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Abstract1

Microorganisms can be metabolically engineered to produce a wide range of commercially impor-2

tant chemicals. Advancements in computational strategies for strain design and synthetic biological3

techniques to construct the designed strains have facilitated the generation of large libraries of potential4

candidates for chemical production. Consequently, there is a need for a high-throughput, laboratory5

scale techniques to characterize and screen these candidates to select strains for further investigation6

in large scale fermentation processes. Several small-scale fermentation techniques, in conjunction with7

laboratory automation have enhanced the throughput of enzyme and strain phenotyping experiments.8

However, such high throughput experimentation typically entails large operational costs and generate9

massive amounts of laboratory plastic waste. In this work, we develop an eco-friendly automation10

workflow that effectively calibrates and decontaminates fixed-tip liquid handling systems to reduce tip11

waste. We also investigate inexpensive methods to establish anaerobic conditions in microplates for12

high-throughput anaerobic phenotyping. To validate our phenotyping platform, we perform two case13

studies - an anaerobic enzyme screen, and a microbial phenotypic screen. We used our automation14

platform to investigate conditions under which several strains of E. coli exhibit the same phenotypes15

in 0.5 L bioreactors and in our scaled-down fermentation platform. Further, we propose the use of16

dimensionality reduction through t-distributed stochastic neighbours embedding in conjunction with17

our phenotyping platform to serve as an effective scale-down model for bioreactor phenotypes. By18

integrating an in-house data-analysis pipeline, we were able to accelerate the ’test’ phase of the design-19

build-test-learn cycle of metabolic engineering.20

Introduction21

Microbial production of chemicals has gained prominence in the past few decades due to rising pop-22

ulations and increased concerns over the sustainability of conventional means of chemical production.23
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Advances in metabolic engineering and synthetic biology have enabled the generation of mutant strains24

that are adept at producing a wide range of natural and non-natural chemicals32. However, a myriad of25

scale-up issues can arise at increasingly larger scales, that could render many microbial production plat-26

forms economically infeasible8,24. Hence, several iterations of the design-build-test-learn (DBTL) cycle27

(Figure 1a) may be required at smaller scales before moving on to production in larger scale bioreactors.28
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Figure 1: DBTL cycle in metabolic engineering and layout of phenotyping platform a.
Typical decisions and tasks involved in each step of the DBTL cycle for strain engineering. Test cycle
remains a bottleneck due to the time and costs incurred in phenotyping a large number of strains/enzymes.
b. Deck layout of liquid handling platform used in this study. Relatively few equipment can be assembled
and repurposed to establish an effective high-throughput phenotyping platform.

The development of genome-scale metabolic models and computational tools that use these models to29

predict genetic interventions for strain design has assisted the ’design’ phase of the DBTL cycle4,11,43,52.30

Similarly, advances in DNA synthesis, computational tools to streamline DNA assembly, and the establish-31

ment of DNA foundries around the world have also allowed for the rapid construction of mutant strain and32

enzyme libraries that incorporate these intervention strategies, accelerating the ’build’ phase5,16,18,27,37.33

The ’test’ phase i.e. characterization/phenotyping of the strain and enzyme libraries generated in the34

’design’ and ’build’ phases of the DBTL cycle remains a key bottleneck. The prohibitive cost of analyzing35

the phenotypes of all microbial strains in the generated mutant libraries using laboratory scale bioreac-36

tors necessitates the development of standardized high-throughput, small-scale protocols to characterize37

them. Recently, several machine learning techniques have been adapted for metabolic engineering ap-38

plications, with several tools being developed that promise to assist the ’learn’ phase31,41. These tools39

also necessitate the generation of large and reliable experimental phenotypic datasets that are only eco-40

nomically feasible at extremely small scales, further bolstering the need for protocols for high-throughput41

phenotyping platforms6.42

In the recent past, there have been several attempts to develop small scale fermentation platforms43

using miniature bioreactors and specialized microplates to cultivate and characterize strains, increasing44
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experimental throughput2,25,29. However, the operational costs of using such systems is quite high due to45

the requirement of specialized microplates and intricate pH control mechanisms. Further, the automation46

of strain cultivation and other routine workflows to enhance throughput using such systems may be very47

expensive to implement. The earliest attempts at high-throughput fermentation were through the use48

of standard 96-well microtiter plates for parallel cultivation of microbes.10. The low cost and enhanced49

throughput of these systems made them very valuable to perform preliminary screens on a large number50

of strains. However, these systems suffer from several disadvantages including increased rates of sample51

evaporation and reduced oxygen transfer. Therefore, microbial phenotypes observed in these scales may52

not be replicable at the scale of bench-top reactors under aerobic conditions. Yet, these systems may53

still be suitable to phenotype microbes under anaerobic conditions where oxygen transfer is not crucial.54

E. coli can be engineered to produce an array of commercially important compounds such as lactic acid55

under anaerobic conditions9,35. Moreover, the production phase of many industrial fermentation processes56

involve high density cultures where oxygen transfer is limited. Microtiter plates are particularly suited57

for anaerobic fermentations due to the inherent difficulty in achieving high oxygen transfer rates and have58

the potential to be able to replicate the phenotypes of microbes observed in bench-top bioreactors.59

The advent of liquid handling systems has assisted in the use of such small-scale fermentation plat-60

forms, enhancing throughput by reducing human effort and time required to set up phenotyping experi-61

ments7,17,44,47. Use of such automation systems also enhances the reproducibility of experiments through62

the use of standardized protocols. While automated liquid handling platforms can rapidly accelerate63

the throughput of experiments, maintaining sterile conditions during long high throughput workflows is64

challenging. Contamination arising from the environment can be effectively curbed through the use of65

HEPA filters20. However, cross-contamination resulting from tip carryover could still be a problem, since66

any residual contaminant in the components of the platform could potentially confound results from a67

large set of experiments. Liquid handling systems with disposable tips have been successfully adapted to68

cultivate cells and perform other routine microbiological workflows with minimal contamination20,26,46.69

These systems simply discard used and contaminated tips after each pipetting step, thereby eliminating70

contamination. This would inevitably result in massive amounts of plastic waste when such systems are71

used for high-throughput workflows. The rapidly increasing adoption of automated workflows in research72

laboratories would only exacerbate this problem due to their increased throughput19. Moreover, the73

need for a massive number of sterilized tips would increase the operational costs required to implement74

such workflows28,46. The use of fixed-tip liquid handlers with effective decontamination protocols could75

address concerns about sustainability and operational costs.76

In this work, we describe several efforts towards enhancing the utility of fixed-tip liquid handling sys-77

tems for automated high-throughput phenotyping using a platform consisting of a fixed-tip liquid handler,78

microplate centrifuge, plate-reader, vacuum filtration module, plate handling robot, and a shaker incu-79

bator (Figure 1b). To this end, we develop decontamination protocols to eliminate microbial carry-over80

and cross-contamination in fixed-tip liquid handlers, describe an automated calibration workflow to cal-81

ibrate liquid handling pipettes, and establish relatively easy methods to ensure anaerobicity of media82

for anaerobic phenotyping. Then, we validate our platform by performing an anaerobic enzyme screen83

and investigate conditions that allow reasonable replication of bioreactor microbial phenotypes in 96-well84

microplates.85
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86

87

Results & Discussion88

A decontamination protocol for fixed-tip liquid handlers89

Fixed-tip liquid handling systems require decontamination after every pipetting step to curb biological90

cross-contamination. A disinfection step where tips are washed and incubated with ethanol has been91

proposed in the past to address contamination issues44. However, this protocol required the incubation92

of pipette tips in ethanol for five minutes between each pipetting step, reducing the throughput of93

this system. More recently, one study used a layer of ethanol, aspirated immediately before aspirating94

biological samples to maintain sterility.23. While this protocol is faster, it may result in reduced cell95

viability due to direct contact between the disinfectant and cells.
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Figure 2: Preliminary decontamination protocol a. Steps to decontaminate and investigate ef-
fectiveness of the decontamination protocol. ’n’ represents the number of washes with the disinfectant
and ’t’ represents the duration for which the disinfectant is held within the tips for each wash. b. Ini-
tial decontamination test using different concentrations of sodium hypochlorite(bleach) with ’n’=4 and
’t’=0 and the default air-gap of the system (10 µL). Each bar represents effectiveness calculated from 24
replicates.

96

To address these issues, we examined the effectiveness of a simple decontamination protocol that uses97

a solution of sodium hypochlorite (bleach) to disinfect pipette tips (Figure 2a). In order to simulate98

typical contamination events during cell culture workflows, we programmed the pipette to aspirate 20099

µL of viable E. coli cells in their exponential phase of growth, hold for 30 seconds with the pipette tips100

dipped inside the culture, and dispense the cells back into the solution. Then, the tips aspirate 400101

µL of bleach, hold for a specified interval - ’t’ seconds with the tips dipped inside, and dispense the102

disinfectant. We repeat this bleach wash for a specified number of times - ’n’ and when complete, wash103

the tips with system liquid - sterilized ultrapure water, to remove any traces of the disinfectant. Finally,104

to examine the effectiveness of our decontamination procedure, we aspirate 200 µL of sterile LB media105

from a microplate, hold for 30 seconds and dispense back into the same wells. Any persisting E. coli cells106
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in the tips would lead to contamination of the media and show cell growth after incubation of the plate.107

We used a wash with water as a negative decontamination control to ensure that contamination events108

are captured effectively using this procedure.109

First, we examined the efficacy of this procedure using varying concentrations of bleach, with ’n’=4110

washes and zero hold time (’t’ = 0 s). The sterilization effectiveness was calculated as the percentage of111

contaminated wells resulting from the corresponding decontamination procedure. As seen in Figure 2b,112

the negative control - water resulted in zero effectiveness. Increasing the concentration of bleach seemed113

to positively impact the effectiveness of our protocol. However, even at the highest concentration of114

bleach, we only observed a 50% effectiveness of decontamination. We considered that varying the number115

of washes - ’n’ and the hold time for the disinfectant - ’t’ could improve our system due to longer116

contact with bleach. Increasing the number of washes and the hold time indeed had a positive impact117

on the sterilization effectiveness, with the best values being achieved at the highest levels of ’n’ and118

’t’ (Figure 2d - top-left panel). However, this was still unacceptable as the target was to completely119

eliminate contamination events. Moreover, operating at the highest levels of ’n’ and ’t’ increased the120

run-time of the decontamination protocol to about 1 minute and would therefore reduce the throughput121

of our system.122

Upon further investigation of the pipetting protocol, we observed that like most fixed-tip liquid123

handling systems, our pipettes aspirate a very small amount of air (10 µL) before each pipetting step to124

separate the system liquid from the liquid being pipetted - the process liquid(Figure 3a). By increasing125

this air-gap, we were able to remarkably improve our decontamination protocol, achieving complete126

sterilization using an air-gap of 250 µL (Figure 3b and Supplementary Figure S1). Interestingly, at127

the highest level of air-gap, we observed zero contamination events even at our lowest levels of ’n’ and128

’t’. It appears that when the volume of the air-gap is less than the maximum operating volume of the129

process liquid, there is a possibility for the sterile system liquid to come in direct contact with parts130

of the pipette that have not yet been disinfected. The system liquid is therefore compromised and131

could harbour viable cells, which increases the possibility of contamination during further pipetting steps132

(Figure 3c). An air-gap greater than the highest process volume ensures complete separation of the133

system and process liquids, leading to proper decontamination(Figure 3c). We found that our protocol134

remained effective over a range of bleach concentrations and with 70% ethanol even at the lowest levels135

of ’n’ and ’t’ ((Figure 3d). For all further experiments, we chose to use two washes with 6% bleach as the136

disinfectant. The duration of the entire decontamination procedure is about 10 seconds and is therefore137

at par with the throughput achieved using disposable plastic tips, with no plastic waste generated and138

minimal amounts of disinfectant used.139

Automated photometric calibration of liquid handling pipettes140

Following the implementation of our decontamination protocol, we observed that the accuracy of the141

pipettes had diminished quite significantly, with aberrant volumes being pipetted consistently. In order142

to examine the pipetting accuracy of the liquid handler before and after changing the air-gap, we used143

a photometric assay to compare the volumes pipetted by the automated platform to manually pipetted144

standards, similar to an assay described previously45. In our assay, we used an aqueous solution of145

potassium dichromate (K2Cr2O7) within concentration ranges that showed a linear relationship with146
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Figure 3: Optimizing decontamination protocol a. Schematic showing tip layout during a typical
pipetting step. b. Effect of varying the air-gap on the effectiveness of sterilization using 12% sodium
hypochlorite for different values of ’n’ - number of disinfectant washes and ’t’ - disinfectant hold time.
Each bar represents effectiveness calculated from 8 replicates. Negative controls using water as the
disinfectant resulted in zero sterilization effectiveness for all values of ’n’ and ’t’. c. Proposed mechanism
for enhanced sterility upon increasing the volume of the air-gap to be larger than pipetted volumes.
d. Sterilization effectiveness for different disinfectants with an air-gap of 250 µL. Each bar represents
effectiveness calculated from 72 replicates.

absorbance at 350 nm, as a photometric standard. We pipetted different levels of the standard within147

volume ranges required during routine operation (3 µL - 200 µL) into a microplate. Then, an on-deck148

plate reader was used to measure the absorbance and determine the concentration of samples in each149

well, thereby providing an accurate estimate of the pipetted volumes. We observed that after increasing150

the air-gap, the pipetting error increased significantly for all pipette tips (Figure 4a), with values of up151

to 40% for some tips, implying that pipetting accuracy would depend on the volume of air-gap used for152

each pipetting step. The deviations in pipetted volumes were well above the maximum acceptable limits153
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specified by the International Organization for Standardization22 and would certainly hinder normal154

operation of the platform.155
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Figure 4: Automated Photometric Pipette Calibration a. Change in pipetting error due to an
increase in the air gap. b. Workflow for automated photometric calibration. The liquid handler is
made to pipette a photometric standard at different levels onto a microplate. The absorbance data of
the microplate are recorded and fed to a pythonic script which automatically calculates pipetting errors
and calibration parameters for the pipette. c. Pre and post-calibration pipetting error with the air-
gap adjusted to ensure sterility. The maximum allowable error was obtained from ISO8655 standards.
Accuracy ranges for manual pipettes were obtained from various manufacturers of multi-channel pipettes.

Anticipating that there would be a need to vary the pipetting air-gap in the future to accomodate156

different operating volumes, we wished to develop a procedure that would enable quick and reliable157

determination of calibration parameters for the pipette tips. While automated gravimetric methods have158

been explored in the past for calibrating liquid handling pipettes, these would require the presence of159

a specialized, on-deck high-accuracy balance with minimal air-flow to prevent evaporation1, which may160

not be available on most liquid handling decks. We expected that the volume estimates calculated using161

the photometric standard could be used calibrate the pipettes. Upon analysis, we found a strong linear162

correlation between the pipetted volumes and the expected volumes within three different volume ranges163

- high (50 µL - 200 µL), mid (10 µL - 50 µL), and low (3 µL - 10 µL). Hence, we programmed the liquid164

handler to pipette eight different levels of the photometric standard within the three volume ranges in165

triplicate (Figure 4b). To enable automated processing of the data, we developed a python based script166

that accepts the absorbance data of the photometric standard along with the layout of the microplate167

used for calibration to determine the pipetting error for each volume pipetted. The script is then made168

to generate calibration parameters by performing a linear fit between the programmed/ expected volume169
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and the actual pipetted volume. Using these parameters it is possible to determine the volume that170

needs to be programmed into the liquid handler for a required volume to be pipetted. Using these new171

calibration parameters, we analyzed the pipetting accuracy for each of the custom volume ranges with172

the increased air-gap. We found that our photometric calibration procedure reduced the deviation for173

all pipette tips significantly and brought them well below the maximum acceptable limits and within174

the ranges guaranteed by pipette manufacturers for multi-channel pipettes (Figure 4c). By using only175

on-deck components for calibration and a python script to automatically calculate calibration parameters,176

we were able to reduce the time required for calibrating each volume range to about 10 minutes. This177

protocol and the python script can be easily adapted to calibrate a wide variety of liquid handlers and178

conserve accuracy when changing the pipetting parameters.179

Maintaining sustained anaerobic environments in microplates180

Having established protocols to eliminate contamination and calibrate pipettes, we aimed to investigate181

our platform’s ability to accelerate the ’test’ phase of the DBTL cycle in metabolic engineering. As182

mentioned before, we were particularly interested in developing protocols for anaerobic phenotyping of183

enzymes and microbial strains in microplates due to the oxygen limiting nature of most high density184

fermentation processes. Short enzyme assays under anaerobic conditions can be achieved with relative185

ease through the addition of the oxygen scavenging enzymes such as glucose oxidase or Oxyrase along with186

suitable substrates12 in each well of the microplate. However, accurate phenotyping of microbial strains187

under anaerobic conditions using such enzymatic de-oxygenation would be challenging due to the need188

for glucose or other substrates for the enzymes to function. This would hinder accurate quantification189

of these metabolites after fermentation, resulting in incomplete carbon balances. Therefore, we decided190

to to use an anaerobic chamber to remove oxygen from the microplate by subjecting it through cycles of191

vacuum and flushing with nitrogen gas.192

While anaerobic chambers are excellent for expelling oxygen from microplates, they require additional193

sophisticated equipment to control humidity. Without humidity control, the evaporation rates within194

anaerobic chambers are quite high, resulting in loss of media volume. Upon culturing different E. coli195

strains within the anaerobic chamber, we found that the rates of evaporation were so high that accurate196

measurements of cell density could not be made even though the duration of our fermentations were quite197

short (Supplementary Figure S3). As a possible solution, we examined the sealing efficacy of various198

adhesive films to sustain the anoxic conditions generated within the anaerobic chamber for fermentations199

outside. To measure of oxygen penetration into the microplate, we calculated biomass yields (ratio of200

final to initial biomass, measured as absorbance at 600 nm) of wild type E. coli (MG1655) grown to201

saturation in a rich defined medium within each well. Since E. coli grows faster under aerobic conditions,202

we should expect a consequent higher yield in wells that have increased oxygen penetration and low yields203

where anoxic conditions were sustained. As expected, in our control with a gas permeable film, we found204

a relatively high median biomass yield - characteristic of high oxygen penetration (Figure 5a). The use205

of a microplate lid with anaerobic adhesive tape did not offer much improvement in the seal, with only a206

modest decrease in the median biomass yield. The aluminium and polyester seals (typically used in PCRs)207

offered a significant improvement in the seal, with the polyster film being able to reduce the variability208

amongst wells as well. However, upon analysis of the biomass yield distribution within the microplates,209
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Figure 5: Establishing anaerobicity in 96-well microplates a. Effectiveness of various seals in
preventing oxygen penetration into microplates containing E. coli MG1655 in RDM, sealed within an
anaerobic chamber. The biomass within each microplate are represented as violin plots. To the right of
each violin plot, the distribution of biomass yields are represented as heatmaps showing deviation of the
biomass yields from the median biomass yield within that plate. b. Time-course showing cell density
and instantaneous growth rate of E. coli MG1655 in RDM with and without a layer of oil in the presence
of oxygen and with a layer of mineral oil inside an anaerobic chamber.

we found clear patterns of enhanced growth in certain areas, likely resulting from improper sealing and210

heterogeneous oxygen concentrations(Figure 5a and Supplementary Figure S2). Hence, the use of a film211

would inevitably lead to heterogenity in cellular phenotypes in addition to increased throughput times212

due to the need for manual sealing of each microplate.213

Alternatively, a layer of mineral oil (50 µL), pipetted on top of the microbial culture in each well offered214

a homogeneous gas exchange profile, evidenced by the tight distribution of biomass yield (Figure 5a and215

Supplementary Figure S2). The mineral oil was also successful at completely eliminating loss of media216

during the fermentation within the anaerobic chamber, restoring the ability to monitor growth accurately217

(Supplementary Figure S3). In order to ensure that the growth profiles of E. coli are only affected by the218

resulting oxygen transfer and not directly by the mineral oil, we examined the growth of four different219

strains of E. coli with and without the layer of mineral oil, inside and outside the anaerobic chamber220

(Figure 5b and Supplementary Figure S3). We were able to clearly distinguish three different regimes221

in all the growth profiles - (I) an initial regime where dissolved oxygen in the media is used, indicated222

by the relatively higher growth rates of cells grown outside the anaerobic chamber, (II) an intermediate223

regime where the cells without the layer of mineral oil outside the anaerobic chamber are able to grow at224

accelerated rates due to increased oxygen transfer, and (III) a final growth phase where all the cells grow225

at similar rates due to no oxygen transfer due either to high cell densities or to the layer of mineral oil.226

It can be inferred from growth regimes (I) and (III) that the mineral oil does not directly impair or assist227

the growth of the strains but only controls the rate of gas exchange. Hence, it is suitable to maintain228

anoxic growth within an anaerobic chamber for extended durations with minimal loss of media due to229

evaporation.230
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Case Study 1: Applying the liquid handling platform for an anaerobic enzymatic231

screen232

2.2 3 4 5 6 7 8

0

0.5

1

1.5

pH
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2 Manual Assay

Automated Assay

Datapoints

Datapoints

Substrate Concentration (mM)

Yq
jM

 A
ct

iv
ity

 (U
/m

g)

Yq
jM

 A
ct

iv
ity

 (U
/m

g)

a b

Michaelis-Menten
Fit

Michaelis-Menten
Fit

O O

YqjM

NADPH NADP+

VMax : 0.99±0.03 U
KM       : 0.33 ± 0.04 mM

VMax : 0.99±0.04 U
KM       : 0.35 ± 0.06 mM

Figure 6: Anaerobic enzymatic screen a. Enzymatic activity of YqjM on 2-cyclohexen-1-one de-
termined manually and by the liquid handler. Enzyme activity is represented in units of µmol/min. b.
Effect of pH of the medium on the activity of YqjM on 2-cyclohexen-1-one.

As a preliminary validation of our high throughput phenotyping platform, we sought to perform an233

anaerobic activity screen of the enoate reductase enzyme YqjM from Bacillus subtilis (Bs-YqjM). This234

enzyme belongs to the family of old yellow enzymes (EC 1.6.99.1) which are broadly known as enoate235

reductases. They use non-covalently bound flavin mononucleotide (FMN) to catalyze the reduction of236

double bonds found in α,β-unsaturated aldehydes and ketones using NADPH or NADH as electron237

donors13. The ability of Bs-YqjM and other enoate reductases to reduce -ene groups is important for the238

catalysis of chemical commodities such as muconic acid to adipic acid (a pre-cursor to nylon). However,239

the activity of Bs-YqjM enzymatic activity is known to be supressed in the presence of oxygen under240

aerobic conditions due to a prominent background reaction where electrons from NADPH are transferred241

to dissolved molecular oxygen in the buffer. In contrast, its activity is markedly increased under anaerobic242

conditions where electrons are instead donated to its target -ene substrates40. For the 2-cyclohexen-1-one243

substrate, Bs-YqjM was reported to have a KM value of 0.3-0.6 mM under anaerobic conditions created244

using a glucose-glucose oxidase system, which consumes the dissolved molecular oxygen in the buffering245

solution to simulate completely anaerobic conditions.246

To demonstrate the use of an automated LiHa platform for performing anaerobic assays, we purified247

BsYqjM and assayed its activity for 2-cyclohexen-1-one by monitoring changes in the absorbance at 340248

nm due to NADPH oxidation. After calibration of the tips for smaller volumes in the 3-10 µL range, we249

observed a KM value of 0.35 ± 0.06 mM using the automated platform (Figure 6a). In comparison, we250

performed the same assay manually and observed a KM value of 0.33 ± 0.4 mM. The similarity of these251

KM values to each other and to published literature values suggested that the LiHa platform could be252
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used to automate the preparation of screens, such as those to determine the optimal pH for maximum253

activity. Towards this end, we determined Bs-YqjM’s activity across pH 2.2 – 8 using the liquid handler254

(Figure 6b). We found that BsYqjM operates optimally at pH 5-6, which aligns with previously reported255

results that Bs-YqjM prefers slightly acidic conditions40.256

Case Study 2: Scaling down anaerobic microbial phenotypes from pH controlled257

bioreactors to microplates258
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Figure 7: Comparison of E. coli ’s anaerobic phenotype in bioreactors and microplates a.
Schematic showing typical fermentation pathways in E. coli. Typical products of mixed acid fermentation
on glucose are shown in the pathway along with key fermentation reactions shown in italics. The metabo-
lites measured in this study are shown in blue. b. Microbial phenotypes reduced to two components
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Having assessed the efficacy of our system in determining enzyme kinetic parameters under anaerobic259

conditions, we wished to investigate the applicability of a fixed-tip liquid handling system for a high-260

throughput characterization of microbial phenotypes under anaerobic conditions. While it is possible to261

rapidly cultivate microbial strains using our platform, the possible deviation of phenotypes at increasingly262

larger scales is a cause for concern, resulting in ambiguity of the strains to be chosen for further screening.263

Previous studies examining scaling considerations have primarily investigated the difficulty of improving264

oxygen transfer rates within the wells of microplates25,54. However, since we are interested only in265

anaerobic environments, oxygen transfer rates may not play a key role in determining phenotypes. Rather,266

the concentration of substrate, pH, and other media conditions could be the determining factors. Hence, as267

a second test case to validate our platform, we investigated the ability to scale-down microbial phenotypes268

observed in pH controlled 500 mL bioreactors to 96 well microplates under anaerobic conditions. To269

this end, we examined the growth and metabolite profiles of four strains of E. coli - MG1655 and270

its lactate overproducing deletion mutant, MG1655 ∆(adhE, pta) at three different stages of adaptive271

laboratory evolution (denoted ∆(adhE, pta)-D1, D28 and D59 to represent the duration of adaptive272

laboratory evolution in days)14. These strains were chosen because of the expected difference in their273

anaerobic phenotypes. During anaerobic growth, E. coli undergoes mixed acid fermentation due to the274

non-availability of oxygen as a terminal electron acceptor to produce ATP and regenerate the redox275

cofactors NAD and NADP. Instead, E. coli produces a mixture of formate, acetate, ethanol, lactate,276

and small quantities of other organic acids as terminal fermentation products (Figure 7a), with acetate,277

ethanol, and formate being preferred products due to higher energy yields. Due to deletions around278

key fermentation reactions involved in acetate and ethanol production (pta and adhE respectively), the279

deletion mutants used in our study are expected to show high lactate yields. Further, because these strains280

are products of adaptive laboratory evolution, those strains at a later stage of evolution are expected to281

show increased growth rates.282

To compare the metabolic state of the different strains grown in a bioreactor and microplates, we283

calculated the growth rates and yields of five different products of fermentation on glucose towards the end284

of the exponential phase of growth(Supplementary Figure S7). The deletion mutants grown in microplates285

showed good agreement with the bioreactor phenotype as is, possibly due to the elimination of the most286

prominent fermentation modes - acetate and ethanol production. However, the wild type strain showed287

pronounced phenotypic differences in the microplate, producing significantly lower levels of formate. It288

appeared that more carbon flux was directed towards lactate production than formate production in289

the microplates, resulting in less energy efficient fermentation and therefore, reduced growth rates. In290

order to eliminate the possibility of residual dissolved oxygen in the media causing aberrant phenotypes291

and lower formate yields, we examined the effect of adding the reducing agents - 1 mM cysteine, 1 mM292

dithiothreitol (DTT), and 8 mM sodium sulfide to scavenge any residual oxygen and maintain reducing293

conditions within the media (Figure 7b and Supplementary Figure S7). Higher concentrations of sodium294

sulfide were chosen because previous experiments at the 1mM level showed no visible differences in295

the phenotype. To better visualize and compare the overall phenotypic differences resulting from the296

different strains and media conditions, we performed a dimensionality reduction of the seven analytes297

(growth rate and yields of acetate, formate, lactate, pyruvate, succinate and biomass on glucose) through298

principal component analysis (PCA) (Supplementary Figure S6). Upon analysis of the scores of each299
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experimental trial on the first two principal components, the bioreactor trial for the wild-type strain300

resulted in phenotypes which could not be replicated in microplates since the bioreactor trials seemed301

to be isolated from the clusters formed by the microplate trials. Further, PCA indicated that residual302

oxygen may not an issue since the addition of reducing agents did little to alter the phenotypes. Examining303

the individual analytes (Figure S7), we found that the addition of cysteine at 1 mM did not alter the304

metabolite and growth profiles significantly for any of the strains. The addition of DTT showed a decrease305

in the yield of nearly all products including biomass for all strains, indicating that it could be inhibitory to306

the cells. Interestingly, the addition of sodium sulfide seemed to push the metabolic state slightly towards307

that observed in the bioreactor, with increased growth rates and acetate yields but lower lactate yields.308

However, since we did not observe similar phenotypes using the other reducing agents, we hypothesized309

that this difference could be due to the basic nature of sodium sulfide, which would result in longer310

fermentation times and therefore a different metabolic profile. We confirmed this by growing E. coli at a311

higher starting pH, resulting in longer fermentation duration, and similar trends in the metabolite yields312

and growth rates as observed in the addition of sodium sulfide.313

Hence, we concluded that our platform resulted in complete anaerobicity of the media and it was314

not dissolved oxygen that was affecting the metabolic state of the cells. It appeared that the pH and315

consequently, the fermentation duration played a more important role in determining the phenotype of316

the wild-type strain, as expected. The implementation of pH control in microplates requires specialized317

microplates with base delivery systems or mini-bioreactors, which would greatly increase operational318

costs15,50. We proposed that varying initial glucose concentrations would offer a crude yet inexpensive319

means to alter the duration of fermentation, thereby limiting pH change, and consequently, impact the320

phenotypes of all strains. Therefore, we grew the E. coli strains with different starting concentrations of321

glucose to examine this effect and determine glucose concentrations that allowed the phenotype of the322

wild-type strain observed in the bioreactor trial to be replicated in microplates (Figure 7c and Supple-323

mentary Figure S9). At high initial glucose concentrations, all strains showed increased lactate yields and324

reduced biomass, formate and acetate yields on glucose. Specifically, for the wild type strain, this indi-325

cates that a significant portion of the carbon flux is directed towards lactate production with reduced flux326

through pfl, pta, and adh, resulting in less efficient fermentation and reduced growth rates. However, at327

lower substrate concentrations, the overall fermentation duration and consequently, the pH change during328

the fermentation decrease. This results in less overflow of carbon flux towards lactate and increased yields329

of biomass, acetate and formate, with almost no lactate and maximal formate, acetate and growth rates330

at the lowest concentrations analyzed. Performing the same dimensionality reduction through PCA as331

described previously, we found that varying initial glucose concentrations significantly alters the overall332

phenotypes exhibited by the cells, as shown by the spread of the scores of each experimental trial in333

the principal component space (Supplementary Figure S8). Interestingly, several microplate trials with334

overall phenotypes very close to their bioreactor counterparts for each strain were observed. Particularly,335

the wild-type strain seemed to be closest to the microplate trial starting with 6 g/L of glucose. The other336

strains seemed less impacted by high initial glucose concentrations and showed good agreement with the337

bioreactor phenotype even at high glucose concentrations.338

While these results indicate that phenotypes observed in bioreactors can be reasonably replicated in339

microplates by varying initial substrate concentrations, the exact value for each strain may not be the340
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same, as seen here. Further, the optimal glucose concentration for each strain cannot be determined a341

priori, which may lead to ambiguity in determining better performing strains to be chosen for scale up.342

Hence, we wished to investigate dimensionality reduction techniques, using which strains showing simi-343

larities at the bioreactor scale could be clustered together while segregating those that showed significant344

differences. Our dataset from the experiments varying initial glucose concentrations was ideal for this345

purpose since we observed an array of different phenotypes at the microplate scale for the same strain.346

Further, the mutant strains - ∆(adh, pta)-D1 and ∆(adh, pta)-D28 showed very similar phenotypes at347

the bioreactor scale. As seen previously (Supplementary Figure S8), principal component analysis was348

only partially successful in this effort - while most trials with the D1 and D28 strain exp appeared in the349

same cluster, trials with the D59 strain also occurred very close to them. Moreover, the wild-type strains350

could not form a single cluster, possibly due to the large variability in the metabolite yields. Hence, a351

two-dimensional PCA alone cannot be used to determine strains that would show similar performance352

at larger scales, possibly due to omitting the variance expained by the other principal components. A353

relatively new dimensionality reduction algorithm - t-distributed stochastic neighbors embedding, which354

recreates the probability distribution of entities in a higher dimensional space to two dimensions, has been355

found to be successful at clustering similar entities when a large number of dimensions are involved49.356

Particularly, it has found use in analyzing single cell transcriptomic data. Eventhough our dataset is357

comprised of only 6 dimensions i.e. the yields of five metabolites and the growth rates, we proposed that358

tSNE could potentially be successful at clustering similar performing strains in a reduced dimensional359

space, particularly due to its use of non-linear dimensionality reduction. Remarkably, a tSNE model360

fit to our glucose varying data showed near perfect clustering of strains showing similar performance at361

the bioreactor scale (Figure 7b). Specifically, all microplate trials from the wild-type strains and the362

∆(adh, pta)-D59 strain were resolved into their individual clusters in spite of the visible differences in363

the phenotypes of individual trials. The two mutants ∆(adh, pta)-D1 and ∆(adh, pta)-D28 that showed364

similar performance at the bioreactor scale were resolved into a single cluster. These results indicate365

that tSNE could be used effectively to shortlist strains for analysis at larger scales, since it is able to366

effectively segregate strains showing markedly different phenotypes. Therefore, while initial glucose con-367

centrations affect the phenotypes of microbial strains at the microplate scale significantly, the use of368

dimensionality reduction techniques such as tSNE could be used to resolve these differences and identify369

overall phenotypic differences between strains.370

Conclusions371

We have seen that our automated platform is able to rapidly and effectively set up microplate experi-372

ments to phenotype enzymes and microbial strains. The automation of such routine metabolic engineering373

workflows greatly expands the number of different strains/enzymes and media conditions that can be ex-374

amined, resulting in large experimental datasets that can assist strain design. With machine learning375

applications in metabolic engineering becoming more prevalent, there is an urgent need to develop tools376

and protocols for accurate and reproducible phenotyping strains and enzymes at smaller scales. Auto-377

mated systems are uniquely suited for this task since they eliminate human error and require standardized378

protocols to function. Furthermore, recent efforts toward developing robot programming languages that379
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allow for the development of cross-platform protocols enable relatively easy implementation of complex380

laboratory workflows33,34,55.381

While automation can enhance experimental throughput, conducting experiments at accelerated rates382

also increases operational costs and the amount of laboratory waste generated due to the number of pipette383

tips and other labware used. Laboratory plastic waste has become a major concern in the current era384

of high-throughput experimentation3,30,48. It is quite ironic that the same research labs that work on385

developing microbes for sustainable production of chemicals end up generating several million tonnes of386

plastic waste in the process. Through the development of effective and fast decontamination protocols,387

we eliminated the need for plastic pipette tips while maintaining experimental throughput. Disregarding388

repeated and failed experiments, we estimate that nearly 4000 pipette tips would be required to complete389

the two case studies examined in this work if they were done manually or using a disposable tip liquid390

handling platform. Further, the automated pipette calibration protocol developed here enables the quick391

setup of a broad range of liquid handling systems for different pipetting programs and would also assist392

in routine maintenance without the need for additional expensive equipment.393

One concern with phenotyping microbial strains in microplates is the inability to replicate the mix-394

ing regimes, oxygen transfer and other physical characteristics of fermentation observed in larger pH395

controlled bioreactors. These considerations are better addressed in miniature bioreactors that have396

been designed to be small scale replicas of bench-top bioreactors. Nevertheless, by leveraging the en-397

hanced throughput of microplate experiments, we were able to analyze the effect of a large number of398

media conditions on the cellular phenotypes in a relatively short period of time. Consequently, we were399

able to identify glucose concentrations that restricted fermentation durations and thereby, reasonably400

reproduce bioreactor phenotypes in microtiter plates under anaerobic conditions. Furthermore, modern401

dimensionality reduction and data visulalization techniques such as tSNE could be used in conjunction402

with microplate experiments as scale-down models to assist in choosing strains for scale-up. We believe403

that since microplates offer higher experimental throughput at very low costs, our platform will serve404

as an effective and representative screen before moving on to larger scales. Furthermore, integration405

of our data analysis pipeline - IMPACT with the strain testing pipeline has enabled the visualization406

and analysis of large datasets that emerge as a consequence of our platform, and will accelerate future407

strain design endeavours. While successful at anaerobic phenotyping, we believe that the experimental408

protocols described in this study are broadly applicable to various liquid handling platforms for a wide409

range of applications and this work will assist the development of sustainable automated high throughput410

experimental platforms.411

Materials & Methods412

Enzymes, Strains and Experimental Medium413

Wild type Escherichia coli strain K-12 MG1655 was used to detect contamination during the development414

of our decontamination protocol. The wild type Escherichia coli strain K-12 MG1655 and its mutants415

harboring deletions of the genes adhE and pta at three different stages of adaptive laboratory evolution14
416

(denoted ∆(adhE, pta)-D1, ∆(adhE, pta)-D28, and ∆(adhE, pta)-D59 to reflect duration of adaptive417

laboratory evolution in days) were used to examine the efficacy of our phenotyping platform. The enoate418
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reductase enzyme yqjM (UniProt: P54550) from Bacillus subtilis strain 168 was used for the anaerobic419

screen.420

Lysogeny Broth (LB) media was used to prepare bacterial starter cultures in all cases. Strain phe-421

notyping experiments were conducted in a rich defined medium (RDM) composed of a carbon source422

(D-glucose at various concentrations), salts (3.5 g/L KH2PO4, 5 g/L K2HPO4, 3.5 g/L (NH4)2HPO4,423

1 mM MgSO4, 0.1mM CaCl2), 1 mM 3-morpholinopropane-1-sulfonic acid (MOPS), amino acid supple-424

ments (0.8 mM alanine, 5.2 mM arginine, 0.4 mM aspargine, 0.4 mM aspartate, 0.1 mM cysteine, 0.6 mM425

glutamate, 0.6 mM glutamine, 0.8 mM glycine, 0.2 mM histidine, 0.4 mM isoleucine, 0.8 mM leucine, 0.4426

mM lysine, 0.2 mM methionine, 0.4 mM phenylalanine, 0.4 mM proline, 10 mM serine, 0.4 mM threo-427

nine, 0.1 mM tryptophan, 0.2 mM tyrosine, and 0.6 mM valine), nucleotide supplements (0.1 mM each428

of adenine, cytosine, guanine, and uracil), and vitamin supplements (0.01 mM each of thiamine, calcium429

pantothenate, p-aminobenzoic acid, p-hydroxybenzoic acid, and 2,3-dihydroxybenzoic acid) - adapted430

from the defined media composition described previously36. All media components were sterilized either431

by autoclaving or filter sterilization. Stocks of cysteine, dithiothreitol (DTT), and sodium sulfide for use432

as reducing agents to maintain anaerobicity in the media were prepared at a concentration of 0.2 M. The433

stocks were sparged gaseous nitrogen through the solutions for 15 minutes to eliminate dissolved oxygen,434

followed by sterilization.435

12% sodium hypochlorite (Bioshop SYP001.1) and 95% ethanol were diluted to required concentra-436

tions to prepare disinfectants for the decontamination protocol. Aqueous solutions of potassium dichro-437

mate (0.4 mM, 1mM, and 2mM) were prepared to detect pipetting accuracy and calibrate the liquid438

handling system. The polyurethane gas permeable film (Diversified Biotech BEM-1), polyester PCR439

film (Bio-Rad MSB1001), and aluminized foil (Bio-Rad MSF1001) were used to seal 96 well microplates440

(Corning 353072) containing E. coli cultures to investigate anaerobicity. Mineral oil (BioShop MIN444)441

was used to prevent evaporation in anaerobic chambers where required.442

High throughput phenotyping platform443

The phenotyping platform described in this study was comprised of a Tecan Freedom Evo 100 base fitted444

with a Tecan fixed-tip liquid LiHa (liquid handling) arm, a Tecan RoMa (robotic manipulator) arm,445

a QInstruments Bioshake 3000-T microplate heater-shaker, an Agilent microplate centrifuge, a Tecan446

Infinite M200 plate reader, and a Tecan Te-VacS vacuum filtration module. Communication with the447

various modules and all automation scripts were set up on Tecan’s EvoWare 2.7 platform.448

Enzyme Purification for Anaerobic Screen449

The gene encoding yqjM was cloned under the T7 promoter in-frame with an N-terminal 6x HisTag of the450

p15TvL expression vector (AddGene: 26093) using the In-Fusion®HD EcoDry kit, and then transformed451

into LOBSTR BL21(DE3) Escherichia coli. Starter cultures for yqjM were grown from glycerol stock in452

lysogeny broth (LB) media with ampicillin (100 µg/mL) for 16 hrs at 37 °C with shaking. Then, expression453

cultures were started in 1L Terrific Broth media with ampicillin (100 µg/mL) and a 1% v/v inoculant of454

the starter culture, followed by growth for 4 hrs at 37 °C and induction with 0.4 mM IPTG. The expression455

culture was then transferred to 16 °C and grown for 16 hrs with shaking, pelleted with centrifugation, and456
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transferred to vials for one freeze-thaw cycle at -20 °C. Frozen cell pellets were thawed and resuspended457

in binding buffer (10 mM HEPES, 500 mM NaCl, 5 mM imidazole, pH 7.2) to a final volume of 50 mL,458

followed by addition of 0.25 g lysozyme. Cell pellet mixtures were sonicated for 25 min and clarified459

by centrifugation. The supernatant was applied to a cobalt-charged NTA resin pre-equilibrated with460

binding buffer in a gravity-column set-up. Bound proteins were cleansed with 120 mL of wash buffer461

(10 mM HEPES, 500 mM NaCl, 25 mM imidazole, pH 7.2) and collected with 4 mL elution buffer (10462

mM HEPES, 500 mM NaCl, 250 mM imidazole, pH 7.2). Protein concentrations were determined by463

Bradford assay to be 4.3 mg/mL (120 µM), and protein purity was determined by SDS-PAGE analysis464

and densitometry to be 99%. A molar equivalent of flavin mononucelotide (FMN) was loaded into YqjM465

prior to transfer into a 10 kDa MWCO dialysis bag for dialysis in 1 L dialysis buffer (40 mM HEPES,466

pH 7.5) at 4 °C with gentle stirring for 24 hrs. YqjM was then flash frozen drop-wise in liquid nitrogen467

before storage at -80°C.468

NADPH Assay for Determination of Anaerobic YqjM Activity469

The glucose oxidase type VII-S from Aspergillus niger was used to remove oxygen from enzyme screen470

reactions using D-glucose as the substrate. Working concentrations of 2-cyclohexen-1-one (substrate),471

β-NADPH tetrasodium salt (indicator), glucose oxidase type VII-S from Aspergillus niger, and glucose472

were prepared in 40 mM HEPES at a pH of 7.5 to assay yqjM activity. Assays were set up in a 96 well473

microplate using the liquid handler and consisted of 0.15 mM NADPH, 10 u/mL glucose oxidase, 20 mM474

glucose, and 15 nM YqjM. The substrate, 2-cyclohexen-1-one was then added at required concentrations475

along with the activity buffer to make each assay up to a volume of 200 µL. The pH gradients were476

prepared using McIlvaine buffers with appropriate ratios of 0.2 M Na2HPO4 and 0.1 M citric acid which477

replaced the activity buffer. Salt gradients were prepared by adding appropriate concentrations of NaCl478

and KCl to the activity buffer.479

YqjM activity was determined by measuring NADPH concentrations in triplicate using kinetic reads480

performed using a Molecular Devices SpectraMax M2 spectrophotometer at 35°C at an absorbance wave-481

length of 340 nm with shaking before and in between kinetic reads. The volumetric activities (µmol482

min-1 mg-1) were calculated using NADPH’s extinction coefficient of 6.3 mM−1 cm−1 and a height of483

0.56 cm. The obtained activity data was fit to a Michaelis-Menten curve to obtain KM and VMax through484

non-linear regression using optimization tools in the python package - scipy53.485

Determination of microbial phenotypes in microplates486

E. coli strains streaked on LB-agar plates were used to prepare starter cultures for the scaled down487

phenotyping experiments. The strains were inoculated in LB media supplemented with 1% glucose in488

96 well microplates and grown overnight at 37oC with constant shaking at 250 rpm. Glucose was added489

to the starter cultures to eliminate the need for an intermediate adaptation culture in the experimental490

media - RDM (Supplementary Figure S4). The microplates containing the overnight precultures were491

then transferred to the liquid handling platform for processing. All following steps were automated on492

the liquid handling platform.493

First, to remove traces of fermentation products and spent media from the strains, the pre-cultures494

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442526doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442526
http://creativecommons.org/licenses/by-nc/4.0/


were harvested by centrifugation at 3000 g for 10 minutes and washed with RDM lacking carbon source495

2 times before being resuspended in the experimental RDM medium consisting of the carbon source496

and any required supplements. Then, the cell density of each well was determined by measuring the497

absorbance at a wavelength at 600 nm on a Tecan Infinite M200 plate reader and cells were then diluted498

to a cell density of 0.05 with appropriate media to a final volume of 150 µL to normalize all wells to the499

same starting OD.500

After this, the plate was removed from the liquid handling platform, taken through cycles of vacuum501

and flushing with nitrogen gas, and transferred into an anaerobic chamber filled with N2 gas. The502

cultures were then covered with a 50µL layer of laboratory grade mineral oil (BioShop MIN444) to503

prevent evaporation. To ensure anaerobic conditions throughout the fermentation, the cells were grown504

within the anaerobic chamber at 37°C and constant shaking in a Molecular Devices SpectraMax M2505

platereader which also recorded the cell density periodically.506

After the cells finished growing (about 8h), the microplate was removed from the anaerobic chamber507

and transferred to the liquid handler for HPLC sample preparation. The liquid handling platform was508

programmed to pipette the samples onto a 0.2 µm filter plate (Millipore MSGVN2210) for filtration. Sam-509

ples were filtered at 400 psi for 60 s into a sample collection plate. Fermentation products were separated510

by passing the samples through an Aminex HPX-87H cation exchange column (BioRad 1250140) at a511

flow rate of 0.6 mL/min with 5mM H2SO4 as the mobile phase and 60°C column temperature. Metabolite512

concentrations were determined by monitoring the refractive index and UV absorbance (at 210 nm, 254513

nm) of the eluent. The chromatograms were integrated using Chromeleon v7.514

Determination of microbial phenotypes in pH controlled bioreactors515

E. coli strains streaked on LB-agar plates were used to prepare starter cultures by inoculation into 5 mL516

LB + 1% glucose. Cultures were then transferred to 50 mL sealed Falcon tubes for oxygen limitation. Af-517

ter overnight growth, cells were washed 3 times with RDM lacking carbon source before being transferred518

to 500 mL bioreactors (Applikon Mini) with 300mL of RDM with a glucose concentration of 2%. The519

media in the bioreactors was maintained anaerobic by sparging with nitrogen gas. pH was maintained520

at 7 within the bioreactor by continuous control using 10 M NaOH and the temperature was maintained521

at 37 °C. Samples for cell density and metabolite concentration measurements were withdrawn from the522

bioreactor periodically. Cell density was determined by measuring absorbance at 600 nm on a spectropho-523

tometer (Thermo Scientific GENESYS20). Metabolite concentrations were determined through HPLC524

as described in the previous section after filtering the samples through 0.2 µm nylon filters.525

Data Analysis526

Data analyses for all sections were conducted using Python on Jupyter notebooks. The jupyter notebooks527

used to generate figures and process data in this work are available on Github42. The python based data528

analysis library - pandas and plotting library - plotly were used extensively for all data analysis and529

visualization pipelines in this work21,38.530

Microbial phenotypic data and growth curves were analyzed using the IMPACT Framework51. For the531

microbial phenotyping experiments, since time-course metabolite concentrations could not be obtained532
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for the microplate trials, end-point metabolite concentrations were used to calculate yields. Hence,533

for a fair comparison with the microplate trials, yields for the bioreactor trials were calculated from534

metabolite concentrations obtained near the end of the exponential phase of growth. Growth rates535

for both bioreactor and microplate trials were determined from only the exponential phase of growth536

and were calculated as the specific biomass productivity (i.e. 1/[X]*d[X]/dt where [X] is the biomass537

concentration) and averaged over the required time-period. The sci-kit learn library was used perform538

principal component analysis (PCA) to reduce the dimensionality of scaled phenotype data (growth rates539

and yields of acetate, formate, lactate, pyruvate, and succinate on glucose) and enable easier phenotypic540

comparisons39. A number of components that explained at least 90% of the variance in the phenotypic541

data was chosen for PCA. Phenotypic data was scaled to unit variance and zero mean prior to PCA.542

Similarly, t-distributed stochastic neighbours embedding was also implemented from the sci-kit learn543

library. A perplexity that resulted in the most robust embedding was determined after iterating through544

several values. The learning rate (ε) that minimized the Kullback–Leibler divergence of the input data545

distribution and the resulting distribution was used. Regardless, other values of perplexity and learning546

rate resulted in similar results when an optimal solution was achieved.547
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(2009). Robo-Lector – a novel platform for automated high-throughput cultivations in microtiter plates617

with high information content. Microbial Cell Factories, 8(1):42.618

[21] Inc., P. T. (2015). Collaborative data science.619

[22] ISO 8655-2:2002 (2002). Piston-operated volumetric apparatus — Part 2: Piston pipettes. Standard,620

International Organization for Standardization, Geneva, CH.621

[23] Janzen, N. H., Striedner, G., Jarmer, J., Voigtmann, M., Abad, S., and Reinisch, D. (2019). Im-622

plementation of a Fully Automated Microbial Cultivation Platform for Strain and Process Screening.623

Biotechnology Journal, 14(10):1800625.624

[24] Jullesson, D., David, F., Pfleger, B., and Nielsen, J. (2015). Impact of synthetic biology and metabolic625

engineering on industrial production of fine chemicals. Biotechnology Advances, 33(7):1395–1402.626

[25] Kensy, F., Zang, E., Faulhammer, C., Tan, R. K., and Büchs, J. (2009). Validation of a high-627
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