
 
 
 
 
 
 
 
 

 
 
 
 
 

CausER - a framework for inferring causal latent factors using multi-omic human 
datasets 

 
 
 
Xin Bing1*, Tyler Lovelace2.3*, Florentina Bunea1, Marten Wegkamp1,4, Harinder Singh5†, 
Panayiotis V Benos2†, Jishnu Das5† 
 
 
1 Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA 
2 Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA 
3 Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA 
4 Department of Mathematics, Cornell University, Ithaca, NY, USA 
5 Center for Systems Immunology, Departments of Immunology and Computational & Systems 
Biology, University of Pittsburgh, Pittsburgh, PA, USA 
 
 
* Equal contribution/co-first author 
† Corresponding authors – Jishnu Das (jishnu@pitt.edu), Panayiotis V Benos (benos@pitt.edu), 
Harinder Singh (harinder@pitt.edu) 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442513doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442513
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
 
High-dimensional cellular and molecular profiling of human samples highlights the need for 
analytical approaches that can integrate multi-omic datasets to generate predictive biomarkers 
that are in turn accompanied with strong causal inferences. Current methodologies are challenged 
by the high dimensionality of the combined datasets, the differences in distributions across the 
datasets, and their integration in a plausible causal framework, beyond merely correlative 
biomarkers. Here we present CausER, a first-in-class two-step interpretable machine learning 
approach for high-dimensional multi-omic datasets, that addresses these problems by identifying 
latent factors and their cause-effect relationships with the system-wide outcome/property of 
interest. The first step consists of Essential Regression (ER), a novel data-distribution-free 
regression model that integrates multi-omic datasets and identifies latent factors significantly 
associated with an outcome. The second involves probabilistic graphical modeling of the 
significant latent factors to infer plausible causal associations between them and mechanisms 
that affect outcomes, thereby significantly moving beyond predictive associative markers. By 
analyzing varied human immunological multi-omic datasets, we demonstrate that CausER 
significantly outperforms a wide range of state-of-the-art approaches. It generates novel cellular 
and molecular predictions in a range of contexts, including immunosenescence and sustained 
immune dysregulation associated with pre-term birth, that are corroborated by biological findings 
in model systems. 
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Introduction 
 
Over the last decade, genomic, proteomic, metabolomic and other technologies for generating 
deep molecular profiles of tissues and cells from model organisms or humans have rapidly 
expanded1-4. However, the explosion in data, especially from a range of such ‘omic technologies 
has not been coupled to a proportional increase in our understanding of the underlying causal 
chains and mechanisms. Existing analytical approaches have primarily focused on individual 
“omic” datasets with relatively few attempts at integration of multi-omic datasets. In either case, 
we5-9 and others10-12 have primarily emphasized on uncovering predictive biomarkers (Fig. 1a). A 
key focus of these efforts is to overcome the “curse of dimensionality” (very large number of 
variables being measured in relation to a comparatively low number of samples) and the 
multiplicity of predictive signatures due to multi-collinear data i.e., large correlated sets of 
variables. While there are several methods for uncovering predictive markers from high 
dimensional data, none of these analyze cause-effect relationships in relation the 
outcomes/outputs of interest. This in turn has hampered efforts to undertake 
perturbative/translational experiments and/or clinical investigations that can test a functionally 
prioritized set of hypotheses generated by the large datasets. 
 In addition to the high dimensionality of datasets at any given scale of organization (e.g., 
cellular, molecular), biological systems, particularly humans, manifest extreme complexity in 
terms of numbers of molecular components, their interaction rules as well as their hierarchical 
scales of organization that include macromolecular complexes/condensates, organelles, cells, 
tissues and organs. Each scale of organization in such a complex system has components and 
interaction rules that are unique to its level of organization. Thus, predicting changes in properties 
or behaviors of the system based on measuring components that are operating at different scales 
of organization represents a formidable challenge.  
 We propose a novel framework to address these key limitations by focusing on latent 
factors rather than observables in high dimensional datasets that are significantly associated with 
a system wide-property or outcome that is of interest. Further, the use of regression on the latent 
factors rather than the observables comes with rigorous statistical guarantees and provides a 
major conceptual advance that helps address current limitations. After identifying significant latent 
factors, we use causal graphical model analyses to examine the connectivity of these factors to 
the system-wide property or outcome of interest. Our analytical framework, termed CausER, 
attempts to move beyond biomarkers and derives causal latent factors from thousands of 
variables from multi-omics datasets across various scales of biological organization, and 
subsequently identifies potential cause-effect relationships between those factors (Fig. 1a). In so 
doing CausER generates a prioritized set of latent factors comprised of known observables that 
are most proximal in the causal graph network to the system property/outcome of interest. By 
analyzing three human immunological multi-omic datasets, we demonstrate that CausER 
significantly outperforms a wide range of state-of-the-art approaches in predicting outcomes and 
provides multi-scale inferences not afforded by the existing methods. The novel predictions are 
corroborated by biological findings in model systems.  
 
 
Results 
 
CausER – a framework for inferring causal latent factors 
 
The first step in CausER comprises Essential Regression (ER), a novel data-distribution-free 
regression model that integrates multi-omic datasets and identifies latent factors that are 
significantly associated with a system property/outcome (Fig. 1b, Methods). ER involves a latent 
model approach that we previously described13, 14 which performs unsupervised identification of 
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latent factors from the input data. Next, ER regresses these latent factors (rather than the original 
measured variables) to the system property/outcome variable of interest (Fig. 1b, Methods). ER 
is a paradigm-altering concept in regression analysis in the context of dimensionality reduction 
with preservation of the underlying information. Existing regression methods use regularization 
(e.g., L1 regularization – LASSO, L1 + L2 regularization – Elastic Net) or pre-specified group 
structure (e.g., group LASSO) on the measured features, which perform feature selection that 
eliminates much of the underlying information (e.g., correlated variables). ER, on the other hand, 
identifies latent factors in a data-dependent fashion (without the need for pre-specified group 
structure) and then hones in on specific latent factors significantly associated with the 
property/outcome of interest. Importantly, each latent factor is summarizing the values of a 
number of variables that It represents, and therefore preserves the underlying information. 
Critically, ER makes no assumptions regarding the underlying data generating mechanisms and 
can be broadly used across multi-omic datasets (Methods). We note that ER enables the further 
analysis of all observable features within the significant latent factors (Fig. S1). The use of L1-
regularization on the significant latent factors identified by ER allows us to identify a sparse set of 
observables, within these factors, tied to outcome. We term this ER-derivative-approach 
Composite Regression (CR) (Fig. S1).  

The second step in CausER involves causal inference analyses on the ER-identified 
significant latent factors using directed graphical models15. Directed Acyclic Graphs (DAGs) are 
sometimes referred to as Causal Graphs, because under certain assumptions the learned DAGs 
from observational data (Markov equivalence classes) asymptotically represent the true data-
generating causal graph. Although these algorithms have shown considerable success in 
analyzing many biological processes and biomedical problems16-20, including biomarker selection 
and classification21-23, scalability limits the datasets that they can be applied.24, 25 Here, we use 
the causal learning algorithm for mixed data, CausalMGM,16, 26 only on the significant latent factors 
delineated by ER, to overcome the scale limitation. By applying CausalMGM only on the 
significant latent factors, we greatly reduce the dimensionality of the input dataset while 
preserving the information of individual (correlated) variables in the latent factors. Thus, CausER 
(CausalMGM on the significant latent factors from ER) prioritizes further within the significant 
latent factors (Fig. 1c, Methods) by virtue of their direct connections to the outcome in the 
graphical model. Furthermore, it predicts potential cause-effect relationships between the latent 
factors and the property/outcome of interest, which leads to hypotheses generation. The 
associations of latent factors to outcome revealed this way provide a highly prioritized set of 
hypotheses which can then be corroborated by prior biological information and subjected to 
experiment tests or clinical investigations (Fig. 1d, Methods). 
 
 
Inferring causal factors underlying immunosenescence in a vaccine response 
 
A recent study comprehensively profiled cellular and molecular responses induced by the shingles 
Zostavax vaccine in a cohort comprising both younger adults and elderly subjects27. The high 
dimensional multi-omic analysis included immune cell frequencies and phenotypes, as well as 
transcriptomic, metabolomic, cytokine and antibody analyses. The vaccine induced robust 
antigen-specific antibody titers as well as CD4+ but not CD8+ T cell responses27. Using a 
multiscale, multifactorial response network, the authors identified associations between 
transcriptomic, metabolomic, cellular phenotypic and cytokine datasets which pointed to immune 
and metabolic correlates of vaccine immunity27. Interestingly, differences in the quality of the 
vaccine-induced responses by age were also noted27. We hypothesized that a method based on 
latent factors rather than measurables would improve the delineation of components that underlie 
the quality and magnitude of the vaccine-induced responses. If so, then such a method would be 
able to leverage the differences in vaccine-induced responses and accurately predict age as the 
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system-wide property of interest. The latent factors identified in this manner could then provide 
insights into the cellular and molecular basis of age-induced immunosenescence manifested by 
diminished responses to the Zostavax vaccine. 
 To explore the above formulation of immunosenescence as a predictor of age, we first 
applied a suite of state-of-the-art approaches including the least absolute selection and shrinkage 
operator (LASSO)28, partial least squares (PLS) regression29, and principal components/factors 
regression (PFR)30 on the entire spectrum of vaccine-induced responses to predict age (Fig. 2a). 
As most subjects in the cohort were in 2 distinct age groups – adults under 40 and elderly people 
over 60, we first sought to explore the performance of LASSO, PLS and PFR in predicting the two 
age groups as binary categorical variables i.e., younger adults and elderly-. The predictive 
performance of all methods was evaluated in a stringent leave-one-out cross-validation (LOOCV) 
framework (Methods). We have previously demonstrated that on such multi-omic datasets, cross-
validation is a gold standard to evaluate model performance with data held out5, 6, 8. In a LOOCV 
framework, we found that PFR had no predictive power (AUC < 0.5), while LASSO and PLS had 
weak predictive power in predicting age as a categorical variable (Fig. 2b, AUCs = 0.63 and 0.60 
respectively). The ROC curve for LASSO had an interesting shape. It attained a true positive rate 
of ~0.4 at a false positive rate of ~0.15, but beyond that it was essentially no better than random 
(Fig. 2b). This observation is consistent with the observation that differences in an age-associated 
MMRN were driven by only a subset of elderly vaccinees27. Thus, a purely predictive modeling 
approach like LASSO can leverage these relatively straightforward differences to accurately 
predict age for a subset of the vaccinees, but fails to predict age for others. We then compared 
these methods to the performance of ER, CR and CausER. In a matched, LOOCV framework, 
ER and CR were very accurate at predicting age (Fig. 2b, AUCs = 0.79 and 0.77 respectively, P 
< 0.01), while CausER was the best predictor of age as a categorical variable (AUC = 0.86, P < 
0.01). Together, these results demonstrate that while LASSO, PLS and PFR fail to accurately 
predict age from Zostavax-induced vaccine responses, ER, CR and CausER can overcome this 
challenging problem by leveraging non-trivial differences in latent factors comprised of discrete 
sets of measurables.  
 Next, we evaluated whether these methods could predict actual age as a continuous 
variable beyond the categorical classifiers of younger adults and the elderly. As before, 
performance was measured in a rigorous cross-validation framework (Methods). Using the 
vaccine-induced responses, PFR was not at all predictive of age (Fig. 2c, Pearson r = -0.71; Fig. 
S2, Spearman r = -0.82). LASSO and PLS had poor performance in predicting age as a 
continuous variable (Fig. 2c, Pearson r = 0.29 and 0.13 respectively; Fig. S2, Spearman r = 0.25 
and 0.09 respectively).  In fact, the predictive power of PLS and PFR were not significantly 
different from a negative control model built on permuted data (Fig. 2c). However, both ER and 
CR were significantly predictive of age as a continuous variable (Pearson r = 0.48 for both, 
Spearman r = 0.44 and 0.49 respectively, P < 0.01 Fig. 2c, Fig. S2), and as in the previous 
instance, CausER had the best performance in predicting age as a continuous variable (Pearson 
r = 0.61, Spearman r = 0.59, P < 0.01 Fig. 2c, Fig. S2). Together, these results demonstrate that 
while state-of-the-art methods including LASSO, PLS and PFR fail to predict age either as a 
categorical or a continuous variable, all three of the new approaches that are based on latent 
factors – ER, CR and CausER, are able to do so reasonably accurately based on the multi-omic 
profiles of vaccine-induced responses. 
 We next explored the likely causal relationships among the latent factors that lead to age-
induced immunosenescence and diminished responses to the Zostavax vaccine. CausalMGM 
was used to construct a causal graph with all latent factors identified in the latent model 
identification step of ER (Fig. 2d). Notably, majority of the significant latent factors identified by 
ER were seen to proximal to the outcome variable (age) in the causal graph. Importantly, all 4 
latent factors in the Markov blanket generated by CausalMGM were also identified as significant 
by ER (Fig. 2d). Overall, the significant latent factors revealed by ER had significantly lower 
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network distances (i.e., had stronger cause-effect relationships) from age compared to the non-
significant latent factors (Fig. 2e, P < 0.05). These results demonstrate that ER and CausalMGM 
independently converge on the same presumptive cause-effect relationships. 
 The prioritized CausER hits (Fig. 2d) i.e, significant latent factors identified by ER that are 
also in the Markov blanket of the outcome variable (age) in the causal graph generated by 
CausalMGM comprised antigen-specific IgG titers (Z1), a metabolic module (Z19), B cell (Z46) 
and NK cell frequencies (Z45). CausER provides both prioritized cause-effect relationships and 
directions of these relationships. While the latter relates to mathematical conditional 
independence relationships (Methods), the former provides prioritized mechanistic insights. 
While the lowering of titers with age is expected and has been previously reported27, CausER 
revealed a likely cause-effect relationship between altered B cell and NK cell numbers and 
immunosenescence. To further dissect the nature of this relationship, we examined correlations 
between NK cells, B cells and age. We found that NK cells significantly increased, while the 
numbers of B cells significantly decreased with age (Fig. 2f). More interestingly, there was a 
significant negative correlation between NK cells and B cells (Fig. 2f), and the correlation 
remained significant even after correcting for age (Fig. 2f). Our results suggest a novel basis of 
human immunosenescence in the context of vaccine responses (Fig. 2g). This could involve a 
previously described mechanistic linkage between NK cells and a weaker germinal center (GC) 
response in a murine model31. NK cells can inhibit CD4 T cell responses including those of T 
follicular helper cells in a perforin-dependent manner; this leads to a weaker GC response 
diminished antibody titers and affinity maturation31,32. 
 
 
Analyzing latent factors potentially reflective of trained immunity in a vaccine response  
 
Next, we used CausER to analyze the temporal dynamics of transcriptional responses induced 
by the malaria RTS,S vaccine33. RTS,S has a standard regimen of 3 doses separated by a month, 
and is currently the most advanced malaria vaccine candidate, that has consistently demonstrated 
40-80% protective efficacy in malaria-naïve individuals in controlled human challenge studies5. 
There has been intense interest over the last decade at uncovering molecular signatures induced 
by the RTS,S vaccine and corresponding correlates of protection5, 34, 35. In a controlled human 
infection setting, differential expression of immunoproteasome genes was identified as a pre-
challenge correlate of protection33. After the third dose, as expected, there was a striking but 
transitory shift in inflammatory gene expression followed a convergence of the majority of gene 
signatures back to pre-vaccination levels within 2 weeks after the third dose33. We reasoned that 
aspects of trained immunity induced by the vaccine may be reflected in the transcriptomic 
signatures that do not converge after 2 weeks. Thus, a sensitive method such as CausER would 
be able to discriminate between expression profiles at the following time-points – pre-vaccination 
(G1), the day after the third dose (G2) and 14 days after the third dose (G3) (Fig. 3a) and reveal 
candidate genes and molecular pathways that could contribute to trained immunity. In this 
instance, the use of a microarray dataset also afforded the opportunity to explore how CausER 
performs with noisier but nevertheless valuable datasets generated using older technologies. 
 As before, the ability of the different methods to discriminate between G1, G2 and G3 
transcriptional profiles was measured in a rigorous cross-validation framework (Methods). We 
found that there were significant differences in the ability of the different methods to discriminate 
between the three kinds of expression profiles, with CausER and ER having the best 
performance, significantly better than the other methods (P < 0.01, Figs. 3b, 3c). Next, we chose 
to focus on the ability of the different methods to specifically distinguish the G3 profile from the 
other two (Fig. 3d) or just the G1 profile (Fig. S3a). This constituted the most “difficult” 
discrimination as there are broad differences in the expression profiles between the pre- (G1) and 
24-hour-post-vaccination (G2) time-points, but most of these differences disappear by 14 days 
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(G3)33. Consistent with expectation, in this binary classification setting, there was wide variability 
in the performance of the methods to specifically discriminate the G3 time-point from the G1 and 
G2 time-points. While PFR and PLS performed poorly, CausER, ER and LASSO had significantly 
better performance, with CausER being the best performing method (P < 0.01, Figs. 3d, Fig S3). 
In terms of correctly classifying just the true G3 profiles as G3, PLS and PFR had poor 
performance, while CausER had the best performance, significantly better than other methods 
(P< 0.01, Fig. 3e). 
 Next, we focused on the CausER hits i.e., the significant latent factors from ER in the 
Markov blanket of the outcome variable (Fig. 3f). Genes comprising these latent factors were 
seen to be differentially expressed between the G1 and G3 samples (Fig. 3g, Fig. S3b). Our 
results suggest that beyond the initial divergence of immunoproteasome genes, there is a 
sustained divergence (2 weeks post-vaccination) of genes involved in immune-metabolic 
processes. These results complement recent findings that suggest that targeting 
immunometabolism is a promising direction in modulating trained immunity36. While a vaccine 
induces a rapid initial divergence in inflammatory signatures reflecting the activation of innate 
immune cells and their engagement with adaptive B and T cells, it may also induce alterations in 
the innate immune compartment that are discernible at later time points and contribute to a distinct 
form of immune memory36. 
 
 
Uncovering latent factors that distinguish immune system states of term and pre-term 
infants  
 
Finally, we focused on a multi-omic longitudinal cohort that analyzed immune cell populations and 
plasma proteins in 100 newborn children during their first 3 months of life37 (Fig. 4a). Striking 
differences were observed in immune parameters between preterm and term children at birth. 
However, the immune trajectories appeared to achieve a stereotypic convergence within the first 
3 months of life37 (Fig. 4a). We hypothesized that CausER might be able to uncover latent factors 
that distinguish immune system states of term and pre-term infants after 3 months of life and 
therefore reveal features that could impact later life (Fig. 4a). As expected, based on the striking 
differences at birth between term and pre-term children, all methods (LASSO, PLS, PFR, ER, CR 
and CausER) were be able to discriminate between these 2 groups using immune parameters 
measured in the first week of life (Fig. S4). All model performances were measured in a rigorous 
cross-validation framework (Methods). However, given the stereotypic convergence in the first 3 
months (12 weeks) of life37, we found that PLS and PFR were unable to accurately discriminate 
between term and pre-term children using immune parameters measured at 12 weeks of life (Figs. 
4b-4c). However, LASSO was able to accurately distinguish between term and pre-term births 
using the 12-week profiles (Figs. 4b-4c), suggesting that despite broad convergence, a small 
subset of immune parameters still remain different term and pre-term infants between at 3 months 
of life. More importantly, ER and CR were able to accurately discriminate between term and pre-
term births using immune profiles at 3 months of life, significantly better than other methods (Figs. 
4b-4c, P < 0.01). ER identified only 2 significant latent factors, and based on CausalMGM 
analyses, one of these 2 significant latent factors was in the Markov blanket i.e., for this dataset, 
this single latent factor was the sole CausER hit (Fig. 4d). 
 We visualized the immune cell populations and plasma proteins in this CausER hit (Fig. 
4d). These profiles had clearly remained divergent even at 3 months of life (Fig. 4d) despite the 
broad stereotypic convergence of most other immune parameters. At 3 months of life, term infants 
had an anti-inflammatory milieu including high IL-10, while pre-term infants had a pro-
inflammatory milieu including elevated IL-6 and IL-8 (Fig. 4d). These findings agree with a 
previous study that IL-10 is highly expressed in the uterus and placenta and has a key role in 
controlling inflammation-induced pre-term labor in a murine model38. Furthermore, regulatory B 
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cells are a key source of IL-10 and appear to be important in sustaining pregnancy till term39-41. It 
is also known that modulation of pro-vs-anti-inflammatory environments by relevant cytokines and 
chemokines at the maternal-fetal interface (decidua) is a critical component of the bifurcation 
between term and pre-term births39. Thus, our analyses of immune system states of term and pre-
term infants at 3 months of life revealed that pre-term infants had a pro-inflammatory state, while 
term infants had an anti-inflammatory state (Fig. 4e). These findings could have long-term 
implications for the health of pre-term infants. 
 
 
Discussion 
 
Over the last two decades, while there have been rapid advances in high-throughput experimental 
technologies to generate deep molecular profiles, computational analyses of these high-
dimensional datasets have primarily focused on biomarker discovery42. This is because rigorous 
statistical approaches for analyzing high-dimensional datasets, such as regularized regression 
and bootstrap aggregated classification, are focused on uncovering predictive biomarkers which 
may simply be correlative surrogates of outcome or system-wide property but unrelated to the 
underlying causal factors. Incorrect extrapolation of insights derived from biomarker-based 
approaches can lead to perturbation experiments with low success. Alternatively, efforts to move 
beyond biomarkers to mechanistic insights often use biological priors, which may be incomplete 
or suffer from sampling/study biases43. Further, while there have been advances in causal 
modeling44, existing approaches are difficult to apply to high-dimensional datasets due to the 
computational intractability of applying these approaches on15 and the multi-collinearity of the 
data. The methods presented in this manuscript address this fundamental limitation in systems 
biology. ER and CausER are first-in-class machine learning methods that can both handle high-
dimensional multi-omic datasets with co-linear variables and prioritize cause-effect relationships 
between the input features and the outcome of interest. 
 The CausER framework pushes the envelope on multiple key challenges in systems 
biology. First, it establishes a rigorous framework with provable statistical guarantees that 
explores a large space of higher-order relationships from high-dimensional features and uncovers 
latent factors tied to the outcome variable via directed cause-effect relationships. Second, unlike 
existing causal reasoning approaches that are constrained by the size of the input data, CausER 
can be applied to modern high-dimensional datasets. The time complexities of the different steps 
are essentially quadratic and not exponential like some other causal reasoning approaches. Third, 
ER makes no assumptions regarding data-generating mechanisms and CausER can integrate 
multi-omic datasets to capture the interplay across a plethora of biological processes at multiple 
scales of organization of the system. A key innovation within the framework is the sequential use 
of two orthogonal methods for statistical inference, ER and CausalMGM. These methods have 
different theoretical bases and assumptions and yet converge on common causal latent factors, 
underscoring the robustness of our approach. 
 Here, we applied ER and CausER to three biologically diverse contexts. In each case, we 
leveraged an existing study that had generated high-dimensional omic profiles to address key 
questions that had not been the focus of the original studies, in part because of limitations of 
methods used. Such questions could now be addressed by the methodological advances of ER 
and CausER over state-of-the-art approaches. We demonstrated that ER and CausER 
significantly outperform PFR and PLS across contexts, and either outperform or match LASSO in 
terms of predictive performance. While we used three examples to illustrate the superior 
performance of ER and CausER, these methods come with broad theoretical guarantees to 
outperform PLS, PFR and LASSO across contexts (Methods, Fig. S5). Further, while the existing 
methods simply identify correlates, ER and CausER provide mechanistic insights, some of which 
are consistent with prior knowledge, while others are novel. Our findings have broad implications 
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across domains in systems biology and are likely to transform both computational workflows used 
to analyze multi-omic datasets and downstream experiments designed based on the insights 
gleaned via these analyses.  
 
 
Online Methods 
 
Detailed descriptions of the theoretical underpinnings and associated proofs of ER, CR and 
CausER are provided in Supplementary File 1. Supplementary File 1 also describes details of the 
application of ER, CR, CausER, LASSO, PLS and PFR to the different datasets of interest.  
 
 
Code Availability 
 
Detailed code and documentation for ER and CR and CausER are available at 
https://github.com/bingx1990/Application-of-ER-and-CausalMGM.git 
 
 
Author Contributions 
 
J.D. designed the study, and oversaw all aspects of it. X.B., F.B. and M.W. jointly conceived the 
ER framework. J.D., P.B. and H.S. jointly conceived the CausER framework. X.B. and T.L. 
implemented the ER and CausER frameworks, and carried out all computational analyses. J.D. 
and H.S. interpreted the results. J.D., H.S. and P.B. wrote the main text. X.B., T.L., F.B. and M.W. 
wrote the supplementary methods including formal proofs. 
 
 
Figure Legends 
 
Figure 1 – An overview of Essential Regression and CausER  
 
a) Schematic illustrating the different kinds of multi-omic datasets typically used in systems 
analyses and the key advantages of the methods introduced in this study (ER and CausER) over 
existing approaches. 
 
b) Schematic summarizing the steps in ER. 
 
c) Schematic summarizing the steps in CausER. 
 
d) Conceptual overview of key advances afforded by ER and CausER. 
 
Figure 2 – Identifying causal signatures of age-induced immunosenescent responses to 
the Zostavax vaccine 
 
a) Schematic summarizing the input data and the problem of interest. 
 
b) ROC curves for the different methods at discriminating between elderly and younger adults in 
a LOOCV framework. 
 
c) Pearson correlations of the different methods at predicting age as a continuous variable, as 
measured in a LOOCV cross-validation framework. 
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d) CausER graph – CausalMGM on all Z’s. Markov blanket highlighted with a blue border and 
bolder fonts. A directed edge X --> Y indicates X is a cause of Y, while a bidirected edge X <-> Y 
indicates the presence of a latent confounder that is a common cause of X and Y. A partially 
oriented edge X o-> Y indicates that Y is not a cause of X, but either X or a latent confounder 
causes Y. Unoriented edge indicates directionality couldn’t be inferred for that edge. 
 
e) Network distances in the causal graph generated by CausalMGM of the significant and non-
significant Z’s (identified by ER) from the outcome variable of interest. 
 
f) Mechanistic insights obtained from CausER. 
 
 
Figure 3 – Identifying differences in vaccine-induced transcriptomic profiles over time 
 
a) Schematic summarizing the input data and the problem of interest. 
 
b) Ternary classification accuracy of the different methods at discriminating among G1, G2 and 
G3 in a replicated k-fold cross-validation framework. 
 
c) Confusion matrix summarizing the performance of the different methods at discriminating 
among G1, G2 and G3 in a LOOCV framework. 
 
d) ROC curves for the different methods at discriminating between G3 and (G1 & G2) combined 
in a LOOCV framework. 
 
e) Fraction of true G3 correctly classified as G3 (as measured in a LOOCV framework). 
 
f) CausER graph – CausalMGM on the significant Z’s from ER. Markov blanket highlighted with a 
blue border and bolder fonts. A directed edge X --> Y indicates X is a cause of Y, while a bidirected 
edge X <-> Y indicates the presence of a latent confounder that is a common cause of X and Y. 
A partially oriented edge X o-> Y indicates that Y is not a cause of X, but either X or a latent 
confounder causes Y. Unoriented edge indicates directionality couldn’t be inferred for that edge. 
 
g) Heatmap of genes in CausER hits (significant Z’s in the Markov blanket) for G1 and G3 
samples. 
 
 
Figure 4 – Uncovering specific immune parameters from term and pre-term infants that do 
not achieve stereotypic convergence  
 
a) Schematic summarizing the input data and the problem of interest. 
 
b) Classification accuracy of the different methods at discriminating between term and pre-term 
births using immune profiles at 3 months after birth, measured in a replicated k-fold cross 
validation framework. 
 
c) ROC curves for the different methods at discriminating between term and pre-term births as 
measured in a LOOCV framework. 
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d) Heatmap of features (plasma proteins and immune cells) in the single CausER hit (significant 
Z in the Markov blanket). 
 
e) Mechanistic insights obtained from CausER. 
 
 
Supplementary Figures 
 
Fig. S1 (accompanying Fig. 1) – Schematic of CR. 
 
Fig. S2 (accompanying Fig. 2) – Spearman correlations of the different methods at predicting age 
as a continuous variable, as measured in a LOOCV cross-validation framework. 
 
Fig. S3 (accompanying Fig. 3)  
a) ROC curves for the different methods at discriminating between G3 and G1 in a LOOCV 
framework.  
b) Heatmap of genes in CausER hits (significant Z’s in the Markov blanket) for G1, G2 and G3 
samples 
 
Fig. S4 (accompanying Fig. 4) 
a) Classification accuracy of the different methods at discriminating between term and pre-term 
births using immune profiles at 1 week after birth, measured in a replicated k-fold cross validation 
framework 
b) ROC curves for the different methods at discriminating between term and pre-term births as 
measured in a LOOCV framework. 
 
Fig. S5 – Predictive performance of PLS, PFR, LASSO and ER on simulated datasets. 
 
Supplementary File 1  
 
Detailed descriptions of the theoretical underpinnings, associated proofs of ER, CR and CausER. 
The file also describes details of the applications of ER, CR, CausER, LASSO, PLS and PFR to 
the different datasets of interest. 
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