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Abstract

Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the
exact role of these oscillations is still debated. Here, we used biophysical models to
examine how gamma oscillations may participate to the processing of afferent stimuli.
We constructed conductance-based network models of gamma oscillations, based on
different cell types found in cerebral cortex. The models were adjusted to extracellular
unit recordings in humans, where gamma oscillations always coexist with the
asynchronous firing mode. We considered three different mechanisms to generate
gamma, first a mechanism based on the interaction between pyramidal neurons and
interneurons (PING), second a mechanism in which gamma is generated in interneuron
networks (ING) and third, a mechanism which relies on gamma oscillations generated
by pacemaker chattering neurons (CHING). We find that all three mechanisms generate
features consistent with human recordings, but that the ING mechanism is most
consistent with the firing rate change inside Gamma bursts seen in the human data. We
next evaluated the responsiveness and resonant properties of these networks, contrasting
gamma oscillations with the asynchronous mode. We find that for both slowly-varying
stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma
compared to asynchronous states, while resonant properties are similar around the
Gamma band. We could not find conditions where Gamma oscillations were more
responsive. We therefore predict that asynchronous states provide the highest
responsiveness to external stimuli, while Gamma oscillations tend to overall diminish
responsiveness.

Author summary

In the awake and attentive brain, the activity of neurons is typically asynchronous and
irregular. It also occasionally displays oscillations in the Gamma frequency range (30-90
Hz), which are believed to be involved in information processing. Here, we use
computational models to investigate how brain circuits generate oscillations in a manner
consistent with microelectrode recordings in humans. We then study how these networks
respond to external input, comparing asynchronous and oscillatory states. This is tested
according to several paradigms, an integrative mode, where slowly varying inputs are
progressively integrated, a coincidence detection mode, where brief inputs are processed
according to the phase of the oscillations, and a resonance mode where the network is
probed with oscillatory inputs. Surprisingly, we find that in all cases, the presence of
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Gamma oscillations tends to diminish the responsiveness to external inputs, and we
found no paradigm by which Gamma oscillations would favor information flow compared
to asynchronous states. We discuss possible implications of this responsiveness decrease
on information processing and propose new directions for further exploration.

Introduction 1

Gamma oscillations appear in many brain states and brain regions [1] and are 2

detectable mostly from the local field potential (LFP) as oscillations in the 30-90 Hz 3

frequency range. During sensory responses, oscillations in this frequency range were 4

initially proposed to serve as a mechanism for coordination of neural activity among 5

cells coding for different aspects of the same stimulus [2–5]. Strengthening of synaptic 6

input due to temporal summation led to the hypothesis that Gamma synchrony was 7

necessary to effectively transmit specific sets of information across cortical networks in 8

the very noisy conditions in which the brain operates. This concept was later expanded 9

by proposing that synchronous Gamma also engages inhibition in target networks. 10

Phase-locked inhibition creates strong suppression around the excitatory drive and 11

creates windows of low and high neuronal excitability. Such observations led to 12

hypotheses that Gamma oscillations are important for information processing and 13

coding. The most popular theories are the Biding-by-synchronization Hypothesis [4, 5], 14

the Phase Coding Theory [6, 7], the Communication Through Coherence Theory [8, 9] 15

and Communication through Resonance Theory [10]. 16

An alternative hypothesis, instead of relying on oscillations for efficient cortical 17

communication, posits that desynchronized states are optimal for the transfer of signals 18

between cortical networks [11,12] . Desynchronized states, called Asynchronous-Irregular 19

(AI) [13] because of its features, are characterized in cortical cells in vivo by irregular 20

sustained firing and very weak correlations [14–18]. This type of activity can be 21

modeled by networks with balanced excitatory and inhibitory inputs [19]. 22

In the present work, we aim at testing these two theories using computational 23

models. We take advantage of previously published electrophysilogical data, measured 24

extracellularly in human temporal cortex [20,21], to characterize the behavior of 25

individual neurons during Gamma oscillations in resting awake states, and to compare 26

such experimental features to spiking neural networks generating Gamma. We exploit 27

different network structures to investigate three well-known mechanisms of Gamma 28

generation: either by the exclusive interaction between inhibitory neurons [Interneuron 29

Gamma (ING)] or by the interaction of inhibitory and excitatory neurons via 30

Pyramidal-Interneuron Gamma (PING) or via Chattering Induced Gamma (CHING). 31

First we compare to what degree each mechanism can reproduce the observed 32

experimental features of human Gamma oscillations and what are the specificities of 33

each mechanism, in the way neurons behave during Gamma. Subsequently, we examine 34

network responsiveness due to three types of stimulus: Gaussian slowly-varying inputs 35

(integration mode), precisely-timed Gaussian inputs (coincidence detection mode) and 36

an sinusoidal varying Poissonian input (resonance). 37

Materials and methods 38

Neuron and Network Models 39

Each of the three networks developed in this work uses the Adaptive Exponential 40

Integrate-And-Fire Model (Adex) [22] for its neural units. In this model, each neuron i 41

is described by its membrane potential Vi, which evolves according to the following 42

equations: 43
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44

45

C
dVi(t)

dt
= −gL(Vi − EL) + gL∆exp

[
(Vi(t)− Vth)

∆

]
− wi(t)− ISyni

(t)

ISyni
(t) = gEi

(t)(Vi(t)− EE) + gIi(t)(Vi(t)− EI)

τE,I
dgE,Ii(t)

dt
= −gE,Ii(t) +QE,Ii

∑
k

δ(t− tk)

τwi

dwi(t)

dt
= a(Vi(t)− EL)− wi(t) + b

∑
j

δ(t− tj)

(1)

46

47

where C is the membrane capacitance, gL is the leakage conductance, EL is the 48

leaky membrane potential, Vth is the effective threshold and ∆ is the threshold slope 49

factor. The synaptic current (ISyni
(t)) received from other neurons to neuron i is taken 50

into account as conductance based: every time a presynaptic neuron spikes at time tk, 51

the excitatory (gEi) or the inhibitory (gIi) synaptic conductance increase by a discrete 52

amount QE or QI (excitatory or inhibitory synaptic strength), depending on the nature 53

of the presynaptic neuron. Synaptic conductances subsequently decay exponentially 54

with a time constant τE or τI . EE and EI are the reversal potential of excitatory (EE) 55

and inhibitory (EI) synapses. The
∑
k runs over all the presynaptic excitatory or 56

inhibitory neurons spike times. During the simulations, the equation characterizing the 57

membrane potential Vi is numerically integrated until a spike is generated. Formally 58

this happens when Vi grows rapidly toward infinity. In practice, the spiking time is 59

defined as the moment in which Vi reaches a certain threshold (Vth). When Vi = Vth 60

the membrane potential is reset to Vrest, which is kept constant until the end of the 61

refractory period Tref . After the refractory period the equations start being integrated 62

again. 63

The adaptation current is described by the variable wi. It increases by an amount b 64

every time neuron i emits a spike at times tj and decays exponentially with time scale 65

τw. The parameter a indicates the subthreshold adaptation. 66

Three types of cells were used in our models: Regular Spiking Cells (RS), Chattering 67

Cells (Ch) and Fast Spiking Cells (FS). The cell specific activities are displayed in Fig 1 68

and their parameters are indicated in Table 1. 69

Each of the three developed networks are composed of N=25000 neurons, 80% 70

excitatory and 20% of inhibitory. All neurons are connected randomly. Additionally to 71

recurrent connections, each neuron receive external noise inputs. This noise was 72

implemented as Next = 20000 independent and identically distributed excitatory 73

Poissonian spike trains with a spiking frequency µext. These spike trains are sent to the 74

network with a 2% probability of connection. The patterns of connection and neuron 75

type composition of each network model, as well as the specific values of Poissonian 76

stimulation, are described bellow. 77

• PING Network: It is composed of 25000 Adex neurons (20000 excitatory 78

Regular Spiking and 5000 inhibitory Fast Spiking cells). All neurons are 79

connected randomly with a probability of connection of 2%. All synapses are 80

delayed by a time delay of 1.5 ms. The synaptic excitatory and inhibitory time 81

scales are τE=1.5 ms and τI=7.5 ms. With synaptic strengths of QE= 5 nS or 82
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Fig 1. Neuronal response to an external current. A: External drive fluctuation.
External current, in each neuron, varied from 0 to 0.5 nA in a linear way, was kept
constant for 500 ms, subsequently decreasing to 0 nA in a linear way. B: Isolated RS
cell in response to the external drive presented in A. C: Isolated FS cell in response to
the external drive presented in A. D: Activity of one Ch cell, in a network exclusively
composed of 1000 Ch cells connected randomly with a probability of 2%.

Table 1. Specific Neuron Model Parameters

Parameter RS FS Ch

Vth -40 mV -47.5 mV -47.5 mV
∆ 2 mV 0.5 mV 0.5 mV
Tref 5 ms 5 ms 1 ms
τw 500 ms 500 ms 50 ms
a 4 nS 0 nS 80 nS
b 20 pA 0 pA 150 pS
C 150 pF 150 pF 150 pF
gL 10 nS 10 nS 10 nS
EL -65 mV -65 mV -58 mV
EE 0 mV 0 mV 0 mV
EI −80 mV −80 mV −80 mV
Vrest -65 mV -65 mV -65 mV
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QI=3.34 nS. External noise (excitatory Poissonian spike trains) were computed 83

inside of the synaptic current term ISyn, with a synaptic strength of QExt= 4 nS. 84

For Gamma activity, the network was stimulated with an external noise of µext= 85

3 Hz. For Asynchronous and Irregular activity, the network was stimulated with 86

an external noise of µext= 2 Hz. 87

• Asynchronous and Irregular (AI) Network: The AI Network was used in 88

this work as one of the building blocks for the ING and the CHING Network. It is 89

composed of 25000 neurons (20000 excitatory Regular Spiking and 5000 inhibitory 90

Fast Spiking). All neurons are connected randomly with a probability of 91

connection of 2%. All synapses have synaptic strengths of QE= 1 nS or QI= 5 nS 92

and are delayed by a time delay of 1.5 ms. This network, independently of the 93

strength of the the external noise, can not generate Gamma rhythms. This is the 94

case because the chosen synaptic excitatory and inhibitory time scales are the 95

same τE=τI= 5 ms. 96

• Gamma Network: The Gamma Network was used in this work as one of the 97

building blocks for the ING Network. It is composed of 1000 inhibitory Fast 98

Spiking neurons, highly connected between each other. All neurons are connected 99

randomly with a probability of connection of 60%. All synapses have synaptic 100

strengths of QI= 5 nS and synaptic time constant of τI=5 ms, and are delayed by 101

a time delay of 1.5 ms. External noise of µext=5 Hz, with synaptic strength of 102

QExt= 1 nS and synaptic time constant of τE=5 ms, are applied to the network 103

to maintain it active. Because of the exclusive presence of inhibitory neurons and 104

its high level of recurrent inhibition, this network is capable of generating Gamma 105

rhythms with frequencies around 50Hz by means of an ING mechanism. S1 Fig 106

displays the parameter space of network connectivity vs. inhibitory synaptic 107

strengths. The parameters chosen in our simulations are indicated. 108

• ING Network: The ING Network is constructed as a mixture of AI network 109

with the Gamma Network. It is composed of 25000 neurons: 20000 RS and 4000 110

FS from the AI network plus 1000 FS neurons from the Gamma Network. The 111

Fast Spiking neurons in the original AI network and the ones in the Gamma 112

Network share all the same parameters of FS cells in Table 1. The only difference 113

among them is their pattern of connectivity. To make it clear, we call as FS2, the 114

FS neurons that were part of the Gamma Network, and we keep calling as FS the 115

ones that were part of the AI Network. In the ING Network, FS2 cells send and 116

receive random connections to RS neurons with a probability of 15%, FS2 cells 117

send random connections to FS neurons with a probability of 15% while FS cells 118

send random connections to FS2 neurons with a probability of 3%. All synapses 119

have synaptic strengths of QE= 1 nS or QI= 5 nS and synaptic time scales of 120

τE=τI= 5 ms. Synapses are delayed by a time of 1.5 ms. For Gamma activity the 121

network was stimulated with an external noise of µext= 3 Hz, while for 122

Asynchronous and Irregular activity, the network was stimulated with an external 123

noise of µext= 2 Hz. The external noise used had a synaptic strength of QExt=0.9 124

nS. 125

• CHING Network: The CHING Network is constructed the same way as the AI 126

network, with the difference that 5% of the RS cells were replaced by Chattering 127

Cells (Ch). This way, the CHING Network is composed of 25000 neurons: 19000 128

RS, 1000 Ch and 5000 FS. All cells in the network are randomly connected to 129

each other with a probability of 2%. All synapses have synaptic time scales of 130

τE=τI= 5 ms and are delayed by a time delay of 1.5 ms. Excitatory synapses 131

have synaptic strengths of QE=1 nS, while inhibitory synapses from FS cells to 132
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Ch or to RS have synaptic strengths of QI=7 nS. Synapses from FS to FS have 133

synaptic strengths of QI=5 nS. The network receives external noise with synaptic 134

strength of QExt=1 nS in excitatory cells (RS and Ch) and QExt=0.75 nS in FS 135

cells. For Gamma, external noise of µext= 2 was used, while for Asynchronous 136

and Irregular activity, µext= 1 Hz . 137

Simulations 138

All neural networks were constructed using Brian2 simulator [23]. All equations were 139

numerically integrated using Euler Methods and dt=0.1 ms as integration time step. 140

The codes for each one of the three developed networks are available at ModelDB 141

platform. 142

LFP model 143

To model the LFP generated by each of the three developed networks, we used a recent 144

method developed by [24]. This approach calculates the LFP by convolving the spike 145

trains of the network with a Kernel that have been previously estimated from unitary 146

LFPs (the LFP generated by a single axon, uLFP) measured experimentally. 147

Detection of Gamma rhythms and Gamma phase 148

In both, experimental and simulated signals, Gamma rhythms were detected by means 149

of the Hilbert transform of the band-filtered LFP. We considered as Gamma bursts 150

periods in which the amplitude of Hilbert Transform envelope (absolute value) differed 151

from the mean, by at least 2 standard deviations, for a minimum duration of 3 Gamma 152

cycles. The oscillation phase was acquired using the angle of the imaginary part of the 153

transform. The LFP was band-pass filtered by means of the Keiser filter in the band of 154

30-50 Hz (unless indicated otherwise). 155

Spike-LFP phase-locking 156

Every time a Gamma period was identified, in both experimental and simulated signals, 157

the spiking times of each neuron was stored and compared to the Gamma rhythm phase. 158

This information allowed the construction of the phase distribution of each neuron. The 159

phase distribution of each neuron was tested for circular uniformity using a 160

Bonferroni-corrected Rayleigh test [25,26]. A neuron was considered phase-locked if we 161

could reject circular uniformity at P < 0.01. See S2 Fig. 162

Firing rate change 163

The average firing rate of each neuron outside Gamma bursts (fout) was computed 164

based in the total time, excluding the activity inside Gamma bursts and their duration. 165

In accordance, the average firing rate inside Gamma bursts (fγ) was calculated based 166

on the total Gamma duration and the activity occurring exclusively inside Gamma 167

bursts. A neuron was considered to increase its firing significantly if the observed 168

number of spikes in the measured time was higher then the Percent Point Function of a 169

95% Interval of Confidence of a Poissonian distribution with average firing rate fout. 170

See S3 Fig. 171
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Responsiveness 172

The level of responsiveness (R) of a network, due to an stimulus (S) in a time window 173

of duration T , is defined as the difference between the total number of spikes generated 174

by the whole network due to an stimulus (NS
spikes) and the total number of spikes 175

generated in the absence of the stimulus (Nspikes), normalized by the network size 176

(total number of neurons Nn) and the duration of the time window T . 177

178

179

R =
NS
spikes −Nspikes

TNn
(2)

Phase-dependent responsiveness 180

The Phase-dependent responsiveness of a network R(θ), in a time window of duration T , 181

due to an stimulus S presented to the network in a particular phase θ of the Gamma 182

cycle, is defined as the difference between the total number of spikes generated by the 183

whole network due to an stimulus at the θ phase, NS
spikes(θ), and the total number of 184

spikes generated in the absence of the stimulus at the θ phase, Nspikes(θ), normalized 185

by the network size (total number of neurons Nn) and the time window T . 186

187

188

R(θ) =
NS
spikes(θ)−Nspikes(θ)

TNn
(3)

Human recordings 189

In one epileptic patient with intractable seizures, 10x10 Neuroprobe silicon 190

multielectrode arrays (400-µm inter-electrode separation, 1 mm electrode length, 191

Blackrock Microsystems) were implanted in the middle temporal gyrus (layers II/III). 192

Electrodes were implanted in regions expected to be removed, and after the monitoring 193

session, the implant area was excised. The patient consented to the procedure, which 194

was approved by the Massachusetts General Hospital Institutional Review Board in 195

accordance with the ethical standards of the Declaration of Helsinki. This data set have 196

already been published previously [20,21]. Neurons could be classified through 197

clustering based on the spike shape and functional interactions (determined using 198

cross-correlograms) [20,27] as Regular Spiking Cell (RS), putative excitatory, and Fast 199

Spiking Cells (FS), putative inhibitory. From 81 electrodes, 91 neurons could be 200

detected: 23 FS and 68 RS. 201

Results 202

We first analyze Gamma oscillations from human recordings, then examine network 203

models of Gamma oscillations and compare them to the experimental data. Finally, we 204

examine the responsiveness and resonant properties of these networks, comparing 205

Gamma and asynchronous states. 206

Human recordings analysis 207

In this paper, aiming to constrain our computational models to observed experimental 208

features, we extend the human data analysis performed in [20,21], focusing on awake 209

states. The data was acquired extracellularly in patients suffering of intractable epilepsy, 210
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who had multi-electrode arrays implanted during therapeutic procedures. The arrays 211

registered simultaneously local field potential (LFP) and unit activity. We considered 212

here one patient for which the recording was very stable, and in which several periods of 213

wakefulness could be analyzed. 214

In each electrode, Gamma rhythms were identified and neural activity was 215

characterized with respect to the Gamma cycles. Fig 2A illustrates an specific instant in 216

which Gamma bursts were observed in most of the electrodes (spiking activity and the 217

respective electrode band-filtered LFP are shown). Gamma rhythms were determined 218

through the Hilbert transform of the filtered LFP (30-50 Hz). Fig 2B and Fig 2C give 219

an example of how Gamma is detected and how neural phase with respect to the 220

oscillation is extracted (see Methods). The data were acquired during the night. Five 221

awake periods could be recorded, having a mean duration of 27 minutes, containing on 222

average 13 seconds of Gamma (Fig 2D). During these periods the patient was in a 223

resting awake condition. 224

In accordance with other studies, the spiking activity during Gamma bursts was 225

observed to be very irregular and close to a Poissonian process, with a spiking frequency 226

much smaller than the population frequency [21,28–30]. Moreover, conformable to [21], 227

on average, only 4% of RS cells and 17% of FS cells were Phase-Locked (Fig 2E), with 228

RS cells having a phase preference later in the cycle than the FS cells (see S4 Fig). 229

Furthermore, by measuring the firing rate change of each cell inside and outside Gamma 230

bursts (Fig 2F), we encountered on average 47% of FS cells that increased their firing 231

inside Gamma bursts, while only 17% of RS cells did (see Methods section). These 232

observations suggest that Gamma oscillations modulate spiking activity in two manners: 233

by means of firing rate increase and by defining time windows were some neurons are 234

more likely to spike (phase-locking). 235

Contrary to the intuition that all neurons in a network generating Gamma would be 236

participating to the rhythm, this analysis indicates that, only a small percentage of 237

neurons has its activity modulated by the oscillation (either by phase-locking or by 238

firing rate increase). We call this group of neurons as Gamma participating cells. We 239

observed that in different data segments, different groups of neurons were identified to 240

participate to Gamma, indicating that the group of Gamma participating cells varies 241

with time. Furthermore, cells that were classified as phase-locked in different data 242

segments, had its preferred phase changed from one recording to the other (see cells 65 243

and 22 in S4 Fig). We called this feature as dynamical phase preference. 244

To better characterize the non-participation to Gamma rhythms, we followed each 245

cell in each of the 5 waking periods present in the recordings, searching for behavioral 246

changes. Fig 3 indicates the individual cell behavior consistency, that is, how frequently 247

a cell keeps being identified to a certain behavior: either being phase-locked or to have 248

its firing rate changed inside Gamma bursts in a particular data segment. Stacked bars 249

of Fig 3A and 3B indicate a color-coded behavior distribution of individual neurons, 250

inside of the 5 data segments, with respect to firing rate change and phase-locking 251

respectively. Neurons are ordered in a way in which inhibitory cells are displayed in the 252

beginning. Red neuron indexes stand for FS cells and green neuron indexes stand for 253

RS cells. Fig 3C and Fig 3D depict the distribution among all recorded neurons of each 254

behavior (C: Firing Rate Increase, D: Phase-Locking). A behavior consistency of zero 255

denotes that the indicated percentage of neurons never presented that behavior, while a 256

behavior consistency of 5 denotes that the indicated percentage of neurons presented 257

that behavior in all 5 data segments. FS cells tended to participate of Gamma bursts 258

with higher consistency then RS cells. While 34.8% of FS increased their firing inside 259

Gamma bursts in at least 4 of the 5 data segments, only 4.4% of RS cells did the same. 260

Moreover 8.7% of FS cells kept being phase-locked in at least 4 data segments, in 261

comparison to only 1.5% in RS population (see S5 Fig). Likewise, we call the reader’s 262
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A
B

C

D E F

RS
FS

Fig 2. Human electrophysiological data. A: Simultaneously recorded LFP and
multi-units activity. The Filtered LFP (30-50 Hz) of the 81 electrodes are shown
together with the spiking times of 91 neurons. Some neurons were recorded by the same
electrode, which had its LFP duplicated in the figure. Spikes of Fast Spiking (FS)
neurons, presumably inhibitory, are shown in red, and spikes from Regular Spiking (RS)
neurons, presumably excitatory, are shown in green. B: Gamma periods detection. Raw
LFP (black), band-pass filtered LFP (yellow) and Hilbert Transform Envelope (red) are
shown. Gamma bursts were detected by means of the deviation from the average of the
Hilbert Transform envelope of at least 2 SDs, with a minimum duration of 3 Gamma
cycles. C: Oscillation Phase extraction. The oscillation phase were obtained by the
angle of the imaginary part of the Hilbert Transform. A distribution of phases per each
neuron was computed based on the oscillation phases where each neuron spiked. D:
Data organization. Five awake periods could be recorded during one night. Each period
had a different total time duration (yellow bars in minutes) and a different amount of
Gamma (orange bars in seconds). The analysis of each data segment was done
independently. E: Percentage of neurons identified as phase-locked in each data segment.
The average amount of Phase-locked neurons in the five data segments was of 4% in RS
and 17% in FS. RS neurons are shown in green and FS neuron in red. F: Percentage of
neurons that increased their firing during Gamma, in each data segment. The average
amount neurons in the five data segments which increased their firing during Gamma
was of 17% in RS and 47% in FS. Same color scheme as in E.

attention to the significant number of cells that never increase their firing rate inside 263

Gamma bursts (Fig 3C, ≈ 40% of the recorded neurons) and to the significant number 264

of cells that never presented phase-locking (Fig 3D, ≈ 80% of the recorded neurons). 265

The behavior of individual cells during Gamma is quantified in S6 Fig. 266

In summary our analysis shows that, during Gamma bursts, only a small percentage 267

of the recorded neurons participates of the rhythm. This participation revealed to take 268

part by means phase-locking and/or firing rate increase. FS cells presented significant 269
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A

B

C

D

Fig 3. Individual neural behavior consistency on human recordings. Stacked
bars indicating the color-coded distribution inside of the 5 data segments of individual
neural behavior relative to firing rate change (A) and phase-locking (B). Neurons are
ordered in a way in which inhibitory are displayed in the beginning of the graph. Red
neuron indexes stand for FS cells and green neuron indexes stand for RS cells. Items C
and D indicate respectively the statistics of the consistency indexes among the recorded
neurons for Firing Rate Increase and Phase-Locking.

higher level of phase-locking and firing rate increase in comparison to RS cells. Likewise 270

the level of consistency behavior were also more marked in FS cells then RS cells. Our 271

analysis further indicates that, the group of Gamma participating cells changes with 272

time as well as their phase-preference. 273

Network Models of Gamma Oscillations 274

Gamma oscillations have been extensively modeled in the literature with different 275

neuronal models and networks structures [31,32]. The low and irregular firing rates 276

observed during Gamma oscillations have been reproduced in recurrent networks of 277

spiking neurons [13,33–36] by means of strong recurrent inhibition and strong noise 278

(due to external inputs and/or due to synaptic disorder). Networks displaying this type 279

of activity are known to be in the firing rate regime [35]; in contrast to models fully 280

synchronized, in which neurons behave as periodic oscillators. In this last regime, known 281

as an spike-to-spike regime , neurons spike at every cycle (or once every two cycles), 282

with an average firing rate close to the frequency of oscillatory network activity [37–45] 283

It is well established, experimentally and theoretically, that inhibition plays a crucial 284

role in generating Gamma rhythms [21,31,32,46–51]. Nonetheless, it is still 285

controversial [31, 52–54] whether Gamma oscillations are generated by the exclusively 286

interaction among inhibitory neurons [Interneuron Gamma (ING)] or via the interaction 287

of inhibitory and excitatory neurons [Pyramidal-Interneuron Gamma (PING)]. 288

Furthermore, a third mechanism, less explored in the literature, relies on the presence of 289

pacemaker excitatory cells known as Chattering neurons [55, 56]. We named this third 290

mechanism as Chattering Induced Gamma (CHING). 291

To compare to what degree each of three previously mentioned mechanisms can 292

reproduce the observed experimental features, and what are the consequences of each 293

mechanism, we constructed three neural networks working in the firing rate regime, 294

adapted to generate Gamma by means of ING, PING or CHING. Network and neuronal 295

parameters were chosen in a way to allow each model to reproduce experimental 296

features as well as possible, with physiologically plausible firing rates and membrane 297

conductance distributions (see S7 Fig and S8 Fig ). We call the reader’s attention to the 298

fact that, while networks with an structure similar to our PING Network have been 299

largely used in the literature, the structures of ING and CHING Networks were 300
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developed exclusively for this study. 301

In all three networks, Gamma oscillations can be turned on and off by means of the 302

external drive. Fig 4 shows the behavior of the three networks when a fluctuation on 303

the Poissonian input generates Gamma, mimicking the Gamma bursts observed 304

experimentally. Note however that, outside of Gamma bursts (low input amplitude), the 305

networks do not necessarily display a pure AI state: all three networks display 306

reminiscent low-amplitude oscillations. In all cases, the firing dynamics remained 307

irregular and with low synchrony, so we called them AI-like states. 308

A

B

C

D

E

Fig 4. Neural activity of different Gamma generation mechanisms
networks. PING Network (left), ING Network (meddle) and CHING Network (right).
A: Scheme of each network structure and pattern of connectivity. B: External
Poissonian noise fluctuation generating Gamma bursts. C: Raster plot of network
activity inside and outside Gamma bursts. Only 1000 neurons of each cell type are
shown. D: Membrane potential activity of randomly picked neurons of each type. Pay
attention to the well defined subthreshold oscillation exclusively present in the ING
Network. E: Simulated LFP (raw - in black) and its filtered version (yellow).

We next performed on the network models an equivalent analysis as in the human 309

data recordings. Each cell was followed in 5 different simulations containing on average 310

13 seconds of Gamma bursts (same duration as in the experimental recordings, 311

mimicking the five experimental data segments) and statistical tests to identify 312

phase-locking and firing rate changes were performed. Fig 5A, 5B and 5C display 313

respectively the quantification of behavior consistency for PING, ING and CHING 314

Networks. Accordingly to the unit recordings [21], the cells were generally more 315

depolarized and increased their firing during Gamma. On the other hand, within the 316

three models, only the ING Network (Fig 5Bc) is capable of describing the appropriate 317

amount of neurons that increase their firing in different data segments, during Gamma. 318

The PING and CHING networks predict an over-estimation of this number. The 319

presence of a sub-population of highly connected inhibitory neurons, capable of 320

generating Gamma rhythms by their own (see Methods), allows the ING Network to 321

provide a compensation for external excitatory fluctuations: whenever there is an 322

augmentation of input in the network (generating Gamma), there is in addition a 323

concomitant augmentation of inhibition thanks to the FS2 population. 324

In comparison to the experimental data analysis performed previously, all three 325
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c
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B

a

b

c

d

C

Fig 5. Individual neural behavior consistency in computational models. A:
PING Network. B: ING Network. C: CHING Network. Same analysis and color codes
used in Fig 3. To mimic the five experimental independent data segments in the Human
data recordings (Fig 3) on the network models, five simulations (per model) were
performed, containing on average the same amount of total Gamma bursts duration as
in the experimental data (13 seconds). In addition, to match the number of recorded
neurons in the experimental data, in the models a subset of 100 randomly picked
neurons were selected in each case.

models are capable of correctly describing the frequency of re-occurrence of 326

phase-locking inside of a group of neurons in different data segments. That is, all three 327

models predict the same the same intensity of phase-locking consistency as the one 328

observed on the human recordings (Fig 3D). On the other hand, regardless of the 329

mechanisms of Gamma generation, all networks predict an over estimated phase-locking 330

level (total number of phase-locked neurons per data segment) (see S9 Fig). With 331

respect to the human data set, the PING and ING networks predict a comparable level 332

of phase-locking in the excitatory population but an exaggerated level in the inhibitory 333

population. In contrast, the CHING Network predicts a comparable level of 334

phase-locking in the inhibitory population but an exaggerated level in the excitatory 335
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one. Side by side, the CHING Network is the one that still captures the best the level of 336

phase-locking in both populations (excitatory and inhibitory). 337

The right prediction of phase-locking consistency can be explained by the type of 338

activity regime in which each network works: the fluctuation-driven regime. Since this 339

regime allows neurons to spike with low firing rates in an irregular fashion, participating 340

of the global Gamma oscillation only in certain cycles due to the subthreshold 341

randomness. Nonetheless, the over-estimation of phase-locking level, indicates that the 342

simple fact of being in the fluctuation-driven regime is not enough to capture all levels 343

of description. We hypothesize that the network structure play a key role in the way 344

neurons behave during oscillations. Fig 5 illustrates how network heterogeneities in 345

network connections (ING Network) or in neuron types (CHING Network) influence 346

network activity. 347

In the presented human recordings, inhibitory neurons tended to spike earlier in the 348

cycle then excitatory neurons. Fig 6 shows the phase preference with respect to the 349

Gamma cycle of all the neurons considered phase-locked in the human data recordings 350

(Fig 6A) and in each of the three developed networks (Fig 6B , Fig 6C and Fig 6D). 351

The ING and CHING networks predict the same relationship as observed in the human 352

recordings (inhibition preceding excitation) while the PING Network predicts the 353

opposite. Moreover, in the same way as the human data set (S4 Fig), cells that were 354

classified as phase-locked, have their preferred phase changed from one simulation to 355

other (dynamical phase preference). We argue that this feature is also a consequence of 356

the fluctuation-driven regime. 357

Δθ

Δθ

Δθ

Δθ

Fig 6. Phase preference of phase-locked cells . A: Human Data (Data segment
2). B: PING Network Data. C: ING Network Data. D: CHING Network Data. The
preferred phases of each phase-locked cell are displayed in polar graph representation.
Phases were calculated from −π to π. The vector size gives a measure of the phase
distribution of each cell. Big amplitude vectors indicate very concentrated distributions
while small amplitude vectors indicate less concentrated ones (see S2 Fig). The color of
each vector encodes the type of the cell of whom it represents the phase: red (FS), dark
red (FS2), green (RS) and dark green (Ch). Cell number IDs are indicated. Dark
colored vectors indicate the average phase among each neuron type and ∆θ the phase
difference among them. Data segment 2 presented 43 minutes of recordings, containing
14 seconds of Gamma activity.

The phase relationship between excitation and inhibition is an important aspect to 358

be discussed, since it has been suggested to be a marker of the type of Gamma 359
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generation mechanism [54]. It has been shown theoretically by [36] that, in models 360

composed of conductance based neurons (neurons that include non-linear spike 361

generation mechanisms on their equations) the spiking order of excitatory and 362

inhibitory populations depends exclusively on single-cell characteristics. Based on their 363

analysis, when the IAMPA/IGABA ratio is the same in excitatory and inhibitory 364

neurons, excitatory cells tend to follow the inhibitory ones in most of the physiologically 365

plausible parameter space. On the other hand, when the ratio of excitation to inhibition 366

is weaker in excitatory cells than in inhibitory ones, excitatory cells tend to precede 367

inhibitory neurons [35,36]. In our simulations, the only network in which this theory 368

can be directly applied (because of the network structure) is the PING Network, in 369

which the IAMPA/IGABA ratio in excitatory cells is weaker then in inhibitory cells. 370

Interesting discussions about neural properties and population phase-differences can 371

also be found on [57,58]. 372

Concluding this section, we showed that network models working in the firing rate 373

regime, regardless of the mechanism of Gamma generation, can reproduce qualitatively 374

some of the most important features of experimental neural activity during Gamma: 375

phase-locking consistency and dynamical phase preference. On the other hand, all 376

models predict an overestimation of the phase-locking levels. Additionally, only the ING 377

Network model was capable of describing a reasonable level of firing rate increase inside 378

Gamma bursts, as found in the human recordings. We advocate that just the simple 379

fact of being in the fluctuation-driven regime is not enough to capture all levels of 380

description of Gamma oscillations, and hypothesize that the network structure play a 381

key role in the way neurons behave during oscillations. 382

Considering that the different types of spontaneous activity exhibited by the three 383

presented models could greatly influence how the network processes external input, we 384

have investigated this issue of responsiveness to external input in the next section. 385

Responsiveness and Resonance during Gamma Oscillations 386

Responsiveness 387

The way information is encoded and processed in the Brain is still a largely investigated 388

enigma. Several ways of encoding information have been considered, such as firing 389

rates [59,60], pairwise correlations [61,62], spike pattern irregularity [63–66] and spike 390

packets [67], among others. In particular, two main theories have been dominating the 391

debate: Temporal Coding in which individual neurons encode information by means of 392

precise spike timings (working as coincidence detectors), and the Rate Coding in which 393

neurons encode information by means of changes in their spike rates (working as 394

temporal integrators). Regardless of the encoded strategy used to encode information, 395

the way the network is capable of responding to a certain stimulus is of prime 396

importance. To identify how Gamma rhythms change the response properties of a 397

network to an external stimulus with respect to AI, in this section we applied two 398

protocols, investigating the effect of Gamma in both, the coincidence detection mode 399

and in the integration mode [68, 69]. 400

In the integration mode protocol, we compared how each of the three developed 401

models responded to slowly-varying inputs (occurring in a time window much bigger 402

than the Gamma period). In this protocol, each network received Poissonian drive 403

(spikes from an external network) with firing rates varying in time, in a Gaussian 404

manner, both during Gamma and AI-like states. The applied Gaussian inputs had a 405

standard deviation of 50 ms, allowing the stimulus to interact with different Gamma 406

cycles. Several amplitudes of slowly-varying Gaussian were tested, and the 407

responsiveness of excitatory and inhibitory populations were measured separately. 408

Responsiveness (see Eq 2) was defined as the difference between the total number of 409
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spikes (in a time window of duration T) generated by the whole network in the presence 410

and in the absence of the stimulus (normalized by the network size and the time window 411

duration T). 412

Fig 7 shows the responsiveness of the PING Network, the ING Network and the 413

CHING Network, when the integration mode protocol was applied. All models, 414

regardless of the mechanism of Gamma generation, were less responsive during Gamma 415

bursts in comparison with their baseline responsiveness during AI-like states. To further 416

investigate this result, we examined the responsiveness of individual cells (S10 Fig). 417

Due to the previous finding that only a restrict group of cells participate to Gamma, 418

one could imagine that there could still be few cells (Gamma participating cells) that 419

would be more responsive, while all others (Gamma non-participating cells) would be 420

less responsive, leading to a yet overall less prominent responsiveness. Nonetheless, S10 421

Fig shows the contrary. All cells seem to follow the same decrease of responsiveness 422

during Gamma oscillations, and we found no evidence that some subset of cells would 423

be more responsive, for all amplitudes tested. 424

In the coincidence detection mode protocol, the responsiveness at different Gamma 425

phases was measured. To do this, precisely-timed inputs (occurring in a time window 426

much smaller than the Gamma period) were applied and related to the Gamma cycle in 427

each of the three developed networks. In this protocol the amplitude of the stimulation 428

was kept constant, while the time of the application of the Gaussian stimulus changed 429

with respect to the phase of the Gamma oscillation. This procedure allowed each 430

network to be stimulated at different Gamma phases (see S11 Fig). Fig 8 indicates the 431

network response of excitatory cells per Gamma phase, in different states: Gamma state 432

(blue) , AI-like (black) and AI-like modulated by a control external current oscillating at 433

Gamma frequency (gray). All responses were normalized by the average response of 434

AI-like states without external current modulation (black). 435

AI-like states, when modulated by an external oscillatory current, displayed, in all 436

network models, preferred phases in which the network response was higher in 437

comparison to the non-modulated AI-like state. This constitutes an important control, 438

because the external current creates periods of higher and lower excitability in the 439

network, which is translated in a phase-dependent response (as shown by the gray 440

curves in Fig 8). Likewise, when generating Gamma, our models (PING and ING) 441

demonstrate an equivalent type of phase-dependence response (even-tough with a 442

narrow amplitude range). On the other hand, in agreement with the integration mode 443

protocol, our simulations show that the responsiveness during Gamma states at all 444

phases are less or equal to that during AI-like states. 445

Resonance 446

In Physics, when dealing with an oscillatory system, one of the first features to be 447

explored is its resonant properties. In general, resonance describes the phenomenon of 448

increased amplitude in a system, that occurs due to the application of an oscillatory 449

stimulus whose frequency is equal or close to the natural frequency of the system. It has 450

been shown experimentally that this phenomenon can also be observed in inhibitory [48] 451

and excitatory [70] neuronal populations. Furthermore, theoretical studies [71] have 452

shown that resonance is a fundamental property of spiking networks composed of 453

excitatory and inhibitory neurons. Resonance has also been proposed as a mechanism to 454

gate neuronal signals [72] and to communicate information [10]. 455

We tested the resonant properties of each of our networks in AI-like and Gamma 456

states. In this protocol, each network received Poissonian drive with firing rates varying 457

in time in a sinusoidal manner, with different frequencies (Fig 9A). Fig 9B, Fig 9C and 458

Fig 9D depict, for each frequency and oscillation phase, the average number of spikes 459

per RS neuron and time bin, during Gamma and AI-like states, for the PING, ING and 460
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500 msStimulus

Filtered LFP

Spiking activity
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Time Window

Noise fluctuation

Gamma State
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Gamma State
AI-Like State

Gamma State
AI-Like State

Gamma State
AI-Like State
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C
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D
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Fig 7. Network responsiveness to a Gaussian input with varying amplitude.
The responsiveness, inside and outside Gamma bursts, was measured in the three
developed networks. A: Responsiveness protocol scheme. A Gamma burst is generated
due to noise fluctuations (black line). During the Gamma activity, a Gaussian input
(orange line) is applied. The total number of spikes due to the stimulus, in time window
of 500 ms, is measured. To measure the total number of spikes in the absence of the
stimulus (not shown), another noise fluctuation is created, generating Gamma. The
total number of spikes inside of a time window of 500 ms is measured again (this time,
without the Gaussian input). This procedure was repeated 100 times per each Gaussian
amplitude input. B: Input Amplitude Variation. The stimulus consisted of a Gaussian
fluctuation in the firing rate of the external noise input. The Gaussian amplitude varied
from 0.05 Hz to 2.5 Hz (step of 0.05 Hz). Figures C , D and E display respectively the
responsiveness of the PING Network, the ING Network and the CHING Network, inside
Gamma bursts (green for excitatory cells, red for inhibitory cells), and outside Gamma
bursts (black for both types of cells). Every point corresponds to the average
responsiveness measured in 100 simulations. Standard error of the mean are indicated
by the shaded region around each curve.

CHING Networks. All values were normalized by the average firing inside of each state 461

to exclude the state dependent firing rate level (which is higher on Gamma). S12 Fig 462
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A

B

C

LFP I [nA]

D

Fig 8. Phase-dependent network response . A: External oscillatory current
applied at AI-like state as function of its oscillation phases (gray curve) and the filtered
LFP measured during Gamma states as function of its oscillation phases (blue curve).
All networks received a current oscillating from 0 to 0.1 nA in a sinusoidal manner with
a Gamma frequency Fγ . To match the Gamma oscillation frequency generated by each
network, the frequency of the external current applied to PING and CHING networks
was Fγ= 40 Hz, while the one applied to ING network was Fγ= 55 Hz. The LFP
depicted is the one from PING network. ING and CHING also displayed a similar LFP
pattern. B: PING Network phase-dependent response C: ING Network phase-dependent
response. D:CHING Network phase-dependent response. The phase-pependent network
response was calculated according to Eq 3, in a time window of duration T equal to one
Gamma cycle (T=25ms for the PING and CHING Networks and T=18ms for ING).
Responses measured inside AI-like activity (outside Gamma bursts) are shown in black,
and in gray when the networks received a supplementary oscillatory external current.
Responses measured inside Gamma bursts are displayed in blue. All curves were
normalized by the average response inside AI-like activity without external current
modulation. Solid lines indicate the average, and the shaded region indicates the
standard error of the mean. The curves were calculated based on the output of 12000
simulations (120 positions of the Gaussian stimulus in 100 numerical seeds for external
Poissonian drive). The Gaussian stimulus used had an amplitude of 50 Hz and standard
deviation of 1 ms.

depicts the resonant properties in other cell types (FS, FS2 or Ch) during Gamma state 463

for each one of the networks. 464

We observe that, in both AI-like and Gamma states, all models display resonant 465

properties around the Gamma band, with the main difference in between these two 466
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μ-∆
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μ+∆
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Fig 9. Resonant properties of computational models. A: Representation of
external Poissonian noise varying in time in a sinusoidal manner around µnoise. In this
protocol sinusoidal frequencies varied from 5 Hz to 100 Hz (step of 5 Hz). Two
oscillatory frequencies are depicted: 20Hz (blue) and 40 Hz (black), together with their
phases (second axis) and time bins (vertical line). For all frequencies the average
Poissonian noise (µnoise) was kept the same, varying from µnoise −∆noise and
µnoise + ∆noise. The bins were chosen in a way in which the oscillatory phases (from -π
to π) were divided into 25 intervals (for all frequencies), resulting in time bins of
different duration for each oscillatory frequency. B: Resonant properties of PING
Network. C: Resonant properties of ING Network. D: Resonant properties of CHING
Network. The color maps displayed in B, C and D depict, for each oscillatory frequency
and oscillation phase, the average number of spikes per RS neuron per time bin, during
Gamma and AI-like states. All values were normalized by the average firing inside of
each state to exclude the state dependent firing rate level (which is higher on Gamma).
∆noise = 0.5 Hz in all network models but µnoise varied in each case. For AI, in PING
and ING Networks µnoise = 2 Hz and in CHING Network µnoise = 1 Hz, while for
Gamma, µnoise= 3 Hz in in PING and ING Networks and µnoise= 2 Hz in CHING
Network.

states being a shift of the resonance frequency center. In this protocol we detect a 467

similar level of responsiveness per phase (reflected in the measured number of spikes per 468

time bin) in AI and Gamma, indicating that networks receiving oscillatory inputs have 469
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the same latent potential to resonate at Gamma ranges regardless if they are displaying 470

AI or Gamma oscillations. One should note that each model presents its own 471

particularities. While the PING network presents just a shift of the center frequency of 472

resonance, the ING network presents an enlarged potential of resonance in AI (in 473

addition to the frequency shift). During AI, the ING network presents an equal 474

resonance in several bands other then Gamma. Moreover, when a Gamma oscillation is 475

triggered in this network, this resonance is shrunk and becomes more concentrated in 476

the Gamma band. The CHING network, on the other hand, presents a strong resonance 477

in the 15-25 Hz frequency range during AI, while during Gamma this resonance is lost. 478

Concluding this section, we investigated three dynamical properties (Responsiveness, 479

Phase-dependent-responsiveness and Resonance) in different states (AI-like and 480

Gamma) of each of the three developed networks. We encounter that, regardless of 481

Gamma generating mechanism (PING, ING or CHING), the network responsiveness, in 482

both coincidence detection and integrative mode, is decreased at Gamma states with 483

respect to AI. On the other hand, the resonant properties around the Gamma band in 484

all networks did not change significantly from one state to the other. The main resonant 485

properties changes between AI and Gamma states in each model were most prominent 486

around other bands. The implications of these observations on the role Gamma rhythms 487

in neural computations and information transfer will be discussed in the next section. 488

Discussion 489

In this paper, we have examined the genesis and responsiveness of Gamma oscillations 490

constrained by human recordings. We analyzed Gamma oscillations from a previous 491

studies [20,21], where the recordings were stable, and in which RS and FS cells were 492

discriminated. We compared the results of this analysis to conductance-based network 493

models implementing three different mechanisms that were proposed for Gamma 494

oscillations, PING, ING and CHING. We next examined these three networks with 495

respect to their responsiveness and resonance to external inputs. We discuss these 496

aspects below. 497

Human data Analysis 498

Compared to a previous analysis of the cellular correlates of Gamma oscillations [21], we 499

confirm here the low level of cellular engagement and a greater participation of FS cells 500

during Gamma, either through phase-locking or through firing rate increase. FS cells 501

not only presented a higher percentage of phase-locking or firing rate increase during 502

Gamma, but they also presented a more consistent behavior compared to RS cells which 503

were much more variable. Our analysis further indicates that, the group of Gamma 504

participating cells changes with time as well as their phase-preference. The analysis 505

performed on this work is very qualitative, since it was based on a single patient. 506

Nonetheless, this very sparse participation of RS and FS cells during Gamma was seen 507

in different patients, and the same was observed in monkey for beta oscillations [21]. 508

Responsiveness 509

The occurrence of Gamma rhythms have been correlated with conscious 510

perception [73–77] and several authors support these rhythms as being a suitable 511

marker of consciousness. On the other hand, it has been proposed that the 512

Asynchronous and Irregular activity, observed during awake and aroused states, due to 513

its specific responsiveness properties, is an ideal setting for integrating multiple external 514
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inputs [12]. In support of this, it was concluded in a review that asynchronous states 515

constitute the most reliable correlate of conscious states [78]. 516

Previous work [12] has compared the responsiveness of a fully synchronized network 517

(spike-to-spike regime) with a network in AI state, showing that the AI state is the best 518

state to integrate multiple external inputs. It was also shown that, in rate-based 519

networks, the most chaotic states could display the highest responsiveness, as measured 520

using Shannon information [79]. In the present work, we compared the responsive 521

properties of AI state with Gamma states generated by means of three different 522

mechanism: PING, ING and CHING. Each of these networks were submitted to two 523

types of inputs. First, a slowly-varying input integrated by the population of neurons 524

over a substantial period of time (integrative mode). Second, we examined 525

precisely-timed inputs, occurring in a time window smaller than the Gamma period 526

(coincidence detection mode). For the integrative mode, we systematically found that 527

the Gamma oscillations yielded less responsiveness than the AI-like states. In the 528

coincidence detection mode, we found that the response was only weakly modulated by 529

the phase of the Gamma. This was assessed by comparing the Gamma oscillation to a 530

sinusoidal control input, in which case the response was clearly phase-dependent. In 531

agreement with the integrative mode, the responsiveness measured in the coincidence 532

detection mode protocol was generally higher for the AI-like states. In addition, in the 533

coincidence detection mode, among the three models, the ING Network is the only one 534

that presents a similar responsiveness between Gamma and AI states, which stresses 535

again the importance of network topology on networks behaviors. 536

A smaller responsiveness during Gamma states is somehow surprising since neurons 537

are in general more depolarized in this state and additionally increase their firing, as we 538

showed in our data analysis. On the other hand this observation is intuitively easy to 539

understand, if we take into account the fact that Gamma oscillation are composed of 540

successions of periods of high inhibition, which define time windows in which neurons 541

are less likely to spike. While during Gamma states, these time windows of high 542

inhibition constrain the times a certain neuron can spike, during AI states neurons can 543

spike at all moments with the same probability. Indeed, we observed that the response 544

during Gamma oscillations is phase-dependent, while there is no phase preference during 545

AI states. However, although there was a phase dependence, Gamma oscillations did not 546

provide a preferred phase where the network is more responsive than during AI states. 547

The fact that higher levels of inhibition during Gamma could explain their diminished 548

responsiveness should be testable experimentally using intracellular recordings in vivo. 549

Given our model results, what this decrease of responsiveness could be useful for, 550

and what are the advantages of a higher responsive state in AI? This questions can be 551

approached in the light of the Phase Coding Theory (PC). This theory was initially 552

formulated with respect to Theta rhythm [6], but lately extended to Gamma [7]. This 553

theory states that, within the Gamma cycle, the excitatory input to pyramidal cells is 554

converted into a temporal code whereby the amplitude of excitation is re-coded in the 555

time of occurrence of output spikes relative to the cycle [7]. In this view, the cells that 556

are most excited fire earlier in the cycle, while cells that are not excited enough are 557

prohibited to spike due the new wave of inhibition composing the cycle. This process 558

can be seen as a winner-take-all phenomena (or more precisely a few-winners-take-all 559

phenomena, since it involves several neurons neurons) [7]. Such a coding strategy 560

enables transmission and read out of amplitude information within a single Gamma 561

cycle without requiring rate integration, proving a fast processing and readout by means 562

of coincidence detection, rather than on rate integration [80]. Furthermore, this type of 563

encoding strategy would, in principle, allow an improvement of signal-to-noise ratios, 564

since neurons not conveying information would be hindered to spike. In this perspective, 565

according to our models, Gamma oscillations would allow a network to respond quicker 566
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at the expense of decreasing the strength of its response. On the other hand, more 567

responsive states such as AI, would be better suited to respond to low amplitude 568

stimulus (due to its high sensitivity) at the cost of loosing temporal precision. Such 569

possibilities constitute interesting directions to explore by future models. 570

Resonance 571

In this work we reproduced previous results [71] showing that resonance is a 572

fundamental property of spiking networks composed of excitatory and inhibitory 573

neurons. We compared the resonant properties during AI and Gamma states generated 574

by three different mechanism (ING, PING and CHING) and verified that, apart from a 575

shift on the resonant frequency center, the resonant properties around the Gamma band 576

in all networks did not change significantly from one state to the other. We call the 577

reader attention to the particularities of each network model, especially the enlarged 578

potential of resonance of ING network during AI. 579

Even though previous work proposed the importance of resonance in information 580

transfer and processing in the brain [10], this aspect has been left aside until 581

recently [81]. The most popular view, known as the Communication Through Coherence 582

(CTC) Theory [8, 9], proposes a mechanistic explanation for how different neural regions 583

could communicate by means of coherence [82]. This theory advocates that, since 584

oscillations generate a rhythmic modulations in neuronal excitability (defining time 585

windows in which neurons are capable to respond), only coherently oscillating groups 586

can effectively communicate. In contrast, a recent work [81] present results indicating 587

that, to the contrary, coherence is a consequence of communication, not a cause of it. 588

This study shows that if an oscillating network is connected to another network that 589

owns resonant properties around this same frequency, these two networks present 590

coherent activity, and that the presence of these resonant interactions could explain 591

more than 50% of the observed coherence. Furthermore, they show that the oscillating 592

network sends information to the resonant one (the Granger-causality between field 593

potentials is dominated by oscillatory synchronization in the sending area). 594

In this perspective, the enlarged potential of resonance of ING network in different 595

bands during AI, indicates that this type of network structure (with heterogeneous 596

connectivity patterns in between inhibitory neurons) could potentially convey 597

information equally well in several bands. This stress the importance of network 598

topology for neuronal information processing and also constitutes interesting directions 599

to further explore. 600
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Supporting information 601

S1 Fig.

A B

DC

602

Gamma Network parameter search. The network connectivity (p) vs. inhibitory 603

synaptic strengths (Qi) parameter space of the Gamma Network are displayed as 604

color-plots. A: Network oscillation frequency. B: Average spiking frequency. C: Network 605

balance: rate between the average excitatory and inhibitory synaptic currents, 606〈
〈Iexc〉N
〈IInh〉N

〉
t

, in which 〈〉N stand for average among neurons and 〈〉t average on time. D) 607

Membrane Potential Synchrony (χ), calculated by means of the equation: χ2 =
σ2
V

1
N ΣN

i σ
2
Vi

608

, in which V (t) = 1
NΣNi Vi(t), σV

2 = 〈[V (t)]
2〉t − [〈V (t)〉t]2 and 609

σVi
2 = 〈[Vi(t)]2〉t − [〈Vi(t)〉t]2. The set of parameter which allowed Gamma Network to 610

oscillate in the Gamma range are indicated by a star symbol. Every point in each graph 611

is given by the average output of 10 simulations of 5 seconds each. 612

S2 Fig. 613

Data Ensenble 0: Phase Distribution of Neuron 9

Data Ensenble 0: Phase Distribution of Neuron 66

A

B

C

D

E

1

1

614

Phase-locking statistical test . A: Phase distribution of two randomly picked cells 615

from the human recordings (Data segment 1): one excitatory (top, green) and one 616

inhibitory (bottom, red). The phase distribution of each cell was fitted to a Von Mises 617
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curve, which allowed the estimation of its preferred phase θVM . The phase distribution 618

of each neuron was tested for circular uniformity using a Bonferroni-corrected Rayleigh 619

test [25,26]. B: Rayleigh Z calculated for all recorded neurons: excitatory (top, green) 620

and inhibitory (bottom, red). A neuron was considered phase-locked if the circular 621

uniformity at P < 0.01, (Z > Zc) could be rejected. C: Preferred phases, θVM , of each 622

phase-locked cell, displayed in polar graph representation. Dark colored vectors indicate 623

the average phase among each neuron type and ∆θ the phase difference among RS and 624

FS. Data segment 1 presented 22 minutes of recordings, containing 9 seconds of Gamma 625

activity. 626

S3 Fig.

A B

C

627

Firing rate change statistical test. A: Activity of two randomly picked cells during 628

several Gamma bursts: neuron 13 (inhibitory, left) and neuron 75 (excitatory, right). 629

The graphs display the firing patter around Gamma bursts (indicated by the black 630

doted lines). Each point corresponds to one spike in the correspondent tuple of time 631

and burst ID (y-axis). B: Histogram computing the distributions of all spikes inside all 632

Gamma bursts of neuron 13 (left) and neuron 75 (right). C: Exemplification of firing 633

rate change statistical test. The Poissonian distribution of these two neurons is 634

constructed based on their average firing rate calculated outside of Gamma bursts. The 635
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critical number of spikes nc, indicated by the dotted lines, is calculated based on the 636

Percent Point Function of the respective Poissonian Distribution for a period T, with an 637

95% Interval of Confidence. The observed number of spikes nobsv is depict as a dot over 638

the curve. According to this procedure, only neuron 75 is considered to increase its 639

firing, since nobsv > nc. 640

S4 Fig.

A

Δθ

Data Segment 2Data Segment 1

Data Segment 3

Δθ

Δθ

∆θ

Data Segment 4

Δθ

C

E

D

B

Data Segment 5

641

Phase preference of phase-locked cells per data segment in the human 642

recordings. A: Data segment 1 - containing 22 minutes of recordings and 9 seconds of 643

total Gamma activity. B: Data segment 2 - containing 43 minutes of recordings and 14 644

seconds of total Gamma activity. C: Data segment 3 - containing 28 minutes of 645

recordings and 16 seconds of total Gamma activity. D: Data segment 4 - containing 26 646

minutes of recordings and 13 seconds of total Gamma activity. E: Data segment 5 - 647

containing 16 minutes of recordings and 11 seconds of total Gamma activity. The 648

preferred phases of each phase-locked cell are displayed in polar graph representation. 649

Phases were calculated from −π to π. The vector size gives a measure of the phase 650

distribution of each cell. Big amplitude vectors indicate very concentrated distributions 651

while small amplitude vectors indicate less concentrated ones. The color of each vector 652
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encodes the type of the cell of whom it represents the phase: red (FS), dark red (FS2), 653

green (RS) and dark green (Ch). Cell number IDs are indicated. Dark colored vectors 654

indicate the average phase among each neuron type and ∆θ the phase difference among 655

them. 656

S5 Fig.

   4.4%  ≈ 13%

   8.7%

  34.8%

   1.5%

A B

C D

657

Behavior consistency of RS and FS cells in human recordings. Distributions 658

of consistency indexes among the recorded neurons with respect to to firing rate 659

increase are displayed respectively in A and B for RS cells and FS cells, while C and D 660

display the consistency indexes distribution of phase-locking for RS and FS. 661

S6 Fig. 662

13%

56.6%

30.4%

57.4%

4.4%

38.%

52.2%

47.8%

5.9%

73.5%

20.6%

A B

663
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Neural behavior time distribution in the human data. The activity of each 664

neuron inside and outside Gamma bursts in all 5 data segments were quantified. Taking 665

into account that each data segment had a different duration, containing a different 666

total Gamma duration, and that some neurons were silent in some data segments, each 667

neuron was analyzed individually, taking into account the percentage of the total 668

amount of time in which the neuron was active. A: Phase-locking time distribution. 669

The grid plot in the meddle displays the amount of time (with respect to the total 670

recording time) in which each neuron was considered phase-locked (A , y axis), and the 671

the amount of time in which each neuron was considered not phase-locked (A , x axis). 672

RS neurons are depicted in green and FS neurons in red, together with their ID number. 673

Neurons lying outside of the diagonal are neurons of whom statistical analysis was 674

inconclusive at some data segments, due to the reduced number of spikes. At the top 675

left corner, lie neurons that were always considered phase-locked, while neurons that 676

were never considered phase-locked are placed at the bottom right corner. Pie plots 677

indicate the percentage of neurons that passed at least 50% of the total time being 678

either phase-locked or not phase-locked (neurons that fall inside of the colored 679

quadrants) and the neurons lying on the left white quadrant. B: Same analysis as A but 680

displaying the firing rate change time distribution. This analysis indicates that only a 681

small percentage of neurons passed at least 50% of the total time being either 682

phase-locked (RS: 4.4% , FS: 13%) or increasing its firing (RS: 20.6% , FS: 52.2%). 683

Moreover, even though no cell was 100% of the time phase-locked to Gamma, some cells 684

were 100% of the time not phase-locked to Gamma (RS: 22.1 % , FS: 13 % ) and others 685

never increased their firing (RS: 41.2 % , FS: 17.4 % ) 686
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S7 Fig.

B CA

687

Firing rate distributions. A: Illustration of the analyzed system: human recordings, 688

PING Network, ING Network and CHING Network. B: Firing rate distribution of 689

excitatory cells inside and outside Gamma bursts. C: Firing rate distribution of 690

inhibitory cells inside and outside Gamma bursts. Average firing rates are indicated by 691

the dotted line. 692
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S8 Fig.

CBA

693

Average excitatory and inhibitory conductances A: Illustration of the analyzed 694

system: PING Network, ING Network and CHING Network. B: Ratio between 695

excitatory conductance (Ge) and leakage conductance (GL). C: Ratio between 696

inhibitory conductance (Gi) and leakage conductance (GL). Averages are indicated by 697

the dotted line. The distributions fall inside of the physiological range observed 698

experimentally [83] 699
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S9 Fig.

B

CA

D

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

Phase-Locked
Not Phase-Locked

Inconclucive

700

Average level of phase-locking. The average level of phase-locking is defined as the 701

averaged percentage of cells in the network considered to be phase-locked, across the 5 702

segments of data recorded. The analysis was done separately for excitation and 703

inhibition. A: Human Data recordings, B:PING Network, C: ING Network and D: 704

CHING Network. The percentage of cells signaled as inconclusive relates to cells in 705

which the number of spikes inside Gamma burst were too small to allow statistical 706

significant phase-locking. 707

S10 Fig. 708

AI Gamma

A

B

C

709

Responsiveness of individual cells in computational models. A: PING 710
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Network. B: ING Network. C: CHING Network. To estimate the individual cell 711

responsiveness, we calculated the average spiking frequency of each cell inside (y-axis) 712

and outside stimulus (x-axis) during AI-like states (left) and Gamma states (right). RS 713

cells are displayed in green and FS cells in red. In each plot the linear regression from 714

the points is depicted with the identity. We observe that all cells follow the same rule of 715

responsiveness (proportional to their firing outside the stimulus). No difference can be 716

seen between the responsiveness of neurons classified as Gamma participating and the 717

Gamma non-participating cells. 718

S11 Fig.

Gamma State

B

C

D

A

AI State

AI State + Oscillating Current

T

719

Phase-dependent network response protocol. A: Protocol scheme in ING 720

Network when it displays Gamma oscillations (45-65 Hz). Top: the stimulus used to 721

measure network phase-dependent response is a Gaussian fluctuation of the Poissonian 722

noise concentrated in time. It had an amplitude of 50Hz and standard deviation of 1 ms. 723

Meddle: Raster plot indicating the network response to the Gaussian stimulus. The 724

network responsiveness was calculated according to Eq 3, in a time window T=18ms 725

(shaded gray area). Bottom: Gamma oscillation phase around the the stimulus pick. 726

The phase at the time the stimulus was applied is indicated. The Phase-dependent 727

network responsiveness was measured in three different network states: B: AI state 728

(Poissonian noise= 2Hz , no external current). C: AI-modulated states (Poissonian 729

noise= 1Hz , with sinusoidal external current ). D: Gamma state (Poissonian noise= 730

3Hz , no external current). Figures A, B and C display the Raster activity of ING 731

Network without the Gaussian stimulation. Only 20% of network is shown. 732
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S12 Fig. 733

A

B

C

734

Resonant properties of computational models during Gamma in each cell 735

type A: Resonant properties of PING Network. B: Resonant properties of ING 736

Network. C: Resonant properties of CHING Network. The color maps displayed in A, B 737

and C depict, for each oscillatory frequency and oscillation phase, the average number 738

of spikes per cell type (RS, FS, FS2 or Ch) and time bin, during Gamma state. 739

Differently then Figure 9 no normalization was applied. ∆noise = 0.5 Hz in all network 740

models but µnoise varied in each case. In PING and ING Networks µnoise = 3 Hz and 741

in CHING Network µnoise = 2 Hz. 742
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