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Abstract 
Telomere shortening at chromosomal ends due to the constraints of the DNA replication 

process acts as a tumor suppressor by restricting the replicative potential in primary 

cells. Cancers evade that limitation primarily through rejuvenation of telomerase via 

different mechanisms. Mutations within the promoter of the telomerase reverse 

transcriptase (TERT) gene define a definite method for the ribonucleic enzyme 

regeneration predominantly in cancers that arise from tissues with low rates of self-

renewal. The promoter mutations cause a moderate surge in TERT transcription and 

telomerase rejuvenation to the levels sufficient to delay replicative senescence but not 

prevent bulk telomere shortening and genomic instability. Since the discovery, a 

staggering number of studies and publications have resolved the discrete aspects, 

effects, and clinical relevances of the TERT promoter mutations. Those noncoding 

alterations link the TERT transcription with oncogenic pathways, associate with markers 

of poor outcome, and define patients with reduced survivals in several cancers. In this 

review, we discuss the occurrence and impact of the promoter mutations and highlight 

the mechanism of TERT activation. We further deliberate on the foundational question 

of the abundance of the TERT promoter mutations and a general dearth of functional 

mutations within noncoding sequences as evident from pan-cancer analysis of the 

whole-genomes. We posit that the favorable genomic constellation within the TERT 

promoter may be less than a common occurrence in other noncoding functional 

elements and also the evolutionary constraints limit the functional fraction within the 

human genome, hence the lack of abundant mutations outside the coding sequences.  

 
Introduction 
Telomeres at the natural chromosomal ends are shielded by the shelterin complex 

proteins through mechanisms that differ to some extent in pluripotent and somatic 

tissues1-5. Telomeres require a minimum number of tandem repeats for a sufficient 

amount of associated proteins to form a dynamic protective nucleoprotein structure to 

overcome the end-protection problem6-8. An intrinsic limitation of the DNA replication 

process manifests itself during the synthesis phase of a cell cycle due to unfilled gaps at 

the chromosomal 5'-terminals following the removal of RNA primers9, 10. Besides, the 
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inability of the DNA Pol α-primase complex to initiate the replication from the very end of 

linear DNA on the lagging strands contributes to the loss of ~70-250 nucleotides per cell 

division presaging the gradual telomere attrition11, 12. That process consequentially 

generates the G-rich single-strand overhangs with the length proportional to telomere 

shortening13. The single-stranded overhangs are critical for telomere protection through 

T-loop formation and elongation via telomerase recruitment14, 15. The erosion of 

chromosomal ends through successive mitoses constraints the replicative potential of 

primary cells that tumors adapt to evade through telomere stabilization16-19. The age-

dependent progressive attrition of chromosomal ends, accentuated through genetic 

defects or exogenous factors, causes telomere dysfunctions that drive the hallmarks of 

aging, which include cellular senescence, stem cell exhaustion, genomic instability, 

mitochondrial dysfunction, epigenetic dysregulation, loss of proteostasis, altered 

nutrition sensing, and inflammation20-23. Inherited mutations in genes that encode 

proteins involved in telomere structure, repair, replication, and preservation of 

equilibrium result in debilitating syndromes collectively termed telomeropathies24, 25.  

 

Telomere maintenance and stabilization entails a complex and controlled process 

involving several components functional in critical pathways26. The ribonucleic protein 

telomerase, comprised of intricately interlocked catalytic reverse transcriptase subunit 

(TERT) and an RNA component (TERC) along with auxiliary elements, counteracts 

telomere shortening to overcome the 'end replication problem' and maintain genomic 

integrity in pluripotent stem cells, early embryonic tissues, and cells that undergo 

divisions as a physiological requirement27-29. With a limited amount of both the enzyme 

and substrates, telomerase extends telomeres in the late S-phase through stringent 

mechanisms “where any perturbation becomes causal for different telomere related 

diseases, insufficiency leading to stem cell and tissue failure syndromes and too much 

to cancer predisposition”30-36. Recruitment and processivity of telomerase on telomeres 

are assisted by the shelterin components and terminated by the heterotrimeric CTC1-

STN1-TEN1 (CST) complex followed by C-strand fill-in through the engagement of DNA 

polymerase α-primase32, 37-39. Most human somatic tissues and adult stem cells do not 

express sufficient telomerase to maintain telomere length infinitely due to repression of 
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TERT upon differentiation in a histone deacetylase-dependent manner23, 40. The age-

dependent telomere attrition through upregulation of checkpoint inhibitors and induction 

of DNA damage response acts as a tumor suppressor mechanism6, 41-43.  

 

The unlimited replicative potential of tumor cells through the stabilization of telomeres 

that mask chromosomal ends from the DNA damage repair machinery constitutes one 

of the cancer hallmarks12, 18, 44. The stabilization of critically short telomeres through 

telomerase rejuvenation or less typically via homologous recombination-based alternate 

lengthening of telomeres allows tumor cells to escape replicative senescence or tide 

over the replicative crisis to continued cell divisions through the stages of cancer 

progression2, 45. The detection of recurrent genetic alterations associated with repeat 

preservation at chromosomal ends through large-scale pan-cancer whole-genome 

studies has highlighted the importance of the telomere maintenance mechanism in 

cancers46, 47.  Telomerase reactivation in tumors occurs through several mechanisms 

that include amplification, rearrangements, viral integrations, and promoter methylation 

at the locus leading to increased TERT transcription48-53. The discovery of the mutations 

within the core promoter of the TERT gene, described as a milestone in telomere 

biology, afforded a definite mechanism of telomerase rejuvenation54-56. Those 

noncoding mutations, abundant mainly in cancers that arise from tissues with low rates 

of self-renewal, cause a moderate increase in TERT transcription to rejuvenate 

telomerase to the levels that delay replicative senescence54, 57-60.  

 

In this review, we discuss the occurrence and impact of the promoter mutations and 

highlight the mechanism through which those alterations activate TERT and rejuvenate 

telomerase. We further deliberate on the foundational question of the abundance of the 

TERT promoter mutations in tumors from tissues with low rates of self-renewal and a 

general dearth of noncoding mutations in cancers as evident from pan-cancer analysis 

of the whole genomes61.   
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Discovery of the germline TERT promoter mutation 
The TERT promoter mutations were initially discovered through linkage analysis of a 

large melanoma pedigree with 14 related patients with an early age of onset54. Targeted 

sequencing of the disease-linked 2.2 Mb region on chromosome 5p led to the 

identification of the causal A>C variant at -57 base pairs (bp) position (Chr 5: 1,295,161 

hg19 coordinate; Figure 1) from the ATG start site of the TERT gene in the affected 

individuals. The identified single nucleotide transversion (CCTGAA>CCGGAA; +strand) 

creates a de novo binding site for ETS transcription factors with a general recognition 

motif GGAA/T and a binding motif CCGGAA for ternary complex factors (TCF). The 

altered base resulted in ~1.5-fold increased luciferase activity in reporter assays with 

the TERT promoter constructs over the basal levels with the wild-type sequence54. A 

follow-up targeted sequencing initiative, involving 675 melanoma families, identified the 

same germline -57 A>C TERT promoter mutation in the affected individuals in a single 

7-case melanoma family from Leeds62. With hitherto only two identified families, the 

germline TERT promoter mutation accounts for less than 1% of familial melanoma41.  

Further studies on cancer-prone families also reported disease segregating missense 

variants in genes that encode components of shelterin complex that included, POT1, 

ACD, TRF2, and TINF263-66.  

 

Somatic TERT promoter mutations  
The somatic TERT promoter mutations occur in many cancers with an overall frequency 

of about 27 percent48. Following the discovery of the germline TERT promoter mutation, 

screening of melanoma cell lines from metastasized tumors of unrelated patients 

revealed a high frequency of mutually exclusive heterozygous C>T mutations at -124 

(1,295,228) and -146 (1,295,250; Figure 1) bp positions from the ATG start site on the 

same locus54. The somatic mutations also create de novo CCGGAA/T motifs for 

ETS/TCF transcription factors54, 56. The frequency of those mutations varies among 

cancer types and sub-types with the -124C>T base-change being overwhelmingly 

dominant in most cancers except for skin neoplasms2, 50, 67-71. In melanoma and non-

melanoma skin cancers the -146C>T mutation exceeds the -124C>T in frequency 

signifying differences in etiology70, 72-75. The CC>TT tandem mutations at -124/-125 and 
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-138/-139 bp positions from the ATG start site, which also create identical binding 

motifs, occur specifically in skin cancers and constitute about 10 percent of the detected 

TERT promoter alterations72, 76, 77. The -138/-139 CC>TT mutation also appears 

infrequently in non-skin cancers as the base-change at -139 bp is reported as a rare 

C>T polymorphism represented by rs355502672, 78. Other non-frequent somatic 

mutations within the TERT promoter, detected in different cancers include the -124C>A 

and -57C>A alterations, with the latter originally described as the causal familial 

germline mutation54, 78. 

 

The TERT promoter mutations largely occur in tumors from tissues with low rates of 

self-renewal due to limiting telomerase levels in the transforming cells58, 67. The 

acquisition of the promoter mutations in melanoma, liposarcoma, hepatocellular 

carcinoma, urothelial carcinoma, and medulloblastoma due to lack of telomerase 

becomes advantageous for instantaneous proliferation58, 67, 70. For tumors arising from 

telomerase-positive cells -including cancers of the hematopoietic system, 

gastrointestinal stromal, lung, ovary, and uterine cervix, and prostate- the initial 

acquisition of TERT promoter mutations would unlikely to be of any selective 

advantage58, 67, 79-84. That paradigm is supported by the acquisition of the TERT 

promoter mutations as a somatic genetic rescue mechanism in patients with pulmonary 

fibrosis and aplastic anemia caused by telomerase loss due to germline variants in 

telomere-related genes85-87.  

 

Impact of TERT promoter mutations 
Since the discovery, a staggering number of studies and publications have resolved the 

discrete aspects, effects, and clinical relevances of the TERT promoter mutations. Pan-

cancer cell lines with the TERT promoter mutations exhibit gene-expression 

characteristics dominated by epithelial to mesenchymal transition and MAPK activation 

signaling generating distinct tumor environments and intercellular interactions88. The 

promoter alterations associate with cancer stemness through telomerase upregulation, 

link transcription of the telomerase catalytic subunit with oncogenic pathways, associate 

with markers of poor outcome, and define patients with reduced survival in different 
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cancers72, 76, 78, 89, 90. Those mutations define a switch between adenomas and 

carcinomas of the liver and are a prerequisite for the rapid growth of tumors in isocitrate 

dehydrogenase (IDH) wild-type adult glioblastomas after years of dormancy91-93. 

 

The TERT promoter mutations with substantial frequencies occur mostly in specific 

clinical and phenotypic subtypes. In melanoma, those mutations associate with 

advanced stages, markers of poor prognosis, increased tumor growth, and together with 

BRAF/NRAS alterations define patients with reduced disease-free and melanoma-

specific survival72, 76, 94-97. A study to measure the effect of individual TERT promoter 

alterations showed that the less frequent -138/-139 CC>TT tandem mutation had the 

worst effect on disease-free and melanoma-specific survival in stage I and II patients77. 

In different melanocytic neoplasms, the TERT promoter mutations serve as ancillary 

tools for histological ambiguous tumors because of their high specificity for melanoma 

and absence in melanocytic nevi and melanocytes adjacent to the tumors57, 98-101. In 

bladder cancer, besides being associated with an increased disease recurrence and 

poor patient outcome, the specificity of the TERT promoter mutations distinguishes 

histologically deceptive cancers from benign mimics78, 102. In gliomas, the TERT 

promoter mutations associate with high disease grade, worst patient survival, and 

together with other markers follow histological classification into subgroups with distinct 

disease outcomes67, 103-109. An investigation based on editing out of the TERT promoter 

mutations showed that the local injection of adenine base editor fused to Campylobacter 

jejuni CRISPR-associated protein 9 inhibited the growth of gliomas harboring those 

alterations110. Those mutations cause aggressiveness in meningioma resulting in 

reduced patient survival and define a highly aggressive subgroup of patients with 

pleural mesothelioma111, 112. The TERT promoter mutations in combination with BRAF 

alterations define the most aggressive subtypes among papillary thyroid cancer patients 

with distance metastases, the highest recurrence, and mortality113. In differentiated 

thyroid cancer, the promoter mutations define an independent prognostic factor after 

adjusting for risk factors described in the 8th edition of the American Joint Committee on 

Cancer classification114.  
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The TERT promoter mutations tend to occur together with other oncogenic alterations in 

different cancers with functional consequences. In melanoma and thyroid cancer, the 

promoter mutations occur more frequently in tumors over the background of 

BRAF/NRAS oncogenic alterations54, 72, 113. More than half of the melanoma tumors 

carrying BRAF or NRAS alterations acquire TERT promoter mutations with synergistic 

functional consequences115. In hepatocellular carcinoma, TERT promoter mutations 

associate positively with CTNNB1 and ARID2 mutations as well as CDKN2A 

deletions116. BRAF mutations render TERT expression dependent on MAPK activation 

in tumors with the promoter mutations. Both alterations linked by ETS1, synergistically 

promote cancer cell proliferation and immortalization117, 118. The RAS-extracellular 

signal-regulated kinase (ERK) regulates the active chromatin state through physical 

binding of ERK2 to the mutant TERT promoter via displacement of histone deacetylase 

1 leading to the recruitment of RNA polymerase II90, 119. Activated MAPK also 

phosphorylates FOS to upregulate GABPB, which in turn binds to the mutant TERT 

promoter120. The presence of TERT promoter mutations in cell lines over the 

background of activated BRAF triggers strong apoptosis-induced cell death upon 

treatment with MAPK inhibitors and abolishes the growth of in vivo tumors harboring 

both mutations121.   

 

A polymorphism rs2853669 at the -245 bp position (Figure 1) from the ATG site within 

the proximal promoter of the TERT gene modulates the effect of the mutations on 

disease outcome as reported in different cancers76, 78, 96, 107, 122, 123. The variant allele 

disrupts a preexisting non-canonical ETS site adjacent to an E-box in the proximal 

region of the TERT promoter124. Experiments based on bacterial artificial chromosomes 

identified that motif as the upstream of the two ETS sites on the TERT promoter. ETV5 

binds at those ETS sites through interaction with c-Myc/Max and in conjunction with E-

boxes125. The core TERT promoter consists of 260 base pairs with several transcription 

factor-binding sites and lacks a TATA box or a similar sequence125. Other sequence 

elements on the TERT promoter include five GC-boxes, which are the binding sites for 

zinc-finger transcription factor family SP1. The binding of Sp1 and Sp3 to their cognate 

recognition sites leads to TERT transcription only in conjunction with a permissive 
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chromatin environment; whereas, several factors including p53 down-regulate TERT 

through interaction with Sp1 or other transcription factors124-126.  

 

The functionality of TERT promoter mutations 
The TERT promoter mutations result in increased promoter activity in cells transfected 

with vectors containing the mutant constructs54, 56, 78, 117. The malignant lesions with the 

promoter mutations from a range of cancers exhibit a statistically significant enhanced 

TERT transcription and telomerase activity72, 84, 104, 106, 127-131. Introduction of the 

promoter mutations into stem cells prevents the usual TERT repression following the 

differentiation and the differentiated cells display telomerase activity comparable to 

immortal tumor cell lines58. In comparison to the -57 A>C and -146 C>T mutations, the -

124 C>T alteration exerts a maximal effect on TERT transcription in tumors and stem 

cells58, 104, 132. The TERT promoter mutations through de novo binding sites for ETS 

transcription factors increase chromatin accessibility as shown by over-representation of 

the mutant alleles in ATAC-sequencing assays133.  

 

Transcription regulation by ETS factors -a large family with about 27 members reported 

in humans- involves the formation of multi-protein/DNA complexes125, 134, 135. In 

glioblastoma, liver cancer, and bladder cancer cell lines, the obligate multimeric ETS 

family member GA-binding protein, alpha subunit (GABPA) as a heteromeric complex 

with GABPB1 binds to the de novo consensus sites generated by the -124 C>T and -

146 C>T mutations in cooperation with the native sites136, 137. The recruitment of GABP 

transcription factors also mediates a long-range chromatin interaction with sequence 

elements 300 kb upstream138. Studies in multiple cell lines demonstrated, an epigenetic 

switch on the mutant allele to H3K4me2/3, a mark of active chromatin, along with the 

recruitment of RNA-polymerase II after the binding of GABPA/B1 complex leads to a 

mono-allelic TERT expression137, 139. The wild-type allele, in contrast, retains 

H3K27me3, indicating a continued epigenetic silencing137. Experiments in glioblastoma 

cells showed that disruption of GABPβ1L, a tetramer forming long isomer of GABPB1 

resulted in decreased TERT expression, telomere loss, and cell death in the promoter 

mutation-dependent manner. In a xenograft model, the decrease in tumor growth in the 
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brains of immunocompromised mice ensued the implantation of human cells with 

disrupted GABPβ1L140. Other ETS factors known to bind those consensus sites on 

mutant alleles include ETS1 in glioblastoma and ETV5 in GABP-negative cell lines from 

thyroid cancer118, 141. The binding to the site specifically created by the -146 C>T 

mutation also involves non-canonical NF-kB signaling with a cooperative binding 

between p52/RelB and ETS1142, 143. The TERT promoter mutations also map to the 

central quadruplex leading to possible alteration of hydrodynamic properties, stability, 

and local epigenetic modifications144-146. 

 
TERT promoter mutations and telomere length 
Being causal for increased TERT and consequently telomerase levels, it was assumed 

that the promoter mutations would associate with increased telomere length. Based on 

the correlation in different human tissues, the telomere length in surrogate tissues like 

blood reflects the status in tumor-affected organs147. Measured in blood cells, 

individuals from the melanoma family carrying the germline -57 A>C TERT promoter 

mutation had extra-extended telomeres compared to the non-carriers54, 148. Similarly, 

teratomas originating from an injection of hESC with the -124 C>T TERT promoter 

mutation had telomere length comparable to that in undifferentiated cells 58. In contrast, 

telomeres in general, due to the excessive proliferation or through other disruptions like 

shelterin complex dysregulation, are shorter in tumors than in the noncancerous 

tissues148-151. Despite rejuvenated telomerase in most instances, cancers due to 

functional constraints maintain short telomeres, as the forced elongation results in 

differentiation and suppression of innate immune-related genes implicated in the 

maintenance of tumors in an undifferentiated state152.  

 

As observed in several cancers, telomeres are invariably shorter in tumors with than 

without the acquired TERT promoter mutations48, 104, 116, 123, 148, 153-156. Earlier it was 

thought that the acquisition and the context at the point of telomere crisis during the 

course of cellular transformation could be a reason for that observation in agreement 

with the reported reduced telomere contents in tumors with TERT modifications47, 157. 

Bypass of replicative senescence and continued telomere attrition in affected cells was 
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postulated to be causal for unstable genomes through cycles of end fusions and 

breakages with short telomeres causal for initiating cascades leading to events like 

chromothripsis and kataegis at the point of crisis158, 159. The later evidence pointed to an 

early occurrence of the TERT promoter mutations before biallelic inactivation of 

checkpoint inhibitors and continued shortening of telomeres in tumors as in 

melanoma57, 100, 160.  

 

Based on experiments with isogenic human embryonic stem cells (hESC) experiments, 

it was proposed that the acquisition of TERT promoter mutations “rejuvenates 

telomerase sufficient to stabilize critically short telomeres to delay replicative 

senescence but insufficient to prevent bulk telomere shortening”57. The continued 

proliferation in the process elicits genomic instability through an increased number of 

short telomeres setting the context for decreased telomere length in tumors with those 

mutations and selection pressure for telomerase upregulation57. Further activation of 

telomerase through an unknown mechanism pulls cells out of telomere crisis with a 

heavily rearranged genome6, 57. The lack of correlation between the TERT promoter 

mutations and telomere length also extends to telomerase levels as the holoenzyme 

preferentially acts on the shortest telomeres57, 89. Transforming cells with relatively long 

telomeres, limited telomerase, and deleted checkpoints survive critical barriers until the 

telomerase rejuvenation. That is explained as an antecedent for the association 

between increased constitutive telomere length and cancer risk; the evolution of tumors 

is predicated on the serial accumulation of driver mutations through rapid cell divisions 

and the variation in telomere length can affect the proliferative potential of premalignant 

cells41, 57, 148, 161-164.    

 
The context for the abundance of TERT promoter mutations 
The TERT promoter mutations represented two conceptual advancements, genomic 

alterations driving cancers via transcriptional alteration and a trail of missing mutations 

not accounted for through only coding sequences46, 61, 165, 166. That raised expectations 

for a surfeit of driver mutations lurking within the functional elements outside the protein-

coding sequences in human cancers. The data from the encyclopedia of DNA elements 
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(ENCODE) project stressed the importance of genomic regulatory elements within the 

human genome along with an enhanced understanding of the role of the spatial 

organization of the genome and cis-acting elements in gene regulation167, 168. The 

mutations within functional noncoding elements including promoters, enhancers, 

insulators, long noncoding RNAs, and other regulatory elements can affect expressions 

of disparate critical genes59, 169. Different initiatives did identify many mutations in the 

noncoding genome, particularly within the promoter regions of several genes in different 

cancers, albeit, at rather low frequencies and with less than consequential functional 

outcomes apart from a few exceptions59, 61, 170-173. The pan-cancer whole-genome 

studies based on the extended datasets from 2,658 genomes, however, imply that 

independent of statistical power noncoding cis-regulatory driver mutations in known 

cancer genes other than those within the TERT promoter are much less frequent than in 

the protein-coding sequences61. That foundational anomaly merits an attempt for an 

epistemological understanding.  

 

The relative overrepresentation of the TERT promoter mutations may due to a 

vulnerable milieu at the locus where a single base alteration provides motifs for optimal 

binding of ETS transcription factors to drive up the transcription174. Upregulation of 

mutant allele-specific TERT transcription involves spatial architecture where binding of 

the GABPA/GABPB1 complexes at the de novo sites coopts optimally spaced 

preexisting tandem proximal native ETS sites136. Two in-phase proximal tandem native 

ETS sites within the TERT promoter at 30/53 and 25/48 base-pairs from the mutational 

sites at -124 and -146 bp from the ATG start site (Figure 2A), respectively, are 

obligatory for facile binding of the GABP heteromeric complex136, 137. The spatial 

arrangement between native and de novo ETS sites permits competitive recruitment of 

the GABP complex through the displacement of initially coopted ELF1/2 at the latter 

sites175. The fortuitous co-occurrence of the ideally spaced tandem native sites near the 

mutational hotspots on the TERT promoter, crucial for that optimal spatial architecture, 

maybe less than a routine occurrence within promoters or other regulatory elements 

elsewhere in the genome. In the absence of such permissive settings, the selection of a 

single mutation may not be as consequential as that in the TERT promoter. The 
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differences in relative proximities and conformations between the preexisting sites and 

those created by different TERT promoter alterations could also be a factor for the 

observed intra-mutational differences in terms of transcription, mechanism, and disease 

outcomes77, 104, 142, 143.  

 

The heavy occurrence of a single oncogenic mutation in BRAF in melanoma and other 

cancers and the rareness of alterations at the corresponding residues in A-RAF and C-

RAF paralogs affords a comparable analogy176-178. A single mutation at the V600 

residue that mimics activation at two adjacent residues is sufficient to activate BRAF 

~10-fold over basal levels179, 180. Constitutively phosphorylated S445 residue and the 

448 residue with the phosphomimetic aspartic acid in BRAF (Figure 2B), eliminates the 

need for additional activating alterations, which would be essential for maximal 

activation in other RAF isoforms176, 181. Similar to the growth advantage accrued from a 

single nucleotide alteration in BRAF, the preexisting native ETS sites within the TERT 

promoter provide a background where the acquisition of a single base change creates 

an optimally spaced de novo ETS site with colossal consequences.  

 

Besides, evolutionary constraints on the fraction of functional noncoding human 

genome may be a limiting factor for driver mutations outside the coding sequences. 

Despite the ENCODE biochemical annotations, much of the noncoding sequences other 

than DNase hypersensitive sites, promoters, and untranslated regions are not optimized 

for wider pan-mammalian conservation182, 183. Much of the noncoding human sequences 

instead of a teleological narrative are thought to play nucleotypic or architectural roles 

without being constricted for specific functionality183, 184. For the human population to 

maintain a constant size through generations, increased fertility must compensate for 

the reduction in the mean fitness caused by deleterious mutations. Evolutionary and 

mutational load constraints arguably put a limit on the functional fraction of the genome 

to the estimated ~8.2-15%182, 184-186. The lack of preexisting favorable constellations in 

functional elements further restricted by evolutionary constraints could be limiting for the 

abundant selection of somatic mutations within the noncoding genome. Mutations within 

the TERT promoter fulfill many of the selection criteria for Darwinian evolutions of 
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tumors that arise in tissues with low rates of self-renewal where rejuvenation of 

telomerase delays replicative senescence187. The acquisition of the mutations and the 

consequent de novo sites in the human TERT promoter is analogous to GABP complex 

binding sites in somatic cells of rodents, which activate telomerase. The presence or 

absence of GABPA binding sites in the TERT promoter determines whether replicative 

senescence acts as a tumor suppressor in those species. The TERT promoter 

mutations, as asserted, provide a solution for Peto's paradox in rodents, based on the 

observed resistance of large-bodied species to develop cancer compared to small 

ones188.          

 
Conclusions 
The gradual attrition of telomeres due to limited telomerase in most adult cells while 

quintessential for aging doubles as a natural barrier for cancer development, which is 

predicated on the serial accumulation of driver mutations. Tumors attain an unlimited 

replicative potential mostly through telomerase rejuvenation via increased TERT 

transcription. The TERT promoter mutations represent a definite mechanism for 

telomerase rejuvenation predominantly in cancers that arise from tissues with low rates 

of self-renewal. The broadly distributed noncoding mutations have emerged as markers 

for histological diagnosis, of poor outcome in a range of cancers and possibly 

therapeutical targets. The mechanism of the TERT activation through the promoter 

mutations has opened up a range of transcription factors and histone marks that 

associate with mutant alleles as potential treatment targets. The discovery of the TERT 

promoter mutations, unique in itself, held an unrealized promise of a surfeit of driver 

mutations in cancers within the noncoding genome. It is plausible that the lack of 

mutational abundance outside the coding sequences may be due to the lack of 

fortuitous genomic constellation as within the TERT promoter and evolutionary 

constraints that limit the functional fraction within the human genome.  
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Legends to the figures 

Figure 1. A schematic representation of the core TERT promoter. The mutations at -

57, -124, and -146 bp positions from the ATG start site of the TERT gene create 

consensus binding motifs for ETS transcription factors. The variant allele of a 

common T>C polymorphism represented by rs2853669 at -245 bp disrupts a 

preexisting non-canonical ETS2 binding site close to an E-box2.  

 

Figure 2. A. A schematic representation of the de novo binding sites for ETS 

transcription factors created by the mutations at the -124 and -146 bp sites on the 

TERT promoter. The two preexisting tandem ETS sites 30 and 53 bp from the two 

mutational sites at -124 and -146 bp, respectively, are required for cooperative 

binding of the GABP heterotetramer complex at the de novo sites136. B. Structure of 

the RAF proteins. A single mutation at V600 residue within the third conserved 

region (CR3) mimics activation of the two adjacent residues is sufficient to activate 

BRAF. The constitutively phosphorylated S445 residue and the phosphomimetic 

aspartic acid at the amino-acid 448, eliminates the requirement for additional 

activating alterations, which would be needed for maximal activation of ARAF and 

CRAF paralogs181.           
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