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In brief

Studying ion channel diversity in neuronal models we show how robust biological systems

may evolve not despite but through their complexity.

Highlights

• 15 channel model of hippocampal granule cells (GCs) reduces to 5 ion channels without

loss of spiking behaviour.

• But knocking out ion channels can be compensated only in the full model.

• Random sampling leads to ∼ 6% solutions in full but only ∼ 1% in reduced model.

• Law of large numbers generalises our observations to other complex biological systems.
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Abstract 1

The electrical and computational properties of neurons in our brains are determined by a 2

rich repertoire of membrane-bound ion channels and elaborate dendritic trees. However, 3

the precise reason for this inherent complexity remains unknown. Here, we generated 4

large stochastic populations of biophysically realistic hippocampal granule cell models 5

comparing those with all 15 ion channels to their reduced but functional counterparts con- 6

taining only 5 ion channels. Strikingly, valid parameter combinations in the full models 7

were more frequent and more stable in the face of perturbations. Scaling up the numbers 8

of ion channels artificially in the reduced models recovered these advantages confirming 9

the key contribution of the actual number of ion channels. We conclude that the diversity 10

of ion channels allows a neuron to achieve a target excitability through random channel 11

expression with increased robustness and higher flexibility. 12

Significance statement 13

Over the course of billions of years, evolution has led to a wide variety of biological sys- 14

tems. The emergence of the more complex among these seems surprising in the light of 15

the high demands on searching viable solutions in a correspondingly high-dimensional 16

parameter space. In realistic neuron models with their inherently complex ion channel 17

composition, we find a surprisingly large number of viable solutions when selecting pa- 18

rameters randomly. This effect is strongly reduced in models with less ion channel types 19

but is recovered when inserting additional artificial ion channels. Because concepts from 20

probability theory provide a plausible explanation for such an improved arrangement of 21

valid model parameters, we propose that this generalises to evolutionary selection in other 22

complex biological systems. 23
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Introduction 24

Throughout evolution, biological cells have emerged with increasing diversity and complexity. 25

Optimising for multiple objectives while keeping an ever larger number of cell parameters 26

within a viable range seems a daunting task for evolutionary processes. And it remains 27

unclear how such a multi-objective optimisation can be achieved in the corresponding high 28

dimensional parameter space. Here we explore the counter-intuitive hypothesis that increasing 29

the number of mechanisms – i.e. increasing the biological complexity – potentially helps to 30

evolve more quickly, easily and efficiently towards satisfying a large number of objectives. 31

Neurons are a good example for complex cells typically exhibiting a great diversity in the 32

expression of ion channels as products of such evolutionary optimisation. The channel 33

parameters must be tuned to cooperatively generate multiple features of neuronal spiking 34

behaviour. A palette of such spiking features has been successfully used in computational 35

biophysical neuron models for multi-objective optimisation (MOO) using genetic algorithms 36

(Druckmann, 2007). Mammalian neurons contain a large variety of ion channels in their 37

membrane (Coetzee et al., 2006) producing a wide range of possible spiking mechanisms 38

with varying temporal dynamics and excitability (Connors and Gutnick, 1990). Interestingly, 39

a number of these ion channel variants exhibit overlapping functional properties (Coetzee 40

et al., 2006; Rudy, 1988; Herrera-Valdez et al., 2013; Marder and Goaillard, 2006; Olypher 41

and Calabrese, 2007; Hille, 2001). A large body of literature has explored the reason for 42

this high diversity (Marder, 2011; Prinz et al., 2004; Golowasch et al., 2002; O’Leary et al., 43

2013). However, it remains unclear what role exactly does the diversity of ion channels play 44

regarding evolution and its contribution to functional mechanisms that impact neuronal 45

computations. 46

Neuronal computation relies on the morphology as well as on the diversity and distribution 47

of ion channels in the membrane of the dendritic tree, the soma and the axon initial segment. 48

Even small changes in the distribution of ion channels can change the activity in neurons 49

drastically (Achard and De Schutter, 2006). Large differences in experimental measurements 50

have been observed from cell to cell, day to day and animal to animal in data from the 51

same classes of cells (Marder and Goaillard, 2006; Golowasch et al., 2002; Golowasch and 52

Marder, 1992; MacLean et al., 2003; Swensen, 2005; Schulz et al., 2006, 2007). The expression 53

levels of these ion channels can vary several-fold across neurons of a defined type (Marder 54
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and Goaillard, 2006; Prinz et al., 2004; Golowasch et al., 2002; Golowasch and Marder, 1992; 55

MacLean et al., 2003; Schulz et al., 2006). However, many detailed biophysical models of 56

single cells ignore this variability in electrophysiological data and search for a fixed set of 57

parameters that replicates an average behaviour of a particular cell type (Golowasch et al., 58

2002). 59

One reason for this ion channel diversity might be the fact that gene expression is a rather 60

stochastic process (Raj and van Oudenaarden, 2008). It is known that gene expression is 61

subject to random fluctuations leading to cell-to-cell variations in mRNA and protein levels 62

(Elowitz et al., 2002). How can neurons then still manage to achieve a functional target 63

activity? Using a spike-feature-based multi-objective approach, we generated large population 64

parameter sets of dentate granule cell (GC) models with different numbers of ion channel 65

types in order to investigate the potential advantages of ion channel diversity. We then 66

tested to which degree the different models could compensate for pathological channel loss. 67

Furthermore, we investigated differences in functional parameter sets, taking into account 68

stochastic fluctuations in channel-coding gene expression. Finally, we studied the stability of 69

the different models against ion channel alterations due to e.g. protein turnover. We found 70

that in all cases the complete GC model with all ion channels was more robust, stable and had 71

more valid parameter combinations than its reduced counterparts. 72

Results 73

We used a recently established multi-compartmental model comprising the 15 different voltage 74

or calcium-dependent ion channels that were described in mouse GCs (Beining et al., 2017). 75

The model was specifically designed to reproduce the results not of a single experiment but of a 76

large series of experiments and was based on raw electrophysiology traces. Its parameters were 77

fitted to reproduce the experimental data for a number of different reconstructed (see example 78

in Figure 1A, Top, from Schmidt-Hieber et al., 2007) and synthetic neuronal morphologies 79

making the model robust within the GC morphological space. Furthermore, the resulting 80

model readily generalised to rat GCs as well as to adult born mouse GCs after incorporating 81

the known changes in morphology and ion channel composition. The model can therefore 82

be considered to be robust and comprehensive. This makes it an experimentally validated 83

tool to study the impact of complex ion channel compositions on robustness of the spiking 84
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output. To this end, we employed a population-based (also called “ensemble” or “database”) 85

modelling approach, which allowed us to explore the multidimensional parameter space in 86

large populations of stochastically generated models (Prinz et al., 2003; Gunay et al., 2008; 87

Britton et al., 2013; Sekulic et al., 2014; Rathour and Narayanan, 2019). 88

The GC model cost function 89

First, we developed a cost function for an automated evaluation of the validity of diverse 90

models, which differed in their ion channel combinations and densities. Since no quantitative 91

data exists on the particular expression of the various ion channels in individual GCs, some 92

form of fitting procedure of channel densities was required in the construction of the GC 93

model. The model consists of 27 conductance parameters, which precludes a grid scan for 94

parameter fitting due to the long computing time in a 27 dimensional parameter space. The 95

model has therefore previously been largely tuned manually with expert knowledge from 96

GC biology. To assess the quality of any individual set of parameters more automatically, we 97

designed a fitness function that quantified the distance to experimental spiking data and was 98

inspired by approaches used previously (Druckmann, 2007; Beining et al., 2017, see Methods, 99

Figure S1). A number of different methods have been proposed to quantify the quality of a 100

set of parameters in relation to neuronal activity (Achard and De Schutter, 2006; Bahl et al., 101

2012; Keren et al., 2005; Vanier and Bower, 1999). While most studies focus on reproducing an 102

average electrophysiological activity pattern, we wanted to the distribution of valid parameter 103

combinations in the GC model taking into account the variability present in experimental 104

data. 105
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Figure 1. Simplified as well as realistic complex ion conductance-based models capture multiple
spiking features of real granule cells (GCs)
A, (Top) 3D-reconstructed mouse GC morphology used for our simulations (Schmidt-Hieber et al.,
2007). (Bottom) Spike features used to calculate the multi-objective fitness of the GC model. B,
Membrane potential during 200ms lasting current clamp of 90pA. The coloured curves show the
relative contribution of all implemented ion channels to the total inward and outward current at each
time step (during the second and third spike) as a percentage of the total current. The black filled
curves illustrate the total inward and outward currents on a logarithmic scale. This plot was inspired
by Alonso and Marder (2019). See next page.
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Figure 1. (continued) C, Contribution of currents to total inward and outward current in reduced
models and models that compensate for the knock out of the BK (Left) and Cav22 (Right) channel.
Similar visualisation and current injection procedure as in B.

We therefore used a multi-objective fitness function based on spike features, which allowed 106

us to search for optimal trade-offs between different firing properties (Druckmann, 2007). 107

We extracted 9 different spiking features from raw electrophysiology traces during a 200ms 108

current clamp injection with 50 and 90pA at the soma (Figure 1A, Bottom, see Methods). We 109

then compared the values for these features between the model and the experimental data. To 110

generate a population of GC model instances that reflected the full range of firing properties, 111

we calculated the deviation from the experimental mean in units of experimental standard 112

deviation (SD) (Druckmann, 2007). In order to become a valid parameter combination in the 113

GC model, the error value was required to be less than two SDs away from the experimental 114

average of each feature. 115

A manual search for parameter sets fulfilling this requirement was very time-consuming 116

and could never be exhaustive. There are various automated parameter search methods, 117

such as gradient descent methods, genetic algorithms, simulated annealing and stochastic 118

search methods, which make the search for parameters more efficient (Vanier and Bower, 1999; 119

Mitchell, 1998; Kirkpatrick et al., 1983; Press et al., 2007). Since we were starting from a valid 120

parameter combination, we decided to use a gradient descent algorithm (Press et al., 2007) in 121

combination with random parameter space exploration (see Methods). This method led to 122

good parameter combinations within a few iteration steps also when starting from random 123

parameter sets for which the model deviated from the experimental results. The gradient 124

descent method was even capable of finding parameter combinations when starting from 125

initial parameter sets for which the models produced no spikes at all (see details in Figure S2). 126

Reduction of channel diversity 127

Electrophysiological signatures of neurons of a same class are often unique allowing a loose 128

classification of cell types by their electrophysiology. However, the spiking mechanisms often 129

include multiple ion channels with overlapping functionality to achieve these specific spiking 130

behaviours (Coetzee et al., 2006; Olypher and Calabrese, 2007; Marder, 2011; Bean, 2007; 131

O’Leary et al., 2014; Drion et al., 2015). Thus, an important question is, how many channels are 132
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functionally necessary for a given cell type. We addressed this question in GCs, which have a 133

relatively simple electrophysiological repertoire, but, surprisingly, their membrane contains 134

a large palette of voltage- and calcium-dependent conductances (Beining et al., 2017). The 135

compact activity together with the multitude of ion channels in the corresponding GC model 136

(Figure 1C) suggests that a reduction of channels without losing accurate model performance 137

might be possible. Therefore, we explored this possibility by incremental simplification of 138

the GC model. First, we reduced the number of voltage-dependent conductances in the 139

highly detailed multi-compartmental model of GCs by 6 channels (removing Cav12, Cav13, 140

Cav32, Kv11, Kv14, SK, Figure 1C, Leftmost). Thereupon, we gradually reduced the number 141

of remaining channels to a minimum of 5 ion channels (leaving only the leak channels pas, as 142

well as Kir21, Na8st, BK and Cav22) finding parameter combinations that satisfied our cost 143

function using the search algorithm (Figure 1C, Center left). 144

To visualise the contribution of individual currents to neuronal model activity, we employed a 145

recently developed method of plotting the time course of the relative contribution of each ionic 146

current (Alonso and Marder, 2019). Overall, as expected, the electrophysiological activity of the 147

different valid models in Figure 1C was similar (for overview, see Figure S3). Despite the large 148

variations in the number of ion channels, the course of the total inward and outward current 149

flow displayed only slight changes between the three different baseline models (Figure 1B, C). 150

Since GCs had a simple electrophysiological repertoire, a small number of membrane time 151

constants was sufficient to generate adequate firing patterns. The presence of K+ and Ca2+
152

channels with overlapping physiological functionality ensured that many of the channels were 153

not crucial for the maintenance of functional activity. Only the composition of the inward and 154

outward currents differed. In the 5−channel model, the calcium-sensitive potassium channel 155

(BK) took over the role that 8 different K+ conductances had shared in the non-reduced model 156

(Figure 1C). BK thereby became the only remaining K+ channel overall. In interaction with the 157

Ca2+ conductances (Cav22), the BK channel was responsible for repolarising the membrane 158

potential following an action potential in the 5−channel model. 159

Recent experimental and theoretical studies demonstrated that neurons can compensate for 160

pathological changes such as channel loss, genetic overexpression, morphological changes or 161

increased input activity by up- and downregulation of the remaining ion channels (Guo et 162

al., 2005; Nerbonne et al., 2008; Aizenman et al., 2003; Turrigiano et al., 1999; O’Leary et al., 163

2010; Young et al., 2009; Stegen et al., 2012). This ability should be impaired in the reduced 164
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model where less redundancy exists. Indeed, we found that blocking the BK or N-type 165

Cav22 channels in the full model was readily rescued by contributions from other channels 166

(Figures 1C, Right). It is noticeable that the loss of the BK channel was compensated by a 167

strong upregulation of another calcium-sensitive channel (SK), as well as of voltage-dependent 168

potassium channels (Kv 7.2/3, Kv 1.1, Kv 2.1, Figure S5, Left). The fact that blocking the SK 169

channel under normal conditions (unreduced model) had only a minor effect on the behaviour 170

of the GC model suggests that the SK channel acts as a backup (but see also Mateos-Aparicio 171

et al., 2014). Neither loss of BK nor Cav22 could be compensated for in the reduced 5−channel 172

model since it had only one active gating mechanism per ion type. Even the 9−channel model 173

was not able to compensate for the pathological loss of Cav22 or BK. As expected, therefore, 174

the full GC model’s diversity contributed to the model’s robustness with respect to the loss of 175

specific ion channels through existing ion channel redundancies. 176

Random parameter tuning as a viable approach to selecting GC model 177

Even though small changes in the ion channel expression level can already lead to drastic 178

changes in neuronal activity, several experimental studies observed that intrinsic properties 179

of nerve cells can vary considerably across neurons of the same type (Golowasch et al., 2002; 180

Golowasch and Marder, 1992; MacLean et al., 2003; Swensen, 2005; Schulz et al., 2006, 2007). 181

Moreover, theoretical investigations demonstrated that indistinguishable network and single 182

neuron activity can be obtained from a large variety of model parameter settings (Prinz et al., 183

2004; Golowasch et al., 2002). This raises the question of whether the diversity of voltage- and 184

calcium-dependent conductances has an effect on the variability of valid parameter sets in the 185

GC model leading to realistic spiking activity. 186

In order to check this, we first generated 20, 000 random model instances for each of the three 187

baseline models by randomly sampling the individual conductance densities within a range 188

between 0× and 2× the value in the baseline model. As the ohmic relations between current 189

and voltage were consistent with experimental results in all cases (see Figure S3B), we did 190

not change the densities of the leak channel or the inward-rectifying Kir21 channel, which 191

primarily contribute to the passive properties of the neuron. The population of functional 192

parameter combinations enabled us to calculate the Pearson’s correlation coefficient r for all 193

pairs of conductance density parameters. We found weak mutual correlations indicating low 194
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dependencies between the channels thus increasing the robustness of the model (Figure S4). 195

The strongest correlation was observed between the expression levels of the Na+ channel in 196

the soma and in the AIS (r = 0.91). The sodium channel is essential for spike initiation and its 197

presence in different regions of the GC suggests that compensatory mechanisms could simply 198

be instantiated by maintaining a balance between the same currents in different regions, which 199

results in a significant anticorrelation. Interestingly, the reduced models showed stronger and 200

different correlations between the channels than the full model. 201

In our selection of random parameter combinations, we found suitable models covering 202

the entire sample range of the majority of parameters (Figure 2A). In all cases, the most 203

constrained parameter was the density of the 8−state Na+ channel. Since the Na+ channels 204

were implemented as a Markov chain model with one common maximum conductance 205

parameter shared by all of its states, it is not surprising that they were not as variable as the 206

other conductances. In addition, the reduction of channel diversity in the 5−channel model 207

limited the variability of the calcium-dependent potassium channel BK (Figure 2A, Right). 208

Surprisingly, the overall percentage of randomly selected parameter combinations that were 209

valid increased with the number of ion channels (Figures 2B, C, ∼ 0.7% with 5 channels, 210

∼ 3.3% with 9 channels, and ∼ 5.7% with 15 channels). 211

The distribution of voltage- and calcium-activated channels in cell membranes is under 212

continuous regulation (Raj and van Oudenaarden, 2008; Gal et al., 2010; Marder et al., 2014). 213

On the one hand, the cell is subject to homeostatic regulation maintaining its electrical activity 214

despite changes in its environment and input. On the other hand, the proteins are constantly 215

exchanged during the lifetime of a cell. In order to investigate the stability of the valid 216

parameter combinations in the different models in face of parameter perturbations due to e.g. 217

protein exchange during the lifetime of a cell, we performed random walks in the parameter 218

space. Starting from a valid parameter set that accurately reproduced the experimentally 219

derived behaviour, we iteratively changed each parameter by random steps between −5% 220

and +5% of the current parameter values (counting changes in all parameters as one step). 221

The random walk stopped as soon as the parameter combination became invalid, i.e. the 222

cost function for the resulting model increased beyond 2 standard deviations away from 223

experimental results. Interestingly, the average number of possible random parameter changes 224

before model failure increased with the number of ion channels in the models (Figure 2D). 225
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Figure 2. Valid parameter combinations in the fully complex model are well spread and more
stable as compared to reduced models.
A, (Top) Activity traces of 4 randomly picked valid parameter combinations in each of the GC models
of different complexity. (Bottom) Coloured dots illustrate conductance densities of the four valid
parameter combinations shown in top traces. The grey violin plots delimit the entire range covered by
the valid parameter combinations. Conductances are weighted by the surface area of the corresponding
membrane regions.
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Figure 2. (continued) B, Percentage of valid random parameter combinations in the total population
in the 2−fold range. C, Percentage of valid random parameter combinations in samples with different
ranges around the valid reference parameter combination. Each sample contained 5, 000 parameter
combinations. D, Random walk through the parameter space starting from valid combinations in
models of different complexity. Relative percentage distribution of the maximum number of random
steps the respective models could undergo without losing their valid GC spiking behaviour. Bin size
is 4 steps. Asterisks indicate mean number of steps the corresponding models could undergo while
maintaining realistic activity. Performed for 2, 000 repetitions per each model. B–D, Colours were
Green: full model, Orange: 9−channel model, Purple: 5−channel model. E, Reproduction of B–D
with a toy model representing the model result as the average value of 1 (blue), 5 (red) and 8 (green)
uniform random variables between 0 and 2. Bottom panels, Illustration of how the distribution of
solutions becomes narrower when the number of variables is increased. This effect is explained by the
law of large numbers while the Gaussian distributions results from the central limit theorem.

Toy model points to law of large numbers 226

As shown in the previous sections, we observed an increase in valid random parameter sets 227

when biophysical models of neurons became more complex. One possible explanation could 228

be the fact that the more complex models included different ion channels of the same type. 229

Since some of these ion channels show very similar gating dynamics (see for example Cav22, 230

Ca12 and Cav13, see Figure 1) their functional contributions may be partially redundant. A 231

theorem from probability theory, namely the law of large numbers can play a role under such 232

circumstances. The law of large numbers states that increasing the number of samples (in our 233

case ion channels of a similar type) described by a random variable will move the average 234

over the samples closer to the expected mean value. In other words, for example, throwing 235

dice between 1 and 6 more often will lead to a weighted average that is closer to the expected 236

value 3.5. Since in our case we sample conductances of similar ion channels, the average 237

conductance would therefore converge towards the starting parameter set that we know is 238

functional. 239

In order to illustrate this we designed a simple toy model using random variables for each 240

parameter. Here, we represented each open parameter of the model by one random variable 241

with a homogeneous probability of throwing any number between 0 and 2 corresponding 242

to the parameter ranges used in the neuronal model between 0× and 2× the default value 243

(Figure 2, Bottommost). To keep things really simple, we set the model outcome to be the 244

statistical mean of the values of all separate random variables. The law of large numbers 245

predicts a decreasing variance around the mean value with increasing number of random 246
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variables as illustrated in the sketch at the bottom of Figure 2E. The central limit theorem 247

in turn predicts a Gaussian distribution regardless of the probability distributions for each 248

random variable separately. In analogy to our neuronal modelling, we then constrained valid 249

parameter combinations by a cost function allowing a maximal distance of here 0.015 away 250

from the mean value, i.e. 1, averaged over all random variables. 251

The analogy here is limited since in contrast to the channels in the GC model all variables in 252

our toy model are functionally the same. Moreover, the GC compartmental model applies 253

complex nonlinear and dynamic transformations of the starting parameter space including 254

distinct jumps in the cost function for example when the model no longer produces action 255

potentials. However, despite its simplicity, our toy model was able to reproduce all results 256

from our GC model in Figure 2B–D qualitatively (Figure 2E). The law of large numbers 257

therefore provides a plausible explanation why a larger number of random instances in the 258

more complex neuron model would more readily linger around their target functionality. 259

Additional model robustness through artificial ion channel isoforms 260

We have shown that the electrophysiological behaviour of GCs can be maintained despite 261

a reduction of ion channel diversity from 15 channels to 5 channels. However, our results 262

also suggest that this loss of ion channels goes along with a decrease in stability, a loss of 263

compensatory opportunities and a significant decrease in the valid model percentage within a 264

randomised sample. From our toy model based on simple probability theory we postulate 265

that it might be the mere number of ion channels that contribute to the increased robustness 266

observed in the full model rather than the particular ion channel composition present there. In 267

order to validate this hypothesis, we chose to start from the reduced model and increase the 268

number of ion channels in an artificial way to check whether we could recover the robustness 269

present in the realistic full model. 270

In order to establish a quantitative relation between channel diversity and model stability 271

in such a way, we scaled up the 5−channel model’s diversity by adding more instances of 272

the calcium (Cav22) and potassium channels (BK) remaining in that model. These artificial 273

isoforms of the existing ion channels distinguished themselves from the original Cav22 and 274

BK by randomised time constants (within a two-fold range of the original parameters) to 275

allow for different dynamics through the new ion channel isoforms. 276
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Figure 3. Artificial ion channel diversity expansion recovers and enhances the proportion of valid
parameter combinations in the reduced 5-channel model
A, Populations of expanded dentate GC models with 0 − 35 added artificial ion channel isoforms.
Left panel, The plot shows the percentage of functional parameter combinations in a population
of randomly sampled channel densities. Black dots show the populations where all ion channels
(including the 8−state Markov chain modelled Na+ channel) were sampled in a 0− 2× range. Blue
dots show the populations where only potassium and calcium channels were sampled in a 0 − 2×
range. Right panel, Similar plot as in Figure 2C for the black models from the left panel. B, Similar
overall analysis as in A but for a CA1 pyramidal cell model (Jarsky et al., 2005).

To examine the proportion of valid parameter combinations with increasing number of ion 277

channels, we created a multitude of functional GC models with up to 35 additional ion channel 278

isoforms. For each given number of ion channel isoforms, we randomly sampled all conduc- 279

tance values in a two fold range. Thereupon we selected the three parameter combinations 280

with the best fitness value for each number of ion channel isoforms and improved their 281

performance by applying a gradient descent algorithm. We then followed the same procedure 282

as in Figure 2. Using this approach, the percentage of valid parameter combinations steadily 283

increased with the number of additional ion channel isoforms until reaching a plateau between 284

15 and 20 additional ion channel isoforms (Figure 3A). To further generalise our findings 285

in Figure 3A we have applied the same procedure to a different neuronal model type, one 286

simulating a CA1 pyramidal neuron (Jarsky et al., 2005; Cuntz et al., 2019, Figure 3B). Viewed 287

together, these results show the major contribution of ion channel diversity by demonstrating 288

that scaling up the numbers of ion channels artificially in the reduced models leads to more 289

frequent valid parameter combinations. This is in line with the law of large numbers. 290
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Discussion 291

In this study, we explored the complex landscape of valid parameter combinations in a 292

parameter space of a detailed multi-compartmental model of dentate GCs and its simplified 293

versions with reduced ion channel complexity (Figure 1). We used a population-based 294

approach (Gunay et al., 2008; Marder, 2011; Britton et al., 2013; Sekulic et al., 2014), in order to 295

find multiple ion channel parameter combinations for models that successfully reproduced 296

the electrophysiological data (Figures 2 and S1). We show that the biologically realistic GC 297

model (full model) with many redundant ion channel types was more robust to ion channel 298

perturbations than valid models with reduced ion channel diversity. Importantly, noisy ion 299

channel expression simulated by random parameter combinations produced ∼ 6×more valid 300

GC model instances in the full model as compared to the reduced models (Figure 2). The 301

robustness in the reduced model was recovered when adding artificial isoforms of existing 302

ion channels (Figure 3) indicating that it is indeed the number of channels that produces this 303

effect. We argue that this increased robustness comes in part from a direct consequence of 304

basic probability theory. 305

Robustness through ion channel redundancy in complex GC models 306

Most neurons contain more than a dozen different ion channels. While early computational 307

models implemented considerably fewer channels than known in biology, more and more 308

models exist that contain a realistic number of mechanisms (e.g. Beining et al., 2017; Hay et al., 309

2011). Although the different potassium channels in mammalian cortical neurons differ genet- 310

ically, some are remarkably similar in their functional contribution to the electrophysiological 311

activity of neurons (Coetzee et al., 2006; Drion et al., 2015). This functional similarity is often 312

referred to as degeneracy (Goaillard and Marder, 2021) and is not a phenomenon restricted to 313

neurobiology (Edelman and Gally, 2001; Tononi et al., 2002). Depending on the computations 314

a neuron should implement, its dynamics only need to cover certain relevant time scales, e.g. 315

in the form of different time constants of its gating variables (Gjorgjieva et al., 2016). Since 316

five channels were sufficient to support realistic voltage dynamics at relevant time scales, we 317

were able to reduce the original variety of ion channels without observing a significant loss 318

in the performance of the model. In our study, GCs with their compact electrophysiological 319
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repertoire did not require a large variety of ion channels to reproduce their characteristic 320

activity patterns. To replicate the 9 experimentally derived spiking properties, the models 321

required only one active channel of each of the different subgroups of ion channels (one Na+-, 322

one K+- and one Ca2+-channel, as well as the leak channels; Figure 1C). 323

Experimental as well as theoretical studies from the last decades revealed that pharmaco- 324

logical manipulations like the blockage or upregulation of intrinsic or synaptic mechanisms, 325

resulting in a pathological cellular activity on a short timescale, can be compensated by up- 326

and downregulation of the remaining conductances on a long timescale (MacLean et al., 327

2003; Swensen, 2005; O’Leary et al., 2014; Drion et al., 2015; Guo et al., 2005; Nerbonne et 328

al., 2008; Stegen et al., 2012; MacLean et al., 2005). Interestingly, not all manipulations can 329

be compensated by mechanisms of homeostatic regulation (Zhang et al., 2003), indicating 330

differences in the capability of homeostatic compensation between ion channels as well as 331

types of neurons. As opposed to other studies using biophysically realistic mechanisms of 332

homeostatic intrinsic plasticity based on calcium signals (O’Leary et al., 2013, 2014; Abbott and 333

LeMasson, 1993; Golowasch et al., 1999; Liu et al., 1998), we decided to use a gradient descent 334

approach to investigate the large and complex parameter space of possible intrinsic compen- 335

sations. We chose this mathematical approach also because the biophysical mechanisms of 336

intrinsic plasticity are not yet fully understood in detail. The implementation of biophysically 337

incomplete mechanisms of intrinsic plasticity could lead to unnecessary limitations on the 338

regulatory mechanisms. 339

We demonstrated that the full GC model was capable of compensating the loss of any 340

potassium and calcium channels by up and down regulation of the remaining ion chan- 341

nels (Figure 1C). In contrast, the different reduced models relied on the presence of certain 342

indispensable ion channels, without which they could not capture main electrophysiological 343

characteristics of GCs. Figure S5 shows that there can be as much as a 20−fold variability in 344

the density of voltage-dependent ion channels. Experimental studies have observed variations 345

of a similar order of magnitude as a result of compensatory mechanisms (MacLean et al., 346

2003). The ability of these models to compensate for losses of ion channels can be attributed to 347

the overlapping or degenerate physiological function of the present potassium and calcium 348

channels (Mishra and Narayanan, 2021). 349

The reduction of the diversity of gating mechanisms goes along with a loss of space to 350

manoeuvre in the process of achieving functional target activity (O’Leary et al., 2013; Drion et 351
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al., 2015). A strong indication for this conclusion is for example the existence of the calcium- 352

sensitive voltage-dependent potassium channels BK and SK. In the 5 channel model, the 353

former is of great importance and can significantly disturb the dynamics of the GC model, 354

even with rather small changes in maximum conductance, whereas the SK channel is absent. 355

In case of a loss of the BK channel, the expression level of the SK channel, together with that 356

of other channels, increased strongly and thus maintained the functional behaviour of the 357

cell. In line with the concept of degeneracy (Druckmann, 2007; Aizenman et al., 2003), the 358

overlapping functionality of different channels enabled the neuron, depending on the given 359

conditions, to achieve a target spiking behaviour in a number of different ways. 360

In addition, we tested the stability of the differently reduced models against random parameter 361

perturbations, in order to simulate putative protein exchange during the lifetime of a cell. The 362

ongoing protein replacement is one of the reasons for the continuous regulation of voltage- 363

and calcium-dependent channels in cell membranes (Raj and van Oudenaarden, 2008; O’Leary 364

et al., 2014; Gal et al., 2010). Although no homeostatic tuning mechanism with a dynamic 365

feedback was implemented, valid parameter combinations in the complete model were able 366

to endure far more random parameter perturbations while maintaining realistic activity 367

than the ones in the reduced models (Figure 2D). This is in agreement with experimental 368

studies, which have shown that, although homeostatic tuning rules can compensate for many 369

perturbations and knock-outs of ion channels, not all channel deletions and perturbations 370

can be compensated (Zhang et al., 2003). A challenge for future experimental work will be to 371

uncover the long-term effects of ion channel knock-outs in GCs in order to find out whether 372

our theoretical results of the outstanding robustness of GCs against channel deletions can be 373

observed in biology. 374

Random parameter selection as a viable fitting strategy for neurons 375

Like many biological processes, gene expression is an essentially stochastic process resulting 376

in heterogeneity of mRNA and protein levels (Raj and van Oudenaarden, 2008; Gal et al., 2010; 377

Sigal et al., 2006). This noise in gene expression is one reason for the cell-to-cell variability. 378

However, noise in gene expression could be harmful for achieving functional parameter 379

sets of ion channel expression during developmental maturation or during pathological 380

perturbations. Neurons are thought to target a certain desired set point in the high-dimensional 381
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parameter space of expression levels of ion channels. Our simulations show that the subspace 382

around these target values tends to be more densely filled with functional model parameters 383

than non-valid parameters (Figure 2C). Accordingly, despite fluctuations, high-dimensional 384

models are more likely to end up in functional subspaces. Even without the implementation of 385

homeostatic regulation processes, the chance of obtaining a functional ion channel expression 386

level is relatively high. This puts random fluctuations in the expression of ion channels among 387

the biologically plausible strategies to implement robust excitability profiles in neurons. Our 388

computational analysis indicates that a complex high-dimensional parameter space supports 389

the stability of neuronal excitability against perturbations that would push neurons into 390

non-functional subspaces. The reason is that the topology of the high-dimensional space 391

increases the likelihood of neurons returning into functional subspaces by random ion channel 392

parameter adjustments. 393

Thus, due to the diversity of electrophysiological mechanisms, the cell is able to generate 394

valid electrophysiological activity by random selection of parameters with a high chance of 395

success despite stochastic fluctuations in the channel-coding genes. We showed that there 396

was a clear relation between the number of intrinsic mechanisms and the chance to obtain a 397

valid set of parameters from a random sample around a functional set point (Figures 2B, C, 398

and 3). Furthermore, we showed that many other parameter combinations existed around 399

a functional point in the parameter space that fulfilled our criteria for functional activity. 400

While in a random 0 − 2× fold sample of the initial model, about ∼ 5.7% of the parameter 401

combinations showed a valid GC activity, this proportion decreased steadily to ∼ 0.7% with 402

a reduction of the model (Figure 2B). In the closer surrounding of the baseline models this 403

difference was even more obvious. While in the unreduced model in the close neighbourhood 404

of±20% of the initial parameter sets over 80% of the models showed characteristic GC activity, 405

in the heavily reduced model it was only about 30% (Figure 2C). 406

Similar to (Olypher and Calabrese, 2007; Achard and De Schutter, 2006) we showed that near 407

each functional point in the parameter space many other parameter sets exist whose activity 408

match the activity of the original parameter set (Figure S6 – S8). Instead of talking about 409

parameter sets, one should rather speak about subspaces that show functional behaviour. 410

These subspaces can have different densities of parameter sets showing characteristic elec- 411

trophysiological activity. This depends to a great extent on the diversity of the channels 412

(Figures 2B, C, and 3A, Left panel). Furthermore, different valid subspaces with the same 413
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diversity differ in their density of functional solutions located in this subspace. In order to 414

be as robust as possible against perturbations and to simplify the process of parameter fit, it 415

seems reasonable for a neuron to target an as densely populated subspace as possible. 416

It is interesting to look at our random walk simulations (Figure 2D) in the context of evolution, 417

which can be interpreted as a random walk through the high-dimensional parameter space. 418

The path length between two valid points in the space on average requires macro-mutations 419

(larger step) in the 5 channels case whereas small gradual mutations can lead to the same 420

outcome in the 15 channel case. This indicates that, with a sufficient number of channels, a 421

valid spiking phenotype can be achieved in small evolutionary steps with high stability. Our 422

findings are in a strong agreement with the counter-intuitive hypothesis that degeneracy not 423

only contributes to the robustness but also to the evolvability of biological systems (Whitacre 424

and Bender, 2010). 425

Conclusions and outlook 426

We have put forward the law of large numbers as a possible explanation for our observations 427

in the GC model. As a consequence of the law of large numbers, a model containing more ion 428

channels tends to exhibit a behaviour that is closer to its expected target behaviour (Figure 2). 429

Accordingly, we were able to recover the amount of robustness observed in our full model 430

when adding artificial ion channel isoforms (Figure 3). This is a strong indicator that indeed 431

the number of ion channels and not their specific composition leads to the effect that we 432

observed. 433

Future studies investigating the correlations between ion channel coding gene expressions 434

within populations of GCs might be able to validate the results from our populations of GC 435

models and the corresponding correlations between different conductances (Figure S4, Red 436

squares). One of the assumptions here is that genetic expression of ion channels in neurons 437

targets functional set points in the parameter space. In that particular case, the diversity 438

of electrophysiological mechanisms seems to increase the chance of reaching a functional 439

subspace around the target parameter, despite random fluctuations in gene expression. 440

Overall, our results suggest that the diversity of ion channels allows for increased robustness 441

and higher flexibility of finding a solution in the complex parameter space of a neuron’s 442
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excitability. It will be interesting to investigate whether our findings here translate to other bio- 443

logically complex systems, in which case they will most likely affect our general understanding 444

of how evolution deals with complex organisms. 445
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The granule cell (GC) model 463

The GC model used in this study has been fully described in (Beining et al., 2017). Briefly, 464

the model was designed to reproduce passive and active GC properties as determined by 465

voltage and current clamp experiments, dendritic patch recordings of bAPs, and intracellular 466

calcium imaging. In order to reduce the number of parameters and to speed up simulations 467

we simplified the morphology by deleting the artificially added axon. The loss of the axon 468

was compensated by slight changes of the maximum conductances in the axon initial segment 469

(AIS). Since the HCN channel in its original form had no influence on control GC activity, we 470

did not take it into account. The compartment-specific distributions of ion channels are shown 471

in Table S1. Detailed descriptions of the individual ion channels can be found in Beining et al. 472

(2017). We used a realistic three-dimensional granule cell morphology from Schmidt-Hieber 473

et al. (2007). 474

Stimulation protocols and cost function 475

Instead of using a single optimal error function, we decided to adopt a strategy that allows 476

to take into account several potentially important properties of GC activity. To get a first 477

impression of the “goodness of a model”, we compared the experimental (Mongiat et al., 478

2009) and the model spiking-properties following a 200ms lasting current injection of 50 and 479

90pA. The stimulation protocol was as follows: 50ms prerun without stimulation, followed by 480

200ms somatic current injection of 50 and 90pA completed with a 50ms long period without 481

current injection. 482

We extracted the following 9 spiking properties (Figures 1A) from the raw traces of current 483

injections with 50 and 90pA: 484

1. Numbers of Spike fired within 200ms current clamp. 485

2. Latency of first spike after stimulus onset in ms. 486

3. The voltage threshold was defined as the voltage at which the change of membrane 487

potential exceeded 15mV
ms

. 488

4. Average amplitude of spikes. 489
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5. The fast after hyperpolarisation (fAHP) amplitude was calculated as the voltage dif- 490

ference between the spiking threshold and the minimum potential within 5ms after a 491

spike. 492

6. Absolute value of fast after hyperpolarisation (fAHP) amplitude. 493

7. The action potential width was measured at half the height of the spike amplitude. 494

8. Time interval in ms between the first and second spike during current clamp. 495

9. The adaptation index AI was calculated in the following manner: AI = 1− ISI1
ISIend

496

The spiking features for any given parameter combination in the model were then compared 497

with the same experimentally derived spiking features (Mongiat et al., 2009) and expressed 498

in units of standard deviation. This approach allowed us to take into account the intrinsic 499

variability of each feature separately. The overall fitness Fi of spike feature i was defined as: 500

Fi =
|SFi − SF i,exp|

SDi,exp

(1)

where SF i,exp refers to the average value of the spike feature i and SDi,exp to the standard 501

deviation of the spike feature i across all recorded GCs. The value of the spike feature of 502

the corresponding model for a given parameter combination was SFi. For a parameter 503

combination to be accepted as a valid combination, it was required to fulfil the following 504

condition: 505

P = max

(
|SFi − SF i,exp|

SDi,exp

)
< 2, for i = 1, 2, ..., 9 (2)

The value of the Pareto efficiency P corresponded to the fitness Fi of the spiking feature SFi 506

that deviated most from the experimental average. 507
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The search algorithm 508

To search for parameter sets that match our criteria for valid GC activity we combined 509

random sampling with a gradient descent algorithm. In order to search for local minima we 510

used a conjugate gradient descent technique (Press et al., 2007). Conjugate gradient descent 511

techniques involve successive calculations of local gradients followed by the exploration of the 512

parameter space along a vector derived from that gradient. Starting from a random or given 513

point in the parameter space, we calculated the gradients for each dimension with two sample 514

points to smooth the slopes. The algorithm evaluates the calculated gradients of the fitness 515

function in each dimension and moves in the direction of the steepest descent with respect to 516

the cost function. The sample points where calculated in steps of ±5% of the corresponding 517

parameter value. This procedure was then repeated until the method converged to a local 518

minimum of the corresponding Pareto efficiency P . The successive line minimisation was 519

done in conjugated directions, so that the successive minimisations were as independent as 520

possible. Theoretically, this ensured that the parameter search found a local minimum of 521

the target function P . For some initial parameter combinations, large areas of the parameter 522

space were completely flat (i.e. the gradient was zero). This was especially the case when 523

the initial models showed no spiking activity (Figure S2B). In this case, we increased the size 524

of the iteration steps consecutively by ±5%. If still (after increasing the step size to ±50%) 525

no gradients other than zero were found or the local minima did not fulfil the criteria of 526

functional GC excitability, we randomised the parameters in the next step in an iteratively 527

increasing range (from ±10% of the corresponding parameter values in steps of ±10% up to 528

±50%). The gradient descent algorithm was used to find the parameter settings of the reduced 529

models. Starting from the full model (Figure 1C, Table S1, S2 and S3), we gradually reduced 530

the number of ion channels, starting with the channels that influenced the cost function the 531

least. 532

Hyperplanes 533

To learn more about the relationship of the set of valid models, we created linear combinations 534

of our best solutions. This method was adopted from Achard and De Schutter (2006) and 535

allowed us to better estimate whether the solutions lie on a common low-dimensional manifold 536
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within the high-dimensional parameter space of the GC model variants (Figure S6 – S8). As 537

a first step, we created linear combinations out of weighted sums of a pair of solutions. We 538

weighted the parameters of the respective model between 0.1 and 0.9 with a step size of 0.1. 539

The weighting of the second solution was chosen such that the sum of the weights was equal 540

to 1. As soon as the Pareto efficiency of all evaluated linear combinations fulfilled the criteria 541

for characteristic GC spiking, we assumed that the respective models were connected. In the 542

next step, we created linear combinations of three different valid solutions to visualise the 543

hyperplanes in two dimensions. We used several triplets of valid parameter sets and weighted 544

two of them with values between −1.5 and 2.5 using a step size of 0.04. The corresponding 545

grid of combinations was visualised in a two-dimensional plot. The weighting of the third 546

selected parameter set was chosen in a way that the sum of all weights was equal to 1. The 547

hyperplanes consisted of several thousand points, whereby the parameter sets with negative 548

values were removed. As a result, each hyperplane had different boundaries and thus a 549

different size. Finally, for each of these points we ran simulations and calculated their Pareto 550

efficiency. The Pareto efficiency of the models without spiking behaviour was set to 6, which 551

explains the abrupt change of colour on the right side of Figure S6. The colour selection of the 552

plots allowed a clear distinction between the valid (green) and the nonvalid (blue) models. 553

Diversity expansion 554

In order to generate models with controllable amounts of ion channels we used the reduced 555

5−channel model as a basis. We then produced multiple instances each of the remaining 556

potassium (BK) and calcium (Cav22) channels. Each artificial channel form obtained in such 557

a way was associated with a randomised time constant between 0× and 2× the value in the 558

original GC model to obtain altered dynamics. Furthermore, we randomised the conductances 559

and applied the search algorithm to reproduce characteristic GC activity to derive all base 560

models with different complexity in Figure 3. 561

Toy model 562

We created a toy model to test whether the law of large numbers is a reasonable explanation for 563

the phenomena we observed in the GC model. In order to mimic the distribution of functional 564
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overlapping ion channel expressions in a population of GC models around a genetically 565

targeted functional set point we used randomly sampled variables between zero and two 566

(Figure 2E). A valid toy model is defined as having a smaller average deviation from the mean 567

(targeted value) than 0.015. By decreasing the sample range around the mean in steps of 0.1 568

down to a sample range between 0.9 and 1.1 we change the intensity of fluctuations around 569

the target point (Figure 2E). 570
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Figure S1. Electrophysiological properties of mouse GCs.
Experimental data from (Mongiat et al., 2009). A, Voltage traces of eight different GCs during 200ms
current clamp injection of 90pA. B, Frequency of action potentials elicited by 200ms lasting current
injections (mean and standard deviation from raw traces, experimental standard deviation is shown as
grey patches). C, Current-voltage (I–V) relationships (mean and standard deviation from raw traces,
experimental standard deviation is shown as grey patches). D, Phase plots of the first action potential
during 90pA current clamp. Modified from Figure 2 in Beining et al. (2017).
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Figure S2. Gradient descent using multi-objective optimisation.
A, Temporal evolution of Pareto optimality (top) using the gradient descent method. Initial parameter
combinations are random non-valid parameter combinations within a range between 0× and 2×
the value in the reference parameter set. (bottom) Voltage traces of the model with initial parameter
combinations (grey) and optimised parameters (green). B, Same as in A, but all initial parameter
combinations were in a similar order of magnitude of Pareto optimality with corresponding models
that did not even produce spikes.
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Figure S3. Comparison of the different GC models in Figure 1C.
A–D, Similar panels as in Figure S1 for the different models and respective parameter combinations
as in Figure 2A.
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Figure S4. Correlations between pairs of channel conductances in the different populations.
Significant correlations are highlighted by red boxes (p-value < 0.01). Pairwise correlations in
population of A, 15−channel models, B, 9−channel models, C, 5−channel models.
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Figure S5. Valid parameter combinations in models that compensate for the knock-out of the BK
(Left) and Cav22 (Right) channel.
Valid parameter combinations in the fully complex model are well spread and more stable as compared
to reduced models. Activity traces of 4 randomly picked valid parameter combinations in models
successfully compensating the corresponding knock-out (Top). Coloured dots illustrate conductance
densities of the four valid parameter combinations shown in top traces (Bottom). Violin plots show the
probability distribution of valid parameter combinations. Conductances are weighted by the surface
area of the corresponding membrane regions.
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Figure S6. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 15−channel model. A, The
hyperplane of B is shown in red as projection onto gNa8st,AIS vs. gSK2,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.
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Figure S7. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 9−channel model. A, The
hyperplane of B is shown in red as projection onto gKv34,AIS vs. gCav22,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.
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Figure S8. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 5−channel model. A, The
hyperplane of B is shown in red as projection onto gna8st,AIS vs. gCav22,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.

39/41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.614 0.1478

Kv 1.1 2.76× 10−4

Kv 1.4 1.77× 10−2

Kv 2.1 0.0022

Kv 3.4 0.6987

Kv 4.2 0.0039

Kv 7.2/3 0.0031

Cav 1.2 3.1× 10−4 7.1× 10−5 2× 10−5

Cav 1.3 5.48× 10−6 2.5× 10−5 3.7× 10−6

Cav 2.2 3.19× 10−7 7.4× 10−5 5.8× 10−6

Cav 3.2 1.22× 10−5 1.6× 10−5 3.8× 10−5

BK

α 0.0018 9.3× 10−4

β 0.51 0.0148

SK2 1.1× 10−5 3.7× 10−8 8.5× 10−7

Table S1. Summary of ion channel densities and models implemented in the 15−channel model.
Ion channels and their expression profiles in the corresponding morphological compartments. Conduc-
tance densities are given in units of mS/cm2.
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Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.4925 0.0881

Kv 2.1 0.0071

Kv 3.4 0.0339

Kv 7.2/3 0.0074

Kv 4.2 0.0022

Cav 2.2 4.77× 10−11 4.5× 10−4 3.56× 10−5

BK

α 1.25× 10−7 0.0043

β 0.0148 0.0156

Table S2. Summary of ion channel densities and models implemented in the 9−channel model.
Ion channels and their expression profiles in the corresponding morphological compartments. Conduc-
tance densities are given in units of mS/cm2.

Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.306 0.119

Cav 2.2 5.82× 10−15 8.64× 10−4 1.22× 10−4

BK

α 1.16× 10−7 0.0132

β 1.321 0.0185

Table S3. Summary of ion channel densities and models implemented in the 5−channel model.
Ion channels and their expression profiles in the corresponding morphological compartments. Conduc-
tance densities are given in units of mS/cm2.
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