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Abstract

Mathematical models used in pre-clinical drug discovery tend to be empirical

growth laws. Such models are well suited to fitting the data available, mostly

longitudinal studies of tumour volume, however, they typically have little con-

nection with the underlying physiological processes. This lack of a mechanistic

underpinning restricts their flexibility and inhibits their direct translation across

studies including from animal to human. Here we present a mathematical model

describing tumour growth for the evaluation of single agent cytotoxic compounds

that is based on mechanistic principles. The model can predict spatial distri-

butions of cell subpopulations, tumour growth fraction as well as include spa-

tial drug distribution e↵ects within tumours. Importantly, we demonstrate the

model can be reduced to a growth law similar in form to the ones currently

implemented in pharmaceutical drug development for pre-clinical trials so that

it can integrated into the current workflow. We validate this approach for both
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cell-derived xenograft (CDX) and patient-derived xenograft (PDX) data. This

shows that our theoretical model fits as well as the best performing and most

widely used models. Our work opens up current pre-clinical modelling studies

to also incorporating spatially resolved and multi-modal data without signifi-

cant added complexity and creates the opportunity to improve translation and

tumour response predictions.

Significance: A mechanistic model is presented that has the same growth

law structure as currently used models for cancer drug development. However,

deriving from the mechanistic framework the model is shown to also predict

necrotic and growth fractions in the tumour as well as account for variations in

spatial drug distribution.

Introduction

Preclinical evaluation of drug e�cacy plays a fundamental role in the develop-

ment of oncological treatments, with the aim being to predict pharmacologically

active drug concentrations and guide dose exploration in the clinic. Data for

these studies comes from longitudinal measurements of tumour volume in ani-

mal models with specific tumours targets being investigated by the use of trans-

plantable tumours with both cell-derived xenograft (CDX) and patient-derived

xenografts (PDX) common [1]. Central to these preclinical studies is the use of

mathematical equations to describe the tumour dynamics, fit the experimental

data, and evaluate the anti-tumour e↵ect. These mathematical models usually

take the form of simple growth laws for tumour volume with drug action ac-

counted for through an additional loss term. In general they are not spatially

resolved. There are many such models which can satisfactorily capture the dy-

namics when fitted to preclinical data [2, 3, 4, 5, 6, 7], so that for any given

data set it is in practice very di�cult to distinguish between them [5, 6, 8, 9, 10].

This is compounded by the fact that typically these growth functions are purely

empirical descriptions of the data, not founded in a mechanistic description of

the physiological process further reducing the ability to discriminate.
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Despite the clear successes of pre-clinical modelling there is a key gap in

translation to clinical trials. It is acknowledged that a key challenge in phar-

maceutical development is that only a very few anticancer drug treatments

which are successful pre-clinically, pass through clinical trials and reach the

market [11, 12, 13, 14]. This is sometimes known as the attrition rate prob-

lem. The reasons for this are complex, but from a mathematical modelling

perspective current pre-clinical growth laws cannot be fit-for-purpose in this

translational context as they lack the flexibility to account for the significant

physiological processes that are being proven to be key [15, 16, 17, 18]. We

particularly highlight that the current framework lacks mechanistic underpin-

nings. For example, it does not account for spatial distributions of key com-

pounds and for tissue structure, meaning that drug distribution and growth

fraction cannot be included in the equations despite their increasingly clear sig-

nificance to treatment response [16, 19]. There has been significant progress in

the mathematical modelling of tumour growth in which increasingly sophisti-

cated and mechanistically-founded models have been developed. These mod-

elling approaches span the spectrum from spatial continuum models to large-

scale individual-based simulations of cell dynamics [20, 21, 22]. These studies

have clearly demonstrated that a range of factors will each have significant im-

plications for in-patient tumour dynamics. Unfortunately, the complexity of

these models means that each study tends to focus on one or a few mechanistic

aspects with a unified mathematical cancer model still lacking.

The extension of growth law modelling away from purely phenomenological

laws into mechanistic modelling would have significant advantages. It would en-

able better discrimination between models, could improve translational e�cacy

and be flexible enough to incorporate new multi-modal data sets as they come

online. However, from a practical perspective, more complex, mechanistically

founded mathematical models and simulations raise significant additional chal-

lenges in use in pre-clinical studies. In general they have many more parameters

than the current growth laws used, which makes it challenging to parameterise

them given the typical data collected in CDX and PDX studies. Specifically
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this causes significant di�culty with parameter identifiability, with model over-

parameterisation a key issue. Indeed, access to suitable data is acknowledged

as significant issue for applications of mechanistic models [4]. This challenge

is being met by the implementation of additional imaging modalities includ-

ing MRI [23], generating multi-modal data sets. However, robust methods for

integrating these data types into pre-clinical trials are still under development.

It has been challenging to quantitatively translate the e�cacy seen in ani-

mal models and this lack of translation has been suggested as the root cause for

the high rate of failure [13]. However, it has been shown that drug exposure-

response relationships can be translated [24] and that taking this into account

can contribute to an improved success rate [25]. One aspect that is clearly dif-

ferent between animal models of cancer and patients’ tumours is the rate of

growth and this will impact response to therapy [26]. It is hypothesised that

accounting for these di↵erences mechanistically, translation will be improved

further. Here, we present a mechanistic mathematical model for tumour growth

that takes the form of a simple growth law but which incorporates growth lim-

itation through nutrient availability. This model is based on a well-accepted

mathematical framework for spatial models of tumours which couples spatial

di↵usive processes to tumour growth [27]. Significantly, its mechanistic founda-

tions ensure that it can predict the size of the growing fraction of the tumour

over time. This is obtained by determining from the spatial model the regions

of the tumour that are su�ciently oxygenated or nutrient rich for proliferation.

Importantly, by making simplifying assumptions about tumour geometry we

show that this model can be expressed as a growth law of a similar type to that

currently used in the pharmaceutical industry. It thus can be fitted and anal-

ysed using current industry-standard methods. We demonstrate the ease of use

by comparison with a current commonly adopted growth law [2] and validate

both the models using standard methods on CDX and PDX data. The model

also shows how tracking the predicted growth fraction will alter treatment dy-

namics, validated by end point histology. We also demonstrate that the new

framework o↵ers additional significant advantages such as being able to account
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Model KV Parameters

Linear a
V 2

Exponential a 2

Logistic a� bV 3

Gompertz a� b ln(V ) 3

Exponential-linear [2] a0
1+

⇣
a0
a1

V
⌘ � 1

 
4⇤

Surface growth [28] aV � 1
3 2

Proliferative rim [29] a

 
1�

✓
1� rd

( 3V
4⇡ )

1
3

◆3
!

3

Table 1: Common growth models used for pre-clinical modelling. The parameter

a is the growth rate and b the rate of natural death. In the exponential-linear

model a0 and a1 are the growth rates in the exponential and linear phases,

respectively with  describing the transition between these phases. The number

of model fit parameters for each model includes the initial tumour volume. (⇤:

 is typically taken as 20, for a smooth and fast transition between phases, in

this case it e↵ectively becomes a three parameter system.)

for spatial gradients in drug distribution without requiring significantly more

complex models. Together we see our model is fit-for-purpose to bridge the gap

between emerging multi-modal data availability and the current pre-clinical trial

workflow.

Materials and Methods

Mathematical growth laws for tumour growth and treat-

ment e↵ect

Mathematical models as used in pre-clinical studies typically take the form of

empirically derived growth laws for tumour volume. These models are ideally

suited to the longitudinal data typically available from animal model studies.
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Mathematically these models can be expressed as a rate change equation for the

tumour volume V (t) of the form

dV

dt
= KV (V )V � LDrug(w)V, (1)

with a condition on the initial tumour volume that V (t = 0) = V0, which is

usually taken as a fit parameter of the system. The function LDrug(w) describes

cell loss as a function of the drug concentration w(t). Simple functional forms

are typically assumed for LDrug(w), most often it is taken as linear so that

LDrug(w) = Kkillw. The function KV (V ) represents the net growth rate of the

tumour, with a range of di↵erent forms used in pre-clinical studies [4, 6, 14]

( Table 1) with the form often chosen to optimise data fitting. For example,

where the growth is observed to be linear KV (V ) = a/V , whereas exponential

growth is captured by KV being constant.

Although all the models from Table 1 have successfully been used to fit pre-

clinical data there are some significant structural di↵erences. The first five (lin-

ear, exponential, logistic, Gompertz, and exponential-linear) can be considered

as empirical growth laws with model parameters that are hard to link directly to

meaningful biological parameters. The other two models, however, attempt to

e.g. also allow for the experimental observation that only cells nearer the edge of

the tumour proliferate. Mayneord [28] thus assumes surface growth only, while

the model of Evans et al. [29] alternatively assumes proliferation in a rim of

fixed thickness. One drawback of all these growth models, except the Gompertz

and logistic models, is that they predict unbounded growth as time increases.

In contrast, the Gompertz and logistic models exhibit growth retardation before

reaching a stable, constant tumour volume. Despite these manifest di↵erences

in dynamics all the listed models can adequately describe the animal-derived

data, as the data cannot be obtained over long enough timescales for any growth

retardation to be clearly observed. However, how this impacts on clinical stud-

ies is less clear where the observation timescales are longer although there are

still natural limits to data collection.
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Figure 1: Schematic of the modelling concept. A growing tumour is modelled

as a proliferating shell encapsulating a necrotic (non-proliferative core) with the

boundaries between regions determined dynamically by considering nutrient dif-

fusion. The assumed geometry and model variables and parameters are labelled

in the cross-section with RN and RT being the necrotic and total tumour radii

respectively. (Histological image a day 24 CDX xenograft with Ki-67 stain.

Di↵usion-limited mechanistic model for tumour growth and

treatment e↵ect

An alternative approach to modelling tumour growth, that has been popular

in the modelling literature, has been to model directly the spatial di↵usion

of nutrients within tumours directly. It is assumed that nutrient availability

determines the status of the cell, with cells experiencing su�ciently low nutrient

levels undergoing necrosis. This results in a map of the tumour with di↵erent

sized cellular compartments for e.g. proliferative and non-proliferative necrotic

compartments determined responsively from the environmental conditions [27,

30], see Fig. 1. This basic framework has been extensively built upon in the

mathematical literature to model a range of di↵erent e↵ects and scenarios, see

reviews [20, 31]. These increasingly complex models are typically expressed

in terms of partial di↵erential equations which are either solved numerically

themselves or coupled into finer scaled simulations.
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We adopt this mechanistic di↵usion-based framework but make simplifying

assumptions which are realistic in the pre-clinical context and reduce the par-

tial di↵erential equations to a growth law of the form Equation (1), for the full

details see the Supplementary Information. The method is based on assuming

a spherical tumour with the depth of penetration of nutrient within the tu-

mour determined from the di↵usion equation. From this solution we obtain the

growth fraction (GF ) of the tumour, i.e. the volume fraction of tumour that

is proliferating (GF = 1 represents fully proliferating). A key parameter is the

volume V ⇤ at which the tumour first experiences necrosis. This enables the

tumour volume to be determined from a conservation of mass argument as the

regions in which cells are lost or gained are now mechanistically determined.

The resulting model is similar to Equation (1), but with the growth fraction

accounted for i.e.

dV

dt
= KV (V )V � LDrug(w,GF )V, (2)

KV = (kp � kd)GF � kn(1�GF ), (3)

V ⇤ = V (1 + 2(1�GF )
1
3 )

3
2 (1� (1�GF )

1
3 )3, V > V ⇤, (4)

and GF = 1 when V < V ⇤. The initial condition is V (0) = V0. In this model,

kp is the constant rate at which cells in the proliferating region replicate, kd

is the constant rate at which cells die and get removed from the proliferating

region and kn is the constant rate of breakdown and removal of tissue within

the necrotic region. Key is that while the volume of the tumour V < V ⇤, the

entire volume of tumour proliferates and the model predicts exponential growth

before switching to di↵usion limited growth as the volume increases with the

growth fraction then determined from Equation (4).

The formulation Equations (2) to (4), which we term the di↵usion-limited

model, facilitates simple numerical solution and can be incorporated easily into

pre-clinical data fitting protocols being of the same mathematical form as cur-

rently implemented. However, it is now possible to directly predict the prolifer-

ating compartment and growth fraction of the tumour. We will demonstrate the
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functionality of the description Equations (2) to (4) both for control data sets

and for drug trial data. To account for the drug action we take unless other-

wise stated that LDrug(w,GF ) = Kkill GF w. This is superficially similar to the

standard cell loss term, however cell loss now only occurs in the proliferating

compartment determined by GF , see the Supplementary Information for full

details. Already, we see that a mechanistic approach allows the model to incor-

porate a key feature of most cell cycle specific pharmaceutical agents that they

will target only proliferating cells. The pharmacokinetic (PK) description is in

general compound specific. Here we consider the compound CPT-11 (Irinote-

can) which has been shown to be adequately described by an exponential PK

model [18], thus w = w0 exp (�↵t), with w0 the administered dose and ↵ the

rate of natural decay. With the half life of Irinotecan being 12 hours, this gives

↵ = 1.39 day�1, which we take throughout.

Numerical implementation

The system Equations (2) to (4) takes the form of a growth law and two con-

straints and can be numerically solved as an algebraic di↵erential equation

(ADE). However, given current fitting protocols based on nonlinear mixed ef-

fects fitting (NLME) it is easier to work with a system of di↵erential equations.

This may be obtained from Equations (2) to (4) by di↵erentiating the con-

straint Equation (4). The routines are implemented within MATLAB2019a

(MathWorks, Natick, MA). Due to the significant inter-subject heterogene-

ity we use a nonlinear mixed e↵ects fitting approach (NLME) to fit both the

population and individual subject parameters using the stochastic approxima-

tion expectation-maximization algorithm (SAEM) as implemented in MATLAB.

Within the SAEM algorithm the probit transform is implemented to ensure all

parameters remain positive. See Supplementary Information for full details.
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Data sets used for model validation

Control data are from AstraZeneca mouse-derived cell line xenografts (CDXs)

for two di↵erent cell-lines SW620 (29 mice), epithelial colorectal adenocarci-

noma, and Calu6 (178 mice), epithelial lung adenocarcinoma. With regards

treatment data we consider SW620 CDXs (95 mice) which were treated with

weekly doses of 50mg/kg of CPT-11 (Irinotecan) either three times on days

1,8,15 which we label protocol 1, (68 mice), or four times during the experiment

on days 1,8,15,22 (protocol 2, 18 mice) or 4,11,18,25 (protocol 3, 9 mice).

Additionally, we use the Novartis patient-derived xenograft (PDX) dataset,

which is the largest publicly available database of PDX control data [32]. The

Novartis data contains 226 mice with six di↵erent tumour types, namely breast

carcinoma (BRCA) 39 mice, non-small cell lung carcinoma (NSCLC) 28 mice,

gastric cancer (GC) 44 mice, colorectal cancer (CRC) 45 mice, cutaneous melanoma

(CM) 33 mice, and pancreatic ductal carcinoma (PDAC) with 37 mice.

All animal studies in the United Kingdom were conducted in accordance with

the UK Home O�ce legislation, the Animal Scientific Procedures Act 1986, and

with AstraZeneca Global Bioethics Policy.

Results

Demonstration of the functionality of the model in fitting

pre-clinical data

To demonstrate the ability of the di↵usion-limited growth model to fit to longi-

tudinal pre-clinical CDX growth data we consider the AstraZeneca CDX data,

see Methods. In Fig. 2A–D we show the individual fits of the di↵usion-limited

model to the experimental data both combined and separated into the individ-

ual protocols. The di↵usion-limited model is observed to fit well by eye across

the range of growth curves and treatment protocols. Similarly qualitatively

good fits are observed for the other CDX and PDX control data sets (Fig. S.1).

To further demonstrate visually the quality of fit we perform a visual predic-
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tive check (VPC) analysis [33]. This confirms that the di↵usion-limited model

captures the full range of dynamics of the CDX data (Fig. 2E and F). Similar

results are also obtained from visual predictive checks for the other control PDX

and CDX data sets (Fig. S.2).

Although the visual checks indicate a good quality of fit we need to also quan-

tify how well the model performs. Looking at the NLME results for the fit of the

di↵usion-limited model for the CDX data in Table 2 we see a small residual mean

square error (rsme) indicating a good quality of fit. We further compare the fit

to results obtained from one of the most widely used models, the exponential-

linear model [2], which is often used as a reference model [18, 34]. The NLME

parameter estimation for the treated animals for both the exponential-linear

and di↵usion-limited models is given in Table 2. We also show in Fig. 2G five

representative fits for this data with the simulated curves generated by their

individual parameter estimates. We clearly see the similarity in the model be-

haviour. This similarity in the quality of fit to the data between the two models

is further confirmed by the closeness of the Akaike information criterion num-

ber (-217 and -221, for the di↵usion-limited and exponential-linear respectively)

and root mean square error (0.146 and 0.142, respectively) (Table 2). A simi-

lar result is achieved when considering the control data sets. These results are

summarised in the supplementary information Tables S.1 to S.8. Given the typ-

ically limited time course of pre-clinical data it has been shown across numerous

studies no model may be optimal across all data sets [4, 6, 10], however, the

results indicate that the di↵usion-limited model provides a similar standard of

fit as current models for typical data.

Di↵usion-limited model predicts growth fraction dynamics

with tumours

As discussed and shown in the Supplementary Information, the governing equa-

tions are obtained by solving and reducing a coupled system including a spatial

model for nutrient di↵usion. As such, the rate equation thus derived automati-
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Figure 2: A, Fit of the di↵usion-limited model to all CDX treatment data colour

coded by treatment protocol (95 subjects, SW620 cell line, see Methods). B–D

Fits separated by treatment protocol for clarity. E and F, Visual predictive

checks (VPC) of both the treated and control CDX data. The VPC is based on

1000 simulations, the shaded regions represent the 95% confidence intervals (CI)

of the 25th, 50th and 95th percentiles of the simulated data. The experimen-

tal data median, 25th and 95th percentiles are marked (obtained using rolling

average). G, Fit of both the di↵usion-limited and exponential-linear models to

five representative data sets from protocol 1.
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Model Parameter Definition Value SD rmse AIC

DL kp � kd Net growth rate(day�1) 0.12 0.02 0.146 -217

kn Necrotic loss rate(day�1) 0.05 0.03

Kkill Drug potency(ng�1ml day�1) 5.7 ⇥ 10�3 2.4 ⇥ 10�4

R⇤(= (3V ⇤/4⇡)1/3) Critical Radius(cm) 0.41 0.07

V0 Initial Volume(cm3) 0.25 0.11

EL �0 Exponential growth rate(day�1) 0.08 0.25 0.142 -221

�1 Linear growth rate(day�1) 0.31 0.06

k̂(= k1/30) Transient death rate (day�1) 24 6.2

Kkill Drug potency (ng�1ml day�1) 1.2 ⇥ 10�3 4 ⇥ 10�4

V0 Initial Volume(cm3) 0.29 0.13

Table 2: NLME results of 10 runs for the full AstraZeneca CDX data set of 95

mice, see Methods, for the di↵usion-limited (DL) and exponential-linear (EL)

models.

cally tracks dynamically the growth fraction of the tumour, GF , through Equa-

tion (4). Thus in addition to being able to fit the model to longitudinal mea-

surements of tumour size we can predict how the corresponding growth fraction

changes including in response to treatment. We show, for example, in Fig. 3A

that those tumours showing greatest response to treatment (at dosing strengths

75 and 100 mg/kg) are predicted to also experienced the largest increase in

growth fraction with consequent implications for treatment success.

The growth fraction of tumours during drug trials is normally unavailable

due to the di�culties of accessing this information in vivo. However, at the

termination of xenograft experiments it is possible to access growth fraction data

through histology although this is not routinely done. We consider independent

data sets for the necrotic area for untreated SW620 and Calu6 cell lines obtained

from histology of selected bisected tumours (Ki-67 staining). This histological

staining labels the proliferating cells in a cross-section of the tumour and from

this the necrotic area, Narea, may be determined. The total growth fraction GF

and necrotic area are related by Narea = (1�GF )
2
3 for a spherical tumour. We

simulate tumour dynamics for a control tumour using the population parameters

obtained from the mixed e↵ects fitting of CDX data Tables S.1 and S.2. We see

that these simulations predict a necrotic area at the end of the experiment for

both the SW620 cell line and the Calu6 cell lines that fits the experimental data
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(lying within the range of the data in Figs. 3B and C). Note in this case, we use

the necrotic area data as an independent dataset. We could have instead used

this data to further calibrate the model parameters. This highlights one of the

benefits of a mechanistic model formulation, that we can utilise other sources

of information to better calibrate the model by way of multimodal fitting.

Incorporation of spatial gradients in drug concentrations

Finally, we demonstrate the flexibility of the mechanistic modelling framework

by demonstrating how not only spatial gradients of nutrients but also drug dis-

tribution can be captured and easily incorporated in the model. This extended

model, while more complex, is equally straightforward to numerically imple-

ment requiring a single additional integration. For the mathematical details see

the Supplementary Information. The central concept is that, just as for nutri-

ent distribution, the spatial distribution of the drug can be determined from a

di↵usion equation. Under certain assumptions, primarily the standard and jus-

tifiable assumption that di↵usion is a fast process compared with cell growth,

this allows the spatial solution for drug distribution to be simply coupled into

the ODE system.

As a specific example, we consider the case that the action of the drug is

considered to be that cell loss occurs in proliferating cells only with the drug

kill linearly dependent on drug concentration as before. However, now the drug

distribution is not constant throughout the tumour. In this case, the cell loss

term is

LDrug(w,GF ) = 3

Z 1

(1�GF )
1
3

s2KKillw(t, RT s)ds (5)

where RT is the tumour radius, with for a spherical tumour RT = (3V/4⇡)1/3.

When the drug concentration is constant throughout the tumour we recover

LDrug = KKill GF w from the integral. For a drug di↵using into the tumour,

however, drug distribution is not constant and in this case the model predicts
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Figure 3: A, Simulated tumour response along with the predicted growth frac-

tion for dosing strengths 25,50,75 and 100mg/kg dosed on days 1,8,15. B, and

C, Simulated tumour dynamics for the CDX xenografts (B, SW620 and C,

Calu6 cell lines, simulated curves using population parameters from Tables S.1

and S.2. The end-point box plots are derived from histological examination of

necrotic area for 8 SW620 xenografts and 10 Calu6 xenografts.
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the drug concentration distribution (see Supplementary Information) as

w(t, r) =
wext(t)(I0(Fr) +MK0(Fr))

I0(FRT ) +MK0(FRT )
, (6)

where wext(t) is the time varying applied drug concentration, I0 and K0 are

the modified Bessel functions of zero order. The constant M is a known pa-

rameter defined in terms of the other model parameters (see Supplementary

Information). Although more complex than the previous model with w spa-

tially constant, this solution is easily implemented into most numerical solvers

as it is an explicit solution in terms of the standard built-in functions (I0 and

K0) and requires a single numerical integration step.

The new drug model introduces the key additional parameter F =
q

lh+Kkill
hDw

,

where l is the natural decay rate of the drug, h the e�ciency of the drug and

Dw the drug di↵usivity. The parameter F e↵ectively quantifies the depth of

penetration of the drug into the tissue with F = 0 corresponding to full drug

distribution throughout the tumour and F large corresponding to a surface

kill e↵ect. F is, however, not anticipated as a free fit parameter given that

the drug penetration is usually known. Heatmaps showing drug concentration

within the tumour clearly demonstrate a strong e↵ect of F on the amount of

drug penetrating into the tumour (Fig. 4A). As F increases the amount of drug

that can penetrate fully into the tumour drops significantly, indeed by the time

F = 5 the concentration drops to 27% percent of its concentration at the outside

edge (Fig. 4B). Exploring the e↵ect on the tumour dynamics of modelling the

spatial distribution of the drug, we plot a representative solution of the spatially

dependent drug model (Fig. 4C). We see that as the drug penetration is reduced

(F increased), the tumour displays a more linear-like growth. With greater drug

penetration (F small), a greater e↵ect is observed with faster dynamic rebounds.

Overall, it is clear tumour response varies depending on the drug distribution

when the drug potency and dose strength remains fixed.
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A

B C

Figure 4: A, Heat map of the simulated internal drug distribution within the

tumour immediately following dosing on day 15. The grey dashed circle shows

the predicted necrotic region. The tumour edge is indicated by the black solid

line. B, Percentage of drug concentration reaching inner necrotic radius (cor-

responding to grey circle in A) as a function of drug localization parameter F .

C, Tumour volume and growth fraction dynamics for dosing strength fixed at

50mg/kg dosed on days 1,8,15. F = 0 describe full drug distribution, with F

increasing corresponding to reducing drug penetration. At F = 10 the drug

e↵ect is largely restricted to the surface of the tumour.
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Discussion and Conclusions

We have presented here a mathematical model for tumour growth and treatment

that is based on a mechanistic description of nutrient limited growth. Despite

being derived from spatial partial di↵erential equations we show that these

equations can be reduced to a growth law which is not significantly more complex

than those currently used for pre-clinical drug trials. This simplification is based

on assuming a spherical geometry and exploiting the di↵erence in timescales of

growth and di↵usion to decouple the two partial di↵erential equation systems.

The development of a mechanistic approach has several advantages over

more phenomenological growth laws. Perhaps most significantly, in its current

form the model allows for the dynamic prediction of the growing fraction of the

tumour accounting for cell loss in the centre of the tumour from e.g. hypoxia.

As most cytotoxic agents target only actively proliferating cells, tracking the

growth fraction has potentially significant implications for treatment dynamics.

This is only enhanced by the increasingly clear role hypoxia has in inducing

downstream biological processes which directly promote tumour resistance to

treatment [19, 35, 36, 37, 38]. Although longitudinal growth fraction data is

not usually available for xenograft experiments there is increasing interest in

using non-invasive methods, such as MRI, to track levels of hypoxia throughout

the course of experiments [39, 40]. The increasing incorporation of MRI and

other new types of data collection into pre-clinical modelling will only further

increase the need for mechanistic models capable of simulating multi-modal data

sets easily.

By considering a range of di↵erent data sets including PDX and CDX data

we have shown that the di↵usion-limited model fits the data comparably to cur-

rent industry standard models. The model fitting was performed using a stan-

dard nonlinear mixed e↵ects workflow demonstrating that the growth model

derived can be solved comparably to models currently employed. For indepen-

dent datasets containing growth fraction data at termination we demonstrate

that we predict a growth fraction commensurate with that observed. This while
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not presenting significant increased complexity in its numerical solution. In

addition, the di↵usion-limited growth model parameters are all based on ob-

servable phenomena: net proliferation rate, maximum volume before necrosis

begins, initial volume and cell loss through necrosis. This is in contrast to stan-

dard phenomenological models which perform well when being fitted to data

as shown in many works [4, 6, 9] but its parameters are often di�cult to in-

terpret. The introduction of spatial modelling into a growth law framework

has also enabled us to additionally describe how the distribution of drug varies

across the tumour. The indicative results obtained demonstrate the potential

importance of accounting for this into pre-clinical studies. Indeed, the increas-

ing importance of monoclonal antibody treatments (mAbs), with their reduced

di↵usivity, and antibody-drug conjugates (ADCs) [41] will only increase the

importance of spatial modelling in pre-clinical trials.

The flexibility of mechanistic approaches to tumour modelling is thus seen

to enable the incorporation of multi-modal data types as they are collected. We

also demonstrate how spatial variations in both nutrient and drug distribution

can be included within a growth law framework. Such new modelling infor-

mation can be expected to increase the accuracy with which drug treatment

dynamics can be modelled and inform better decision making in pre-clinical

modelling. Mechanistic models based on cellular behaviour should also aid in

bridging the translation gap from pre-clinical to clinical trials given the trans-

parency of the model and capability for parameter adjustment across model

systems.
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