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Abbreviations: 

OPM – optically pumped magnetometer 

EMG – electromyography  

sEMG – surface electromyography 

MMG – magnetomyography  

OPM-MMG – optically pumped magnetometer magnetomyography 

MEG – Magnetoencephalography  

SQUID – superconducting quantum interference device 

 

Abstract: 

Muscle fatigue is well characterized electromyographically, nevertheless only information about 

summed potential differences is detectable. In contrast, recently developed quantum sensors 

optically pumped magnetometers (OPMs) offer the advantage of recording both the electrical 

current propagation in the muscle as well as its geometry, by measuring the magnetic field 

generated by the muscular action potentials. Magnetomyographic investigation of muscle fatigue 

is still lacking and it is an open question whether fatigue is characterized similarly in 

magnetomyography (MMG) compared to electromyography (EMG). Herein, we investigated the 

muscle fatigue during a 3x1-min strong isometric contraction of the rectus femoris muscle of 12 
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healthy subjects using simultaneous EMG-MMG (4-channel surface EMG and 4 OPM along the 

rectus femoris muscle). 

Both EMG and MMG showed the characteristic frequency decrease in the signal magnitude during 

isometric contraction, which is typical for muscle fatigue. In addition, it was shown that the main 

part of this frequency decrease seems to occur in the circular component of the magnetic field 

around the muscle fibers and less longitudinally along the muscle fibers. Overall, these results 

show not only that magnetomyography is capable of reproducing the electromyographic standards 

in identifying muscular fatigue, but it also adds relevant information about the spatial 

characterization of the signal. Therefore, OPM-MMG offers new insights for the study of muscular 

activity and might serve as a new, supplementary neurophysiological method.  

 
 

 

Introduction 

Muscle fatigue is the decrease in maximum force as a result of sustained or repetitive muscular 

activity [1]. The mechanisms that lead to muscle fatigue are manifold, but a major contribution is 

represented by fatigue of the innervating motoneuron and of the muscle cells themselves,  as a 

result of accumulation of metabolites, such as lactate [2]. To measure or quantify muscle fatigue, 

surface electromyography (sEMG) is often used and well established. Here, muscle fatigue leads 

to a decrease in frequency of the electric muscular activity; the latter can be depicted in the form 

of power [3]. The electrical muscle activity corresponds to the muscle action potentials (MAP), of 

which the temporal and spatial sum can be measured using sEMG. MAP are action potentials at 

the neuromuscular endplate that propagate longitudinally along the muscle fibers as well as 

circularly via T-tubules around the muscle fibers. The resulting depolarization of the cell 

membrane triggers signal cascades, which cause an influx of calcium ions into the cell and an 
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additional release of calcium ions from the sarcoplasmic reticulum, ultimately leading to 

contraction of the skeletal muscle [4].  

Electro- and Magnetomyography (EMG and MMG), optically pumped magnetometer (OPM) 

As MAP propagate, Not only is an electrical potential difference generated, but also an electrical current 

along the direction of propagation, which, however, cannot be measured by sEMG. Furthermore, 

EMG is not sensitive to signal directions. These physical-technical limitations of 

electromyography (EMG) can be overcome by measuring the magnetic activity of the muscle with 

the so-called magnetomyography (MMG, see also Figure 1): While EMG measures 

transmembrane potential differences (volts, U or DV), magnetomyography (MMG) maps 

indirectly the current flow (amperes, I) [5]. The basis for this is Biot-Savart's law and Maxwell's 

equations, which describe the following facts in a highly simplified way: Wherever an electric 

current flows, a magnetic field is generated, which can be measured using quantum sensors. 

Consequently, the MMG maps the current flow indirectly via the accompanying magnetic field. 

The idea that MMG could serve as a clinical neurophysiological diagnostic was proposed in the 

initial works on magnetometry in 1972 [6], but so far was not pursued due to the technical 

limitations of conventional magnetic sensors. Specifically, conventionally-used SQUID-sensors 

(superconducting quantum interference device) require cryogenic cooling to -269°C (4 Kelvin), 

and they lack ofspatial flexibility [7]. Recently, these limitations have been overcome by the 

development and improvement of optically pumped magnetometers (OPM) (for the physical 

background of OPM-MMG and OPM in biomagnetism, see e.g. [8], [9]). Due to the possibility of 

recording with the flexibly of arranged sensors and without cryogenic cooling, OPMs open up new 

opportunities to study muscles in complex anatomical situations [10]. Therefore, using MMG as 
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an additional neurophysiological method to understand the electromagnetic processes of the 

muscle is now possible.   

Figure 1: Basic principles of EMG and MMG Left: Schematic drawing of a neuromuscular junction 
with two action potentials (yellow arrows) propagating from the neuromuscular junction along the muscle fiber. 
While the EMG measures potential differences (∆V), the OPM-MMG indirectly measures the electric current 
(I) which coincides with a magnetic field. Middle: Simplified illustration of magnetic fields along muscle fibers. 
Magnetic fields have an orientation; thus, they have in principle vectorial components in all three geometrical 
directions (X, Y and Z). Right: OPM can measure the magnetic flux density (𝐵"⃑ ) in two geometrical directions 
(Y and Z). Logically, by turning the OPM in a 90° angle, the 𝐵"⃑ y would be 𝐵"⃑ x. 
 

Approach towards muscle fatigue 

After the first fundamental research and an understanding of the MAP by our group[8], [11], it 

seemed logical to investigate more complex situations of electrical muscle activity, i.e. muscle 

fatigue, and to compare it to the gold standard sEMG. In this context, we hypothesized that using 

OPM-MMG could not only offer equivalent results in terms of frequency decrease compared to 

sEMG, but could also yield new insights – such as the possibility of three-dimensional spatial 

signal acquisition as well as detecting vectorial field components is not possible using sEMG; the 

spatial properties of fatigue will be explored. New findings on muscle fatigue are highly relevant 

since muscle fatigue occurs in everyday life, in sports science[12], and in various neuromuscular 
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diseases[13]. Therefore, we investigated the muscle fatigue strong isometric contraction of the 

rectus femoris muscle in 12 healthy subjects using simultaneous EMG-MMG. 

 
Methods 

Subjects  

12 healthy subjects (6 males, 6 females) participated in the experiment (Table 1).  

The experiments were conducted at the MEG-Center of the University of Tübingen, Germany, in 

March 2021 and according to the standards by the World Medical Association. The subjects of 

this study were all authors of this publication, and gave their informed consent for their data to be 

published. 

 Average Standard deviation 

Age 26.5 years 2.9 years 

Weight 69.3 kg 7.4 kg 

Height 176 cm 7 cm 

Body mass index 22.3 kg/m2 1.5 kg/m2 

Table 1: Characteristics of the 12 participants (6 males, 6 females).   

Experimental setup 

Prior to the experiment, for each subject the left rectus femoris muscle of each subject was imaged 

via high resolution muscle ultrasound (Mindray TE7, 14Mhz-linear probe) in order to determine 

the longitudinal axis of the muscle. After ultrasound imaging, the subject sat down on a 

comfortable chair inside a magnetically shielded room (Ak3b, VAC Vacuumschmelze, Hanau, 

Germany). Here, four paramagnetic surface electrodes (Conmed, Cleartrace2 MR-ECG-

electrodes) and the 4 OPM (QZFM-gen-1.5, QuSpin Inc., Louisville, CO, USA) were placed in a 
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distal to proximal order along a line and parallel to the longitudinal extend of the rectus femoris 

muscle (see also Figure 2). Additionally, one ground electrode was placed on the right shoulder 

and one reference channel was placed on the ipsilateral lateral knee. The OPM were placed 6-7cm 

proximal to the patella, at a 40 mm distance from each other and about 10-30 mm above the skin 

surface. The knee angle was controlled in all subjects at 150°, which was controlled visually using 

a goniometer.  

After this, the experiment was performed: The left ankle was pressed against the chair by a second 

person in the magnetically shielded room and the participants were asked to press against it with 

the strongest and most continuous force possible (Figure 2). This isometric contraction of the 

rectus femoris muscle took place three times in 60-second blocks, with a 30-second rest between 

each block. In order to be able to record the magnetic field vector components in all three spatial 

directions (X, Y and Z) by means of OPM-MMG and since the OPM used only record two vector 

components (in Y- and Z-direction), the OPM were rotated by 90° around their Z-axis to record 

also the vector component in the X-direction after the above-mentioned three 60-second blocks 

(Figure 2, bottom), and other 3 blocks were recorded with the updated set-up. This made it 

possible to acquire the magnetic flux signal in all three spatial directions. To avoid an unbalanced 

fatigue effects, the starting orientation of the OPM sensors was alternated across the subjects 

(cross-design). Following the same logic, we labeled the EMG recordings accordingly to the OPM 

orientation, thus respecting the same alternating pattern.  
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Figure 2: Illustration of the experimental EMG-MMG-setup. Top: Block design according to 
a 3x60 second isometric contraction with a 30-second rest in between. Bottom: After this, the OPM 
was rotated by 90° so that the X-direction could also be recorded, i.e., measurements were repeated 
according to 3x60-second isometric contraction with a break of 30 seconds each. According to a 
cross-design, 6 subjects were measured first in X-Z- and 6 subjects first in Y-Z-direction. In order 
to have a better overview of the relationship between spatial directions and measurable magnetic 
signals, an OPM including the measurable magnetic flux signals is depicted. 
 

Data acquisition 

The analog output signals of the OPM System were recorded using the data acquisition electronics 

of an MEG System (CTF Omega 275, Coquitlam, BC, Canada) and the EEG channels of this MEG 

System were used to record the signals from the sEMG. The employed OPMs (QZFM-gen-1.5, 

QuSpin Inc., Louisville, CO, USA) were capable of measuring two components of the magnetic 

field vector: the y- and z-direction. They provided a magnetic field sensitivity in the order of 15 
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fT/√𝐻𝑧 in a bandwidth of 3–135 Hz, an operating range below 200 nT and a dynamic range of a 

few nanotesla. To adapt to a non-zero magnetic background field, the sensors are equipped with 

internal compensation coils that can cancel magnetic background fields of up to 200 nT in the 

sensing hot rubidium vapor cell (vapor cell measuring 3 × 3 × 3 mm). The OPM system had an 

intrinsic delay of 3.8 ms which was corrected offline.  The EMG signals were band-pass filtered 

with a Butterworth filter with an edge frequency set at 5 Hz (high pass) and 800 Hz (low pass). 

The data were post-hoc calibrated so that the magnetic fields and the electric potentials were in 

temporal synchrony.  

 

Data analysis  

The analysis pipeline is illustrated in Figure 3. Data analysis was performed using MATLAB 

(MathWorks Inc., Natick, Massachusetts USA), and FieldTrip toolbox[14]. Continuously recorded 

EMG and OPM data were segmented in 3 trials of 60 seconds length, accordingly with the 3 

isometric contraction sessions. In all the trials, one second of data-padding was left at the beginning 

and at the end of each trial in order to avoid edge artifact due to filtering processes. The signals 

were demeaned and filtered using a 10 Hz high-pass, zero-phase, 6th order Butterworth infinite 

impulse response (IIR) filter. To suppress the powerline noise a band-stop (frequency ranges 48-

52; 98-102; 148-152), zero-phase, 4th order Butterworth IIR filter was applied. After the 

preprocessing, data was visually inspected, and 5 of the originally 12 subjects were discharged 

because of poor data quality due to technical problem during the recording, leaving 7 subjects with 

high quality data sets. Time-frequency analysis was performed using Morlet wavelet spectral 

power decomposition, with a Gaussian width of 15 (number of cycles) in order to maximize the 

frequency resolution. The time window of interest was set to 100 ms and the frequencies of interest 
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ranged from 20 to 90 Hz in step of 2 Hz. We computed the magnitude of the signal taking the 

square root of the power, and finally we grand averaged the magnitude across the subjects. Since 

OPM can simultaneously record 2 orthogonal signal directions, Y and Z as well as X and Z (when 

the sensor is rotated of 90°), right before the grand average for each subject, we calculate the 

resultant component by applying the Pythagoras theorem so that: 

𝑎! = &𝑎"!# + 𝑎$!# 														𝑏! = &𝑏%!# + 𝑏$!# 				 

where a or b represent the magnitude of the frequency; x, y, and z are the 3 different directions for 

i OPM channels. Accordingly, 𝑎! represents the sum of directions X and Z; 𝑏! represents the sum 

of directions Y and Z. der In order to quantify the frequency decrease, the center of gravity (Cg) 

was calculated for each time points. Center of gravity represent the weighted average of the 

frequency over the entire frequency domain. Magnitude of the signal has been used here to weight 

the frequency so that: 

𝐶𝑔 = 	
∑(𝑓! 	× 	𝑎!)

∑ 𝑎!
 

where f indicate the i frequency and a the respective magnitude. All the steps of the pipeline are 

illustrated in Figure 3. 
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Figure 3: Illustration of the analysis pipeline: The time-frequency analysis of sEMG and 
separately OPM-MMG were calculated for each 60 second-block of isometric contraction and then 
averaged for OPM within a subject. These averages were then again averaged across all subjects 
to enable a group comparison between sEMG and OPM-MMG. 
 
Results 

Time frequency analysis and spectral center of gravity in OPM-MMG 

By rotating the OPM sensors by 90° (Figure 2), a total of 3 spatial directions (X, Y and Z) were 

recorded. In all the spatial directions, the OPM signal displayed the characteristic gradual 

frequency decrease in magnitude (Figure 4). Quantitatively, this decrease is noticeable by looking 

at the decrease of the center of mass of the frequency magnitude over time (Figure 5).      
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Figure 4: Time-frequency analysis of all OPM spatial directions X-Z (left) and Y-Z (right). 
Time on the x-axis from 0 to 60 seconds, frequency range on the y-axis from 20 to 90 Hertz, 
frequency magnitude in the colorscale with blue corresponding to low magnitude and yellow to 
high magnitude. To note, the band-stop filter was applied at 50 Hz for the powerline noise removal. 
The upper figure represents the magnitude of the frequency spectrum in time for the transversal 
(X) and longitudinal (Y) direction. Since the orthogonal spatial direction (Z) is always recorded3 
by the OPM sensor, we analyzed the time frequency spectrum for the Z component during the 
transversal spatial direction recording (lower left) and from the longitudinal recording (lower 
right). For visualization purposes, the colorscale has not been matched between different figures, 
however, it is important to note how the intensity of the frequency spectrum for the transversal X 
direction (upper left) is one order of magnitude higher compared to the longitudinal Y direction 
(upper right). Visually, a decrease is appreciable in all the figure a frequency decrease in 
magnitude. 
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Figure 5: Spectral center of gravity (Cg) over time of all OPM spatial directions X-Z (left), 
Y-Z (right). Time in seconds on the x-axis, frequency in Hz on the y-axis. The spectral center of 
gravity provides a measure of the average height of the frequency in respect to its magnitude (blue 
dots maximum and minimum frequency at each time point, gray line represents a regression line). 
Here, the calculation was repeated for the entire trial at each time point. In all the OPM spatial 
recorded directions, the progressive decrease of the spectral center of gravity indicates that fatigue 
is occurring over time. The entity of this decrease is quantified by the Pearson correlation 
coefficient (r), with a level of statistical significance expressed as p-value (p). 
 
 Center of gravity 

r p 

OPM XX -0.69 <0.0001 

OPM XZ -0.37 <0.0001 

OPM YY -0.34 <0.0001 

OPM YZ -0.15 0.0002 

Table 2: Pearson correlation coefficient (r), with a level of statistical significance expressed as p-
value (p). 

 
 

Comparison EMG-MMG 
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After applying the Pythagorean theorem on the orthogonal OPM direction X-Z and Y-Z, we were 

able to derive two resultant spatial components X and Y that we further compare with the EMG 

recording. Both sEMG and OPM-MMG displayed the characteristic spectrum decrease in 

magnitude over time (Figure 6). However, while the sEMG performance was constant between 

measurements, OPM-MMG performance differed depending on the orientation of the sensors. 

Despite both the orientation showed a frequency decrease over time, the transversal direction X, 

appeared to display higher sensitivity compared to the longitudinal direction Y (Figure 7). 

 

Figure 6: Time-frequency analysis EMG and OPM. Time on the x-axis from 0 to 60 seconds, 
frequency range on the y-axis from 20 to 90 Hz, frequency magnitude in the colorscale with blue 
corresponding to low magnitude and yellow to high magnitude. Different magnitude scaling 
depending on the different unit of measure (µV and nT). To note that the band-stop filter applied 
at 50 Hz for the powerline noise removal. Orthogonal OPM direction (X-Z and Y-Z) were summed 
using Pythagorean addition, leading to a resultant component that depending from the main spatial 

direction has been labeled X (upper right, 𝑎! = &𝑎"!# + 𝑎$!# ) or Y (lower right, 𝑏! = &𝑏%!# + 𝑏$!# ). 

Both sEMG and OPM-MMG display the characteristic frequency decrease across time. 
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Figure 7: Spectral center of gravity (Cg) comparing EMG and OPM. Time in seconds on the 
x-axis, frequency in Hz on the y-axis (blue dots maximum and minimum frequency at each time 
point, gray line represents a regression line). A quantitative decrease of the spectral center of 
gravity over time is visible in both EMG (left) and MMG (right) signal. While this decrease is 
constant comparing different EMG recording, different OPMs orientation perform differently in 

depicting muscular fatigue, with higher sensitivity displayed by X (upper right, 𝑎! = &𝑎"!# + 𝑎$!# ) 

or Y (lower right, 𝑏! = &𝑏%!# + 𝑏$!# ). 

 

 Center of gravity 

r p 

OPM X -0.66 <0.0001 

OPM Y -0.28 <0.0001 

EMG first -0.53 <0.0001 

EMG second -0.52 <0.0001 

Table 3: Pearson correlation coefficient (r), with a level of statistical significance expressed as p-
value (p). 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442396


 

 

Discussion 

This first investigation of the electro-magnetophysiology of muscle fatigue during isometric 

contraction of the rectus femoris muscle using simultaneous sEMG-MMG in the healthy 

participants reveals several new insights: 

• OPM-MMG showed the characteristic frequency decrease of the power spectrum during 

muscle fatigue, which suggests that - as expected - the current flow frequency decreases 

during muscle contraction, just as the frequency of the electrical potential differences 

decreases over time.  

• The main electromagnetic components of muscle fatigue seem to occur circular around the 

muscle fibers (X-direction) along the muscle fibers. A cautious interpretation of this novel 

result must be made (see below). 

• The contactless OPM-MMG appears to produce at least equivalent results regarding time 

frequency analysis to the gold standard sEMG. 

• We proof, that measuring muscle fatique with OPM-MMG in isometric contractions is 

feasible and that OPM can serve as a new neurophysiological method. 

 

Frequency decrease in power spectrum and geometry of magnetic flux signals in muscle fatigue 

In both the gold standard sEMG and the OPM-MMG, we were able to detect the typical frequency 

decrease in the power spectrum of the duration of the isometric contraction, which is consistent 

with previous sEMG studies on muscle fatigue [15]–[17]. A challenging aspect of the analysis of 
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magnetic signals is, the following circumstance: While the EMG measures electric potentials, 

where in the case of the muscle the special geometric orientation can be neglected, in the case of 

magnetic fields the geometric orientation has to be considered. This circumstance is both an 

advantage and disadvantage of the OPM-MMG: On the one hand, direction-selective magnetic 

signals of the muscle can be recorded, on the other hand, they cannot or can only be partially 

recorded if the OPM are not optimally aligned. In our study, this circumstance also became evident. 

The signals of the Z-direction were recorded twice, once in X-Z and Y-Z, which is shown in Figure 

4. This finding appears conclusive when the underlying anatomy of the rectus femoris muscle is 

considered. The muscle fibers of the rectus femoris muscle do not run longitudinally in a parallel 

arrangement as in other muscles (e.g., biceps brachii muscle), but at an angle, which is called the 

pennation angle [18]. The pennation angle describes the angle between the muscle fibers of a 

muscle and its longitudinal axis. When the OPM are rotated from Y-Z to X-Z, the geometric 

orientation in the Z-direction to the oblique muscle fibers is also slightly changed, so that the 

signals are not acquired with the same intensity as before. In addition, by rotating the sensors, it is 

also possible to change the angle of the sensors themselves, which also affects the geometry. 

However, the triaxial (X-Y-Z) signal acquisition of the OPM not only has the advantage in terms 

of spatial signal acquisition, but also a larger amount of data. Whereas EMG only ever captures 

one set of data - for example, a recording over 60 seconds of isometric contraction - OPMs capture 

at least two and therefore have twice as much data set as EMG. Potentially, this could be an 

advantage because more samples mean more information. Simply put, we collect twice as much 

information about a muscle with an OPM-MMG than with an EMG during a standard recording 

(at least in our setup). 
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This additional information was evident when considering the geometry of the main frequency 

decrease during isometric contraction. Here, we found that the main electromagnetic components 

of muscle fatigue occur radially (X-direction r -0.69) and not longitudinally (Y-direction r -0.34) 

along the muscle fibers. The interpretation of this result must be made cautiously, as several factors 

could potentially influence these findings and could not be controlled for in our setup: (1) 

Knowledge of the exact spatiotemporal propagation of the muscle action potential at the cellular 

level remains incompletely elucidated, i.e., we do not know how fast, how many muscle action 

potentials propagate from the neuromuscular endplate to where. (2) The geometry of the signal-

generating muscle fibers and the positions of the signal-detecting OPM will necessarily differ from 

subject to subject, so that alterations in all three spatial directions are possible if the geometry is 

not fully known and controlled. In particular, the pennation angle, which decreases from distal to 

proximal in the rectus femoris muscle, may affect the results of the different spatial directions 

when averaged over 4 OPM.  

Based on these findings, it can be summarized that MMG using OPM provides more information 

and insight into muscle physiology through geometric recording of muscle activity and fatigue, 

but also involves correspondingly more variables (geometry), whose control must be optimized 

and adapted. However, the problem of geometry with respect to MMG can be solved. For this - 

analog to magnetoencephalography - the position, properties and distance to the respective signal 

source needs to be known. One possibility would be, for example, to first perform OPM-MMG ex 

vivo on single muscle fibers and to empirically record the exact spatial propagation of single 

muscle action potentials and then to further investigate it in the context of larger muscle groups 

without significant pennation angle (e.g., M. biceps brachii). 
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Strengths and limitations 

Strengths of our study are the clear and hypothesis-based design and the simultaneous recording 

of two different modalities (EMG and MMG), so that a good comparability is possible. The study 

population was young, did not suffer from any neuromuscular disease and the gender distribution 

was balanced, so that there is sufficient probability that the normal muscle physiology could be 

recorded. Limitations exist mainly with respect to the difficulty of the suboptimal geometry of the 

muscle studied. The pennation angle of the rectus femoris muscle is not optimal, the fibers run 

pinnately and not longitudinally from distal to proximal, as is the case for example with the biceps 

brachii muscle. Since it is impossible to keep the penneation angle exactly the same between 

subjects, this could distort the signals. Furthermore, it was not possible to keep the distance 

between OPM and muscle always the same, because the anatomy of 12 different legs is always 

slightly different, an example would be the amount of subcutaneous fat. In addition, we also did 

not control muscle strength during the experiment, which is otherwise often measured in studies 

on muscle fatigue. However, due to our research questions, whether and how the frequency 

decrease is characterized, the assessment of muscle strength was dispensable. 

 

Conclusions 

OPM are capable of recording muscle fatigue contactless and add relevant information about its 

spatial characterization, offering new insight in the study of muscular activity. Although 

geometrical situation of both the muscle and the alignment of the sensors must be considered, 

OPM-MMG might serve as a new, supplementary neurophysiological method. 
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