et 500 

al., 2019; Wyart & Koechlin, 2016; Soltani & Izquierdo, 2019; Findling et al., 2021). From a computational 501 

viewpoint, there exists no tractable solution (even approximate) for Bayesian inference in an arbitrary 502 

environment, since it is NP-hard (Cooper, 1990; Dagum & Luby, 1993). Being a bounded agent (Simon, 503 
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1955, 1972), the brain cannot solve Bayesian inference in its most general form. The interesting question is 504 

whether the brain can perform Bayesian inference in some environments that occur in real life. More 505 

precisely, by “perform Bayesian inference” one usually means that it performs computations that satisfy 506 

certain desirable properties of Bayesian inference, such as taking into account a certain type of uncertainty 507 

and a certain type of latent structure (Courville et al., 2006; Deroy et al., 2016; Griffiths et al., 2012; Knill & 508 

Pouget, 2004; Ma, 2010; Ma & Jazayeri, 2014; Tauber et al., 2017). In this study, we selected specific 509 

properties and showed that they can indeed be satisfied when using specific (not all) neural architectures. 510 

In the changing unigram and changing bigram environments, our results provide an existence proof: there 511 

exist plausible solutions that are almost indistinguishable from Bayesian inference (i.e. the optimal solution). 512 

They exhibit qualitative properties of Bayesian inference that have been demonstrated in humans but are 513 

lacking in heuristic solutions, such as the dynamic adjustment of the effective learning rate (Behrens et al., 514 

2007; Nassar et al., 2010, 2012), the internal representation of latent variables and the precision of their 515 

estimates (Boldt et al., 2019; Meyniel et al., 2015), the precision-weighting of updates (McGuire et al., 2014; 516 

Nassar et al., 2010, 2012), and the ability for higher-level inference (Bill et al., 2020; Heilbron & Meyniel, 517 

2019; Purcell & Kiani, 2016). 518 

The performance we obtained with the gated recurrent architecture is consistent with the numerous other 519 

successes it produced in other cognitive neuroscience tasks (J. X. Wang et al., 2018; Yang et al., 2019; 520 

Zhang et al., 2020). Our detailed study reveals that it offers quasi-optimal low-complexity solutions to new 521 

and difficult challenges, including those posed by bigram and higher-level structures and latent probabilities 522 

that change unpredictably anywhere in the unit interval. We acknowledge that further generalization to 523 

additional challenges remains to be investigated, including the use of more than two categories of 524 

observations or continuous observations, and latent structures with longer range dependencies (beyond 525 

bigram probabilities). 526 

Minimal set of mechanisms 527 

What are the essential mechanistic elements that enable such solutions? We show that it suffices to have 528 

recurrent units of computation equipped with three mechanisms: 1) input, self, and lateral connections which 529 

enable each unit to sum up the input with their own and other units’ prior value before a non-linear 530 

transformation is applied; 2) gating, which enables multiplicative interactions between activities at the 531 

summation step; 3) the training of connection weights. 532 

One of the advantages of such mechanisms is their generic character: they do not include any 533 

components specifically designed to perform certain probabilistic operations or estimate certain types of 534 

latent variables, as often done in neuroscience (Echeveste et al., 2020; Fusi et al., 2007; Jazayeri & 535 

Movshon, 2006; Ma et al., 2006; Pecevski et al., 2011; Soltani & Wang, 2010). In addition, they allow 536 

adaptive behavior only through recurrent activity dynamics, without involving synaptic plasticity as in other 537 
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models (Farashahi et al., 2017; Fusi et al., 2005; Iigaya, 2016; Schultz et al., 1997). This distinction has 538 

implications for the timescale of adaptation: in the brain, recurrent dynamics and synaptic plasticity often 539 

involve short and long timescales, respectively. Our study supports this view: recurrent dynamics allow the 540 

networks to quickly adapt to a given change in the environment (Fig. 3), while synaptic plasticity allows the 541 

training process to tune the speed of this adaptation to the frequency of change of the environment (Fig. 542 

3—figure supplement 1). 543 

Our findings suggest that these mechanisms are particularly advantageous to enable solutions with low 544 

computational complexity. Without one of them, it seems that a very large number of units (i.e. a large 545 

amount of memory) would be needed to achieve comparable performance (Fig. 8) (note that universal 546 

approximation bounds in vanilla RNNs can be very large in terms of number of units  (Barron, 1993; 547 

Cybenko, 1989; Schäfer & Zimmermann, 2006)). These mechanisms thus seem to be key computational 548 

building blocks to build simple and effective solutions. This efficiency can be formalized as the minimum 549 

number of units sufficient for near-optimal performance (as in (Orhan & Ma, 2017) who made a similar 550 

argument), and it is important for the brain since the brain has limited computational resources (often 551 

quantified by the Shannon capacity, i.e. the number of bits that can be transmitted per unit of time, which 552 

here amounts to the number of units) (Bhui et al., 2021; Lieder & Griffiths, 2020). Moreover, simplicity 553 

promotes our understanding, and it is with the same goal of understanding that others have used model 554 

reduction in large networks (Dubreuil et al., 2020; Jazayeri & Ostojic, 2021; Schaeffer et al., 2020). 555 

Since we cannot exhaustively test all possible parameter values, it might be possible that better solutions 556 

exist that were not discovered during training. However, to maximize the chances that the best possible 557 

performance is achieved after training, we conducted an extensive hyperparameter optimization, repeated 558 

for each environment, architecture, and several number of units, until there is no more improvement 559 

according to the Bayesian optimization (see Methods). 560 

Biological implementations of the mechanisms 561 

What biological elements could implement the mechanisms of the gated recurrence? Recurrent 562 

connections are ubiquitous in the brain (Douglas & Martin, 2007; Hunt & Hayden, 2017); the lesser-known 563 

aspect is that of gating. In the next paragraph, we speculate on the possible biological implementations of 564 

gating, broadly defined as a mechanism that modulates the effective weight of a connection as a function of 565 

the network state (and not limited to the very specific form of gating of the GRU). 566 

In neuroscience, many forms of gating have been observed, and they can generally be grouped into three 567 

categories according to the neural process that supports them: neural circuits, neural oscillations, and 568 

neuromodulation. In neural circuits, a specific pathway can be gated through inhibition/disinhibition by 569 

inhibitory (GABAergic) neurons. This has been observed in microscopic circuits, e.g. in pyramidal neurons 570 

a dendritic pathway can be gated by interneurons (Costa et al., 2017; Yang et al., 2016), or macroscopic 571 
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circuits, e.g. in basal ganglia-thalamo-cortical circuits a cortico-cortical pathway can be gated by the basal 572 

ganglia and the mediodorsal nucleus of thalamus (O’Reilly, 2006; O’Reilly & Frank, 2006; Rikhye et al., 573 

2018; M. B. Wang & Halassa, 2021; Yamakawa, 2020). In addition to inhibition/disinhibition, an effective 574 

gating can also be achieved by a large population of interacting neurons taking advantage of their 575 

nonlinearity (Beiran et al., 2021; Dubreuil et al., 2020). Regarding neural oscillations, experiments have 576 

shown that activity in certain frequency bands (typically, alpha and beta) can gate behavioral and neuronal 577 

responses to the same stimulus (Baumgarten et al., 2016; Busch et al., 2009; Hipp et al., 2011; Iemi et al., 578 

2019; Klimesch, 1999; Mathewson et al., 2009). One of the most influential accounts is known as “pulsed 579 

inhibition” (Hahn et al., 2019; Jensen & Mazaheri, 2010; Klimesch et al., 2007): a low-frequency signal 580 

periodically inhibits a high-frequency signal, effectively silencing the high-frequency signal when the low-581 

frequency signal exceeds a certain threshold. Finally, the binding of certain neuromodulators to the certain 582 

receptors of a synapse changes the gain of its input-output transfer function, thus changing its effective 583 

weight. This has been demonstrated in neurophysiological studies implicating noradrenaline (Aston-Jones 584 

& Cohen, 2005; Salgado et al., 2016; Servan-Schreiber et al., 1990), dopamine (Moyer et al., 2007; Servan-585 

Schreiber et al., 1990; Stalter et al., 2020; Thurley et al., 2008), and acetylcholine (Gil et al., 1997; Herrero 586 

et al., 2008) (see review in (Thiele & Bellgrove, 2018)). 587 

We claim that gated recurrence provides plausible solutions for the brain because its mechanisms can 588 

all be biologically implemented and lead to efficient solutions. However, given their multiple biological 589 

realizability, the mapping between artificial units and biological neurons is not straightforward: one unit may 590 

map to a large population of neurons (e.g. a brain area), or even to a microscopic, subneuronal component 591 

(e.g. the dendritic level). 592 

Training: its role and possible biological counterpart 593 

Regarding the training, our results highlight that it is important to adjust the recurrent weights and thus 594 

the network dynamics to the environment (and not fix them as in reservoir computing (Tanaka et al., 2019)), 595 

but we make no claims about the biological process that leads to such adjustment in brains. It could occur 596 

during development (Sherman et al., 2020), the life span (Lillicrap et al., 2020), or the evolution process 597 

(Zador, 2019) (these possibilities are not mutually exclusive). Although our training procedure may not be 598 

accurate for biology as a whole, two aspects of it may be informative for future research. First, it relies only 599 

on the observation sequence (no supervision or reinforcement), leveraging prediction error signals, which 600 

have been found in the brain in many studies (Den Ouden et al., 2012; Eshel et al., 2013; Maheu et al., 601 

2019). Importantly, in predictive coding (Rao & Ballard, 1999), the computation of prediction errors is part of 602 

the prediction process; here we are suggesting that it may also be part of the training process (as argued in 603 

(O’Reilly et al., 2021)). Second, relatively few iterations of training suffice (Fig. 8—figure supplement 1, in 604 

the order of 10–100; for comparison, (J. X. Wang et al., 2018) reported training for 40,000 episodes in an 605 

environment similar to ours). 606 
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Suboptimalities in human behavior 607 

In this study we have focused on some aspects of optimality that humans exhibit in the three 608 

environments we explored, but several aspects of their behavior are also suboptimal. In the laboratory, their 609 

behavior is often at best qualitatively Bayesian but quantitatively suboptimal. For example, although they 610 

adjust their effective learning rate to changes, the base value of their learning rate and their dynamic 611 

adjustments may depart from the optimal values (Nassar et al., 2010, 2012; Prat-Carrabin et al., 2021). They 612 

may also not update their prediction on every trial, unlike the optimal solution (Gallistel et al., 2014; Khaw et 613 

al., 2017). Finally, there is substantial interindividual variability which does not exist in the optimal solution 614 

(Khaw et al., 2021; Nassar et al., 2010, 2012; Prat-Carrabin et al., 2021). In the future, these suboptimalities 615 

could be explored using our networks by making them suboptimal in three ways (among others): by stopping 616 

training before quasi-optimal performance is reached (Caucheteux & King, 2021; Orhan & Ma, 2017), by 617 

constraining the size of the network or its weights (with hard constraints or with regularization penalties) 618 

(Mastrogiuseppe & Ostojic, 2017; Sussillo et al., 2015), or by altering the network in a certain way, such as 619 

pruning some of the units or some of the connections (Blalock et al., 2020; Chechik et al., 1999; LeCun et 620 

al., 1990; Srivastava et al., 2014), or introducing random noise into the activity (Findling et al., 2021; Findling 621 

& Wyart, 2020; Legenstein & Maass, 2014). In this way, one could perhaps reproduce the quantitative 622 

deviations from optimality while preserving the qualitative aspects of optimality observed in the laboratory. 623 

Implications for experimentalists 624 

If already trained gated recurrent networks exist in the brain, then one can be used in a new but similar 625 

enough environment without further training. This is an interesting possibility because, in laboratory 626 

experiments mirroring our study, humans perform reasonably well with almost no training but explicit task 627 

instructions given in natural language, along with a baggage of prior experience (Gallistel et al., 2014; 628 

Heilbron & Meyniel, 2019; Khaw et al., 2021; Meyniel et al., 2015; Peterson & Beach, 1967). In favor of the 629 

possibility to reuse an existing solution, we found that a gated recurrent network can still perform well in 630 

conditions different from those it was trained in: across probabilities of change points (Fig. 3—figure 631 

supplement 1) and latent structures (Fig. 6—figure supplement 1, from bigram to unigram). 632 

In this study, we adopted a self-supervised training paradigm to see if the networks could in principle 633 

discover the latent structure from the sequences of observations alone. However, in laboratory experiments, 634 

humans often do not have to discover the structure since they are explicitly told what structure they will face 635 

and the experiment starts only after ensuring that they have understood it, which makes the comparison to 636 

our networks impossible in this setting in terms of training (see similar argument in (Orhan & Ma, 2017)). In 637 

the future, it could be interesting to study the ability of gated recurrent networks to switch from one structure 638 

to another after having been informed of the current structure as humans do in these experiments. One 639 

possible way would be to give a label that indicates the current structure as additional input to our networks, 640 

as in (Yang et al., 2019). 641 
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One of our findings may be particularly interesting to experimentalists: in a gated recurrent network, the 642 

representations of latent probabilities and the precision of these probability estimates (sometimes referred 643 

to as confidence (Boldt et al., 2019; Meyniel et al., 2015), estimation uncertainty (McGuire et al., 2014; 644 

Payzan-LeNestour et al., 2013), or epistemic uncertainty (Amini et al., 2020; Friston et al., 2015; Pezzulo et 645 

al., 2015)) are linearly readable from recurrent activity, the form of decoding most frequently used in 646 

neuroscience (Haxby et al., 2014; Kriegeskorte & Diedrichsen, 2019). These representations arise 647 

spontaneously, and their emergence seems to come from the computational properties of gated recurrence 648 

together with the need to perform well in a stochastic and changing environment. This yields an empirical 649 

prediction: if such networks can be found in the brain, then latent probability estimates and their precision 650 

should also be decodable in brain signals, as already found in some studies (Bach et al., 2011; McGuire et 651 

al., 2014; Meyniel, 2020; Meyniel & Dehaene, 2017; Payzan-LeNestour et al., 2013; Tomov et al., 2020). 652 

Materials and methods 653 

Sequence prediction problem 654 

The sequence prediction problem to be solved is the following. At each time step, an agent receives as 655 

input a binary-valued 'observation', , and gives as output a real-valued 'prediction', , 656 

which is an estimate of the probability that the value of the next observation is equal to 1, . Coding 657 

the prediction in terms of the observation being 1 rather than 0 is inconsequential since one can be deduced 658 

from the other: . The agent's objective is to make predictions that maximize 659 

the (log) likelihood of observations in the sequence, which technically corresponds to the negative binary 660 

cross-entropy cost function: 661 

 (1) 662 

Network architectures 663 

All network architectures consist of a binary input unit, which codes for the current observation, one 664 

recurrent layer (sometimes called hidden layer) with a number N of recurrent units, and an output unit, which 665 

represents the network's prediction. Unless otherwise stated, N=11. At every time step, the recurrent unit i 666 

receives as input the value of the observation  and the previous activation values of the recurrent units j 667 

that connect to i . It produces as output a new activation value , which is a real number. The output 668 

unit receives as input the activations of all of the recurrent units and produces as output the prediction . 669 

The parameterized function of the output unit is the same for all network architectures: 670 

 671 
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where  is the logistic sigmoid,  is the weight parameter of the connection from the i-th recurrent 672 

unit to the output unit, and  is the bias parameter of the output unit. 673 

The updating of  takes a different form depending on whether gating or lateral connections are included, 674 

as described below. 675 

Gated recurrent network. A gated recurrent network includes both gating and lateral connections. This 676 

enables multiplicative interactions between the input and recurrent activity as well as the activities of different 677 

recurrent units during the updating of . The variant of gating used here is GRU (Cho et al., 2014; Chung 678 

et al., 2014) For convenience of exposition, we introduce, for each recurrent unit i, two intermediate variables 679 

in the calculation of the update: the reset gate  and the update gate , both of which have their own set 680 

of weights and bias. The update gate corresponds to the extent to which a unit can change its values from 681 

one time step to the next, and the reset gate corresponds to the balance between recurrent activity and input 682 

activity in case of update. Note that  and  do not count as state variables since the system would be 683 

equivalently characterized without them by injecting their expression into the update equation of  below. 684 

The update is calculated as follows: 685 

 686 

where ( , , , ), ( , , , ), ( , , , ) are the connection weights 687 

and biases from the input unit and the recurrent units to unit i corresponding to the reset gate, the update 688 

gate, and the ungated new activity, respectively. 689 

Another variant of gating is the LSTM (Hochreiter & Schmidhuber, 1997). It incorporates similar gating 690 

mechanisms as that of the GRU and can achieve the same performance in our task. We chose the GRU 691 

because it is simpler than the LSTM and it turned out sufficient. 692 

Without gating. Removing the gating mechanism from the gated recurrent network is equivalent to 693 

setting the above variables  equal to 1 and  equal to 0. This simplifies the calculation of the activations 694 

to a single equation, which boils down to a weighted sum of the input and the recurrent units’ activity before 695 

applying a non-linearity, as follows: 696 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.05.03.442240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442240
http://creativecommons.org/licenses/by-nc-nd/4.0/


p. 27 

 697 

Another possibility (not considered here) would be to set the value of  to a constant other than 1 and 698 

treat this value (which amounts to a time constant) as a hyperparameter. 699 

Without lateral connections. Removing lateral connections from the gated recurrent network is 700 

equivalent to setting the weights , , and  to 0 for all . This abolishes the possibility of 701 

interaction between recurrent units, which simplifies the calculation of the activations as follows: 702 

 703 

Note that this architecture still contains gating. We could have tested a simpler architecture without lateral 704 

connection and without gating; however, our point is to demonstrate the specific importance of lateral 705 

connections to solve the problem we are interested in with few units, and the result is all the more convincing 706 

if the network lacking lateral connections has gating (without gating, it would fail even more dramatically). 707 

Without recurrent weight training. The networks referred to as “without recurrent weight training” have 708 

the same architecture as the gated recurrent networks and differ from them only in the way they are trained. 709 

While in the other networks, all of the weights and bias parameters are trained, for those networks, only the 710 

weights and bias of the output unit,  and , are trained; other weights and biases are fixed to the value 711 

drawn at initialization. 712 

Environments 713 

An environment is characterized by its data generating process, i.e. the stochastic process used to 714 

generate a sequence of observations in that environment. Each of the generative processes is described by 715 

a graphical model in Fig. 1—figure supplement 1 and further detailed below. 716 

Changing unigram environment. In the changing unigram environment, at each time step, one 717 

observation is drawn from a Bernoulli distribution whose probability parameter is the latent variable . 718 

The evolution of this latent variable is described by the following stochastic process. 719 

● Initially,  is drawn from a uniform distribution on [0,1]. 720 

● At the next time step, with probability ,  is drawn anew from a uniform distribution on [0,1] (this 721 

event is called a 'change point'), otherwise,  remains equal to . The change point probability 722 

 is fixed in a given environment. 723 
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Changing bigram environments. In the changing bigram environments, at each time step, one 724 

observation is drawn from a Bernoulli distribution whose probability parameter is either equal to the latent 725 

variable , if the previous observation was equal to 1, or to the latent variable  otherwise (at 726 

t=0, the previous observation is considered to be equal to 0). The evolution of those latent variables is 727 

described by a stochastic process which differs depending on whether the change points are independent 728 

or coupled. 729 

● In both cases, initially,  and  are both drawn independently from a uniform distribution 730 

on [0,1]. 731 

● In the case of independent change points, at the next time step, with probability ,  is 732 

drawn anew from a uniform distribution on [0,1], otherwise,  remains equal to . Similarly, 733 

 is either drawn anew with probability  or remains equal to  otherwise, and critically, 734 

the occurrence of a change point in  is independent from the occurrence of a change point in 735 

. 736 

● In the case of coupled change points, at the next time step, with probability ,  and  737 

are both drawn anew and independently from a uniform distribution on [0,1], otherwise, both remain 738 

equal to  and  respectively. 739 

The changing bigram environment with independent change points and that with coupled change points 740 

constitute two distinct environments. When the type of change points is not explicitly mentioned, the default 741 

case is independent change points. For conciseness, we sometimes refer to the changing unigram and 742 

changing bigram environments simply as “unigram” and “bigram” environments. 743 

In all environments, unless otherwise stated, the length of a sequence is  observations, and the 744 

change point probability is , as in previous experiments done with human participants (Heilbron & 745 

Meyniel, 2019; Meyniel et al., 2015). 746 

Optimal solution 747 

For a given environment among the three possibilities defined above, the optimal solution to the 748 

prediction problem can be determined as detailed in (Heilbron & Meyniel, 2019). This solution consists in 749 

inverting the data-generating process of the environment using Bayesian inference, i.e. computing the 750 

posterior probability distribution over the values of the latent variables given the history of observation 751 

values, and then marginalizing over that distribution to compute the prediction (which is the probability of 752 

the next observation given the history of observations). This can be done using a hidden Markov model 753 

formulation of the data-generating process where the hidden state includes the values of the latent variables 754 

as well as the previous observation in the bigram case, and using the forward algorithm to compute the 755 
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posterior distribution over the hidden state. Because it would be impossible to compute the probabilities for 756 

the infinitely many possible values of the latent variables in the continuous interval [0,1], we discretized the 757 

interval into 20 equal-width bins for each of the latent variables. For a more exhaustive treatment, see 758 

(Heilbron & Meyniel, 2019) and the online code (https://github.com/florentmeyniel/TransitionProbModel). 759 

Heuristic solutions 760 

The four heuristic solutions used here can be classified into 2×2 groups depending on: 761 

● which kind of variables are estimated: a unigram probability or two bigram probabilities. 762 

● which heuristic rule is used in the calculation of the estimates: the delta-rule or the leaky rule. 763 

The equations used to calculate the estimates are provided below. 764 

Unigram, delta-rule: 765 

 766 

Unigram, leaky rule: 767 

 768 

Bigrams, delta-rule: 769 

 770 

Bigrams, leaky rule: 771 

 772 
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The delta-rule corresponds to the update rule of the Rescorla-Wagner model (Rescorla & Wagner, 1972). 773 

The leaky rule corresponds to the mean of an approximate posterior which is a Beta distribution whose 774 

parameters depend on the leaky counts of observations:  and  (see (Meyniel et al., 2016) for 775 

more details). 776 

The output prediction value is equal to  in the unigram case, and in the bigram case, to  if  777 

and  otherwise. The parameter  is a free parameter which is trained (using the same training data 778 

as the networks) and thus adjusted to the training environment. 779 

Training 780 

For a given environment and a given type of agent among the network types and heuristic types, all the 781 

reported results are based on 20 agents, each sharing the same set of hyperparameters and initialized with 782 

a different random seed. During training, the parameters of a given agent were adjusted to minimize the 783 

binary cross-entropy cost function (see equation (1)). During one iteration of training, the gradients of the 784 

cost function with respect to the parameters are computed on a subset of the training data (called a 785 

minibatch) using backpropagation through time and are used to update the parameters according to the 786 

selected training algorithm. The training algorithm was Adam (Kingma & Ba, 2015) for the network types 787 

and stochastic gradient descent for the heuristic types. 788 

For the unigram environment, the analyses reported in Fig. 2 to 5 were conducted after training on a 789 

common training dataset of 160 minibatches of 20 sequences. For each of the two bigram environments, 790 

the analyses reported in Fig. 6 to 7 were conducted after training on a common training dataset (one per 791 

environment) of 400 minibatches of 20 sequences. These sizes were sufficient for the validation 792 

performance to converge before the end of training for all types of agents. 793 

Parameters initialization. For all of the networks, the bias parameters are randomly initialized from a 794 

uniform distribution on , and the weights  are randomly initialized from a normal 795 

distribution with standard deviation  and mean 0. For all of the networks, the weights , ,  796 

are randomly initialized from a normal distribution with standard deviation  and mean 0, and the weights 797 

, ,  are randomly initialized from a normal distribution with standard deviation  and 798 

mean 0 for all  and  for . , ,  are hyperparameters that were optimized for 799 

a given environment, type of network, and number of units as detailed in the hyperparameter optimization 800 

section (the values resulting from this optimization are listed in Table 1). 801 

For the initialization of the parameter  in the heuristic solutions, a random value r is drawn from a log-802 

uniform distribution on the interval [10-2.5,10-0.5], and the initial value of  is set to r in the delta-rule case or 803 

exp(-r) in the leaky rule case. 804 
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Hyperparameter optimization 805 

Each type of agent had a specific set of hyperparameters to be optimized. For all network types, it 806 

included the initial learning rate of Adam  and the initialization hyperparameters , . For the 807 

networks without lateral connections specifically, it also included  (for those networks, setting it close 808 

to 1 can help avoid the vanishing gradient problem during training (Bengio et al., 1994; Sutskever et al., 809 

2013)); for the other networks, this was set to 0. For the heuristic types, it included only the learning rate of 810 

the stochastic gradient descent. A unique set of hyperparameter values was determined for each type of 811 

agent, each environment, and, for the network types, each number of units, through the optimization 812 

described next. 813 

We used Bayesian optimization (Agnihotri & Batra, 2020) with Gaussian processes and the upper 814 

confidence bound acquisition function to identify the best hyperparameters for each network architecture, 815 

environment, and number of units. During the optimization, combinations of hyperparameter values were 816 

iteratively sampled, each evaluated over 10 trials with different random seeds, for a total of 60 iterations 817 

(hence, 600 trials) for a given architecture, environment, and number of units. In each trial, one network was 818 

created, trained, and its cross-entropy was measured on independent test data. The training and test 819 

datasets used for the hyperparameter optimization procedure were not used in any other analyses. The 820 

training datasets contained respectively 160 and 400 minibatches of 20 sequences for the unigram and the 821 

bigram environment; the test datasets contained 200 sequences for each environment. We selected the 822 

combination of hyperparameter values corresponding to the iteration that led to the lowest mean test cross-823 

entropy over the 10 trials. The selected values are listed in Table 1. 824 
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Table 1. Selected hyperparameter values after optimization. (*: fixed value.) 825 

environment network type N     

unigram gated recurrent network 3 8.00E-02 0.02 0.02 0* 

unigram gated recurrent network 11 6.60E-02 0.43 0.21 0* 

unigram gated recurrent network 45 4.20E-02 1 0.02 0* 

unigram without gating 3 2.50E-02 1 0.07 0* 

unigram without gating 11 1.70E-02 1 0.07 0* 

unigram without gating 45 7.60E-03 1 0.08 0* 

unigram without gating 1000 1.34E-04 1 0.04 0* 

unigram without lateral connections 3 5.30E-02 0.02 0.02 1 

unigram without lateral connections 11 2.70E-02 1 0.02 1 

unigram without lateral connections 45 1.30E-02 1 1 1 

unigram without recurrent weight training 3 1.00E-01 1.07 0.55 0* 

unigram without recurrent weight training 11 1.00E-01 2 0.41 0* 

unigram without recurrent weight training 45 1.00E-01 2 0.26 0* 

unigram without recurrent weight training 474 9.60E-03 1 0.1 0* 

bigram gated recurrent network 3 6.30E-02 0.02 1 0* 

bigram gated recurrent network 11 4.40E-02 1 0.02 0* 

bigram gated recurrent network 45 1.60E-02 1 0.02 0* 

bigram without gating 3 5.50E-02 0.02 0.13 0* 

bigram without gating 11 3.20E-02 1 0.05 0* 

bigram without gating 45 8.90E-03 1 0.06 0* 

bigram without gating 1000 5.97E-05 1 0.03 0* 

bigram without lateral connections 3 4.30E-02 1 0.02 0 

bigram without lateral connections 11 4.30E-02 1 1 0 

bigram without lateral connections 45 2.80E-02 1 1 0 

bigram without recurrent weight training 3 6.60E-02 0.73 0.55 0* 

bigram without recurrent weight training 11 1.00E-01 2 0.45 0* 

 826 

For the heuristic types, we used random search from a log uniform distribution in the [10-6, 10-1] range 827 

over 80 trials to determine the optimal learning rate of the stochastic gradient descent. This led to selecting 828 

the value 3.10-3 for all heuristic types and all three environments. 829 
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Performance analyses 830 

All agents were tested in the environment they were trained in (except for Fig. 6—figure supplement 1 831 

which tests cross-environment performance). We used a single test dataset per environment of 1,000 832 

sequences independent of the training dataset. The log likelihood  of a given agent was measured from 833 

its predictions according to equation (1). The optimal log likelihood  was measured from the 834 

predictions of the optimal solution for the given environment. The chance log likelihood  was 835 

measured using a constant prediction of 0.5. To facilitate the interpretation of the results, the prediction 836 

performance of the agent was expressed as the % of optimal log likelihood, defined as 837 

. 838 

To test the statistical significance of a comparison of performance between two types of agents, we used 839 

a two-tailed two independent samples t-test with Welch's correction for unequal variances. 840 

Analysis of the effective learning rate 841 

The instantaneous effective learning rate of an agent that updates its prediction from  to  upon 842 

receiving when given as observation  is calculated as: 843 

(2) 844 

We call it “effective learning rate” because, had the agent been using a delta-rule algorithm, it would be 845 

equivalent to the learning rate of the delta-rule (as can be seen by rearranging the above formula into an 846 

update equation), and because it can be measured even if the agent uses another algorithm. 847 

Readout analyses 848 

The readout of a given quantity from the recurrent units of a network consists of a weighted sum of the 849 

activation values of each unit. To determine the weights of the readout for a given network, we ran a multiple 850 

linear regression using, as input variables, the activation of each recurrent unit at a given time step, , 851 

and as target variable, the desired quantity calculated at the same time step. The regression was run on a 852 

training dataset of 900 sequences of 380 observations each (hence, 342,000 samples). 853 

In the unigram environment, the precision readout was obtained using as desired quantity the log 854 

precision of the posterior distribution over the unigram variable calculated by the optimal solution as 855 

previously described, i.e. , where  is the standard deviation of the posterior distribution over 856 

:  (3). 857 
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In the bigram environment, the readout of the estimate of a given bigram variable was obtained using as 858 

desired quantity the log odds of the mean of the posterior distribution over that bigram variable calculated 859 

by the optimal solution, and the readout of the precision of that estimate was obtained using the log precision 860 

of that same posterior under the above definition of precision. 861 

In Fig. 4a, to measure the accuracy of the readout from a given network, we calculated the Pearson 862 

correlation between the quantity read from the network and the optimal quantity on a test dataset of 100 863 

sequences (hence, 38,000 samples), independent from any training dataset. To measure the Pearson 864 

correlation between the read precision and the subsequent effective learning rate, we used 300 out-of-865 

sample sequences (hence, 114,000 samples). To measure the mutual information between the read 866 

precision and the prediction of the network, we also used 300 out-of-sample sequences (114,000 samples). 867 

In Fig. 6d, the log odds and log precision were transformed back into mean and standard deviation for 868 

visualization purposes. 869 

Dynamics of network activity in the prediction-precision subspace 870 

In Fig. 4b, the network activity (i.e. the population activity of the recurrent units in the network) was 871 

projected onto the two-dimensional subspace spanned by the prediction vector and the precision vector. 872 

The prediction vector is the vector of the weights from the recurrent units to the output unit of the network, 873 

. The precision vector is the vector of the weights of the precision readout described above, . For 874 

the visualization, we orthogonalized the precision vector against the prediction vector using the Gram-875 

Schmidt process (i.e. by subtracting from the precision vector its projection onto the prediction vector), and 876 

used the orthogonalized precision vector to define the y-axis shown in Fig. 4b. 877 

Perturbation experiment to test precision-weighting 878 

The perturbation experiment reported in Fig. 5 is designed to test the causal role of the precision read 879 

from a given network on its weighting of the next observation, measured through its effective learning rate. 880 

We performed this perturbation experiment on each of the 20 networks that were trained within each of the 881 

4 architectures we considered. The causal instrument is a perturbation vector  that is added to the network's 882 

recurrent unit activations. The perturbation vector was randomly generated subject to the following 883 

constraints:  884 

●  is the desired change in precision (we used 5 levels) that is read from the units’ 885 

activities; it is computed by projecting the perturbation onto the weight vector of the precision readout 886 

( ,  is the dot product); 887 

● the perturbation  induces no change in the prediction of the network: , where  is the 888 

weight vector of the output unit of the network; 889 
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● the perturbation has a constant intensity  across simulations, which we formalize as the norm of 890 

the perturbation: . 891 

We describe below the algorithm that we used to generate random perturbations  that satisfy these 892 

constraints. The idea is to decompose  into two components: both components leave the prediction 893 

unaffected, the first ( ) is used to induce a controlled change in precision, the second ( ) does not change 894 

the precision but is added to ensure a constant intensity of the perturbation across simulations. 895 

1. To ensure no change in precision, we compute , the subspace of the activation space spanned by 896 

all vectors  that are orthogonal to the prediction weight vector , as the null space of  (i.e. the 897 

orthogonal complement of the subspace spanned by , dimension N-1). 898 

2. We compute , the vector component of  that affects precision, as the orthogonal projection of 899 

 onto  (  is thus collinear to the orthogonalized precision axis shown in Fig. 4b and described 900 

above). 901 

3. We compute , the coefficient to assign to  in the perturbation vector to produce the desired 902 

change in precision , as . 903 

4. We compute , the subspace spanned by all vector components of  that do not affect precision, 904 

as the null space of  (dimension N-2). A perturbation vector in  therefore leaves both the 905 

prediction and the precision unchanged. 906 

5. We draw a random unit vector  within  (by drawing from all N-2 components). 907 

6. We compute , the coefficient to assign to  in the perturbation vector so as to ensure that the 908 

final perturbation’s norm equals , as . 909 

7. We combine  and  into the final perturbation vector as . 910 

The experiment was run on a set of 1,000 sample time points randomly drawn from 300 sequences. First, 911 

the unperturbed learning rate was measured by running the network on all of the sequences. Second, for 912 

each sample time point, the network was run unperturbed up until that point, a perturbation vector was 913 

randomly generated for the desired change of precision and applied to the network at that point, then the 914 

perturbed network was run on the next time point and its perturbed learning rate was measured. This was 915 

repeated for each level of change in precision. Finally, for a given change in precision, the change in learning 916 

rate was calculated as the difference between the perturbed and the unperturbed learning rate. 917 

For statistical analysis, we ran a one-tailed paired t-test to test whether the population’s mean change in 918 

learning rate was higher at one level of precision change than at the next level of precision change. This 919 

was done for each of the four consecutive pairs of levels of change in precision. 920 
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Test of higher-level inference about changes 921 

For a given network architecture, higher-level inference about changes was assessed by comparing the 922 

population of 20 networks trained in the environment with coupled change points to the population of 20 923 

networks trained in the environment with independent change points. 924 

In Fig. 7c, the change in unobserved bigram prediction for a given streak length m was computed as 925 

follows. First, prior sequences were generated and each network was run on each of the sequences. We 926 

generated initial sequences of 74 observations each with a probability of 0.2 for the 'observed' bigram (which 927 

will render its repetition surprising) and a probability p for the 'unobserved' bigram equal to 0.2 or 0.8 (such 928 

probabilities, symmetric and substantially different from the default prior 0.5, should render a change in their 929 

inferred value detectable). We crossed all possibilities (0|0 or 1|1 as observed bigram, 0.2 or 0.8 for p) and 930 

generated 100 sequences for each (hence 400 sequences total). Second, at the end of each of these initial 931 

sequences, the prediction for the unobserved bigram, pbefore, was queried by retrieving the output of the 932 

network after giving it as input ‘0’ if the unobserved bigram was 0|0 or ‘1’ otherwise. Third, the network was 933 

further presented with m repeated observations of the same value: ‘1’ if the observed bigram was 1|1 or ‘0’ 934 

otherwise. Finally, after this streak of repetition, the new prediction for the unobserved bigram, pafter, was 935 

queried (as before) and we measured its change with respect to the previous query, |pafter!"before|. This 936 

procedure was repeated for m ranging from 2 and 75. 937 

For statistics, we ran a one-tailed two independent samples t-test to test whether the mean change in 938 

unobserved bigram prediction of the population trained on coupled change points was higher than that of 939 

the population trained on independent change points. 940 

Complexity analyses 941 

The complexity analysis reported in Fig. 8 consisted in measuring, for each network architecture and 942 

each environment, the performance of optimally trained networks as a function of the number of units N. For 943 

optimal training, hyperparameter optimization was repeated at several values of N, for each type of network 944 

and each environment (the resulting values are listed in Table 1). For the complexity analysis, a grid of 945 

equally spaced N values in logarithmic space between 1 and 45 was generated, and an additional value of 946 

474 was included specifically for the networks without recurrent weight training so as to match their number 947 

of trained parameters to that of an 11-unit gated recurrent network. For every value on this grid, 20 networks 948 

of a given architecture in a given environment were randomly initialized with the set of hyperparameter 949 

values that was determined to be optimal for the nearest neighboring N value in logarithmic space. The 950 

performance of these networks after training was evaluated using a new couple of training and test datasets 951 

per environment, each consisting of 400 minibatches of 20 sequences for training and 1,000 sequences for 952 

testing. 953 
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Statistics 954 

To assess the variability between different agent solutions, we trained 20 agents for each type of agent 955 

and each environment. These agents have different random seeds (which changes their parameter 956 

initialization and how their training data is shuffled). Throughout the article, we report mean or median over 957 

these agents, and individual data points when possible or 95% confidence intervals (abbreviated as "CI") 958 

otherwise, as fully described in the text and figure legends. No statistical methods were used to pre-959 

determine sample sizes but our sample sizes are similar to those reported in previous publications (Masse 960 

et al., 2019; Yang et al., 2019). Data analysis was not performed blind to the conditions of the experiments. 961 

No data were excluded from the analyses. All statistical tests were two-tailed unless otherwise noted. The 962 

data distribution was assumed to be normal, but this was not formally tested. The specific details of each 963 

statistical analysis are reported directly in the text. 964 

Code availability 965 

The code to reproduce exhaustively the analyses of this paper is available at 966 

https://github.com/cedricfoucault/networks_for_sequence_prediction and archived on Zenodo with DOI: 967 

10.5281/zenodo.5707498. This code also enables to train new networks equipped with any number of units 968 

and generate Figures 2 to 7 with those networks. 969 

Data availability 970 
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Figure supplements 1292 

 1293 

Figure 1—figure supplement 1. Graphical model of the generative process of each environment. Nodes encode the 1294 
variables and edges the conditional dependencies between variables. Each graph represents a factorization of the joint probability 1295 
distribution of all variables in the generative process: this joint distribution is the product of the conditional probability distributions 1296 
of each variable given its parents in the graph. For further details on the generative processes, see Methods. In all environments, 1297 
inferring the next observation from previous observations using such a graph is computationally difficult because it requires 1298 
computing and marginalizing over the continuous probability distribution of the latent probabilities. This distribution is not easy to 1299 
compute because it incorporates the likelihoods of the observations (for any latent probability value) and the change point 1300 
probabilities from all previous time steps, and requires normalization. Notice also the increasingly complex conditional structures 1301 
of the graphs from left to right. In the unigram environment, observations are conditionally independent given the latent 1302 
probabilities, but in the bigram environments, they interact. In the bigram environment with coupled change points, the hierarchical 1303 
structure implies that the two latent bigram probabilities are no longer conditionally independent of each other given their values at 1304 
the previous time step, since they are connected by a common parent (the change point). 1305 
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 1307 

Figure 3—figure supplement 1. Attunement of the effective learning rate to the change point probabilities. (a) Average 1308 
effective learning rate of the gated recurrent networks as a function of the change point probability used during testing (columns) 1309 
and during training (rows). Each row corresponds to a different set of 20 networks trained in the changing unigram environment 1310 
with the indicated change point probability. Each column corresponds to a different test set with the indicated change point 1311 
probability, each of 1,000 out-of-sample sequences. The networks’ effective learning rate was measured and averaged over time, 1312 
sequences, and networks. (b) Average effective learning rate of the optimal agent as a function of the change point probability 1313 
used during testing (columns) and the prior on the change point probability assumed by the model (rows). The optimal agent was 1314 
tested on the same sets of sequences as the gated recurrent networks and its effective learning rate was averaged over time and 1315 
sequences.  1316 
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1317 
Figure 6—figure supplement 1. Performance across training and test environments. For each type of agent and each 1318 
environment, a set of 20 agents was trained in the given environment as in Fig. 2, 5, and 6. The performance of each set of 1319 
trained agents was then evaluated in each test environment, using 1,000 new sequences per environment and the same 1320 
performance measure as in Fig. 2 and 5. ch.: changing; ind.: independent change points; coup: coupled change points.  1321 
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 1322 

Figure 8—figure supplement 1. Training speed of the gated recurrent networks in the changing unigram and bigram 1323 
environments. During training, the networks’ weights were iteratively updated, with each update based on the evaluation of the 1324 
cost function on 20 sequences. Prediction performance was repeatedly measured after each iteration as the % of optimal log 1325 
likelihood on an out-of-sample validation set of 200 sequences. The thin lines and the thick line show the mean and the individual 1326 
performances of the 20 networks, respectively. 1327 
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