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Abstract 

How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have 

focused on how individual concepts are processed, but how conceptual representation changes 

to suit the context is unclear. We parametrically manipulated the association strength between 

words, presented in pairs one word at a time using a slow event-related fMRI design. We 

combined representational similarity analysis and computational linguistics to probe the 

neurocomputational content of these trials. Individual word meaning was maintained in lateral 

and medial temporal and medial parietal cortex (areas associated with heteromodal 

representation) when items were judged to be unrelated, but not when a linking context was 

retrieved. Context-dependent meaning was represented in left lateral prefrontal and premotor 

cortex and pre-supplementary motor area (regions associated with semantic control). Moreover, 

neural representation of context-dependent meaning was affected by the association strength in 

left lateral prefrontal cortex (LIFG) and anterior temporal lobe (ATL) to different degrees: ATL 

supported combined meanings more for strong associations; in contrast, LIFG supported 

combined meanings across trials, even when more control was required. These findings 

indicate that the semantic store in ATL amplifies long-term semantic associations when these 

are retrieved but does not directly capture short-term non-dominant associations. 
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Introduction 

The question of how concepts are coded in the brain is a core issue in cognitive 

neuroscience. Extensive evidence from neuropsychological, neuroimaging and neuromodulation 

studies has provided information about how individual concepts are represented in the brain 

(Martin 2007; Patterson et al. 2007; Binder and Desai 2011; Pulvermüller 2013; Yee et al. 2014; 

Lambon Ralph et al. 2017; Jefferies et al. 2020). However, it is still poorly understood how the 

brain produces diverse patterns of semantic retrieval to suit the context. For example, APPLE is 

associated with CAKE when it occurs together with KITCHEN, but also with LAPTOP when we 

encounter it with KEYBOARD. We therefore create context-dependent representations of 

concepts, integrating individual meanings into dynamically-modulated multilevel representations 

to facilitate flexible semantic cognition (Yee and Thompson-Schill 2016). 

Even though concepts are thought to be constructed in this dynamic fashion, empirical 

studies have, until recently, largely focused on invariant conceptual representation – i.e. the 

features of concepts that do not vary across contexts (Yee and Thompson-Schill 2016). 

Distributed modality-specific features (e.g. visual, auditory, motor and valence features) in 

‘spoke’ systems are thought to be integrated within a semantic ‘hub’ or ‘convergence zone’ in 

the anterior temporal lobes (ATL), giving rise to heteromodal concepts (Patterson et al. 2007; 

Lambon Ralph et al. 2017). However, ATL along with left angular gyrus (AG), is also thought to 

support conceptual combination, with the strongest responses observed when conceptual 

retrieval is highly coherent and control demands are minimized (Bemis and Pylkkänen 2011, 

2013; Teige et al. 2018; Teige, Cornelissen, Mollo, Gonzalez Alam, et al. 2019). In other 

circumstances, when retrieval must be focused on non-dominant associations and unusual 

conceptual combinations, there is greater engagement of the ‘semantic control network’, which 

includes left inferior frontal gyrus (IFG) and left posterior middle temporal gyrus (pMTG) 

(Whitney et al. 2010; Hallam et al. 2016; Hallam et al. 2018; Gonzalez Alam et al. 2019; Wang 
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et al. 2020). These semantic control processes can shape the interaction between hub and 

spokes in order to vary our retrieval of concepts to suit the context in which they occur (Davey et 

al. 2016; Lambon Ralph et al. 2017; Chiou et al. 2018; Chiou and Lambon Ralph 2019; Zhang 

et al. 2021). 

Multivoxel pattern analysis (MVPA) provides us with a powerful tool to probe how the 

representation of semantic information in the brain varies according to the context. MVPA 

studies have started to explore how features combine to form concepts and how word meaning 

is modified syntactically (Allen et al. 2012; Coutanche and Thompson-Schill 2014; Boylan et al. 

2015; Hoffman and Tamm 2020; Solomon and Thompson-Schill 2020). A recent 

magnetoencephalography study showed that neural representations of the verb DO were 

modified across temporal, inferior frontal and inferior parietal regions according to the noun it 

was combined with (Lyu et al. 2019). In these situations, semantic control processes might be 

able to bias the pattern of semantic retrieval in task-appropriate ways by facilitating or inhibiting 

connections between the heteromodal hub in ATL and specific task-relevant and task-irrelevant 

spokes. Yet in many other situations requiring semantic control – for example, when weak as 

opposed to strong thematic associations must be identified – participants are not required to 

focus on specific types of features, but instead to identify a context in which concepts co-occur. 

This might require participants to create an event representation, which can then bias retrieval 

towards features of the concept that are consistent with this event, and away from other 

potentially dominant features which are inconsistent (Mirman et al. 2017). An understanding of 

the neurobiological mechanisms that underpin this process remains elusive. 

In the current study, we used fMRI to identify where in the brain non-contextualized 

meanings of words are represented as well as to determine how words are integrated to form 

context-dependent conceptual representations. We varied the strength of thematic relationships 

between two words presented successively, from very strong (dog with leash), through 
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intermediate trials (dog with beach) to very weak pairs (dog with keyboard). We leveraged word 

embeddings of natural language use to establish vectors of similarity for our word stimuli which 

were either (i) focused on context-invariant meaning using word2vec (Mikolov et al. 2013) or (ii) 

captured vectors of similarity for words based on the ongoing context (i.e. taking into account 

the preceding/following words) using ELMo (Peters et al. 2018). We combined these 

computational linguistic approaches with a slow-event related fMRI design and representational 

similarity analysis (RSA) (Kriegeskorte et al. 2006; Kriegeskorte et al. 2008), implemented using 

a searchlight approach, to determine where in the brain similarity in multi-voxel activity patterns 

could be predicted by context-free and context-sensitive conceptual similarities. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.03.442424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442424
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 

Participants 

A group of 32 healthy participants aged 19 to 35 years (mean age = 21.97 ±�3.47 years; 

19 females) was recruited from the University of York. They were all right-handed, native 

English speakers, with normal or corrected-to-normal vision and no history of psychiatric or 

neurological illness. The study was approved by the Research Ethics Committee of the York 

Neuroimaging Centre. All volunteers provided informed written consent and received monetary 

compensation or course credit for their participation. Data from four participants was excluded 

due to head motion, resulting in a final sample of 28 participants for the semantic task. This 

study provides a novel analysis of a dataset first reported by (Gao et al. 2020).  

Semantic Task  

The experimental stimuli were 192 English concrete noun word pairs. We excluded any 

abstract nouns and pairs of items drawn from the same taxonomic category, so that only 

thematic links were evaluated. The strength of the thematic link between the items varied 

parametrically from trials with no clear link to highly related trials; in this way, participants were 

free to decide based on their own experience if the words had a discernible semantic link. There 

were no ‘correct’ and ‘incorrect’ responses: instead, we expected slower response times and 

less convergence across participants for items judged to be ‘related’ when the associative 

strength between the items was weak, and for items judged to be ‘unrelated’ when the 

associative strength between the items was strong. Overall, there were roughly equal numbers 

of ‘related’ and ‘unrelated’ responses across participants. 

Each trial began with a visually presented word (WORD-1) which lasted 1.5s, followed 

by a fixation cross presented at the centre of the screen for 1.5s. Then, the second word 

(WORD-2) was presented for 1.5s, followed by a blank screen for 1.5s. Participants had 3s from 
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the onset of WORD-2 to judge whether this word pair was semantically associated or not by 

pressing one of two buttons with their right hand (using their index and middle fingers). During 

the inter-trial interval (3s), a red fixation cross was presented until the next trial began. Both 

response time (RT) and response choice were recorded. Participants finished 4 runs of the 

semantic task, each lasting 7.3 min. Before the scan, they completed a practice session to 

familiarise themselves with the task and key responses. 

Neuroimaging Data Acquisition 

Imaging data were acquired on a 3.0 T GE HDx Excite Magnetic Resonance Imaging 

(MRI) scanner using an eight-channel phased array head coil at the York Neuroimaging Centre. 

A single-shot T2*-weighted gradient-echo, EPI sequence was used for functional imaging 

acquisition with the following parameters: TR/TE/θ = 1500 ms/15 ms/90°, FOV = 192 × 192 mm, 

matrix = 64 × 64, and slice thickness = 4 mm. Thirty-two contiguous axial slices, tilted upper to 

the eye, were obtained to decrease distortion in the anterior temporal lobe and prefrontal cortex. 

Anatomical MRI was acquired using a T1-weighted, 3D, gradient-echo pulse-sequence 

(MPRAGE). The parameters for this sequence were as follows: TR/TE/θ = 7.8s/2.3 ms/20°, 

FOV = 256 × 256 mm, matrix = 256 × 256, and slice thickness = 1 mm. A total of 176 sagittal 

slices were acquired to provide high-resolution structural images of the whole brain. 

Semantic Similarity Matrices 

Using natural language processing tools, two semantic similarity matrices were 

constructed based on two types of word embedding to investigate different types of semantic 

information in neural activity patterns.  

word2vec: The word2vec model represents words as fixed high‐dimensional vectors of 

embeddings. The vectors of word embeddings were generated by training the network on the 

100‐billion‐word Google News corpus. Each time the network was presented with a word from 
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the corpus, it was trained to predict the context in which it appeared, where context was defined 

as the two words preceding and following it in the corpus. The model learns to represent words 

used in similar contexts with similar patterns; each word’s vector had 300 dimensions, with 

similarity across two words’ vectors indicating that they appear in similar contexts, and thus 

have related meanings. Word2vec embeddings are fixed and unique for each word; for example, 

irrespective of whether ‘apple’ was followed/preceded by ‘bread’ or ‘keyboard’, its word 

embeddings were the same. Therefore, using word2vec, we constructed semantic similarity 

matrices for WORD1 and WORD2 that reflected the meaning of single words/concepts, 

unmodified by the context in which these items appeared, by calculating cosine similarity 

between pairs of words drawn from different trials.   

ELMo: Given that context can change the meaning of individual words in sentences and 

phrases, Peters et al. (2018a) proposed a deep contextualized word embedding model called 

ELMo (Embeddings from Language Models) to capture the context-dependent semantic 

representation of words. Rather than providing a dictionary of words and their corresponding 

vectors, ELMo analyses words within their linguistic context, with each token assigned a 

representation that is a function of the entire input sentence. ELMo representations are deep in 

the sense that they are a function of all of the internal layers of a deep bidirectional language 

model: there is a context-independent fixed input vector for the word in the lowest layer, with 

two higher layers capturing backward and forward context-sensitive aspects of word meaning. 

We used the pretrained model released by Allennlp (Gardner et al. 2018), which was trained on 

a large test corpus of 5.5B tokens from Wikipedia and the English news data from the workshop 

of machine translation (WMT) 2008-2012. We extracted a linear weighted combination across 

the three layers in ELMo to generate context-sensitive embeddings for WORD2. Each vector 

representing word meaning had 1024 dimensions. We calculated the current-context-sensitive 
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semantic similarity matrix for WORD-2, to search for brain regions where the pattern of 

responses across voxels was associated with contextually-constrained semantic cognition.  

The association strength for each word-pair measured by ELMo and word2vec was 

highly similar, the correlation across 192 pairs was strong, r = 0.706 (p < 0.001). The correlation 

between the semantic similarity matrix of context dependent meaning for WORD-2 (ELMo) and 

of original meaning (word2vec) for both two words were examined when all word-pairs were 

included: WORD-1: r = -0.018, p = 0.0146; WORD-2: r = 0.0238, p = 0.179. These weak 

correlations between ELMo and word2vec based semantic similarity matrices suggested two 

metrices captured different semantic information. 

fMRI Data Preprocessing Analysis 

Image preprocessing and statistical analysis were performed using FEAT (FMRI Expert 

Analysis Tool) version 6.00, part of FSL (FMRIB software library, version 5.0.9, 

www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the task were discarded to allow for T1 

equilibrium. The remaining images were then realigned to correct for head movements. 

Translational movement parameters never exceeded 1 voxel in any direction for any participant 

or session. No spatial smoothing was performed. The data were filtered in the temporal domain 

using a nonlinear high-pass filter with a 100s cutoff. A two-step registration procedure was used 

whereby EPI images were first registered to the MPRAGE structural image (Jenkinson and 

Smith 2001). Registration from MPRAGE structural image to standard space was further refined 

using FNIRT nonlinear registration (Andersson et al. 2007, 2007). The denoised time series 

were transformed to standard space for the multiple variate analyses.  

Pattern Similarity Analysis  

In order to examine how the characteristics of semantic representation were influenced 

by the context, we focused on the decision phase of the task. This period corresponded to TR 6 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.03.442424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442424
http://creativecommons.org/licenses/by-nc-nd/4.0/


& 7 after WORD-1 onset. Second-order representational similarity analysis (RSA) was 

performed using a searchlight approach; semantic RSMs (representation similarity matrices, 

based on semantic similarity) were compared with brain-based RSMs (neural pattern similarity 

matrices) to test where and what semantic information was represented in the brain. Neural 

pattern similarity was estimated for cubic regions of interest (ROIs) containing 125 voxels 

surrounding a central voxel. Within each of these ROIs, we compared patterns of brain activity 

to derive a neural RSM, derived from the pairwise Pearson correlations of each pair of trials. We 

excluded any pairs presented in the same run from the calculation of pattern similarity to avoid 

any auto-correlation issues. Spearman’s rank correlation was used to measure the alignment 

between semantic and brain-based models during the decision phase (the alignment with 

word2vec and ELMo based semantic model were named as conceptual representation of 

original meaning and context-sensitive meaning, separately). The resulting coefficients were 

Fisher’s z transformed and statistically inferred across participants. The searchlight analysis 

was conducted in standard space. A random-effects model was used for group analysis. Since 

no first-level variance was available, an ordinary least square (OLS) model was used. 

Relationship between Neural Pattern Similarity and Semantic Similarity as a Function of 

Association Strength 

To investigate how semantic representation in the brain was modulated by semantic 

association strength, we performed a novel sliding window pattern similarity analysis. We sorted 

all the word-pairs from weakly to strongly associated according to their semantic association 

strength (word2vec value) for the related and unrelated conditions separately. Next, we grouped 

every 16 trials into one window (window size); adjacent windows partially overlapped with each 

other (step size) by 4 trials. We then computed second-order RSAs within each window using 

the above method. The next step of this analysis established how semantic-neural alignment 

changed as a function of the association strength by using a Spearman correlation. The 
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resulting correlation coefficients were transformed into Fisher’s z-scores and then examined 

using a random-effect model for group analysis, using OLS. We performed several variants of 

this analysis, using different window and step sizes, in order to ensure the robustness of our 

conclusions.  

Mixed-Effects Modelling Analysis 

Since participants judged different numbers of items to be semantically related and 

unrelated, mixed-effects modelling was used for the analysis of the behavioural and 

neuroimaging data. This approach is particularly suitable when the number of trials in each 

condition differs across participants (Mumford and Poldrack 2007; Ward et al. 2013). Mixed-

effects modelling was implemented with lme4 in R (Bates et al. 2014). We used the likelihood 

ratio test (i.e., Chi-Square test) to compare models, in order to determine whether the inclusion 

of predictor variables significantly improved the model fit. 

In the analysis of the behavioural data, semantic association strength was used as a 

predictor of the decision participants made (judgements of whether the words were related or 

unrelated) and, in a separate model, the reaction time this decision took. Participant identity was 

included as a random effect. By comparing models with and without the association strength 

predictor, we were able to establish whether semantic association strength predicted semantic 

performance. 

Mixed-effects modelling was also used to examine the influence of association strength 

on the neural representations of context-dependent meaning (correlation between neural 

similarity matrix and semantic similarity matrix of ELMo for WORD-2 for each window). 

Representation of context-dependent meaning was the dependent variable and participant 

identity was included as a random effect. By comparing this model with and without the 
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predictor of association strength, we could uncover whether this association strength could 

predict conceptual representation in the brain. 

Results 

Behavioural Results  

 

 

Figure 1. Experiment paradigm and behavioural results.  A. Left-hand panel: Semantic 

association task; participants were asked to decide if word pairs were semantically related or 

not. Right-hand panel: Word pair examples for both related and unrelated decisions from one 

participant, with association strength increasing from weak (L1; little semantic overlap) to strong 
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(L5; high semantic overlap). Trials were assigned to related and unrelated sets on an individual 

basis for each participant, depending on their decisions, and then split into 5 levels for display 

purposes, based on word2vec scores. B. The semantic association strength (word2vec) was 

negatively associated with reaction time for related trials and positively associated with reaction 

time for trials judged to be unrelated. People were faster to discern a relationship between 

words when they had high semantic overlap, and slower to decide that the words were 

unrelated when they had high semantic overlap. 

  

We used linear mixed effects models to examine whether semantic association strength 

was a reliable predictor of behavioural performance. The strength of the semantic association 

(word2vec value for each pair) was positively associated with a higher probability that 

participants would identify a semantic relationship between the words (χ2(1) = 2505.4, p < 

0.001).  

Since we used a continuous manipulation of associative strength, and there is no 

categorical boundary of word2vec values which can capture the trials reliably judged to be 

related and unrelated, therefore, traditional error scores were not calculated.  Overall, equal 

numbers of word pairs were judged to be related or unrelated by the participants (mean ratio: 

0.491 vs. 0.495, χ2(1) = 0.00021, p > 0.995). Linear mixed-effects models examined how 

association strength modulated reaction time (RT) for trials judged to be related and unrelated. 

There was a significant effect of strength of semantic association (word2vec) for both related 

and unrelated decisions: association strength was negatively associated with RT for related 

trials (χ2(1) = 156.55, p = 2.2e-16), and positively associated with reaction time for trials judged 

to be unrelated (χ2(1) = 52.415, p =4.5e-13); see Figure 1B. It was more difficult for participants 

to retrieve a semantic connection between two words when strength of association was lower; 
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on the contrary, it was easier for them to decide there was no semantic connection between 

word pairs with low word2vec values. 

 

Figure 2. A. Semantic-to-neural similarity computed via second-order RSAs: these analyses 

characterized the semantic similarity between words on different trials and examined the 

association with neural similarity across trials. Left-hand panel: word2vec-based RSM for 

unmodified word meanings across trials – this matrix captured the semantic similarity of 

individual words used across trials; right-hand panel: ELMo-based RSM for context-dependent 

meaning – this matrix captured the semantic similarity of contextually-modified meanings across 

trials. B. Effect of strength of association on semantic-to-neural similarity. Trials were sorted by 

semantic association strength (based on word2vec-based measures of semantic similarity 

between word 1 and word 2 within each trial) and were then divided into sliding windows of 16 

trials. We computed semantic-to-neural similarity using second-order RSAs in each window, 

and then correlated association strength with the semantic-to-neural similarity across windows 

to establish how the representation of context-dependent meaning in the brain changes as a 

function of the strength of the association between words. 
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 fMRI Results 

Neural Representation of Original Meaning (context-free conceptual representation) 

Whole-brain analysis was performed using a searchlight approach. First, we examined 

context-free semantic representation of the original or unmodified meaning, based on the 

word2vec model, during the decision phase. The strongest representation of context-free 

meaning is expected for WORD-1, since retrieval of the meaning of this item commenced prior 

to the semantic context being presented. For trials judged to be semantically unrelated, a 

significant positive association between neural pattern similarity and semantic similarity based 

on word2vec was seen across extensive regions of cortex. The neural representation of context-

free meaning was strongest in the left anterior inferior and middle temporal gyri, extending to 

posterior temporal, medial temporal, temporal-occipital and medial parietal cortices; see Figure 

3A (left-hand panel). A similar positive relationship between the brain-based model and the 

word2vec-based semantic model for WORD-2 was observed on trials judged to be semantically 

unrelated, although this map was more restricted in its extent; see Figure 3A (right-hand panel).  

Next, we tested the representation of the original meaning of WORD-1 and WORD-2 for 

trials judged to be semantically-related. A very different pattern was observed, with only 

negative correlations between neural and word2vec-based semantic models for both WORD-1 

and WORD-2, see Figure 3B. These negative correlations were strongest for WORD-2, when 

meaning was retrieved in the context of the preceding word, and suggest that the process of 

identifying a semantic link on related trials pushed the representations of semantically-similar 

individual items further apart. There was no evidence that the brain maintained the original 

meaning of single words when participants retrieved a shared meaning-based context for them.  
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To examine whether the same brain regions supported these distinct effects for trials 

that participants judged to be related and unrelated, we examined the correspondence between 

the uncorrected statistical maps reported in Figure 3 (i.e. between the analyses based on 

word2vec). There were highly significant correlations across all pairs of maps shown in this 

figure; p < 2.62e-80. The strongest correlation, r = 0.61, was between the analysis of WORD-1 

for trials judged to be unrelated (Figure 3A, left-hand panel) and of WORD-2 for trials judged to 

be related (Figure 3B, right-hand panel). This result demonstrates that a common semantic 

network – including left anterior and posterior lateral temporal regions, medial temporal cortex, 

angular gyrus, medial parietal cortex and visual regions – supports the representation of original 

word meaning in the absence of a linking context, and changes this representation when an 

association is formed between words, such that their meaning is modified. 
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Figure 3. The original meaning of WORD-1 (before context is presented) and WORD-2 (after 

context is presented) coded in the brain for items judged to be unrelated (A – when no link is 

identified) and related (B – when a linking context is identified). Positive correlations were found 

for the unrelated items, while only negative correlations were found for the trials in which people 

identified a semantic link (Z > 3.1, corrected). 

 

Neural Representation of Context-Dependent Meaning 

The preceding results demonstrate that activity patterns in the brain represented the 

original or unmodified semantic meaning for trials judged to be unrelated, but not for trials in 

which a linking context was identified. Motivated by the theory that a concept cannot be 
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meaningfully separated from the context in which it occurs (Yee and Thompson-Schill 2016), we 

next tested whether neural similarity across trials could be related to contextually-derived word 

meaning, especially for those word pairs judged to be related. We focused this analysis on 

WORD-2, since the meaning of this item was processed in the context of the preceding item (no 

semantic context was available when the meaning of WORD-1 was first retrieved). We used 

ELMo to estimate the context-dependent semantic similarity between the WORD-2 items across 

trials, separately for words from trials judged to be related and unrelated. For trials judged to be 

semantically related, a positive correlation between neural similarity and ELMo-based semantic 

similarity was found in left lateral frontal cortex, precentral gyrus and in pre-supplementary 

motor area; see Figure 4A (right-hand panel). Only relatively sparse, negative correlations 

between context-dependent semantic similarity and neural similarity were found for trials judged 

to be unrelated; see Figure 4A (left-hand panel). 
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Figure 4. A: The context-dependent meaning of WORD-2 coded in the brain for the trials judged 

to be unrelated (left-hand panel) and related (right-hand panel) (Z > 3.1, corrected). B: This 

association between context-sensitive ELMo-based semantic similarity and neural similarity was 

higher for more strongly-linked word pairs that were judged to be semantically-related (Z > 3.1, 

corrected). C. Regions of interest in left IFG (aqua) and left ATL (yellow) for which we directly 

compared the effect of association strength on the representation of contextually-derived 

meaning. IFG was defined using the cluster representing context-dependent meaning within 

pars orbitalis and pars triangularis using the Harvard-Oxford brain atlas. Left ATL was defined 

as the cluster representing both the meaning of individual words in trials judged to be unrelated, 

and the increased representation of context-dependent meaning for strong associations for 

related trials, within the anterior temporal cortex using the Harvard-Oxford brain atlas. D. Linear 
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mixed-effect modelling found that association strength was more positively associated with 

neural representation of context-dependent meaning in left ATL compared with IFG. E. Neural 

representation of contextually-derived meaning showed a significant difference between left ATL 

and IFG (red dash line). For each window of sixteen trials, we measured the representation of 

context by calculating the correlation between the neural similarity matrix and corresponding 

ELMo based similarity, then calculated the mean association strength in each window, we 

randomly shuffled the neural representation of context and its associated association strength 

across windows within participants in each ROI, to estimate the slope for the influence of 

association strength on the neural representation of context-dependent meaning, and to 

estimate the difference in slopes between ROIs. This procedure was repeated 5000 times to 

generate the null distribution of the difference between ROIs (gray color).  

 

Context-Dependent Semantic Representation Changed as A Function of Association 

Strength 

Next, we considered how the representation of the context-dependent meaning of WORD-2 

changed as a function of association strength. For this analysis, we used RSA combined with a 

sliding window approach. We sorted related trials according to their association strength (based 

on a W2V score for each word-pair), from weak to strong associations, and grouped every 16 

trials into one window; we then calculated the Spearman’s correlation between association 

strength and the neural representation of meaning. The alignment between neural similarity and 

context-dependent meaning derived from the ELMo model was greater for more strongly-related 

trials within left ventral and lateral ATL, and bilateral medial and lateral parietal cortex extending 

into postcentral gyrus (see Figure 4B). These results indicate that left ATL represents the output 

of conceptual combinations particularly for strongly associated word-pairs, in line with research 

suggesting this region is a semantic representational hub that supports the efficient retrieval of 
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strong associations that are well-aligned to the structure of long-term knowledge (Jefferies 2013; 

Lambon Ralph et al. 2017; Jefferies et al. 2020).  

To check the robustness of these results, we generated different window sizes containing 

different numbers of trials along the continuous dimension of association strength, and changed 

the extent to which adjacent windows overlapped with each other (i.e. the overlap step size). 

We confirmed the results were robust across a range of window sizes and overlap step sizes 

(window sizes and overlapping step sizes of 16,4; 16,8; 20,4, respectively). The positive 

correlation with association strength for context-dependent meanings in related trials was 

maintained across these analyses; these results are available at: 

https://neurovault.org/collections/9399/. 

Context-dependent meaning in the left inferior frontal gyrus and anterior temporal lobe 

was modulated to different degrees by associative strength 

According to the controlled semantic cognition framework (Lambon Ralph et al., 2016), when 

semantic control demands are high – for example, the task requires a semantic link to be 

identified between weakly-associated items – left IFG is engaged along with other regions of the 

semantic control network in order to regulate semantic retrieval. In contrast, ventral ATL, as a 

long-term semantic store, is expected to support the retrieval of strong semantic associations in 

the absence of additional constraints, since these aspects of knowledge are dominant within this 

representational system. This account predicts a dissociation between left IFG and ventral ATL 

in the effect of association strength on the neural representation of context-dependent meanings: 

ATL should represent the meaning of words in context more strongly when the linking context is 

strong. IFG is not expected to show this pattern since it is less engaged in these circumstances.  

While the results above are consistent with this dissociation between ATL and IFG, they do not 

permit direct comparison of these sites, because significant whole-brain searchlight results for 
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the two sites were identified in different contrasts. To better characterize the similarities and 

differences in the effect of strength of association on the neural representation of context-

dependent meaning, we compared the previously-described effects within two ROIs considering 

their critical and different roles in semantic processing for weak and strong associations. Left 

IFG was defined as the cluster representing the context-dependent meaning of WORD-2 for 

trials judged to be related (Figure 4A, right-hand panel) within pars orbitalis and pars triangularis 

from the Harvard-Oxford brain atlas, see Figure 4C top-panel. Left ventral ATL was defined 

using the cluster that represented the meaning of individual words in unrelated trials (Figure 3A, 

left-hand panel) and the overlapping cluster in which context-dependent meaning was 

modulated by association strength (Figure 4B), within the anterior division of the temporal lobe 

from the Harvard-Oxford brain atlas, see Figure 4C bottom panel.  

We first examined whether representation of context in the left IFG was modulated by 

association strength (similar to the pattern in ATL) by extracting the correlation coefficient 

between association strength and representation of semantic context from the sliding window 

analysis in the ROI. There was a significant positive correlation in left IFG (Fisher’s Z 

transformed R value, 0.192, p < 0.0005). Direct comparison of the correlation coefficients in left 

IFG and ventral ATL revealed a stronger influence of association strength on neural 

representations of context-dependent meaning in ATL than IFG (Fisher’s Z transformed R value, 

0.192 vs 0.327 p = 0.0392). The representation of contextually-derived meaning in IFG was 

modulated by association strength, but this site was less sensitive to association strength than 

ATL.  

We supplemented this analysis with linear mixed-effect modelling including association strength 

for each trial as the independent variable, participant as a random effect and the representation 

of context-dependent meaning as the dependent variable. Association strength was positively 

associated with the representation of the context-dependent meaning of WORD-2 in both left 
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IFG and ventral ATL (slope: b = 0.247, χ2(1) = 29.185, p =6.5e-8 and b = 0.364, χ2(1) = 69.129, 

p =4.4e-16, respectively, Bonferroni corrected), see Figure 4D. Direct comparison of the effect 

of association strength on the representation of context-dependent meaning in left IFG and 

ventral ATL (i.e. the slopes for these sites in Figure 4D) showed a smaller decrease in the 

neural representation of context-dependent meaning from strong to weak associations in left 

IFG (actual difference between slopes: b = 0.117, p = 0.027, permutation test), see Figure 4E.  

The results were highly consistent when spherical ROIs based on MNI coordinates from 

published studies were used instead of these clusters. We selected a left IFG ROI around the 

peak voxel reported by (Cardillo et al. 2012; Solomon and Thompson-Schill 2020) at MNI 

coordinate (x = -54, y = 24, z = 10; 275 voxels). This site has been linked to semantic selection 

and modulation of conceptual features. We selected a left ventral ATL ROI around the peak 

reported by (Ueno et al. 2018) at MNI coordinate (x = -47, y = -15, z = -34; also 275 voxels), as 

this site has been heavily implicated in conceptual combination and representation (Visser et al. 

2010; Bemis and Pylkkänen 2011; Visser and Lambon Ralph 2011; Westerlund and Pylkkänen 

2014). Linear mixed effect modelling analyses found that the representation of context-

dependent meaning was positively associated with association strength in both ROIs (IFG: 

slope, b = 0.20, χ2(1) = 19.032, p =1.29e-5; ventral ATL, b = 0.338, χ2(1) = 53.829, p =2.37e-13, 

Bonferroni corrected). Compared to left IFG, ventral ATL showed a significantly larger influence 

of association strength on neural representation of context-dependent meaning (p = 0.018).  

 

Discussion 

This study parametrically modulated the association strength between pairs of words to 

delineate the neural representation of context-free and context-dependent meaning. We used 

two classes of computational linguistic models, representing concepts as either independent or 
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dependent on their linguistic context. Using representational similarity analysis, we found brain 

activity patterns in the bilateral temporal lobes, medial parietal and left frontal lobes that were 

associated with context-independent conceptual information – this response was found 

specifically for trials judged to be semantically unrelated, when there was no linking context to 

modify the meanings of words. At the same time, context-dependent meanings were 

represented in regions implicated in semantic control, including left lateral and dorsomedial 

prefrontal cortex – this response was found specifically for trials judged to thematically related, 

when a linking context was retrieved. Moreover, neural representation of context-dependent 

meaning was significantly modulated by association strength: the stronger the association 

between concepts, the more context-dependent meaning was represented in the left anterior 

temporal lobe. Finally, the results showed a significant difference between left IFG, implicated in 

semantic control, and left ventral ATL, implicated in semantic representation, in the impact of 

associative strength on the representation of context-dependent meaning: the ATL showed 

stronger effects of association strength, suggesting that this site represents context-dependent 

meanings for dominant contexts that are encoded strongly in the long-term semantic store.  

Past studies have often compared activation patterns elicited by stimuli from different categories, 

for instance, faces, objects, places and tools; these studies have significantly advanced our 

understanding of the neural substrates of ‘individual’ (i.e. static) concepts (Binder et al. 2009; 

Price 2012). Nevertheless, previous behavioural work on conceptual integration has revealed 

conceptual representation of word meaning is context sensitive; for instance, when ‘red’ is 

paired with fire, apple or sky, the magnitude of the representation of ‘red’ is modulated by the 

following noun (Halff et al. 1976; Coutanche et al. 2019). However, the neural mechanisms 

underlying dynamic conceptual representation in the brain remain largely uncharacterised. Our 

results address this issue by revealing a shift in the neural representation of semantic 

information across trials judged to be ‘related’ and ‘unrelated’. For unrelated trials, when the 
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meanings of words are retrieved largely independently, much of the semantic network showed a 

positive correlation between neural similarity and the semantic similarity of individual words 

estimated from computational linguistic models. These same brain areas showed lower neural 

similarity with individual meanings when word pairs were judged to be related, because for 

these trials, the target concept was necessarily processed in the context of the first word. These 

findings are consistent with studies comparing activation patterns in the brain to semantic 

models generated from feature norms, behavioural ratings and large text corpora, which have 

provided converging evidence that the left anterior temporal lobe (ATL) and perirhinal cortex, as 

well as posterior parietal cortex and left inferior frontal cortex, reflect semantic similarity between 

concepts (Bruffaerts et al. 2013; Devereux et al. 2013; Clarke and Tyler 2014; Clarke et al. 2015; 

Borghesani et al. 2016; Carota et al. 2017; Carota et al. 2021). These results validate our 

adoption of word2vec as a means of capturing context-independent meanings of individual 

concepts, and also provide clear evidence for the dynamic nature of conceptual representation 

depending on the context (Willems and Casasanto 2011; Yee and Thompson-Schill 2016). 

Previous investigations of dynamic conceptual representation are limited because it is 

challenging to know how representations of meaning will change between contexts – this 

information cannot be easily gleaned from participants’ reports. ELMo, a recently developed 

natural language processing algorithm (Peters et al. 2018), allowed us to uncover 

contextualised conceptual representations in brain regions implicated in semantic control, such 

as left inferior and middle frontal gyrus, dorsomedial prefrontal cortex and precentral gyrus. 

These effects were only found when sematic links were identified by participants and not when 

trials were judged to be unrelated, indicating that semantic control processes play a critical role 

in semantic integration and/or composition to form coherent meanings (Lambon Ralph et al. 

2017). Three recent studies that also employed ELMo to study context-dependent semantic 

cognition also identified left inferior prefrontal and lateral anterior temporal cortex in context-
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dependent conceptual representation (Lopopolo et al. 2020; Toneva et al. 2020; Lyu et al., 2019) 

– the current findings add to these observations by revealing functional differences between 

these frontal and anterior temporal sites in the kinds of context-dependent meanings that they 

support.  

Given our parametric design in which association strength was varied in a continuous fashion, 

sliding window RSA allowed us to investigate the effect of strength of association on the brain 

regions that support contextually-guided meaning. With increasing associative strength, we 

found a larger role for left ventral ATL in the representation of context-dependent meaning. We 

also found stronger engagement of medial parietal cortex, which might contribute to conceptual 

representation (Binder and Desai 2011; Krieger-Redwood et al. 2016; Vatansever et al. 2017), 

and bilateral somatomotor cortex, potentially reflecting the activation of more similar action-

based features when context-dependent meanings are related across trials (Liuzzi et al. 2010; 

Schuil et al. 2013; Carota et al. 2017). This pattern for ATL is consistent with MEG studies 

finding that strongly associated word-pairs elicit greater neural activity in left ATL (Teige et al. 

2018; Teige, Cornelissen, Mollo, Gonzalez Alam, et al. 2019). Our findings are also in line with 

MEG studies that presented adjective-noun combinations and found stronger engagement of 

left ATL 200 to 250 ms after noun onset when these words could be combined in meaning 

(Bemis and Pylkkänen 2013; Pylkkänen 2020). One recent MEG study which monitored 

participants’ brain activity during naturalistic sentence reading found that neural activity patterns 

in the first 100 to 200ms contained context-independent meaning in the left lateral and anterior 

temporal lobe, while context-dependent meaning was seen later between 300 ~ 500ms 

(Lopopolo et al. 2020). Due to the low temporal resolution of fMRI, the current study cannot 

elucidate the evolution of semantic representation in the brain, but shows differentiation 

between ATL and left inferior prefrontal cortex in the effect of associative strength; these sites 

may be harder to separate in M/EEG (Teige, Cornelissen, Mollo, Alam, et al. 2019). We found 
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that left inferior frontal cortex but not ATL contributed to the representation of contextually-

guided meaning across all the trials. ATL showed a stronger influence of associative strength on 

the representation of context-derived meaning than IFG, suggesting that it represents 

contextually-guided meanings when these relate to the dominant contexts in which concepts 

commonly occur. In this way, ATL only supports semantic contexts that can be readily accessed 

from long-term knowledge, while IFG additionally sustains more novel contexts that are only 

weakly encoded in long-term memory. This is consistent with the Controlled Semantic Cognition 

framework which proposes that these sites provide a heteromodal semantic store (in ATL) and 

control processes that regulate the retrieval of this information (in IFG) (Jefferies 2013; Lambon 

Ralph et al. 2017; Hoffman and Tamm 2020; Jackson et al. 2021). 

Although studies have looked at how conceptual features are combined in ATL, and how 

coherent concepts are computed (Coutanche et al. 2019; Pylkkänen 2019), our study provides 

direct evidence that ATL supports both contextually-independent and contextually-guided 

meaning retrieval (with the contribution of this site to contextually-guided meaning retrieval 

restricted to situations in which the linking context is strongly encoded in long-term memory and 

consequently control demands are minimised). In the past literature, conceptual retrieval was 

usually constrained by control processes to focus on non-dominant aspects of knowledge when 

these are required by the task or context. For instance, task requirements can gate the 

recruitment of ‘spoke’ systems (Zhang et al. 2021); participants can retrieve specific unimodal 

features when they have task instructions providing a clear goal for conceptual processing, 

and/or suppress activation of non-relevant spoke representations (Coutanche and Thompson-

Schill 2014; Martin et al. 2018). The current study has important theoretical implications since 

here the task instructions did not change between trials: participants were always judging 

whether or not the two words were thematically related. In this situation, the meaning of the 

words themselves defined the nature of the linking context, and established which features 
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should be the focus of subsequent retrieval. This ‘stimulus-driven’ semantic control appears to 

be supported by left IFG within the semantic control network, which maintains semantic contexts 

in a controlled fashion, even when these are non-dominant, to modulate the flow of activation 

through semantic space. Responses in left ATL did not show the same pattern, suggesting that 

neural responses within the putative semantic store continued to be governed by dominant 

aspects of semantic knowledge. The semantic store amplifies long-term semantic associations 

when relevant but does not directly capture short-term non-dominant associations. 

Left IFG has long been linked to semantic selection and control processes (Thompson-Schill et 

al. 1997; Jefferies 2013; Noonan et al. 2013; Jackson 2020), and is activated during the retrieval 

of weak semantic associations (Lambon Ralph et al. 2017; Jefferies et al. 2020), but its role in 

conceptual combination is largely unknown. One recent study found that left IFG is sensitive to 

feature uncertainty during comprehension of combined concepts, while ATL reflects the 

integration of conceptual features (Solomon and Thompson-Schill 2020). Another recent study 

investigated how the brain resolves semantic ambiguity in homonym comprehension and found 

that IFG supports context-appropriate meaning (Hoffman and Tamm 2020). The current study 

identifies left IFG as one of a small number of sites that shows increased neural similarity for 

trials with greater context-dependent neural similarity across all trials – including weak 

associations when semantic control requirements were higher, in contrast to ATL.  

One limitation of the current study was that our measure of context-sensitive conceptual 

representation (from ELMo) was derived across trials and participants, and was unable to detect 

individual-specific understanding of each word pair. Moreover, the weaker associations are, the 

more variance in semantic representation there should be across participants. Future studies 

could collect subjective reports of context-dependent understanding of word pairs for each 

participant, and then leverage ELMo to create individual-specific semantic models. More 
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detailed and precise ELMo-based semantic models might result in further neural-semantic 

alignment results, extending beyond the regions identified here.   

In conclusion, this study leverages natural language models and representational similarity 

analysis, to compare, for the first time, context-independent and context-dependent meaning 

representation in the brain during sematic decisions. Our study demonstrates that overlapping 

brain regions support context-independent and context-dependent meaning but that the 

semantic network also shows differences in the effect of associative strength between words. 

Left IFG represents the current meaning-based context needed to support ongoing semantic 

cognition across all trials, including when this context is only weakly represented in long-term 

memory, and consequently control processes may be needed to regulate retrieval. In contrast, 

ventral ATL amplifies strongly-encoded long-term semantic associations when these are 

relevant to ongoing cognition, but does not directly capture short-term non-dominant 

associations. These findings clarify the roles of semantic control regions and the putative ATL 

semantic hub in the computation of coherent meanings across inputs. 
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