
Title: Minian an Open-source Miniscope Analysis Pipeline 1 

Authors: Zhe Dong1, William Mau1, Yu Feng1, Zachary T. Pennington1, Lingxuan Chen1, Yosif 2 
Zaki1, Kanaka Rajan1, Tristan Shuman1, Daniel Aharoni*2, Denise J. Cai*1 3 

*Corresponding Authors 4 

1Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai 5 

2Department of Neurology, David Geffen School of Medicine, University of California, Los 6 
Angeles 7 

  8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 9 

Miniature microscopes have gained considerable traction for in vivo calcium imaging in freely 10 
behaving animals. However, extracting calcium signals from raw videos is a computationally 11 
complex problem and remains a bottleneck for many researchers utilizing single-photon in 12 
vivo calcium imaging. Despite the existence of many powerful analysis packages designed to 13 
detect and extract calcium dynamics, most have either key parameters that are hard-coded or 14 
insufficient step-by-step guidance and validations to help the users choose the best parameters. 15 
This makes it difficult to know whether the output is reliable and meets the assumptions 16 
necessary for proper analysis. Moreover, large memory demand is often a constraint for setting 17 
up these pipelines since it limits the choice of hardware to specialized computers. Given these 18 
difficulties, there is a need for a low memory demand, user-friendly tool offering interactive 19 
visualizations of how altering parameters at each step of the analysis affects data output. Our 20 
open-source analysis pipeline, Minian (Miniscope Analysis), facilitates the transparency and 21 
accessibility of single-photon calcium imaging analysis, permitting users with little computational 22 
experience to extract the location of cells and their corresponding calcium traces and 23 
deconvolved neural activities. Minian contains interactive visualization tools for every step of the 24 
analysis, as well as detailed documentation and tips on parameter exploration. Furthermore, 25 
Minian has relatively small memory demands and can be run on a laptop, making it available to 26 
labs that do not have access to specialized computational hardware. Minian has been validated 27 
to reliably and robustly extract calcium events across different brain regions and from different 28 
cell types. In practice, Minian provides an open-source calcium imaging analysis pipeline with 29 
user-friendly interactive visualizations to explore parameters and validate results. 30 

Introduction 31 

Overview of related works 32 

Open-source projects—hardware, software, training curricula—have changed science and 33 
enabled significant advances across multiple disciplines. Neuroscience, in particular, has 34 
benefitted tremendously from the open-source movement. Numerous open-source projects 35 
have emerged [1,2], including various types of behavioral apparatus facilitating the design of 36 
novel experiments [3,4,5,6,7], computational tools enabling the analysis of large scale datasets 37 
[8,9,10,11,12,13,14,15,16,17,18,19,20,21], and recording devices allowing access to large 38 
populations of neurons in the brain [22,23,24,25,26,27,28,29,30,31]. Miniature microscopy has 39 
been an area of particular importance for the open-source movement in neuroscience. To 40 
increase the usability, accessibility, and transparency of this remarkable technology originally 41 
developed by Schnitzer and colleagues [32,33], a number of labs innovated on top of the 42 
original versions with open-source versions [26,27,28,29,30,31]. The UCLA Miniscope project, a 43 
user-friendly miniature head-mounted microscope for in vivo calcium imaging in freely behaving 44 
animals, is one such project that has been accessible to a large number of users [22,34,35,36]. 45 

With the increasing popularity of miniature microscopes, there is a growing need for analysis 46 
pipelines that can reliably extract neuronal activities from recording data. To address this need, 47 
numerous algorithms have been developed and made available to the neuroscience community. 48 
The principal component analysis or independent component analysis (PCA-ICA)-based 49 
approach [13], and region-of-interest (ROI)-based approach [34] were among the earliest 50 
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algorithms that reliably detected the locations of neurons and extract their overall activities 51 
across pixels. However, one of the limitations of these approaches is that activities from cells 52 
that are spatially overlapping cannot be demixed. A subsequent constrained non-negative 53 
matrix factorization (CNMF) approach was shown to reliably extract neuronal activity from both 54 
two-photon and single-photon calcium imaging data [37], and demix the activities of overlapping 55 
cells. The CNMF algorithm models the video as a product of a ‘spatial’ matrix containing 56 
detected neuronal footprints (locations of cells) and a ‘temporal’ matrix containing the temporal 57 
calcium traces of each detected cell. This approach is particularly effective at addressing 58 
crosstalk between neurons, which is of particular concern in single-photon imaging, where the 59 
fluorescence from overlapping or nearby cells contaminates each other. Moreover, by 60 
deconvolving calcium traces, the CNMF algorithm enables a closer exploration of the underlying 61 
activity of interest, action potentials [19,38]. Originally developed for two-photon data, the CNMF 62 
algorithm did not include an explicit model of the out-of-focus fluorescence which is often 63 
present in single-photon miniature microscope recordings. This issue was addressed via the 64 
CNMF-E algorithm [11], where a ring-model is used as a background term to account for out-of-65 
focus fluorescence. Later, an open-source python pipeline for calcium imaging analysis, 66 
CaImAn, was published, which included both the CNMF and CNMF-E algorithms, as well as 67 
many other functionalities [16]. The latest development in analysis pipelines for in vivo miniature 68 
microscope data is MIN1PIPE [12], where a morphological operation is used to 69 
remove background fluorescence during pre-processing of the data, and a seed-based 70 
approach is used for initialization of the CNMF algorithm. Other approaches have also been 71 
used to extract signals from calcium imaging data including an online approach [20], ℓ0-72 
penalization approach to infer spikes [14,21], robust modeling of noise [39], and source 73 
detection using neural networks [15]. 74 

The open sharing of the algorithms necessary for the computation of neural activity has been 75 
exceptionally important for the field. However, implementation of these tools can be complex as 76 
many algorithms have numerous free parameters (those that must be set by the user) that can 77 
influence the outcomes, without clear guidance on how these parameters should be set or to 78 
what extent they affect results. Moreover, there is a lack of ground-truth data for in 79 
vivo miniature microscope imaging, making it hard to validate algorithms and/or parameters. 80 
Together, these obstacles make it challenging for neuroscience labs to adopt the analysis 81 
pipelines, since it is difficult for researchers to adjust parameters to fit their data, or to trust the 82 
output of the pipeline for downstream analysis. Thus, the next challenge in open-source 83 
analysis pipelines for calcium imaging is to make the analysis tools more user-friendly and 84 
underlying algorithms more accessible to neuroscience researchers so that they can more 85 
easily understand the pipeline and interpret the results. 86 

Contributions of Minian 87 

To increase the accessibility of the mathematical algorithms, transparency into how altering 88 
parameters alters the data output, and usability for researchers with limited computational 89 
resources and experience, we developed Minian, an open-source analysis pipeline for single-90 
photon calcium imaging data inspired by previously published algorithms. We based Minian on 91 
the CNMF algorithm [16,37], but also leverage methods from other pipelines, including those 92 
originally published by Cai et al. [34] and MIN1PIPE [12]. To enhance compatibility with different 93 
types of hardware, especially laptops or personal desktop computers, we implemented an 94 
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approach that supports parallel and out-of-core computation (i.e., computation on data that are 95 
too large to fit a computer’s memory). We then developed interactive visualizations for every 96 
step in Minian and integrated these steps into annotated Jupyter Notebooks as an interface for 97 
the pipeline. We have included detailed notes and discussions on how to adjust the parameters 98 
from within the notebook and have included all free parameters in the code for additional 99 
flexibility. The interactive visualizations will help users to intuitively understand and visually 100 
inspect the effect of each parameter, which we hope will facilitate more usability, transparency, 101 
and reliability in calcium imaging analysis. 102 

Minian contributes to three key aspects of calcium image data analysis: 103 

1. Visualization. For each step in the pipeline, Minian provides visualizations of inputs and 104 
results. Thus, users can proceed step-by-step with an understanding of how the data are 105 
transformed and processed. In addition, all visualizations are interactive and support 106 
simultaneous visualization of the results obtained with different parameters. This feature 107 
provides users with knowledge about the corresponding outcome for each parameter 108 
value, and allow the users to choose the outcome that fits best with their expectation. 109 
Hence, the visualizations also facilitate parameter exploration for each step, which is 110 
especially valuable when analyzing data from heterogeneous origins that may vary by brain 111 
region, cell type, species, and the extent of viral transfection. 112 

2. Memory demand. One of the most significant barriers in adopting calcium imaging 113 
pipelines is the memory demand of algorithms. The recorded imaging data usually take up 114 
tens of gigabytes of space when converted to floating-point datatypes and often cannot fit 115 
into the RAM of standard computers without spatially and/or temporally down-sampling. 116 
CaImAn [16] addresses this issue by splitting the data into overlapping patches of pixels, 117 
processing each patch independently, and merging the results together. This enables out-118 
of-core computation since at any given time only subsets of data are needed and loaded 119 
into memory. In Minian, we extend this concept further by flexibly splitting the data either 120 
spatially (split into patches of pixels) or temporally (split into chunks of frames). In this way, 121 
we avoid the need to merge the results based on overlapping parts. The result is a pipeline 122 
that supports out-of-core computation at each step, which gives nearly constant memory 123 
demand with respect to input data size. Minian can process more than 20min of recording 124 
(approximately 12.6 GB of raw data) with 8GB of memory, which makes Minian suitable to 125 
be deployed on modern personal laptops. 126 

3. Accessibility. Minian is an open-source Python package. In addition to the codebase, 127 
Minian distributes several Jupyter Notebooks that integrate explanatory text with code and 128 
interactive visualizations of results. For each step in the notebook, detailed instructions, as 129 
well as intuition about the underlying mathematical formulation are provided, along with 130 
code, which can be directly executed from within the notebook. Upon running a piece of 131 
code within the notebook visualizations appear directly below. In this way, the notebooks 132 
serve as a complement to traditional API documentations of each function. In addition, 133 
users can easily rearrange and modify the pipeline notebook to suit their needs without 134 
diving into the codebase and modifying the underlying functions. The notebooks distributed 135 
by Minian can simultaneously function as a user guide, template, and production tool. We 136 
believe the inclusion of these notebooks, in combination with Minian’s other unique 137 
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features, can increase understanding of the underlying functioning of the algorithms and 138 
greatly improve the accessibility of miniature microscopy analysis pipelines. 139 

Paper organization 140 

The paper is organized as follows: Since Minian’s major contribution is usability and 141 
accessibility, we first present the detailed steps in the analysis pipeline in Materials and 142 
Methods section. Following a step-by-step description of the algorithms Minian adopted from 143 
existing works, we present novel visualizations of the results, as well as how users can utilize 144 
these visualizations. In the Results section, we benchmark Minian across two brain regions and 145 
show that spatial footprints and the temporal activity of cells can be reliably extracted. We also 146 
show that the cells extracted by Minian in hippocampal CA1 exhibit stable spatial firing 147 
properties consistent with the existing literature. 148 

Materials and Methods 149 

Here, we present a detailed description of Minian. We begin with an overview of the Minian 150 
pipeline. Then, we provide an explanation of each step, along with the visualizations. Lastly, we 151 
provide information regarding hardware and dependencies. 152 

Overview of Minian 153 

Minian comprises five major stages, as shown in Figure 1. Raw videos are first passed into a 154 
pre-processing stage. During pre-processing, the background caused by vignetting (in which the 155 
central portion of the field of view is brighter) is corrected by subtracting a minimum projection of 156 
the movie across time. Sensor noise, evident as granular specks, is then corrected with a 157 
median filter. Finally, background fluorescence is corrected by the morphological process 158 
introduced in MIN1PIPE [12]. The pre-processed video is then motion-corrected with a standard 159 
template-matching algorithm based on cross-correlation between each frame and a reference 160 
frame [40]. The motion-corrected and pre-processed video then serves as the input to 161 
initialization and CNMF algorithms. The seed-based initialization procedure looks for local 162 
maxima in max projections of different subsets of frames and then generates an over-complete 163 
set of seeds, which are candidate pixels for detected neurons. Because this process is likely to 164 
produce many false positives, seeds are then further refined based on various metrics, including 165 
the amplitude of temporal fluctuations and the signal-to-noise ratio of temporal signals. The 166 
seeds are transformed into an initial estimation of cells’ spatial footprints based on the 167 
correlation of neighboring pixels with each seed pixel, and the initial temporal traces are in turn 168 
estimated based on the weighted temporal signal of spatial footprints. Finally, the processed 169 
video, initial spatial matrix, and temporal matrix are fed into the CNMF algorithm. The CNMF 170 
algorithm first refines the spatial footprints of the cells (spatial update). The algorithm then 171 
denoises the temporal traces of each cell while simultaneously deconvolving the calcium trace 172 
into estimated ‘spikes’ (temporal update). CNMF spatial and temporal updates are performed 173 
iteratively and can be repeated until a satisfactory result is reached through visual inspection. 174 
Typically, this takes two cycles of spatial, followed by temporal, updates. Minian also includes a 175 
demo dataset which allows the user to run and test the pipeline comprised of the pre-made 176 
Jupyter Notebook immediately after installation. 177 
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 178 

Figure 1: Overview of the analysis pipeline. The analysis is divided into five stages: Pre-179 
processing, where sensor noise and background fluorescence from scattered light are removed; 180 
Motion-correction, where rigid motion of the brain is corrected; Seeds-initialization, where the 181 
initial spatial and temporal matrices for later steps are generated from a seed-based approach; 182 
Spatial update, where the spatial footprints of cells are further refined; Temporal update, where 183 
the temporal signals of cells are further refined. The last two steps of the pipeline are iterative 184 
and can be repeated multiple times until a satisfactory result is reached. 185 

Setting up 186 

The first section in the pipeline includes house-keeping scripts to import packages and 187 
functions, defining parameters, and setting up parallel computation and visualization. Most 188 
notably, the distributed cluster that carries out all computations in Minian are set up in this 189 
section. By default, the cluster runs locally with multi-core CPUs, however it can be easily 190 
scaled up to run on distributed computers. The computation in Minian is optimized such that in 191 
most cases the memory demand for each process/core can be as low as 2GB. However, in 192 
some cases depending on the hardware, the state of operating system and data locality, Minian 193 
might need more than 2GB per process to run. If a memory error (KilledWorker) is encountered, 194 
it is common for users to increase the memory limit of the distributed cluster to get around the 195 
error. Regardless of the exact memory limit per process, the total memory usage of Minian 196 
roughly scales linearly with the number of parallel processes. The number of parallel processes 197 
and memory usage of Minian are completely limited and managed by the cluster configuration 198 
allowing users to easily change them to suit their needs. 199 
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Pre-processing 200 

Loading data and down-sampling 201 

Currently Minian supports .avi movies, the default output from the UCLA Miniscopes, and .tif 202 
stacks, the default output from Inscopix miniscopes. This functionality can be easily extended to 203 
support more formats if desired. Users are required to organize their data so that each recording 204 
session is contained in a single folder. Because Minian can extract relevant metadata from 205 
folder nomenclature (e.g., animal name, group, date), we suggest organizing the video folders 206 
based upon animal and other experiment-related groupings to facilitate the incorporation of 207 
metadata into Minian output files. 208 

Minian supports down-sampling on any of the three video dimensions (height, width, and 209 
frames). Two down-sampling strategies are currently implemented: either sub-setting data on a 210 
regular interval or calculating a mean for each interval. At this stage, users are required to 211 
specify (1) the path to their data, (2) a pattern of file names to match all the videos to be 212 
processed (e.g., all files containing ‘msCam’, a typical pattern resulting from Miniscope 213 
recordings), (3) a Python dictionary specifying whether and how metadata should be pulled from 214 
folder names, (4) another Python dictionary specifying whether and on which dimension down-215 
sampling should be carried out, and (5) the down-sampling strategy, if desired. 216 

Once specified, the data can be immediately visualized through an interactive viewer, as shown 217 
in Figure 2. Along with a player to visualize every frame in the video, the viewer also plots 218 
summary values such as mean, maximum, or minimum fluorescence values across time. This 219 
helps users to check their input data and potentially exclude any artifacts caused by technical 220 
faults during experiments (e.g., dropped frames). Users can further subset data to exclude 221 
specified frames, if necessary. Finally, restricting the analysis to a certain sub-region of the field 222 
of view during specific steps could be beneficial. For example, if the video contains anchoring 223 
artifacts resulting from dirt on the lenses, it is often better to avoid such regions during motion 224 
correction. To facilitate this, the viewer provides a feature where users can draw an arbitrary 225 
box within the field of view and have it recorded as a mask. This mask can be passed into later 226 
motion correction steps to avoid the biases resulting from the artifacts. 227 
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 228 

Figure 2: Interactive visualization of raw input video. One frame is shown in the central panel 229 
of the visualization which can be interactively updated with the player toolbar on the top. A 230 
histogram of fluorescence intensity of the current frame is shown on the right and will update in 231 
response to zooming in on the central frame. A line plot of summary values across time is 232 
shown on the bottom. Here the maximum, mean, and minimum fluorescence values are plotted. 233 
These summaries are useful in checking whether there are unexpected artifacts or gaps in the 234 
recording. Finally, the user can draw an arbitrary box in the central frame, and the position of 235 
this boxed region can be recorded and used as a mask during later steps. For example, during 236 
motion correction a sub-region of the data containing a stable landmark might provide better 237 
information on the motion. 238 

Vignetting correction 239 

Single-photon miniature microscope data often suffer from a vignetting effect in which the 240 
central portion of the field of view appears brighter than the periphery. Vignetting is deleterious 241 
to subsequent processing steps and should be removed. We find that the effect can be easily 242 
extracted by taking the minimum fluorescence value across time for each pixel and subtracting 243 
this value from each frame, pixel-wise. One of the additional benefits of subtracting the 244 
minimum is that it preserves the raw video’s linear scale. 245 

The result of this step can be visualized with the same video viewer used in the previous step. 246 
In addition to visualizing a single video, the viewer can also show multiple videos side-by-side 247 
(e.g., the original video and the processed video), as shown in Figure 3. The 248 
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operation/visualization is carried out ‘on-the-fly’ upon request for each frame, and users do not 249 
have to wait for the operation to finish on the whole video to view the results. 250 

 251 

Figure 3: General visualization of pre-processing. The same visualization of input video can 252 
be used to visualize the whole video before and after specific pre-processing steps side-by-side. 253 
The effect of vignetting correction is visualized here. The image and accompanying histogram 254 
on the left side show the original data; the data after vignetting correction are shown on the right 255 
side. Any frame of the data can be selected with the player toolbar and histograms are 256 
responsive to all updates in the image. 257 

Denoising 258 

Next, we correct for salt-and-pepper noise on each frame, which usually results from electronic 259 
pixel noise. By default, we pass each frame through a median filter, which is generally 260 
considered particularly effective at eliminating this type of noise, though other smoothing filters 261 
like Gaussian filters and anisotropic filters can also be implemented. The critical parameter here 262 
is the window size of the median filter. A window size that is too small will make the filter 263 
ineffective at correcting outliers, while a window size that is too large will remove finer gradient 264 
and edges that are much smaller than the window size, and can result in a failure to distinguish 265 
between adjacent cells. 266 

The effect of the window size can be checked with an interactive visualization tool used across 267 
the pre-processing stage, as shown in Figure 4. Additionally, here we show an example of the 268 
effect of window size on the resulting data in Figure 5. Users should see significantly reduced 269 
amount of salt-and-pepper noise in the images, which should be made more obvious by the 270 
contour plots. At the same time, users should keep the window size below the extent where 271 
over-smoothing occurs. As a heuristic, the average cell radius in pixel units works well, since a 272 
window of the same size as an average cell is unlikely to blend different cells together, while still 273 
being able to adequately smooth the image. 274 
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 275 

Figure 4: Visualization of denoising. Here, a single frame from the data is passed through the 276 
background removal and both the image and a contour plot are shown for the frame before and 277 
after the process. The contour plots show the iso-contour of 5 intensity levels spaced linearly 278 
across the full intensity range of the corresponding image. The plots are interactive and 279 
responsive to the slider of the window size on the right, thus the effect of different window sizes 280 
for denoising can be visualized. 281 

 282 

Figure 5: Effect of window size on denoising. One example frame is chosen from the data, 283 
and the resulting images (top row) and contour plots (bottom row) are shown to demonstrate the 284 
effect of window size on denoising. Here, a window size of 11 (middle column) is appropriate 285 
while both smaller and larger window sizes result in artifacts. 286 
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Morphological background removal 287 

Next, we remove any remaining background presumably caused by out-of-focus and tissue 288 
fluorescence. To accomplish this we estimate the background using a morphological opening 289 
process first introduced for calcium imaging analysis in MIN1PIPE [12], which acts as a size 290 
filter that removes cell bodies. The morphological opening is composed of two stages: erosion 291 
followed by dilation. In morphological erosion the image is passed through a filter where each 292 
pixel will be substituted by the minimum value within the filter window. The effect of this process 293 
is that any bright ‘feature’ that is smaller than the filter window will be ‘eroded’ away. Then the 294 
dilation process accomplishes the reverse by substituting each pixel with the maximum value in 295 
the window, which ‘dilates’ small bright features to the extent of the filter window size. The 296 
combined effect of these two stages is that any bright ‘feature’ that is smaller than the filter 297 
window is removed from the image. If we choose the window size to match the expected cell 298 
diameter, performing a morphological opening will likely remove cells and provide a good 299 
estimation of background. Hence, each frame is passed through the morphological opening 300 
operation and the resulting image is subtracted from the original frame. 301 

Although the window size parameter for the morphological opening can be pre-determined by 302 
the expected cell diameter, it is helpful to visually inspect the effect of morphological 303 
background removal. The effect of different window sizes can be visualized with the same tool 304 
used in denoising, as shown in Figure 6. Additionally, here we show an example of the effect of 305 
window size on the resulting data in Figure 7. In this case, a window size of 20 pixels is 306 
considered appropriate because the resulting cells are appropriately sized and sharply defined. 307 
In contrast, a smaller window results in limiting both the size and intensity of the cells. On the 308 
other hand, residual out-of-focus fluorescence becomes visible when the window size is set too 309 
large. 310 
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 311 

Figure 6: Visualization of background removal. Here, a single frame from the data is passed 312 
through background removal and both the image and a contour plot are shown for the frame 313 
before and after the process. The plots are interactive and responsive to the slider of the 314 
window size on the right, thus the effect of different window sizes for background removal can 315 
be visualized. 316 

 317 

Figure 7: Effect of window size on background removal. One example frame is chosen from 318 
the data, and the resulting images (top row) and contour plots (bottom row) are shown to 319 
demonstrate the effect of window size on background removal. The contour plots show the iso-320 
contour of 5 intensity levels spaced linearly across the full intensity range of the corresponding 321 
image. Here a window size of 20 pixels (middle column) is appropriate while both smaller and 322 
larger window sizes produce unsatisfactory results: a window size too small (left column) 323 
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artificially limits the size of cells, and a window size too large (right column) does not remove the 324 
background effectively. 325 

Motion correction 326 

Estimate and apply translational shifts 327 

We use a standard template-matching algorithm based on cross-correlation to estimate and 328 
correct for translational shifts [40]. In practice, we found that this approach is sufficient to correct 329 
for motion artifacts that could have a significant impact on the final outcome. Briefly, for a range 330 
of possible shifts, a cross-correlation between each frame and a template frame is calculated. 331 
The shift producing the largest cross-correlation is estimated to reflect the degree of movement 332 
from the template and is corrected by applying a shift to the frame in that direction. We apply 333 
this operation to the whole movie in a divide-and-conquer manner. We split the movie into 334 
chunks of frames, within which we register both the first and last frame to the middle frame. We 335 
then take the max projections of the three frames that have been registered in each chunk and 336 
group every 3 chunks together and register them using the max projections as templates. After 337 
the registration, the 3 chunks that have been registered are treated as a new single chunk and 338 
we again take the max projection to use as a template for further registration. In this way, the 339 
number of frames registered in each chunk keeps increasing in powers of three (3, 9, 27, 81 340 
etc.), and we repeat this process recursively until all the frames are covered in a single chunk 341 
and the whole movie is registered. Since the motion correction is usually carried out after 342 
background removal, we essentially use cellular activity as landmarks for registration. 343 
Sometimes this can be problematic when cellular activity is very sparse and different across two 344 
chunks (for example, when only two different cells fired in two chunks), leading to false 345 
estimation of shifts. To overcome this problem, every time shift is estimated using a max 346 
projection from two chunks, we also estimate a shift with the two consecutive frames bordering 347 
the chunks (that is, the last frame from the earlier chunk and the first frame from the latter 348 
chunk). In most cases the shifts estimated with these two sets of templates should be close, in 349 
which case we use the shifts estimated with the max projection as the final output. However, 350 
when the two estimated shifts differ too much from each other, we use the shifts estimated with 351 
consecutive frames as the final output. The reason we still favor using max projections in most 352 
cases is that registering with consecutive frames can lead to very fast accumulation of error and 353 
a slow drifting artifact in the estimated shifts. In practice, we find that such a process can 354 
account for almost all motion in the brain, so currently we only implemented estimation of 355 
translational shifts. If the user would like to take advantage of anatomical landmarks (such as 356 
blood vessels) within the field of view and would like to implement motion correction before all 357 
background subtraction steps have been performed, the pipeline can be easily modified to do 358 
so. After the estimation of shifts, the shift in each direction is plotted across time and 359 
visualization of the data before and after motion correction is displayed in Minian (see Figure 1, 360 
top right). 361 
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Seed initialization 362 

Generation of an over-complete set of seeds 363 

The CNMF algorithm is a powerful approach to extract cells’ spatial structure and corresponding 364 
temporal activity. However, the algorithm requires an initial estimate of cell locations/activity, 365 
which it then refines. We use a seed-based approach introduced in MIN1PIPE [12] to initialize 366 
spatial and temporal matrices for CNMF. The first step is to generate an over-complete set of 367 
seeds, representing the potential centroids of cells. We iteratively select a subset of frames, 368 
compute a maximum projection for these frames, and find the local maxima on the projections. 369 
This workflow is repeated multiple times and we take the union of all local maxima across 370 
repetitions to obtain an over-complete set of seeds. In this way, we avoid missing cells that only 371 
fire in short periods of time that might be masked by taking a maximum projection across the 372 
whole video. 373 

During seed initialization, the first critical parameter is the spatial window for defining local 374 
maxima. Intuitively, this should be the expected diameter of cells. The other critical parameter is 375 
an intensity threshold for a local maximum to be considered a seed. Since the spatial window 376 
for local maxima is small relative to the field of view, a significant number of local maxima are 377 
usually false positives and do not actually reflect the location of cells. Thresholding the 378 
fluorescence intensity provides a simple way to filter out false local maxima, and usually a very 379 
low value is enough to produce satisfactory results. We have found a value of 3 usually works 380 
well (recall that the range of fluorescence intensity is usually 0-255 for unsigned 8-bit data). An 381 
alternative strategy to thresholding the intensity is to model the distribution of fluorescence 382 
fluctuations and keep the seeds with relatively higher fluctuations. This process is described 383 
in Seeds refinement with a Gaussian-Mixture-Model, and is accessible if the user prefers explicit 384 
modeling over thresholding. 385 

Finally, the temporal sampling of frames for the maximum projections also impacts the result. 386 
We provide two implementations here: either taking a rolling window of frames across time, or 387 
randomly sampling frames for a user-defined number of iterations. For the rolling window 388 
approach, users can specify a temporal window size (the number of successive frames for each 389 
subset) and a step size (the interval between the start of subsets). For the random approach, 390 
users can specify the number of frames in each subset and the total number of repetitions. We 391 
use the rolling window approach as the default. 392 

The resulting seeds are visualized on top of a maximum projection image (plot not shown). 393 
Although the spatial window size of local maxima can be pre-determined, the parameters for 394 
either the rolling window or random sampling of frames are hard to estimate intuitively. We 395 
provide default parameters that generally provide robust results. However, the user is also free 396 
to vary these parameters to obtain reasonable seeds. As long as the resulting seeds are not too 397 
dense (populating almost every pixel) or too sparse (missing cells that are visible in the max 398 
projection), subsequent steps can be performed efficiently and are fairly tolerable to the specific 399 
ways the seeds are initialized. 400 
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Refinement with peak-to-noise ratio 401 

Next, we refine the seeds by looking at what we call the peak-to-noise ratio of the temporal 402 
traces and discard seeds with low peak-to-noise ratios. To compute this ratio, we first separate 403 
the noise from the presumed real signal. Calcium dynamics are mainly composed of low 404 
frequency fluctuations (from the slow kinetics of the calcium fluctuations) while noise is 405 
composed of higher frequency fluctuations. Thus, to separate the noise from the calcium 406 
dynamics we pass the fluorescence time trace of each seed through a low-pass and a high-407 
pass filter to obtain the ‘signal’ and ‘noise’ of each seed. We then compute the difference 408 
between the maximum and minimum values (or peak-to-peak values) for both ‘signal’ and 409 
‘noise’, and the ratio between the two difference values defines the peak-to-noise ratio. Finally, 410 
we filter out seeds whose peak-to-noise value falls below a user-defined threshold. 411 

The first critical parameter here is the cut-off frequency that separates ‘signal’ from ‘noise’. This 412 
parameter is also important for subsequent steps when implementing the CNMF algorithm. We 413 
provide a visualization tool, shown in Figure 8, to help users determine cut-off frequency. In the 414 
visualization, 6 seeds are randomly selected, and their corresponding ‘signal’ and ‘noise’ traces 415 
are plotted. The user is then able to use a dynamic slider on the right side of the plots to adjust 416 
the cut-off frequency and view the results. The goal is to select a frequency that best separates 417 
signal from noise. A cut-off frequency that is too low will leave true calcium dynamics absorbed 418 
in ‘noise’ (left panel in Figure 9), while a frequency that is too high will let ‘noise’ bleed into 419 
‘signal’ (right panel in Figure 9). A suitable frequency is therefore the one where the ‘signal’ 420 
captures all of the characteristics of the calcium indicator dynamics (i.e., large, fast rise, and 421 
slow decay), while the ‘noise’ trace remains relatively uniform across time (middle panel in 422 
Figure 9). The interactive plots make this easy to visualize. We also provide an example in 423 
Figure 9 to show how cut-off frequency influences the separation of ‘signal’ from ‘noise’. The 424 
second parameter is the threshold of peak-to-noise ratio value. In practice, we have found a 425 
threshold of 1 works well in most cases. An additional advantage of using 1 is that it reflects the 426 
intuitive interpretation that fluctuations in a real ‘signal’ should be larger than fluctuations in 427 
‘noise’. 428 
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 429 

Figure 8: Visualization of noise frequency cut-off. The cut-off frequency for noise is one of 430 
the critical parameters in the pipeline that affects both the seed initialization process and 431 
CNMF’s temporal update steps. Here we help the user determine that parameter by plotting 432 
temporal traces from six example seeds. In each plot the raw signal is passed through a high-433 
pass and low-pass filter at the chosen frequency, and the resulting signals are plotted 434 
separately as “noise” and “signal”. The plots are responsive to the chosen frequency controlled 435 
by the slider on the right. In this way, the user can visually inspect whether the chosen 436 
frequency can effectively filter out high frequency noise without deforming the calcium signal. 437 
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 438 

Figure 9: Example of filtered traces with different frequency cut-offs. Here the temporal 439 
dynamics of three example seeds are chosen, and the low-pass and high-pass filtered traces 440 
with different frequency cut-offs are shown. The low-pass filtered trace corresponds to ‘signal’, 441 
while the high-pass filtered trace corresponds to ‘noise’. Here a 1 Hz cut-off frequency is 442 
considered appropriate, since calcium dynamics and random noise are cleanly separated. A 443 
cut-off frequency smaller than 1 Hz left the calcium dynamics in the ‘noise’ trace, while a cut-off 444 
frequency larger than 1 Hz let random noise bleed into the ‘signal’ trace (i.e., high frequency 445 
fluctuations are presented in periods where the cells seem to be inactive). 446 

Refinement with Kolmogorov-Smirnov tests 447 

Finally, we refine the seeds with a Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test 448 
assesses the equality of two distributions and can be used to check whether the fluctuation of 449 
values for each seed is non-normally distributed. We expect the noisy fluorescence values when 450 
a cell is not firing to form a gaussian distribution with small mean value, and the fluorescence 451 
values when a cell is firing should have a much higher mean value and frequency than expected 452 
by the null gaussian distribution. Therefore, seeds corresponding to cells should be non-453 
normally distributed. We use a default significance threshold of 0.05. In some cases, this might 454 
be too conservative or too liberal. Users can tweak this threshold or skip this step altogether 455 
depending on the resulting seeds. 456 

Merge seeds 457 

There will usually be multiple seeds for a single cell and it is best to merge them whenever 458 
possible. We implement two criteria for merging seeds: first, the distance between the seeds 459 
must be below a given threshold, and second, the correlation coefficient of the temporal traces 460 
between seeds must be higher than a given threshold. To avoid bias in the correlation due to 461 
noise, we implement a smoothing operation on the traces before calculating the correlation. The 462 
critical parameters are the distance threshold, the correlation threshold, and the cut-off 463 
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frequency for the smoothing operation. While the distance threshold is arbitrary and should be 464 
explored, often the average radius of cells provides a good starting point. The cut-off frequency 465 
should be the same as that used during the peak-to-noise-ratio refinement described above, 466 
and the correlation should be relatively high (we typically use 0.8, but this can be refined by the 467 
user). The resulting merged seeds can be visualized on the max projection. Since the main 468 
purpose of this step is to alleviate computation demands for downstream steps, it is fine to have 469 
multiple seeds for a single visually distinct cell. However, users should make sure each of the 470 
visually distinct cells still has at least one corresponding seed after the merge. 471 

Initialize spatial and temporal matrices from seeds 472 

The last step before implementing CNMF is to initialize the spatial and temporal matrices for the 473 
CNMF algorithm from the seeds. These matrices are generated with one dimension 474 
representing each putative cell and the other representing each pixel or time, respectively. In 475 
other words, the spatial matrix represents the spatial footprint for each cell at each pixel location 476 
and the temporal matrix represents the temporal fluorescence value of each cell on each frame. 477 
We assume each seed is the center of a potential cell, and we first calculate the spatial footprint 478 
for each cell by taking the cosine similarity between the temporal trace of a seed and the pixels 479 
surrounding that seed. In other words, we generate the weights in the spatial footprint by 480 
computing how similar the temporal activities of each seed are to the surrounding pixels. Then, 481 
we generate the temporal activities for each potential cell by taking the input video and 482 
weighting the contribution of each pixel to the cell’s temporal trace by the spatial footprint of the 483 
cell. The final products are a spatial matrix and a temporal matrix. 484 

Besides the two matrices representing neuronal signals, there are two additional terms in the 485 
CNMF model that account for background fluorescence modeled as a spatial footprint for the 486 
background and a temporal trace of background activity. To estimate these terms, we subtract 487 
the matrix product of our spatial and temporal matrices, which represent cellular activities, from 488 
the input data. We take the mean projection of this remainder across time as an estimation of 489 
the spatial footprint of the background, and we take the mean fluorescence for each frame as 490 
the temporal trace of the background. 491 

Users can tweak two parameters to improve the outcome and performance of this step: a 492 
threshold for cosine similarity and a spatial window identifying pixels on which to perform this 493 
computation. To keep the resulting spatial matrix sparse and keep irrelevant pixels from 494 
influencing the temporal traces of cells, we set a threshold for the cosine similarity of temporal 495 
traces compared to the seed, where pixels whose similarity value falls below this threshold will 496 
be set to zero in the spatial footprint of the cell. Cosine similarity is, in essence, a correlation 497 
(the scale is 0-1) and thresholds of 0.5 and higher work well in practice. Computing many pair-498 
wise similarity measurements is computationally expensive, and it is unnecessary to compute 499 
the similarities between pixels that are far apart because they are unlikely to have originated 500 
from the same cell. We therefore set a window size to limit the number of pixel pairs to be 501 
considered. This size should be set large enough so that it does not limit the size of spatial 502 
footprints, but not unnecessarily large to the extent where it will impact performance. In practice, 503 
a window size equal to the maximum expected cell diameter is reasonable. 504 
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CNMF 505 

Estimate spatial noise 506 

CNMF requires that we first estimate the spatial noise over time for each pixel in the input video. 507 
The spatial noise of each pixel is simply the power of the high frequency signals in each pixel. 508 
The critical parameter here is again the cut-off frequency for ‘noise’, and users should employ 509 
the visualization tools as described above during peak-to-noise ratio refinement to determine 510 
this frequency (see Refinement with peak-to-noise ratio). 511 

Spatial update 512 

Next, we proceed to the spatial update of the CNMF algorithm. The original paper describing 513 
this algorithm [37] contains a detailed theoretical derivation of the model. Here, we provide only 514 
a conceptual overview of the process so that users can understand the effect of each 515 
parameter. The CNMF framework models the input video to be the product of the spatial and 516 
temporal matrices representing signals contributed by real cells, a background term, and 517 
random noise. In equation form, this is 𝐘 = 𝐀𝐂 + 𝐁 + 𝐄, where 𝐘 represents the input video, 𝐀 518 
represents the spatial matrix containing the spatial footprints for all putative cells, 𝐂 represents 519 
the temporal matrix containing the calcium dynamics for all putative cells, 𝐁 represents the 520 
spatial-temporal fluctuation of background, and 𝐄 represents error or noise. Since the full 521 
problem of finding proper 𝐀 and 𝐂 matrices is hard (non-convex), we break down the full 522 
process into spatial update and temporal update steps, where iterative updates of 𝐀 and 𝐂 are 523 
carried out, respectively. Each iteration will improve on previous results and eventually converge 524 
on the best estimation. 525 

During the spatial update, given an estimation of the temporal matrix and the background term, 526 
we seek to update the spatial matrix so that it best fits the input data, along with the 527 
corresponding temporal traces. To do so, we first subtract the background term from the input 528 
data so that the remainder is composed only of signals from cells and noise. Then, for each 529 
pixel, the algorithm attempts to find the weights for each cell’s spatial footprint that best 530 
reproduces the input data (𝐘) with the constraint that individual pixels should not weigh on too 531 
many cells (controlled through what is called a sparseness penalty). To reduce computational 532 
demand, we do this for each pixel independently and in parallel to improve performance, while 533 
retaining the ‘demixing’ power of the CNMF algorithm by updating the weights for all cells 534 
simultaneously. In the optimization process, the function to be minimized contains both 535 
a squared error term to assess error, and an ℓ1-norm term to promote sparsity [16]. The 536 
optimization process can be expressed formally as: 537 

minimize
𝐀,𝐛

∥ 𝐘(𝑝, : ) − 𝐀(𝑝, : )𝐂 − 𝐛𝐟 ∥ +𝜆 ∥ 𝐀(𝑝, : ) ∥5
subject to 𝐀, 𝐛 ≥ 0

 538 

Where 𝐘(𝑝, : ) denotes the input movie data indexed at 𝑝-th pixel, 𝐀(𝑝, : ) denotes the spatial 539 
matrix indexed at 𝑝-th pixel across all putative cells, and 𝐂, 𝐛, 𝐟 denotes the temporal matrix, the 540 
spatial footprint of background term, and the temporal fluctuation of background term, 541 
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respectively. The scalar 𝜆 represents the sparse penalty that controls the balance between the 542 
error term and sparsity term. 543 

Lastly, the spatial footprint of the background term is updated in the exact same way, together 544 
with other putative cells. However, the background term the temporal activity used in the spatial 545 
update is not constrained by the autoregressive model. After the spatial footprint of the 546 
background term is updated, we subtract the neural activity (𝐀𝐂) from the input data to get 547 
residual background fluctuations. Then the temporal activity of background term is calculated as 548 
the projection of residual onto the new background spatial footprint, where the raw activities of 549 
each pixel is weighted by the spatial footprint. 550 

In other CNMF implementations, the estimated spatial noise is used to determine the scaling of 551 
the ℓ1-norm term in the target function and control the balance between error and sparsity of the 552 
result. However, in practice we find that it does not always give the best result for all types of 553 
datasets. For example, sometimes the estimated spatial noise is too large, which results in an 554 
overly-conservative estimation of spatial footprints. Hence, we have introduced a sparseness 555 
penalty on top of the estimated scaling factor for the ℓ1-norm term. This parameter gives users 556 
more control over how sparsity should be weighted in the updating process. The higher the 557 
number, the higher the penalty imposed by the ℓ1-norm, and the more sparse the spatial 558 
footprints will become. The effect of this parameter can be visualized with the tool shown in 559 
Figure 10. Users can employ this tool to determine the best sparseness penalty for their data, 560 
where the binarized spatial footprint representing non-zero terms should approach the visible 561 
part of the spatial footprint as much as possible, without reducing the amplitude of spatial 562 
footprints to the extent that cells are discarded in the spatial update. Figure 11 shows an 563 
example of the effect of changing the sparseness penalty on the resulting spatial footprints. A 564 
sparseness penalty of 0.1 is considered appropriate in this case. When the sparseness penalty 565 
is set much lower, many of the additional ‘fragments’ begin to appear in the binarized spatial 566 
footprint, even if they are not part of the cell. On the other hand, when the sparseness penalty is 567 
set too high, some cells are discarded. In the interactive visualization tool, users can inspect the 568 
temporal dynamics of these discarded cells. In general, however, we do not recommend 569 
exploiting the sparseness penalty during the spatial update to filter cells since this step does not 570 
have an explicit model of the temporal signal and thus has no power to differentiate real cells 571 
from noise. 572 

In addition, a dilation window parameter must be specified by the user. To reduce the amount of 573 
computation when calculating how each pixel weighs onto each cell, we only update weights for 574 
cells that are close to each pixel. For each cell, an ROI is computed by performing a 575 
morphological dilation process on the previous spatial footprints of that cell. If a pixel lies outside 576 
of a cell’s region of interest, this cell will not be considered when updating the pixel’s weight. 577 
Thus, the dilation window parameter determines the maximum distance a cell is allowed to grow 578 
during the update compared to its previous spatial footprints. This parameter should be set large 579 
enough so that it does not interfere with the spatial update process, but at the same time not so 580 
large as to impact performance. The expected cell diameter in pixels is a good starting point. 581 
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 582 

Figure 10: Visualization of spatial updates. Here 10 cells are randomly chosen to pass 583 
through spatial update with different parameters. The resulting spatial footprints, as well as 584 
binarized footprints, are plotted. In addition, the corresponding temporal traces of cells are 585 
plotted. The user can visually inspect the size and shape of the spatial footprints and at the 586 
same time easily determine whether the results are sparse enough by looking at the binarized 587 
footprints. 588 

 589 

Figure 11: Effect of sparseness penalty in spatial update. Here the sum projection of the 590 
spatial matrix and binarized spatial matrix are shown for 3 different sparse penalties. A 591 
sparseness penalty of 0.1 is considered appropriate in this case. When the sparseness penalty 592 
is set lower, artifacts begin to appear. On the other hand, when the sparseness penalty is set 593 
higher, cells are dropped out. 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Temporal update 595 

Next, we proceed to the temporal update of the CNMF algorithm. Please refer to the original 596 
paper for the detailed derivation [37]. Here, given the spatial matrix and background terms, 597 
we update the temporal matrix so that it best fits the input data (𝐘). First, we subtract the 598 
background term from the input data, leaving only the noisy signal from cells. We then project 599 
the data onto the spatial footprints of cells, obtaining the temporal activity for each cell. Next we 600 
estimate a contribution of temporal activity from neighboring overlapping cells using the spatial 601 
footprints of cells, and subtract it from the temporal activity of each cell. This process results in a 602 
two-dimensional matrix representing the raw temporal activity of each cell [41]. 603 

The CNMF algorithm models the relationship between the underlying ‘spiking’ and the calcium 604 
dynamics of a cell as an auto-regressive (AR) process. It should be noted that although the 605 
underlying process that drives calcium influx is presumably cell firing, the ‘spiking’ signal is 606 
modeled as a continuous variable rather than a binary variable, and strictly speaking, it is only a 607 
de-convolved calcium signal. Following convention, we will refer to this variable as ‘spike signal’, 608 
an approximation of the underlying cellular activity that drives calcium influx. It should be 609 
understood, however, that the exact relationship between this variable and the actual firing rate 610 
of cells is unclear, since the absolute amount of fluorescence generated by a single spike, as 611 
well as the numerical effect of integrating multiple spikes on the resulting calcium signal, is 612 
unknown. 613 

We first estimate the coefficients for the AR model. The coefficients of the AR model can be 614 
conveniently estimated from the autocorrelation of the estimated temporal activity. In addition, 615 
noise power for each cell is also estimated directly from the signal. In practice, we find that 616 
during the estimation of the AR model parameters, it is helpful to first smooth the signal, 617 
otherwise the time constant of the AR model tends to be biased by high frequency noise. Users 618 
should again use the peak-to-noise-refinement cut-off frequency for both estimation of the noise 619 
power and smoothing of the signals. Finally, we update the temporal matrix by minimizing a 620 
target function for different cells, similar to what was done with the spatial matrix. Again, the 621 
target function contains a squared error term and a ℓ1-norm term. We also introduce a 622 
sparseness penalty parameter to control the balance between the two terms. The squared error 623 
term contains the difference between input signal and estimated calcium dynamics, while 624 
the ℓ1-norm term regulates the sparsity of the “spiking” signal. Pre-estimated AR coefficients 625 
allow for a determined relationship between the ‘spiking’ signal and calcium dynamics for a 626 
given cell. Thus, the problem can be transformed and simplified as minimizing the target 627 
function over ‘spiking’ signals of different cells. 628 

In practice, it is computationally more efficient to break down the minimization problem into 629 
smaller pieces and update subsets of cells independently and in parallel. To do so, we first 630 
identify non-overlapping cells using a Jaccard index, which measures the amount of overlap 631 
between the spatial footprints of different cells. Once we identify these individual cells, we can 632 
update them independently so that an optimization problem and target function are formulated 633 
for each cell independently. Here, we set a cutoff Jaccard index where cells above this amount 634 
of overlap are updated in parallel. During the updating process, two additional terms are 635 
introduced: a baseline term to account for constitutive non-zero activity of cells and an initial 636 
calcium concentration to account for a ‘spiking’ that started just prior to recording. The initial 637 
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calcium concentration term is a scalar that is recursively multiplied by the same AR coefficient 638 
estimated for the cell. The resulting time trace, modeling the decay process of a ‘spiking’ event 639 
prior to the recording, is added on top of the calcium trace. The baseline activity term is also a 640 
scalar that is simply added on top of all the modeled signals. Both terms are often zero, but they 641 
are nevertheless saved and visualized. For each cell, the optimization process can be 642 
expressed formally as: 643 

minimize
𝐜,𝐛𝟎,𝐜𝟎

∥ 𝐲𝐫𝐚 − 𝐜 − 𝑏= − 𝑐=𝐝 ∥ +𝜆 ∥ 𝐆𝐜 ∥5

subject to 𝐜, 𝐆𝐜 ≥ 0
 644 

Where 𝐲𝐫𝐚 denotes the input movie data projected onto the spatial footprint of the given cell, 𝐜 645 
denotes the estimated calcium dynamic of the given cell, 𝑏= denotes the constant baseline 646 
fluorescent activity, 𝑐= denotes the initial calcium concentration, 𝐺 represent a matrix of AR 647 
coefficients such that 𝐆𝐜 is the estimated ‘spike’ signal, 𝐝 is a vector representing the temporal 648 
decay of a single spike based on the estimated AR coefficients, such that the term 𝑐=𝐝 649 
represent the contribution of initial calcium concentration. Similar to spatial update, the scalar 𝜆 650 
represents the sparse penalty and controls the balance between the error term and sparsity 651 
term. 652 

The ℓ1-norm in the optimization problem is known to reduce not only the number of non-zero 653 
terms (i.e., promotes sparsity), but also the amplitude/value of non-zero terms. This effect is 654 
unwanted, since in some cases the numerical the spatial update step in CNMF algorithm 655 
andvalue of the resulting ‘spike’ signal can become too small as a side-effect of promoting 656 
sparsity, making it hard to interpret and compare the ‘spike’ signal for downstream analysis. To 657 
counteract this phenomenon, we introduce a post hoc scaling process. After the temporal 658 
update, each cell is assigned a scaling factor to scale all the fitted signals to the appropriate 659 
values. The scaling factor is solved by least square minimizing the error between the fitted 660 
calcium signal and the projected raw signal. 661 

The critical parameters in temporal updates are as follows: (1) The order of the AR model, 662 
usually 1 or 2. Users should choose 1 if near-instantaneous rise time is presented in the calcium 663 
dynamics of the input data (i.e., from the relatively slow sampling rate) and should choose 2 664 
otherwise. (2) The cut-off frequency for noise used for both noise power estimation and pre-665 
smoothing of the data during AR coefficients estimation. Users should use the values set during 666 
peak-to-noise ratio refinement. (3) The threshold for the Jaccard index determining which cells 667 
can be updated independently. Users should use a value as low as possible, as long as the 668 
speed of this step is acceptable (with large amounts of cells packed closely together, a low 669 
threshold may dramatically slow down this step), or visually inspect how sparse the spatial 670 
footprints are and determine what amount of overlap between spatial footprints results in 671 
significant crosstalk between cells. (4) The sparseness penalty is best set through visualization 672 
tools. The effect of any parameter on the temporal update can be visualized through the tool 673 
shown in Figure 12, where the result of the temporal update for 10 randomly selected cells are 674 
plotted as traces. There are a total of 4 traces shown for each cell: the calcium signal, the 675 
deconvolved ‘spiking’ signal, the projected raw signal, and the ‘fitted signal’. The ‘fitted signal’ is 676 
very similar to the calcium signal and is often indistinguishable from the latter. The difference 677 
between them is that the ‘fitted signal’ also includes the baseline term and the initial calcium 678 
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concentration term. Hence, the ‘fitted signal’ should better follow the projected raw signal, but it 679 
may be less interesting for downstream analysis. Toggling between different parameters 680 
triggers the dynamic update of the plots, helping the user to determine the best parameters for 681 
their data. Additionally, we highlight the effect of the sparseness penalty on resulting fitted 682 
calcium signals and spike signals in Figure 13. The effect is most evident in the ‘fitted spikes’ 683 
trace, which corresponds to the spike signal and can arguably be interpreted as a measure of 684 
the underlying neural activity per frame scaled by an unknown scalar. Here, a sparseness 685 
penalty of 0.008 is considered most appropriate. A lower sparseness penalty will introduce 686 
many false positive signals which do not correspond to real calcium dynamics, as can be seen 687 
in the plots. On the other hand, too high a sparseness penalty will produce false negatives 688 
where clear rises in the raw signal are not accompanied by spikes. 689 

 690 

Figure 12: Visualization of temporal update. Here, a subset of cells is randomly chosen to 691 
pass through temporal updates with different parameters. Only one cell is visualized at a given 692 
time and the cell can be selected using the slider on the right. The raw signal, the fitted signal, 693 
the fitted calcium traces, and the spike signals are overlaid in the same plot. In addition, a 694 
simulated pulse-response based on the estimated auto-regressive parameters is plotted with 695 
the same time scale. Furthermore, the corresponding spatial footprint of the cell is plotted for 696 
cross-reference. With a given set of parameters, the user can visually inspect whether the 697 
pulse-response captures the typical calcium dynamics of the cell, and whether the timing and 698 
sparsity of the spike signal fit well with the raw data. The data shown here was acquired with a 699 
framerate of 30 fps. 700 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2021.05.03.442492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442492
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

 701 

Figure 13: Effect of the sparseness penalty in temporal update. Here, 3 example cells are 702 
selected and passed to the temporal update with different sparseness penalties. The “Raw 703 
Signal” corresponds to the input video projected onto predetermined spatial footprints. The 704 
“Fitted Calcium” and “Fitted Spikes” correspond to the resulting model-fitted calcium dynamics 705 
and spike signals. A sparseness penalty of 0.008 (middle column) is considered appropriate in 706 
this case. The data shown here was acquired with a framerate of 30 fps. 707 

Merging cells 708 

The CNMF algorithm can sometimes misclassify a single cell as multiple cells. To counteract 709 
this phenomenon, we implement a step to merge cells based on their proximity and temporal 710 
activity. All cells with spatial footprints sharing at least one pixel are considered candidates for 711 
merging, and the pair-wise correlation of their temporal activity is computed. Users can then 712 
specify a threshold where cell pairs with activity correlations above the threshold are merged. 713 
Merging is done by taking the sum of the respective spatial footprints and the mean of all of the 714 
temporal traces for all cells to be merged. Since this is only a simple way to correct for the 715 
number of estimated cells and does not fit numerically with what the model CNMF assumes, 716 
merging is only done between iterations of CNMF, but not at the end. 717 

Manual curation 718 

Minian provides an interactive visualization to help the users manually inspect the quality of 719 
putative cells and potentially merge or drop cells. At any given time, the visualization shows 720 
spatial temporal activities (top row, middle panel in Figure 14) and temporal dynamics of a 721 
selected subset of cells (bottom row in Figure 14). The spatial temporal activities are shown side 722 
by side with the spatial footprints of all cells and the pre-processed movie (input to CNMF 723 
algorithm) at a given frame (top row of Figure 14). The field of view is synchronized across the 724 
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three images on the top, so that the users can easily zoom in and compare the estimated spatial 725 
footprints of cells to the input data. The spatial temporal images in the middle show the product 726 
of spatial footprints and calcium dynamics, which represent the model estimated image of a 727 
subset of cells at a given frame. This spatial temporal product is calculated on-the-fly and 728 
synchronized with the frame indicators on the temporal dynamic plots. In this way users can 729 
easily pick times of interest (for example, when a cell has a calcium event), and validate 730 
whether the estimated spatial temporal activities match the input data. Lastly, this interactive 731 
visualization allows the user to either drop false positive cells or merge multiple cells together 732 
via dropdown menus. The result of manual curation is saved as an array with a label for each 733 
unit indicating whether a cell should be discarded or how several cells should be merged. In this 734 
way, only the new label is saved and no data is modified, allowing the user to repeat or correct 735 
the manual curation process if needed. 736 

 737 

Figure 14: Interactive visualization of Minian output. The three images on the top show the 738 
spatial footprints of all the cells (left), the spatial temporal activities of selected subset of cells 739 
(middle), and the pre-processed data. The bottom row shows the display control panel (left), the 740 
temporal dynamics of selected subset of cells (middle), and the manual curation panel (right). 741 
The field of view, current frame, and selection of cells are all synced across different plots to 742 
help user focus on a specific region and time. The users can use the control panel to select 743 
groups of cells, change display options for temporal dynamics and spatial temporal activities, 744 
change the current frame or play the movie. In addition, the users can directly select cells from 745 
the spatial footprints plot on the top left. The users can also directly jump to frames by double-746 
clicking on the temporal dynamic plots. These interactive features help the users quickly focus 747 
on region and time of interests. The manual curation menu on bottom right can be used to 748 
assign unit labels to each cell, which indicate whether a cell should be dropped or merged. 749 
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Cross registration 750 

After completing the analysis of individual recording sessions, users can register cells across 751 
sessions. While more complex approaches are proposed in other pipelines [16,17], here, our 752 
intention is simplicity. To account for shifts in the field of view from one session to the next, we 753 
first align the field of view from each session based upon a summary frame. Users can either 754 
choose a max projection of each pre-processed and motion-corrected video, or a summed 755 
projection of the spatial footprints of all cells. Users can also choose which session should be 756 
used as the template for registration, to which every other session should be aligned. We use a 757 
standard cross-correlation based on a template-matching algorithm to estimate the translational 758 
shifts for each session relative to the template and then correct for this shift. The weighted 759 
centroid of each cell’s spatial footprint is then calculated and pair-wise centroid distances are 760 
used to cross-register cells. A distance threshold (maximum pixel distance) is set. Users should 761 
choose this threshold carefully to reflect the maximum expected displacement of cells across 762 
sessions after registration. We found that a threshold of 5 pixels works well. Finally, a pair of 763 
cells must be the closest cells to each other in order to be considered the same cell across 764 
sessions. 765 

To extend this method to more than two sessions, we first cross-register all possible session 766 
pairs. We then take the union of all these pair-wise results and transitively extend the cross-767 
registration across more than two sessions. At the same time, we discard all matches that result 768 
in conflicts. For example, if cell A in the first session is matched with cell B in the second 769 
session, and cell B is in turn matched with cell C in the third session, but cells A and C are not 770 
matched when directly registering the first and third sessions, all of these matches are 771 
discarded and all three cells are treated as individual cells. We recognize that this approach 772 
might be overly conservative. However, we believe that this strategy provides an easy-to-773 
interpret result that does not require users to make decisions about whether to accept cell pairs 774 
that could conflict across sessions. 775 

To save computation time, we implement a moving window where centroid distances are only 776 
calculated for cell pairs within these windows. Users should set the size of windows to be much 777 
larger than the expected size of cells. 778 

Hardware and dependencies 779 

Minian has been tested using OSX, Linux, and Windows operating systems. Additionally, 780 
although we routinely use Minian on specialized analysis computers, the pipeline works on 781 
personal laptops for many common length (~30min) miniature microscope experiments. 782 
Specifications of all of the computers that have been tested can be found in Tested hardware 783 
specifications. We anticipate that any computer with at least 16GB of memory will be capable of 784 
processing at least 20 minutes of recording data, although increased memory and CPU power 785 
will speed up processing. Moreover, due to the read-write processes involved in out-of-core 786 
computation, we recommend that the videos to be processed are held locally at the time of 787 
analysis, preferably on a solid-state drive. The relatively slow speed of transfer via ethernet 788 
cables, Wi-Fi, or USB cables to external drives will severely impair analysis times. 789 
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Minian is built on top of project Jupyter [42], and depends heavily on packages provided by the 790 
open-source community, including numpy [43], scipy [44], xarray [45], holoviews [46], 791 
bokeh [47], opencv [48], and dask [49]. A complete list of direct dependencies for Minian can be 792 
found in List of dependencies. Of note, the provided install instructions handle the installation of 793 
all dependencies. 794 

Results 795 

To validate the accuracy as well as benchmark the performance of Minian, we ran the Minian 796 
pipeline on a series of simulated and experimental datasets and compare the output and 797 
performance to those obtained with CaImAn, which is one of most widely-adopted calcium 798 
imaging analysis pipeline in the field. In addition, we also validated the full workflow of Minian by 799 
applying the pipeline to several recordings of animals running on a linear track and looked at the 800 
stability of place cells. These results are presented in sections below. 801 

Validation with simulated datasets 802 

We first validated Minian with simulated datasets. We synthesized different datasets with 803 
varying number of cells and signal levels based on existing works [11,12]. The simulated 804 
datasets contain local background fluctuations, noise, and motions similar to experimental 805 
datasets (See Generation of simulated datasets for details). The field of view contains 512 x 512 806 
pixels and 20000 frames, corresponding to roughly 10 minutes of recording at 30 fps. We 807 
processed the data with both Minian and CaImAn. For Minian, we utilized the visualization 808 
described here to optimize the parameters. For CaImAn, we used the same parameters as 809 
Minian whenever the implementations were equivalent. Otherwise, we followed the suggested 810 
parameters and tweaked them based on the knowledge of simulated ground truth. 811 

To compare the results objectively, we first matched the resulting putative cells from the output 812 
of Minian or CaImAn to the simulated ground truth (See Matching neurons for validation for 813 
details). We then calculated three metrics to measure the quality of output: F1 score, spatial 814 
footprints correlation, and temporal dynamics correlation. The F1 score is defined as the 815 
harmonic mean of precision (proportion of detected neurons that are true) and recall (proportion 816 
of ground truth neurons that has been detected). Hence the F1 score measures the overall 817 
accuracy of neuron detection. For each detected neuron that has been matched to ground truth, 818 
we compute Pearson correlation between the estimated and ground truth spatial footprint, as 819 
well as the Pearson correlation between the estimated calcium dynamic and the ground truth 820 
calcium dynamic. We then take the median correlation across all the matched neurons to 821 
measure the overall quality of estimated spatial footprints and temporal dynamics. 822 

As shown in Figure 15, both Minian and CaImAn achieve similar and near perfect levels (> 0.95) 823 
of F1 score across all conditions. Similarly, the spatial footprints remain nearly perfect (> 0.95) 824 
for both pipelines across all conditions. At the lowest signal level (0.2), both pipelines suffer from 825 
decreased correlation of temporal dynamics. This is likely due to noise and background 826 
contaminating the true signal. Overall, these results show that the Minian and CaImAn pipelines 827 
perform similarly well in terms of output accuracy on simulated datasets. 828 
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 829 

Figure 15: Validation of Minian with simulated datasets. Simulated datasets with varying 830 
signal level and number of cells are processed through Minian and CaImAn. The F1 score (top), 831 
median correlation of spatial footprints (middle), and median correlation of temporal dynamics 832 
(bottom) are plotted as a function of signal level. Both pipelines achieve near perfect (> 0.95) F1 833 
scores and spatial footprint correlation across all conditions. The correlation of temporal 834 
dynamics are lower when the signal level is 0.2, but remains similar across the two pipelines 835 
overall. 836 

Additionally, we want to validate the deconvolved signal from Minian output, since this is usually 837 
the most important output for downstream analysis. Our ground truth spikes are simulated as 838 
binary signals. However, in reality calcium activity often reflect the integration of several spikes, 839 
and the deconvolved signals from Minian output are real-valued. Because of this, we down-840 
sampled both the ground truth spikes and deconvolved signals by 5 times, and then calculated 841 
Pearson correlation for all matched cells. The resulting correlation is summarized in Figure 16 842 
A. Our results indicate that the deconvolved output from Minian is highly similar to ground truth 843 
spikes when signal level is high, and the correlation asymptote and approach 1 when signal 844 
level is higher than 1. The lower correlation corresponding to low signal level is likely due to the 845 
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background and noise contamination being stronger than signal. In line with this idea, the 846 
detected “spikes” from the deconvolved signals closely match those from ground truth, as 847 
shown by the example traces in Figure 16 B. The main difference between the two traces is the 848 
amplitude of the deconvolved signals, which is prone to be influenced by local background and 849 
noise. Overall, these results suggest that Minian can produce deconvolved signals that are 850 
faithful to ground truth and suitable for downstream analysis. 851 

 852 

Figure 16: Validation of deconvolved signal from Minian. (A) Correlation of deconvolved 853 
signals from Minian output with simulated ground truth. The mean correlation across all cells 854 
(blue line) and the standard deviation (light blue shade) are shown separately for different signal 855 
levels and number of cells. The correlation asymptote and approach 1 when signal level is 856 
higher than 1. (B) Example deconvolved traces from Minian output overlaid with simulated 857 
ground truth. One representative cell is drawn from each signal level. The binary simulated 858 
spikes are shown in green, with the real-valued Minian deconvolved output overlaid on top in 859 
blue. The deconvolved signals closely match the ground truth and the main difference between 860 
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the two signals is in the amplitude of the deconvolved signals, which tend to be influenced by 861 
local background. 862 

Validation with experimental datasets 863 

We next validated Minian with experimental datasets. The data was collected from hippocampal 864 
CA1 regions in animals performing a spatial navigation task. 6 animals with different density of 865 
cells were included in the validation dataset. The recordings are collected with 608 x 608 pixels 866 
at 30 fps and lasts 20 min (~36000 frames). Due to difficulties in obtaining ground truth for 867 
experimental data, we choose to validate Minian with CaImAn, which has been established as 868 
one of the most accurate existing pipelines. To evaluate the results objectively, we matched 869 
resulting ROIs from Minian with those from CaImAn using the same approach as in the 870 
Validation with simulated datasets section. We then calculated correlation of spatial footprints 871 
and temporal activity between matched ROIs from the two pipelines. Across the 6 datasets, the 872 
mean F1 score is 0.73 (sem +/-0.03). The mean spatial footprints correlation is 0.84 (sem +/-873 
0.02), and the mean temporal activity correlation is 0.86 (sem +/-0.02). An example field of view 874 
and temporal activity from matched ROIs are shown in Figure 17. Our results indicate that most 875 
of the ROIs detected by Minian and CaImAn correspond to the same population of putative 876 
cells, and the resulting spatial footprints and temporal activity are nearly identical. These cells 877 
tend to cluster near the center of the field of view, which usually have better signal-to-noise 878 
ratio. However, the cells near the edge of the field of view usually have low intensity and spatial 879 
consistency due to the optical property of GRIN lens. As a consequence, Minian and CaImAn 880 
might detect different population of cells near the border of field of view, due to differences in 881 
pre-processing and initialization between the two pipelines. We have chosen to use the same 882 
set of parameters across all datasets so that the results are easier to interpret, hence the 883 
parameters we used were relatively conservative. In practice, the users can further fine-tune the 884 
parameters for each recording so that Minian would be able to capture all the low signal cells in 885 
the field of view. Overall, these results suggest that the output of Minian is highly similar to 886 
CaImAn when analyzing experimental datasets. 887 
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 888 

Figure 17: Example output of Minian and CaImAn with experimental datasets. (A) An 889 
example field-of-view from one of the experimental datasets. The spatial footprints from Minian 890 
and CaImAn are colored as blue and red respectively, and overlaid on top of each other. Most 891 
of the spatial footprints from both pipelines overlap with each other. (B) 5 example matched 892 
temporal activity from Minian and CaImAn overlaid on top of each other. The extracted temporal 893 
activity are highly similar across the two pipelines. 894 
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Benchmarking computational performance 895 

To see how the performance of Minian scales with different input data size, we synthesized 896 
datasets with varying number of cells and number of frames (recording length). The field of view 897 
contains 512 x 512 pixels (same as those used in validation of accuracy), and the signal level 898 
was held constant at 1 to make sure both Minian and CaImAn can detect roughly equal number 899 
of neurons during the pipeline. To this end, we tracked two metrics of performance: the total 900 
running time of the pipeline and the peak memory usage during running. The running time was 901 
obtained by querying operating system time during the pipeline. The memory usage was 902 
tracked with an independent process that queries memory usage of the pipeline from the 903 
operating system on a 0.5 seconds interval. Both pipelines were set to utilize 4 parallel 904 
processes during the run across all conditions. All benchmarking are carried out on a custom-905 
built linux machine (Model “Carbon” under Tested hardware specifications) 906 

As shown in Figure 18, the run time of both Minian and CaImAn scales linearly as a function of 907 
input recording length. The exact running times vary depending on number of cells as well as 908 
whether visualization is included in the processing, but in general the running time is similar 909 
across both pipelines. On the other hand, the peak memory usage of CaImAn scales linearly 910 
with recording length when the number of parallel processes was set to be constant. At the 911 
same time, the peak memory usage of Minian stays mostly constant across increasing number 912 
of frames. This is likely due to the flexible chunking implementation of Minian (See Parallel and 913 
out-of-core computation with dask), where Minian was able to break down computations into 914 
chunks in both the spatial and the temporal dimensions depending on which way is more 915 
efficient. In contrast, CaImAn only splits data into different spatial chunks (patches), resulting in 916 
a linear scaling of memory usage with recording length for each chunk-wise computation. 917 
Additionally, we run Minian and CaImAn with different number of parallel processes on the 918 
simulated dataset with 28000 frames and 500 cells. As expected, with more parallel processes 919 
the performance improves and the run time decreases but at the same time the total peak 920 
memory usage increases. The tradeoff between run time and peak memory usage are shown in 921 
Figure 19. In conclusion, these results show that in practice, Minian is able to perform as fast as 922 
CaImAn, while maintaining near constant memory usage regardless of input data size. This 923 
allows the users to process much longer recordings with limited RAM resources. 924 
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 925 

Figure 18: Benchmarking of computational performance. Data with varying number of cells 926 
and frames were processed through Minian and CaImAn. The run time (top) and peak memory 927 
usage (bottom) were recorded and plotted as a function of frame number. For both pipelines, 928 
the run time scales linearly as a function of the number of frames and remains similar across the 929 
pipelines. However, the peak memory usage for CaImAn also scales linearly as the number of 930 
frames increases, while Minian maintains a relatively constant peak memory usage across 931 
different frame numbers and cell numbers. 932 

 933 

Figure 19: Tradeoff between run time and memory usage. Simulated data with 500 cells and 934 
28000 frames were processed through Minian and CaImAn with different numbers of parallel 935 
processes. We varied the number of parallel processes from 2 to 10, and the resulting memory 936 
usage is plotted as a function of run time. For both pipelines, the curve takes a hyperbola 937 
shape, showing the tradeoff between run time and memory usage. 938 

Validation with hippocampal CA1 place cells 939 

In addition to direct validation of the output for single session, we wanted to validate the 940 
scientific significance of the spike signal, as well as the quality of the cross-session registration, 941 
and ensure that Minian is capable of generating meaningful results consistent with the existing 942 
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literature. We leveraged the extensively documented properties of place cells in rodent 943 
hippocampal CA1 [50]. Place cells have been shown to have consistent place fields across at 944 
least two days [33,51] with only a minority of detected cells undergoing place field remapping. 945 
Here, we looked at place field stability across two linear track sessions (Figure 20 A). Briefly, 946 
animals were trained to run back and forth on a 2 m linear track while wearing a Miniscope to 947 
obtain water rewards available at either end [35]. The time gap between each session was 2 948 
days. We record calcium activity in dorsal CA1 region with a FOV of 480 x 752 pixels collected 949 
at 30 fps. Each recording session lasts 15 min (~27000 frames). Calcium imaging data were 950 
analyzed with Minian, while the location of animals was extracted with an open-source 951 
behavioral analysis pipeline ezTrack [18]. The resulting calcium dynamics and animal behavior 952 
were aligned with the timestamps recorded by Miniscope data acquisition software 953 
(miniscope.org). We used the spike signal for our downstream analysis. To calculate average 954 
spatial activity rate, we binned the 2-meters long track into 100 spatial bins. In addition, 955 
we separated the epochs when the animals are running in opposite directions, resulting in a 956 
total of 200 spatial bins. We then smoothed both the binned activity rate and animal’s 957 
occupancy with a Gaussian kernel with a standard deviation of 5 cm. We classified place cells 958 
based on three criteria: a spatial information criterion, a stability criterion, and a place field size 959 
criterion [35]. (See Classification of place cells for more detail.) Finally, we analyzed cells that 960 
are cross-registered by Minian and are classified as place cells in both sessions. We then 961 
calculated the Pearson correlation for the average spatial firing rate for each cross-registered 962 
cell. We found that, on average, place cells have a correlation of ~0.6, which is consistent with 963 
the existing literature [35]. 964 

Next, we validated the cross-session registration to verify that the correct cells were being 965 
matched across days. We translated the spatial footprints of the second session in both 966 
directions up to 50 pixels and registered the cells with the shifted spatial footprints. We then 967 
carried out the same analysis with the registration results from shifted spatial footprints. We 968 
found that the average correlations between spatial firing patterns have higher values when the 969 
shifts are close to zero (Figure 20 B). 970 

In conclusion, Minian can reliably process in vivo calcium imaging data and produce results that 971 
are in agreement with the known properties of rodent CA1. Minian can thus help neuroscience 972 
labs easily implement and select the best parameters for their calcium analysis pipeline by 973 
providing detailed instructions and visualizations. 974 
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 975 

Figure 20: Validation of Minian with hippocampal CA1 place cells. (A) Matching place cells 976 
from two recording sessions. The cells are matched from one session to the other using the 977 
cross-session registration algorithm and sorted based on place field in the first session. In both 978 
sessions, animals run on a 2-meter-long linear track with water reward at both ends. The track 979 
is divided into 200 spatial bins. The mean “firing” rate calculated from the spike signal for each 980 
cell is shown. Cell IDs are assigned by Minian when each session is analyzed independently. 981 
(B) Averaged correlations of spatial firing rates with different artificial shifts. We artificially shifted 982 
the spatial footprints of the second linear track session, then carried out registration and 983 
calculated a mean correlation of spatial firing rates for all place cells. The artificial shifts were 984 
relative to the aligned spatial footprints and range from -50 to 50 pixels. 985 
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Discussion 986 

Making open science more accessible 987 

Neuroscience has benefitted tremendously from open-source projects, ranging from do-it-988 
yourself (DIY) hardware [1] to sophisticated algorithms [2]. Open-source projects are impactful 989 
because they make cutting-edge technologies available to neuroscience labs with limited 990 
resources, as well as opening the door for innovation on top of previously established methods. 991 
We believe that openly sharing knowledge and tools is just the first step. Making knowledge 992 
accessible even to non-experts should be one of the ultimate goals of open-source projects. 993 

With the increasing popularity of miniaturized microscopes [36], there has been significant 994 
interest in analysis pipelines that can reliably extract neural activities from the data. Numerous 995 
algorithms have been developed to solve this problem [11,13,15,19,20,37], and many of them 996 
are implemented as open-source packages that can function as a one-stop pipeline [12,14,16]. 997 
However, one of the biggest obstacles for neuroscience labs in adopting analysis pipelines is 998 
the difficulty in understanding the exact operation of the algorithms, leading to two notable 999 
challenges: first, researchers face difficulties adjusting the parameters when the data they have 1000 
collected are out of the expected scope of the pipeline’s default parameters. Second, even after 1001 
neural activity data is obtained, it is hard for researchers to be sure that they have chosen the 1002 
best approaches and parameters for their dataset. Indeed, it has been found that depending on 1003 
the features of the data and the metric used, more sophisticated algorithms do not always out-1004 
perform simpler algorithms [52], making it even harder for researchers to interpret the results 1005 
obtained from some analysis pipelines. Researchers therefore often have to outsource data 1006 
analysis to experts with strong computational backgrounds or simply trust the output of the 1007 
algorithms being used. Minian was created to address these challenges. By providing not only 1008 
detailed documentation of all functions, but also by providing rich interactive visualizations, 1009 
Minian helps researchers to develop an intuitive understanding of the operations of algorithms 1010 
without expertise in mathematics or computer science. These insights help researchers choose 1011 
the best parameters, as well as to become more confident in their interpretation of results. 1012 
Furthermore, transparency regarding the underlying algorithms enables researchers to develop 1013 
in-house modifications of the pipeline, which is a common practice in neuroscience labs. We 1014 
believe that Minian will contribute to the open science community by making the analysis of 1015 
calcium imaging data more accessible and understandable to neuroscience labs. 1016 

Limitations 1017 

Although Minian provides users with insights into the parameter tuning process across different 1018 
brain regions, these insights are achieved mainly through visual inspection. However, the 1019 
performance of an analysis pipeline should be measured objectively. While calcium imaging has 1020 
been validated with electrophysiology under ex vivo settings [53], ground-truth data for single-1021 
photon in vivo calcium imaging are lacking, making objective evaluation of the algorithms 1022 
difficult. Therefore, here we have provided only indirect validations of the pipeline by 1023 
recapitulating well-established biological findings. 1024 
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Supplemental information 1025 

Parallel and out-of-core computation with dask 1026 

In Minian, we use a modern parallel computing library called dask to implement parallel and out-1027 
of-core computation. Dask divides the data into small chunks along all dimensions, then flexibly 1028 
merges the data along some dimensions in each step. We leverage the fact that each step in 1029 
our pipeline can be carried out chunk by chunk independently along either the temporal (frame) 1030 
dimension or the spatial (height and width) dimensions, thus requiring no interpolation or special 1031 
handling of borders when merged together, producing results as if no chunking had been done. 1032 
For example, motion correction and most pre-processing steps that involve frame-wise filtering 1033 
can be carried out on independent temporal chunks, whereas computation of pixel correlations 1034 
can be carried out on independent spatial chunks. Similarly, during the core CNMF computation 1035 
steps, spatial chunking can be used during update of spatial footprints, since spatial update is 1036 
carried out pixel by pixel. Meanwhile, temporal chunking can be used when projecting the input 1037 
data onto spatial footprints of cells, which is usually the most memory-demanding step. 1038 
Although the optimization step during the temporal update is computed across all frames and no 1039 
temporal chunking can be used, we can still chunk across cells, and in practice the memory 1040 
demand in this step is much smaller comparing to other steps involving raw input data. 1041 
Consequently, our pipeline fully supports out-of-core computation, and memory demand is 1042 
dramatically reduced. In practice, a modern laptop can easily handle the analysis of a full 1043 
experiment with a typical recording length of up to 20 minutes. Dask also enables us to carry out 1044 
lazy evaluation of many steps where the computation is postponed until the result is needed, for 1045 
example, when a plot of the result is requested. This enables selective evaluation of operations 1046 
only on the subset of data that will become part of the visualization and thus helps users to 1047 
quickly explore a large space of parameters without committing to the full operation each time. 1048 

Seeds refinement with a Gaussian-Mixture-Model 1049 

As described in the main text, an alternative strategy to thresholding fluorescence intensity 1050 
during seeds initialization is to explicitly model the distribution of fluorescence fluctuations of all 1051 
candidate seeds and select those with relatively higher fluctuation. Here, we describe this 1052 
process and the rationale. Since the seeds are generated from local maxima, they include noise 1053 
from relatively empty regions with no actual cells. The seeds from these regions usually have 1054 
low fluctuations in fluorescence across time and can be classified as spurious. To identify these 1055 
cases, we compute a range of fluctuation for each seed (range of min-max across time), and 1056 
model these ranges with a Gaussian-Mixture-Model of two components. The fluctuations from 1057 
‘noise’ seeds compose a Gaussian distribution with low fluctuation, while seeds from actual cells 1058 
assume a higher degree of fluctuation and form another Gaussian distribution with a higher 1059 
mean. Any seed whose fluctuations belong to the lower Gaussian distribution is discarded in 1060 
this step. To compute the range of fluctuation for each seed, we compute the difference 1061 
between the 99.9 and 0.1 percentile of all fluorescence values across time, which is less biased 1062 
by outliers than the actual maximum and minimum values. 1063 

Normally, this step is parameter-free. In rare cases, there are regions containing noise while 1064 
other regions are almost completely dark. Thus, seeds from these two regions will form two 1065 
peaks in the distribution of what the user would consider ‘bad seeds’, and a Gaussian-Mixture-1066 
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Model with two components will no longer be valid. In such cases users can tweak the number 1067 
of components (number of modeled Gaussian distributions), as well as the number of 1068 
components to be considered as composed of real signal. However, because the two noise 1069 
distributions are likely to overlap to some degree, using two components will likely suffice. The 1070 
distribution of fluctuations, the Gaussian-Mixture-Model fit, and the resulting seeds, are 1071 
visualized, enabling the user to judge the appropriateness and accuracy of this step. It should 1072 
be noted that in practice, we have found this process to depend heavily on the relative 1073 
proportion of the ‘good’ and ‘bad’ seeds and can easily result in a significant amount of false 1074 
negatives if the proportion of the ‘bad’ seed is too low. This makes the Gaussian-Mixture-Model 1075 
approach less stable and in general less preferable to simple thresholding unless a good 1076 
threshold of fluorescence intensity cannot be easily determined. 1077 

Generation of simulated datasets 1078 

We use a pipeline modified from [11] and [12] to generate simulated data for validation and 1079 
benchmarking of Minian. Specifically, we generate a 512 x 512 pixels field of view with varying 1080 
number of frames and neurons. The neurons are simulated as spherical 2-D Gaussian. The 1081 
center of neurons are drawn uniformly from the whole field of view, and the Gaussian widths 𝜎C 1082 
and 𝜎D for each neuron are drawn from 𝒩(15, 5G), with a minimum value of 3. Spikes are 1083 
simulated from a Bernoulli process with a 0.01 probability of spiking per frame. Calcium 1084 
dynamics are simulated by convolving the spikes with a temporal kernel 𝑔(𝑡) = 𝑒𝑥𝑝(−𝑡/𝜏N) −1085 
𝑒𝑥𝑝(−𝑡/𝜏O), with rise time 𝜏O = 5 frame and decay time 𝜏N = 60 frame. We simulate the spatial 1086 
footprints of backgrounds as spherical 2-D Gaussian distributed uniformly across field of view. 1087 
In total 300 independent background terms are used for all simulation. The Gaussian widths are 1088 
drawn from 𝒩(900, 50G) The temporal dynamic of backgrounds are simulated from a 1089 
constrained Gaussian random walk process with steps drawn from 𝒩(0, 2G), then clipped to be 1090 
non-negative and gaussian smoothed temporally with a variance of 60 frames. We also simulate 1091 
motion of the field of view as 2-D translations. The translational shift in each direction is 1092 
simulated from a constrained Gaussian random walk process with steps drawn from 1093 
𝒩(−0.2𝑑, 1), where 𝑑 is the current amount of shift. Lastly, we add a 𝒩(0, 0.1G) Gaussian noise 1094 
to the entire simulated data. The activity of neurons are multiplied by a scalar before combining 1095 
with the background activity and noise. We call this scalar ‘signal level’. 1096 

To validate the accuracy of Minian output, we simulate data with different signal level and 1097 
number of cells. The signal levels we use are 0.2, 0.4, 0.6, 1.0, 1.4, 1.8. The number of cells we 1098 
use are 100, 300, 500. On the other hand, to benchmark the performance of Minian, we 1099 
simulate data with different number of frames and cells. The number of frames vary from 4000 1100 
to 28000 with a step size of 8000. The number of cells we use are 100, 300, 500. 1101 

Matching neurons for validation 1102 

To compute different metrics of the accuracy of Minian output, we first need to match the 1103 
putative neurons from Minian output with neurons from ground truth. To obtain this mapping we 1104 
first compute the max projection of spatial footprints across all neurons. We then register the 1105 
max projection of putative spatial footprints to the max projection of ground truth spatial 1106 
footprints, by estimating a translational shift between the two max projection images. After 1107 
correcting for translational shifts, we compute the center-of-mass for all neurons, from which we 1108 
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obtain a N x M pairwise distance matrix, where N and M are number of neurons detected by 1109 
Minian and number of ground truth neurons, respectively. We then calculate an optimal 1110 
mapping by solving the linear assignment problem of minimizing the total cost (distance) of a 1111 
particular cell mapping. Lastly, we threshold the resulting mapping by discarding any matched 1112 
cells that has a distance larger than 15 pixels. 1113 

Classification of place cells 1114 

We use the spatially-binned averaged ‘firing’ rate calculated from spike signals to classify 1115 
whether each cell is a place cell. A place cell must simultaneously satisfy three criteria: a spatial 1116 
information criterion, a stability criterion, and a place field size criterion. To determine whether a 1117 
cell has significant spatial information or stability, we obtain a null distribution of the 1118 
measurements (spatial information and stability) with a bootstrap strategy, where we roll the 1119 
timing of activity by a random amount for each cell 1000 times. The observed spatial information 1120 
or stability is defined as significant if it exceeds the 95th percentile of its null distribution (p < 1121 
0.05). For the spatial information criterion, we use the joint information between ‘firing’ rate and 1122 
an animal’s location measured in bits per ‘spike’. For the stability criterion, we calculate the 1123 
Fisher z-transformation of the Pearson correlation coefficient between spatial ‘firing’ patterns 1124 
across different trials within a recording session. A trial is defined as the time which the animal 1125 
runs from one end of the linear track to the other and returns to the starting location. We 1126 
calculate the z-transformed correlation between the odd number of trials and the even number 1127 
of trials, as well as between the first half of the trials and the second half of the trials. We then 1128 
average these two measures of correlations and use that as the measure of stability for a cell. 1129 
Lastly, For the place field size criterion, we define the place field of each cell as the longest 1130 
contiguous spatial bin where the averaged ‘firing’ rate exceeded the 95th percentile of all 1131 
averaged firing rate bins. A cell must have a place field larger than 4 cm (i.e., 2 spatial bins) to 1132 
pass the place field size criterion. 1133 

Animals 1134 

Adult male C57/BL6J mice from Jackson Laboratories were used for all testing. Animals were 1135 
housed in a temperature, humidity and light controlled vivarium down the hall from the 1136 
experimental testing rooms with lights on at 7 a.m. and off at 7 p.m. Water was restricted to 1137 
maintain a body weight of 85–90%. Water deprivation consisted of allotting the animal ~1 mL of 1138 
water per day, including water obtained during testing. Water not obtained during testing was 1139 
given after the testing period. Animals were acclimated to handling for 5–7 days prior to 1140 
training/testing. All experiments were performed in accordance with relevant guidelines and 1141 
regulations approved by the Institutional Animal Care and Use Committee of Icahn School of 1142 
Medicine at Mount Sinai (Reference #: IACUC-2017-0361, Protocol #: 17-1994). 1143 

Tested hardware specifications 1144 

The hardware specifications of computers that have effectively run Minian are summarized in 1145 
the table below. 1146 
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Table 1: A list of computers tested with Minian with specifications. Listed roughly by 1147 
increasing computation power.  1148 

Manufacture Model CPU RAM Storage 
Operating 
System 

custom-built Carbon AMD Ryzen Threadripper 
2950X 4.4GHz x 16 

128GB 2TB SSD Ubuntu 18.04 

Microsoft Surface Pro 6 Intel Core i5-8250U 1.6GHz x 
4 

8GB 256GB 
SSD 

Windows 10 

Dell Precision 
5530 

Intel Core i5-8400H 2.5GHz x 
4 

16GB 256GB 
SSD 

Ubuntu 18.04 

Apple MacBook Pro 
152 

Intel Core i7-8559U 2.7GHz x 
4 

16GB 1TB SSD macOS 10.14 
Mojave 

custom-built Amethyst Intel Xeon E5-1650 3.6GHz x 6 128GB 6TB HDD Ubuntu 17.1 

List of dependencies 1149 

Table 2: A list of open-source packages and the specific versions on which Minian 1150 
depends.  1151 

Package Version 
av 7.0 
bokeh 1.4 
bottleneck 1.3 
cairo 1.16 
cvxpy 1.0 
dask 2.11 
datashader 0.1 
distributed 2.11 
ecos 2.0 
ffmpeg 4.1 
fftw 3.3 
holoviews 1.12 
ipython 7.12 
ipywidgets 7.5 
jupyter 1.0 
matplotlib 3.1 
natsort 7.0 
netcdf4 1.5 
networkx 2.4 
nodejs 13.9 
numba 0.48 
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numpy 1.18 
opencv 4.2 
pandas 1.0 
panel 0.8 
papermill 2.0 
param 1.9 
pip 20.0 
pyfftw 0.12 
python 3.8 
scipy 1.4 
scs 2.1 
statsmodels 0.11 
tifffile 2020.2 
tqdm 4.43 
xarray 0.15 
zarr 2.4 
medpy 0.4 
simpleitk 1.2 

Comparison of algorithms in related pipelines 1152 

Table 3: List of algorithm implementations in different pipelines. For a lot of steps different 1153 
algorithm implementation can be chosen by the user based on features of the data. In such 1154 
cases we only list the default and most commonly used algorithms here.  1155 

Step 
Minian 
implementation 

CaImAn 
implementation 

MIN1PIPE 
implementation 

Critical 
parameters 

Denoising Median filter None Anistropic filter Spatial window 
size of the filter 

Background 
removal 

Morphological top-
hat transform 

None Morphological top-hat 
transform 

Spatial window 
size of the top-
hat transform 

Motion 
correction 

FFT-based 
translational motion 
correction 

Non-rigid patch-wise 
translational motion 
correction 
(NoRMCorre) 

Mix of translational 
motion correction and 
Demons diffeomorphic 
motion correction 

Different 

Initialization Seed-based with 
peak-noise-ratio 
and KS-test 
refinement 

Pixel-wise correlation 
and peak-noise-ratio 
thresholding 

Seed-based with 
GMM, peak-noise-
ratio and KS-test 
refinement 

Threshold for 
correlation and 
peak-noise-ratio 

Spatial and 
temporal 
updates 

CNMF with cvxpy 
as deconvolution 
backend 

CNMF-E with oasis 
as deconvolution 
backend 

CNMF with cvx matlab 
package as 
deconvolution 

Noise cut-off 
frequency. 
Expected size of 
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backend neurons. Sparse 
penalty 

Source data 1156 

Table 4: List of source data related to validation figures.  1157 

Title Description 
Figure 15 - source 
data 1 

Raw validation performance with simulated data. 

Figure 16 - source 
data 1 

Raw correlations between Minian deconvolved traces and simulated ground truth. 

Figure 16 - source 
data 2 

Raw example traces from Minian and simulated ground truth. Filenames indicate 
signal level and source of trace. 

Figure 17 - source 
data 1 

Raw spatial footprint values shown in the overlay plot. 

Figure 17 - source 
data 2 

Raw example traces from Minian and Caiman. Filenames indicate cell id and 
source of trace. 

Figure 18 - source 
data 1 

Raw memory usage and running time with different datasets for both pipelines. 

Figure 19 - source 
data 1 

Raw memory usage and running time with different parallel processes for both 
pipelines. 

Figure 20 - source 
data 1 

Raw correlation of spatial firing pattern with different shifts in field-of-view. 

Figure 20 - source 
data 2 

Raw spatial firing activity for the two sessions shown. 

  1158 
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