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Summary 29 

It has been postulated that the brain is organized by “metamodal”, sensory-independent cortical modules 30 

implementing particular computations, leading to the intriguing hypothesis that brain areas can perform tasks 31 

(such as word recognition) not just in “standard” sensory modalities but also in novel sensory modalities. Yet, 32 

evidence for this theory, especially in neurotypical subjects, has been variable. We hypothesized that effective 33 

metamodal engagement of a brain area requires congruence between the novel and standard sensory 34 

modalities not only at the task level (e.g., “word recognition”) but critically also a match at the algorithmic level 35 

(in Marr’s terminology), i.e., at the level of neural representation of the information of interest. To test this 36 

hypothesis, we trained participants to recognize vibrotactile versions of auditory words using two encoding 37 

schemes. The vocoded approach preserved the dynamics and representational similarities of auditory speech 38 

while the token-based approach used an abstract phoneme-based code. Although both groups learned the 39 

vibrotactile word recognition task, only in the vocoded group did trained vibrotactile stimuli recruit the auditory 40 

speech network and lead to increased coupling between somatosensory and auditory speech areas. In 41 

contrast, the token-based encoding appeared to rely on paired-associate learning. Thus, matching neural input 42 

representations is a critical factor for assessing and leveraging the metamodal potential of cortical modules. 43 
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Introduction 44 

The dominant view of brain organization revolves around cortical areas dedicated for processing information 45 

from specific sensory modalities. However, emerging evidence over the past two decades has led to the idea 46 

that many sensory cortical areas are “metamodal”, i.e., characterized by computations that are task-specific, 47 

yet invariant to sensory modality (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001). Early evidence for 48 

sensory modality-invariant processing in cortical areas comes from cross-modal plasticity studies in sensory-49 

deprived populations (Rauschecker, 1995; Rauschecker et al., 1992; Sadato et al., 1996; Théoret et al., 2004). 50 

These studies showed that cortical areas traditionally considered to be dedicated to unisensory processing 51 

could be recruited by stimuli from another, non-preferred sensory modality. Interestingly, although broad 52 

swaths of cortex no longer received the normal sensory input in these populations, non-preferred modality 53 

stimuli activated the specific cortical areas normally relevant for a particular task in the preferred sensory 54 

modality, such as localization and recognition (Amedi et al., 2007; Bi et al., 2016; Bola et al., 2017, 2020; 55 

Lomber et al., 2010; Meredith et al., 2011; Ptito et al., 2005; Reich et al., 2011; Renier et al., 2014; Striem-Amit 56 

et al., 2012). This task-specific cross-modal engagement is thought to reflect a functional unmasking of existing 57 

anatomical connections. Importantly, there is evidence for cross-modal engagement of traditionally unisensory 58 

areas even in neurotypical individuals (Amedi et al., 2007; Renier et al., 2005, 2010; Siuda-Krzywicka et al., 59 

2016) – thereby opening the door to recruiting previously established sensory processing pathways for novel 60 

sensory modalities. A prime example of this process is reading, which is initially thought to recruit auditory 61 

speech processing pathways through grapheme-to-phoneme conversion (Pugh et al., 2001), and the same 62 

idea has given rise to promising therapeutic applications such as sensory substitution devices (SSDs, which, 63 

for instance enable processing of visual information in blind individuals by translating camera input to acoustic 64 

stimuli (Bach-y-Rita and Kercel, 2003; Meijer, 1992). Yet, other studies (Benetti et al., 2017, 2020; Bola et al., 65 

2017; Fairhall et al., 2017; Mattioni et al., 2020; Pietrini et al., 2004; Twomey et al., 2017; Vetter et al., 2020) 66 

have failed to find or have found far less robust evidence of cross-modal engagement in neurotypical subjects, 67 

raising the critical question of the conditions under which a particular sensory area can be successfully 68 

recruited for “metamodal” processing.   69 

Current theories for the “metamodal” brain differ on the necessary requirements for the engagement of a 70 

sensory area. Prior studies (Amedi et al., 2002, 2007; Striem-Amit et al., 2012) have emphasized that 71 

metamodal engagement of a cortical area, in addition to the presence of task-relevant connectivity (Hannagan 72 

et al., 2015; Mahon and Caramazza, 2011; Saygin et al., 2012, 2016), depends on a correspondence of 73 

preferred and non-preferred modality stimuli. Yet, it has been challenging to elucidate the nature of this 74 

necessary “correspondence” for metamodal engagement. For example, the fact that (visual) shape-selective 75 

ventral occipito-temporal cortex (VOTC) is engaged in subjects trained on a visual-to-auditory SSD designed to 76 

transform visual images to sounds has been used to argue that this region responds to any modality that 77 

conveys shape information (Amedi et al., 2007; Hannagan et al., 2015; Heimler et al., 2015; Striem-Amit et al., 78 

2012). Consequentially, failures to find metamodal engagement are due to an absence of shape information in 79 

the stimuli encoded in the non-standard modality. Yet, in the absence of a clear definition of auditory “shape” 80 
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such theories face reverse inference challenges and are difficult to test, let alone falsify. In terms of Marr’s 81 

levels of analysis (Computational, Algorithmic, Implementational), what is needed is a consideration of the 82 

Algorithmic level that serves as a crucial bridge between the Computational level of task goals, and the 83 

Implementational level of neural responses (Barsalou, 2017; Hagoort, 2020). Here we propose that successful 84 

metamodal coupling requires not just correspondence at the Computational/task level, but also a match of the 85 

novel modality representation to the standard modality representation at the Algorithmic level. This theory 86 

concretizes and makes testable the helpful yet vague notion of “correspondence” between preferred and non-87 

preferred modality representations by tying it to a correspondence of representational spaces. A failure to 88 

achieve this representational correspondence would then be predicted to impede or even preclude metamodal 89 

engagement. 90 

In the present study, we test the hypothesis that cross-sensory recruitment of existing learned sensory 91 

processing pathways critically depends on this representational match. Specifically, we focused on auditory-to-92 

tactile sensory substitution. This field has a long history dating back to the invention of the Tadoma method 93 

(Alcorn, 1945) – a method whereby deaf individuals learn to perceive auditory speech received via vibrotactile 94 

(VT) input from their fingers which are placed over the articulators of a speaker. Over a century of work on 95 

auditory-to-tactile sensory substitution has led to the development of VT speech aids (Gault, 1924, 1926). 96 

These devices have been used successfully to teach both deaf and hearing individuals to recognize auditory 97 

speech through touch (Bernstein et al., 1991; Brooks and Frost, 1983; Cieśla et al., 2019). Here we used such 98 

a device to train two neurotypical groups of adult subjects on the same word recognition task, with each group 99 

being trained with one of two auditory-to-VT sensory substitution algorithms. One algorithm was designed to 100 

preserve as much of the temporal dynamics of auditory speech as possible (“vocoded speech”), aiming to 101 

achieve a neural congruence between vibrotactile speech stimuli and auditory speech representations in brain 102 

areas that are part of the auditory speech system. The other algorithm (“token”) used a code in which specific 103 

VT patterns corresponded to specific phonetic features (Chomsky and Halle, 1968; Reed et al., 2018). 104 

Interestingly, at the behavioral level, subjects in both algorithm groups learned to associate VT patterns with 105 

spoken words at an equivalent level after training. However, fMRI analyses revealed critical differences in the 106 

cross-modal recruitment of brain areas between the two groups, with only the vocoded encoding group 107 

showing metamodal engagement of auditory speech processing areas, specifically the areas whose neural 108 

representations of auditory speech representation well matched the representational similarity of the 109 

vibrotactile word stimuli. Consistent with these findings, functional connectivity analyses showed that increased 110 

coupling between the auditory and somatosensory cortex after training also depended on the nature of the 111 

input representations produced by the different VT algorithms. These findings suggest that metamodal 112 

engagement of a cortical area is dependent not only on its task-relevant anatomical connectivity but also on 113 

the match at the level of representational encoding between the standard and novel modalities. Adopting the 114 

nomenclature of David Marr’s levels (Marr, 1982), our data show that a mere congruence at the highest, 115 

computational level (e.g., VT stimuli corresponding to auditory words) is insufficient for metamodal 116 

engagement. Rather, metamodal coupling requires a congruence at the algorithmic level (e.g., a match in 117 
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neural representations). Thus, our study not only critically advances our understanding of metamodal 118 

engagement and thus general principles of brain organization, but also opens the door to designing more 119 

efficient sensory substitution algorithms that better interface with existing cortical processing pathways (as in 120 

the present study, where the algorithmically matched vocoded speech representation conveyed ~1.2 times as 121 

much information per unit time than the non-matched one).  122 
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Materials and Methods 123 

Participants 124 

We recruited a total of 22, right-handed, healthy, native English speakers in this study (ages 18-27, 12 125 

females). Georgetown University’s Institutional Review Board approved all experimental procedures, and 126 

written informed consent was obtained from all subjects before the experiment. We excluded 4 subjects from 127 

the auditory scan due to excessive motion (>20% of volumes) and 2 subjects from the vibrotactile (VT) scans 128 

because they failed to complete the training. As a result, we analyzed a total of 18 subjects for the auditory 129 

scans and 20 for the VT scans. 130 

Stimulus Selection  131 

A set of word stimuli was developed according to the following criteria: 1) short monosyllabic stimuli (~4 132 

phonemes); 2) only contain phonemes from a limited subset of English consonants (8 consonants and 6 133 

vowels); 3) set containing items predicted to be perceptually unique and therefore learnable; and 4) words that 134 

span the VT vocoder perceptual space (see below). To develop the set meeting these criteria we utilized a 135 

computational modeling approach based on the methods described in (Auer and Bernstein, 1997). Existing 136 

tactile consonant and vowel perceptual identification data (Bernstein, unpublished) were used in combination 137 

with the PhLex lexical database (Seitz, Bernstein, Auer, & MacEachern, 1998) to model the lexical perceptual 138 

space. In outline, the modeling steps are: (1) Transform phoneme identification data into groupings of 139 

phonemes as a function of a set level of dissimilarity; (2) Re-transcribe a phonemically transcribed lexical 140 

database so that all of the words are represented in terms of only the phonemic distinctions across groupings; 141 

and (3) Collect words that are identical under the re-transcription and count how many are in each collection. In 142 

this study, the lexical equivalence class (LEC) size –the number of words in a collection—was set to three. 143 

Only words that were accompanied by three or fewer other words following re-transcription were considered 144 

candidates for the study. Words in smaller LECs are predicted to be perceptually easier (more unique) than 145 

words in larger LECs, which offer more opportunities for confusions.  146 

The set of words meeting the first three criteria was further examined as a function of consonants and vowel 147 

patterns to identify the largest pool of potential stimulus words. Three consonant (C) and vowel (V) segment 148 

patterns (CVC, CCVC, and CVCC) were selected for the final stimulus set. The words with these segment 149 

patterns were then examined in relation to the predicted VT vocoder perceptual space. The tactile identification 150 

confusion matrices were transformed into phoneme distance matrices using a phi-square transform (Iverson et 151 

al., 1998). Within a segment pattern, all word-to-word distances were computed as the sum of the pairwise 152 

phoneme distances. The word distance matrix was then submitted to multidimensional scaling to facilitate two-153 

dimensional visualization of the lexical space. Close pairs were selected with goal of achieving distributed 154 

coverage in each of the three lexical spaces (CVC, CVCC, and CCVC). For each close pair, a third more 155 

distant word was chosen that provided a bridge to other pairs in the space. Final selection was based on the 156 

word-to-word computed distances using phi-square distances rather than the multidimensional space as clear 157 

warping was present due to the reduction of dimensionality.  158 
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This resulted in 60 total words or 20 sets of triples. We trained subjects to associate 30 words (10 triplets) with 159 

their corresponding VT tokens. In the RSA scans we used 15 (5 triplets) of these trained words of which 9 160 

belonged to the CVCC, 3 to the CCVC and 3 to the CVC lexical classes (Fig. 1B).  161 

Behavioral Training 162 

The training paradigm used an N-alternative forced choice (N-AFC) task and a leveling system organized in 163 

sets of 3 to facilitate training progression. In each set of 3 levels, the number of choices (N) in the N-AFC task 164 

was kept constant, but the choices themselves were increasingly confusable. The number of choices N was 165 

increased by 1 when progressing between each set of 3 levels. The first level utilized a 2-AFC task, and the 166 

final level (level 15) utilized an 8-AFC task. An accuracy of 80% was required to advance to the next level. 167 

Subjects performed each training session in a quiet room while listening to an auditory white noise stimulus 168 

through over-the-ear headphones. Auditory white noise was presented in order to mask the mechanical sound 169 

of the VT stimulation. At the beginning of each trial, the orthographic labels for the word choices were 170 

displayed on the screen, and a VT stimulus was played after a short delay. Participants then indicated which 171 

label corresponded to the VT stimulus. Feedback was given after each trial, as well as an opportunity to replay 172 

any of the word choices. Subjects completed a total of 6 training sessions, followed by a post-training fMRI 173 

scan. After their post-training fMRI scan, subjects performed a final 10-AFC task. 174 

Description of VT Device 175 

A (20cm x 11.0 cm) 16-channel MRI-compatible vibrotactile stimulator array was organized as 2 rows of 8 176 

stimulators (Fig. 1A), with center-to-center stimulator spacing of 2.54 cm. To ensure that the stimulators would 177 

maintain contact with the volar forearm, the array comprised four rigid modules connected with stiff plastic 178 

springs. Velcro straps were used to mount the device to the arm firmly while bending the array to conform to 179 

the arm’s shape. With no applied voltage to the piezoelectric bimorphs, the contactors were flush with the 180 

circuit board surface facing the skin. During operation, a constant +57-V voltage applied to all stimulators 181 

retracted the contactors into the surround, and each applied -85-V pulse drove the contactor into the skin. All 182 

pulses were identical. The drive signal was a square wave, with a pulse time of 2 ms, and with unpowered 183 

intervals of 1ms between power reversals to protect the switching circuitry. The display’s control system 184 

comprised the power supplies (-85V, +57V), high voltage switching circuits to apply these voltages to the 185 

piezoelectric bimorphs, and a digital control system that accepted from a controlling computer’s serial COM 186 

port the digital records specifying a stimulus (comprising the times and channels to output pulses on), and a 187 

command to initiate stimulus output.  188 

VT Vocoded Speech Encoding 189 

This real-time vocoder was used to convert acoustic speech signals into VT stimuli. The initial stage of the 190 

vocoder comprised a bank of filters whose output power was used to control the output of VT pulses. The VT 191 

display (Fig. 1A) used a frequency-to-place mapping algorithm: The energy passed by each filter of the 192 

vocoder was used to modulate the vibration of a specific MRI-compatible transducer on the 16-channel VT 193 

device (Fig. 1A and 1C) placed on the volar forearm (Malone et al., 2019). Low frequencies mapped to 194 
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transducers near the wrist, and higher frequencies mapped to transducers near the elbow. If the energy within 195 

a given filter exceeded a fixed threshold at a given time point, a VT pulse was emitted from the corresponding 196 

transducer. The basic hardware design and software algorithms for the vocoder are referred to in (Bernstein et 197 

al., 1991) as the “GULin” vocoder algorithm. Briefly, 16 bandpass filters with frequencies centered at 260, 392, 198 

525, 660, 791, 925, 1060, 1225, 1390, 1590, 1820, 2080, 2380, 2720, and 3115 Hz, with respective 199 

bandwidths of 115, 130, 130, 130, 130, 130, 145, 165,190, 220, 250, 290, 330, 375, and 435 Hz. An additional 200 

high-pass filter with cutoff 3565 Hz is also used. The energy detected in each band is used to amplitude-201 

modulate a fixed-frequency sinewave at the center frequency of that band (and at 3565�Hz in the case of the 202 

high-pass filter). The combination of the 16 sinewaves comprises the vocoded acoustic signal, and the 203 

resulting activation pattern over the 16 transducers constituted its vibrotactile instantiation. 204 

Token-based VT Speech Encoding 205 

The same 16-channel VT device was used to present subjects with the token-based stimuli. Token-based 206 

stimuli were constructed based on prior work (Reed et al., 2018) and reflect the idea that spoken words can be 207 

described as a string of phonemes. Phonemes in turn can be uniquely described by a set of phonetic features. 208 

Therefore, each phonetic feature was assigned a unique VT pattern. In this study, we used place, manner, and 209 

voicing features to describe phonemes (Fig. 1C). Place was coded as patterns that occurred either proximal or 210 

distal to the wrist. Stop and fricative manner features were codded as patterns that occurred either medial or 211 

lateral to the body respectively. The nasal manner feature was distinguished by driving two channels instead of 212 

one for stops and fricatives. Voicing was coded as either driving high frequency vibrations (250Hz) or low 213 

frequency vibrations (100Hz). Vowels were coded in a similar feature-based manner, but were dynamic stimuli 214 

(e.g. swirls and sweeps) whereas consonants were static. Importantly, all consonant patterns lasted 120ms 215 

and all vowel stimuli lasted 220ms and there was a 100ms gap between each pattern. As a result, token-based 216 

stimuli were either 660ms or 880ms long. CVCC trained token-based stimuli used in fMRI analyses were 217 

880ms long while their VT vocoded counterparts had a mean duration of 727ms and standard deviation of 218 

91.6ms. A paired t-test revealed that token-based stimuli were significantly longer (t(8) = 4.99; p = 0.001) than 219 

their vocoded counterparts. Thus, not only did VT vocoded but not token based stimuli preserve the temporal 220 

dynamics found in auditory speech, but they also conveyed more information per unit time.   221 

Auditory Scan 222 

fMRI Experimental Procedures 223 

EPI images from nine event-related runs were collected using a clustered acquisition paradigm. Within each 224 

run, 30 words were presented three times in random order for a total of 90 trials. Each trial was 3s long and 225 

started with 1.5s of volume acquisition followed by the auditory word (during the silent period, see below, “Data 226 

Acquisition”; Fig. 1D). To maintain attention, subjects performed a 1-back task in the scanner: Subjects were 227 

asked to press a button in their left hand whenever the same word was presented on two consecutive trials. 228 

These catch trials comprised ten percent of the trials in each run. Furthermore, an additional ten percent of 229 

trials were null trials. During these trials, which lasted for 3s, no words were presented. In total, there were 118 230 
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trials per run, with each trial lasting 3s for a total of 354s, plus an additional 15s fixation at the start of the run. 231 

Thus, in total each run lasted 369s and the session lasted 43min. 232 

Data Acquisition 233 

MRI data were acquired at the Center for Functional and Molecular Imaging at Georgetown University on a 3.0 234 

Tesla Siemens Trio Scanner. We used whole-head echo-planar imaging sequences (flip angle = 90°, TE = 30 235 

ms, FOV = 205, 64x64 matrix) with a 12-channel head coil. A clustered acquisition paradigm (TR = 3000 ms, 236 

TA = 1500 ms) was used such that each image was followed by an equal duration of silence before the next 237 

image was acquired. 28 descending axial slices were acquired in descending order (thickness = 3.5 mm, 0.5 238 

mm gap; in-plane resolution = 3.0x3.0 mm2). This sequence was used in previous auditory studies from our lab 239 

(Chevillet et al., 2013). A T1-weighted MPRAGE image (resolution 1x1x1mm3) was also acquired for each 240 

subject. 241 

VT Scan 242 

fMRI Experimental Procedures 243 

EPI images from six event-related runs were collected. Within each run 30 stimuli (15 from the training set and 244 

15 additional words) were presented three times in random order for a total of 90 trials. A 4 second intertrial 245 

interval was used (Fig. 1D). As in the auditory scan, to maintain attention, subjects performed a 1-back task in 246 

the scanner: Subjects were asked to press a button in their left hand whenever the same stimulus was 247 

presented on two consecutive trials. These catch trials comprised ten percent of the trials in each run. 248 

Furthermore, an additional ten percent of trials were null trials during which subjects were presented with a 249 

blank screen for 3s. In total, there were 111 trials per run with each trial lasting 4s for a total of 444s plus an 250 

additional 10s fixation at the start and end of the run. Thus, in total each run lasted 464s and the session lasted 251 

46min. 252 

Data Acquisition 253 

MRI data were acquired at the Center for Functional and Molecular Imaging at Georgetown University on a 3.0 254 

Tesla Siemens Trio Scanner. We used whole-head echo-planar imaging sequences (TR = 2000ms, flip angle = 255 

90°, TE = 30 ms, FOV = 205, 64x64 matrix) with a 12-channel head coil. 33 interleaved descending axial slices 256 

were acquired (thickness = 3.5 mm, 0.5 mm gap; in-plane resolution = 3.0x3.0 mm2). A T1-weighted MPRAGE 257 

image (resolution 1x1x1mm3) was also acquired for each subject.  258 

fMRI Data Preprocessing 259 

Image preprocessing was performed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and AFNI. 260 

The first four acquisitions of each run were discarded to allow for T1 stabilization, and the remaining EPI 261 

images were slice-time corrected to the middle slice for the VT scans. No slice-time correction was performed 262 

for the auditory scans due to using a clustered acquisition paradigm due to temporal discontinuities between 263 

successive volumes (Perrachione and Ghosh, 2013). These images were then spatially realigned and 264 

submitted to the AFNI align_epi_anat.py function to co-register the anatomical EPI images for each subject. 265 
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This was used because, upon inspection, it provided better registration between the anatomical and functional 266 

scans than the corresponding SPM12 routine.  267 

Anatomical Preprocessing 268 

Freesurfer (Fischl et al., 1999) was used to reconstruct cortical surface models including an outer pial and 269 

inner white-matter surface. These surfaces were then brought into the SUMA environment and fit to a 270 

standardized meshe based on an icosahedron with 64 linear divisions using AFNI’s MapIcosehedron 271 

command (Oosterhof et al., 2011; Saad and Reynolds, 2011). This procedure yielded 81,924 nodes for each 272 

participant’s whole-brain cortical surface mesh. Each node on the standard mesh corresponds to the same 273 

location across subjects – thereby allowing node-wise group-level analysis. This improved the spatial 274 

resolution of our analyses since interpolation of the functional data is unnecessary (Oosterhof et al., 2011).  275 

Representational Similarity Analysis (RSA)  276 

Constructing Model Representational Dissimilarity Matrices (mRDMs) 277 

Two candidate mRDMs were generated: an auditory perceptual mRDM, and a VT vocoded perceptual mRDM. 278 

These mrDMs were generated by modifying an edit mRDM which was generated using an edit distance metric 279 

between word pairs in the stimulus set. Here, 1 edit was considered a substitution, insertion, or deletion of a 280 

single phoneme. Edit distances are frequently used with highly intelligible speech, for which there are no 281 

phoneme-to-phoneme dissimilarity data, and when more refined segment-to-segment distances are not 282 

available as was the case for the VT token-based algorithm. Furthermore, recent work (Kell et al., 2018) has 283 

shown that the representational format captured by the edit distance matches those found in both higher order 284 

STG speech regions and speech recognition-specific representations learned in later layers of a deep neural 285 

network. The auditory and VT vocoded perceptual mRDMs were similarly created using an edit distance but 286 

now weighting phoneme edit by either its auditory or VT vocoded perceptual confusability. Auditory and VT 287 

vocoded perceptual phoneme confusability was derived from a behaviorally measured perceptual auditory and 288 

VT vocoded phoneme identification task. This confusability was transformed into a distance measure using a 289 

phi-square transform (Iverson et al., 1998). Word-to-word distances were computed as the sum of the pairwise 290 

phoneme distances for all the position-specific phoneme pairs in each of the possible pairs of stimulus words. 291 

Given the difficulty of estimating a distance swap between consonants and vowels as well as between 292 

segments of different lengths, we restricted our analyses to CVCC words which were our most common 293 

segmental class (Fig. 1B). This resulted in a 9-by-9 auditory and VT perceptual mRDM for the CVCC trained 294 

words (Fig. 1E). These representational spaces are highly correlated (r = 0.94) and reflect the close 295 

representational congruence between auditory and VT vocoded stimuli. 296 

Whole-Brain Searchlight RSA Analysis 297 

RSA (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008) analyses were performed using the 298 

CoSMoMVPA toolbox (Oosterhof, Connolly, & Haxby, 2016), Surfing Toolbox (Oosterhof et al., 2011) and 299 

custom MATLAB code. Searchlights were constructed around each surface node by selecting the 30 closest 300 

voxels measured by geodesic distance. Within a given searchlight, the activity (t-statistic) in the voxels for each 301 
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condition constituted its pattern. A cocktail-blank removal was performed on this condition-by-voxel data matrix 302 

whereby the mean pattern of activity across conditions was removed for each voxel (Walther et al., 2016). A 303 

neural dissimilarity matrix (nRDM) was then computed in each searchlight by computing the pairwise Pearson 304 

correlation distance (1-Pearson Correlation) between the patterns of all pairs of conditions. To assess whether 305 

a given region represented stimuli in a hypothesized format, the nRDM was compared to the mRDM. This was 306 

done by taking the Spearman Correlation between the vectorized lower triangles of the nRDM and mRDM. 307 

This correlation was then Fischer z-transformed to render the correlations more normally distributed 308 

(Kriegeskorte et al., 2008). 309 

ROI-Based RSA Analysis 310 

ROI-based RSA analyses were performed in the VT scans to test if, following training, VT stimuli engaged 311 

auditory speech representations in functionally defined ROIs identified in the auditory scans. To do so, we 312 

averaged the Fischer z-transformed correlations of searchlights in a given ROI for the four groups (pre/post x 313 

vocoded/token). We then fit these average ROI correlations with a linear mixed effects model in R using the 314 

Lme4 Package. For both ROIs, we fit the maximal model that included three main effects, all interaction terms, 315 

as well as a random slope and intercept. The random effects terms allowed us to model the subject-specific 316 

variability in the pre-training and the training-related change in correlation. (Glasser et al., 2016)The final model 317 

is shown below: 318 
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The reference group corresponding to the intercept was specified as pre-training, token-based, right-319 

hemisphere. All βs reported reflect deviations from this reference group given the other effects. The model was 320 

estimated using REML and degrees of freedom were adjusted using the Satterthwaite approximations. Post-321 

hoc contrasts were computed using the emmeans package and all reported p-values were corrected for 322 

multiple comparisons using Tukey’s method. 323 

Task-Related Functional Connectivity 324 

Functional connectivity analyses were performed using the CONN-fMRI toolbox (Whitfield-Gabrieli & Nieto-325 

Castanon, 2012). To do so, native-space functional data were smoothed using an 8mm FWHM smoothing 326 

kernel. Next, anatomical scans were segmented to identify regions of white matter and CSF. We then 327 

regressed out the signals from these regions using CompCor (Behzadi, Restom, Liau, & Liu, 2007) as well as 328 

the main effect of task. Whole-brain seed-to-voxel correlation maps were then computed within each subject. 329 

Finally, we mapped each subject’s correlation maps to a standard cortical mesh using 3dVol2Surf in order to 330 

perform group analyses. 331 
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Whole-Brain Statistical Correction 332 

We tested the group-level significance of whole-brain RSA analyses as well as functional connectivity 333 

differences by first computing a t-statistic at each node on the standard surface. To correct these t-statistic 334 

maps for multiple comparisons, we first estimated the smoothness of the data for each analysis in each 335 

hemisphere using the AFNI/SUMA SURFFWHM command. We then used this smoothness estimate to 336 

generate noise surface maps using the AFNI/SUMA slow_surf_clustsim.py command. This then allowed us to 337 

generate an expected cluster size distribution at various thresholds that we compared clusters in our actual 338 

data to. For the auditory scan, we performed a one-sample t-test against 0 and applied a two-tailed cluster-339 

defining threshold of α = .001. For the functional connectivity analyses in the VT scan, we performed a two-340 

sample paired t-test to seed-to-voxel functional connectivity in subjects pre- and post-training. We applied a 341 

two-tailed cluster-defining threshold of α = .005. All resulting clusters were corrected at the p ≤ .05 level. 342 

Tables report the coordinates of the center of mass of clusters in MNI space and their location as defined by 343 

the Glasser Atlas (Glasser et al., 2016).  344 

  345 
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 346 

Figure 1: VT hardware, speech-to-tactile transformation algorithms, stimuli, fMRI experimental design, 347 

and model dissimilarity matrix. (A) Fourteen-channel MRI-compatible VT stimulator. (B) Shows the 348 

breakdown of the 30 words used in the study. The auditory scan used all the words, and subjects were trained 349 

on half of the words (“trained” set). Words were further broken down by their syllable structure (9 CVCC, 3 350 

CCVC, and 3 CVC words). (C) Shows the two transformations used to convert spoken words into tactile 351 

stimulation patterns. The token-based approach (top) assigns each phoneme a distinct VT pattern (see 352 

Methods section for more details). The vocoding approach (bottom) focuses on preserving the temporal 353 

dynamics between the auditory and VT stimuli. (D) Shows the auditory (top) and VT (bottom) fMRI one-back 354 

paradigms used in the study. In both paradigms, subjects focused on a central fixation cross, and pressed a 355 

button in their left hand if they heard or felt the same stimulus twice in a row. (E) The auditory and VT vocoded 356 

perceptual model representational dissimilarity matrix (mRDM) for the 9 CVCC trained words. The high 357 

correlation (r = 0.94) between mRDMs provide evidence for the targeted close representational congruence 358 

between auditory and VT vocoded stimuli.  359 
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Results 360 

Behavior 361 

Subjects (n=20) were trained to recognize stimuli derived from either a token-based of vocoded auditory-to-VT 362 

sensory substitution algorithm (Fig. 1C), Subjects completed 6 behavioral training sessions in which they 363 

performed a N-AFC task on each level (see Material and Methods). Only a single session was performed per 364 

day. To progress to the next level, subjects had to achieve at least 80% accuracy on the current level. Both 365 

vocoded and token-based achieved progressively higher levels in the behavioral training paradigm across 366 

training sessions (Fig. 2A). The median final levels achieved were 8 and 7 for the token-based and vocoded 367 

VT groups respectively. After the final post-training fMRI scan, subjects completed a 10-AFC test on the 368 

trained words (Fig. 2B). All subjects performed better than chance (10%) and the median accuracies were 369 

35.3% and 48.5% for the token-based and vocoded VT groups respectively. A two-sample t-test revealed no 370 

significant difference in accuracy between algorithm groups (t(18) = 0.386, p = 0.704). 371 

  372 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.05.04.442660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442660


 15

 373 

 374 

Figure 2: Progression of learning VT stimuli as speech. (A) Shows the leveling up of individuals on the 375 

behavioral training paradigm across sessions. Shaded lines connect the same individual across sessions. Data 376 

for the final session of two subjects was lost due to technical error. (B) Shows the performance of subjects by 377 

algorithm group on 10-AFC task completed after the final post-training fMRI scan. A two-sample t-test reveals 378 

no significant difference in performance between the groups (t(18) = 0.386, p = 0.704). Dashed red line 379 

indicates chance performance. Horizontal lines in the violin plots reflect the median.  380 
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Univariate fMRI Analysis  381 

Univariate analyses were conducted to examine the activation in response to the auditory and VT stimuli. In 382 

the auditory scan, the contrast of “All Words>Baseline” revealed bilateral Superior Temporal Gyrus (STG) 383 

activation (Table S1 and Fig. 3A). In the VT scans, unpaired two-sample t-tests revealed no significant 384 

differences between the vocoded and token-based groups in either the pre-training or post-training phase. 385 

Therefore, subjects were combined within training-phase to test for the cortical common response to VT 386 

stimulation. The contrast “All Vibrotactile Words>Baseline” revealed several regions, including bilateral 387 

supplementary motor area (SMA), precentral gyri (Table S1 and Fig. 3B-C). No significant clusters were 388 

identified for the post- vs pre- training contrast. To gain a better picture of the neuronal selectivity underlying 389 

these responses, we performed a series of RSA analyses. 390 

  391 
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 392 

Figure 3: Univariate activity for “Stimuli-Baseline” in the auditory and VT scans. (A) Shows the group-393 

level speech perception network revealed by the contrast of all auditory words > baseline. (B) Shows the pre-394 

training group-level VT perception network revealed by the contrast of all vibrotactile words > baseline. (C) 395 

Same as (B), but for post-training scans. Results are rendered on a SUMA-derived standard surface. All 396 

results are presented at a cluster-defining two-tailed α = 0.005 and p ≤ 0.05.  397 
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Supplementary Table 1: Univariate activity for all stimuli > baseline in the different scans 398 

 

Scan 

 

Hemi 

Cluster Name 

(Glasser ROIs) 

 

Tmax 

Cluster 

p-Value 

Center of Mass Coordinates (MNI) 

x y z 

Auditory RH Parabelt Complex 6.68 0.001 57 -13 3 

LH Parabelt Complex 6.79 0.001 -56 -19 5 

Auditory 5 Complex 7.46 0.001 -62 -36 7 

 

 

 

 

 

Pre-

Training  

RH Area PF Complex 7.57 0.001 55 -25 24 

Anterior Intraparietal Area 7.84 0.001 39 -39 42 

Supplementary and 

Cingulate Eye Field 

8.97 0.001 8 13 52 

Premotor Eye Fields 5.75 0.001 51 2 41 

Anterior Ventral Insular Area 6.45 0.001 30 25 3 

 

 

 

LH 

Area OP1/SII 10.78 0.001 -52 -27 23 

Rostral Area 6 8.04 0.001 -50 2 28 

Supplementary and 

Cingulate Eye Field 

8.40 0.001 -8 9 54 

Anterior Intraparietal Area 6.59 0.001 -45 -38 42 

Anterior Ventral Insular Area 7.64 0.001 -30 25 7 

Frontal Eye Fields 6.62 0.002 -30 -3 48 

 

 

 

Post-

Training  

 

 

RH 

Retroinsular Cotex 4.58 0.001 53 -32 25 

Supplementary and 

Cingulate Eye Field 

6.64 0.001 7 15 49 

Area PF Opercular 5.81 0.003 57 -16 22 

Area Posterior 24 Prime 7.17 0.019 7 2 65 

 

 

 

LH 

Rostral Area 6 6.60 0.001 -48 2 29 

Area PF Opercular 8.99 0.001 -59 -22 25 

Area PF Complex 7.12 0.001 -50 -40 26 

Supplementary and 

Cingulate Eye Field 

 

6.83 

0.001 -9 14 49 

Area 6 Anterior 6.07 0.001 -29 -5 48 

Anterior Intraparietal Area 5.85 0.002 -47 -35 42 

Anterior Intraparietal Area 5.71 0.002 -35 -44 40 
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Whole-brain searchlight analysis reveals bilateral STG regions are engaged in the perception of 400 
spoken vocoded words 401 

We conducted a whole-brain searchlight RSA analysis to identify regions showing selectivity for auditory 402 

vocoded words. In each searchlight we constructed a neural RDM that was correlated to the auditory 403 

perceptual mRDM (see Methods). The group-level t-statistic map was thresholded at a two-tailed α = .001 and 404 

the resulting clusters were corrected at two-tailed p ≤ 0.05 (Fig. 4). This revealed left (x = -58, y = -18, z = 5; α 405 

= 0.001; p = 0.001) and right mid-STG (x = 58, y = -14, z = 3; α = 0.001; p = 0.016) clusters. Of the 75 nodes in 406 

the left mid-STG cluster, 8 are in left A1, 21 are in the lateral belt, 28 are in the parabelt, and 31 are in A4 as 407 

defined by the Glasser Atlas. Of the 44 nodes in the right mid-STG cluster, 0 are in right A1, 12 are in the 408 

lateral belt, 25 are in the parabelt, and 16 are in A4. Thus, the regions identified in this analysis are non-409 

primary auditory cortical regions that are likely selective for complex auditory spectrotemporal patterns involved 410 

in speech perception (Hamilton et al., 2020).  411 
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 413 

 414 

Figure 4: Auditory Scan – Representational similarity analysis (RSA) of vocoded auditory words. RSA 415 

revealed that neural RDMs in bilateral STG regions significantly correlated with the predicted auditory 416 

perceptual mRDM (Fig. 1E) (n=18; α = 0.001; p ≤ .05). The center of mass of the left STG cluster was centered 417 

on MNI: -58, -18, 5. The center of mass of the right STG cluster was centered on MNI: 58, -14, 3. Colors reflect 418 

across-subject t-statistics.  419 
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ROI-based analysis reveals that the right auditory word-selective region shows selectivity for VT 420 
vocoded, but not token-based words following VT speech training 421 

Next, we conducted ROI-based RSA analyses to test the prediction that trained VT stimuli would engage the 422 

same representations as auditory words in the mid-STG. To do so, we first computed the average Fisher 423 

transformed correlation between the vibrotactile nRDMs and the auditory perceptual mRDM for the 9 trained 424 

CVCC words in the VT scans. A linear mixed-effects model was then constructed (see Methods) to test the 425 

effects of training phase, algorithm, hemisphere, as well as the interaction among them. This analysis revealed 426 

a significant interaction effect between training phase and algorithm (β = 0.240, t(31.09) = 2.679, p = 0.012; 427 

Table S2). Post-hoc tests revealed a significant (t(31.1) = 3.380, p = 0.010 Tukey-adjusted) increase between 428 

the pre- and post-training correlations in the right mSTG for the vocoded but not (t(31.1) = -0.408, p = 0.977 429 

Tukey-adjusted) the token-based group. Furthermore, post-hoc tests did not reveal a significant increase 430 

between the pre- and post-training correlations in the left mSTG for either the vocoded (t(31.1) = 1.781, p = 431 

0.302 Tukey-adjusted) or the token-based (t(31.1) = 0.250, p = 0.994 Tukey-adjusted) group. Although there 432 

was no significant three-way interaction, we performed exploratory analyses to compare the correlation 433 

between the left vs. right mid-STG. This revealed significantly (t(9) = 2.783, p = 0.021) higher correlations post-434 

training in the right than left mSTG. In addition, there was a marginally significant (t(9) = 2.185, p = 0.057) 435 

difference when the difference between pre- and post-training correlations were compared between the right 436 

and left mid-STG. These results indicate that trained VT stimuli based on vocoded speech engaged auditory 437 

speech representations in the mid-STG and did so more strongly than token-based VT stimuli, and there was 438 

no evidence that token-based VT stimuli engaged these auditory speech representations. Furthermore, there is 439 

evidence that this effect may be stronger in the right hemisphere than the left.  440 

The noteworthy difference in the engagement of mid-STG auditory speech representations for the vocoded but 441 

not token-based VT stimuli raised the question what other brain areas might underlie subjects’ ability to learn 442 

the token-based VT stimuli as words (see Fig. 2). A possible explanation of the results is that because the 443 

token-based representation is not well matched to auditory speech representations (e.g., in its temporal 444 

dynamics), to learn the association between the two, the brain must rely on alternate strategies such as those 445 

used to learn arbitrary associations between pairs of stimuli. A key region involved in learning such 446 

associations is the hippocampus (McClelland et al., 1995; O’Reilly and Rudy, 2001). Therefore, we tested 447 

whether the hippocampus encoded token-based stimuli after training.  448 
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 449 

Figure 5: Vocoded but not token-based VT stimuli are represented in mid-STG auditory speech region 450 

following VT speech training. Linear mixed-effects analysis revealed a significant two-way interaction 451 

between Training Phase and Algorithm (β = 0.240, t(31.1) = 2.679, p = 0.012). To investigate this interaction, 452 

we created interaction effects plots. (A) The mean Fisher-transformed Pearson correlation between neural and 453 

model RDMs estimated from the mixed-effects model for the vocoded group are represented by the opaque 454 

lines. For the VT vocoded group, post-hoc tests show a significant difference between pre- and post-training in 455 

the right (t(31.1) = 3.380, p = 0.010 Tukey-adjusted) but not the left STG (t(31.1) = 1.781, p = 0.302 Tukey-456 

adjusted). (B) The same as (A) but for the token-based group. Post-hoc tests show no significant difference in 457 

the right (t(31.1) = 0.408, p = 0.977 Tukey-adjusted) or left STG (t(31.1) = 0.250, p = 0.994 Tukey-adjusted). 458 

Values above each violin reflect the uncorrected p-value from a one-sample t-test against 0. Semi-transparent 459 

lines reflect raw individual subject correlations from either the left (teal) or right (orange) STG. Horizontal lines 460 

in the violin plots reflect the median. Green asterisk marks significant (p≤.05) differences after multiple 461 

comparisons correction.  462 
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ROI-based analysis reveals that the Left Hippocampus is engaged during perception of VT token-463 
based, but not vocoded stimuli  464 

We therefore next tested the hypothesis that VT speech perception training led to an encoding of the VT stimuli 465 

in the hippocampus. If trained VT speech stimuli were stored in a representation that reflected the associated 466 

auditory speech stimuli, then we would expect neural activation pattern similarity for the VT stimuli to correlate 467 

with the perceptual similarity of the auditory speech stimuli post- but not pre-training. To test this hypothesis, 468 

we correlated neural activation patterns in response to VT speech stimuli in the two different encoding 469 

schemes with the auditory perceptual mRDM before and after training. These correlations were then fit with a 470 

linear mixed effects model. This analysis revealed a significant two-way interaction between training phase and 471 

hemisphere (β = 0.095, t(36) = 2.696, p = 0.011; Fig. 6; Table S3) as well as a significant three-way interaction 472 

effect between training phase, algorithm, and hemisphere (β = -0.151, t(36) = -3.027, p = 0.005; Table S3). 473 

The three-way interaction suggests that the relationship between training phase and hemisphere varied 474 

depending on the algorithm. Post-hoc tests revealed a significant (t(30.7) = 3.232, p = 0.0148 Tukey-adjusted) 475 

training-related increase in correlations for the token-based but not vocoded (t(30.7) = 0.785, p = 0.861 Tukey 476 

Adjusted) VT group in the left hemisphere. In the right hemisphere, there was a trending increase in correlation 477 

for the vocoded group (t(30.7) = 2.387, p = 0.101 Tukey Adjusted) but not the token-based (t(30.7) = .506, p = 478 

0.957 Tukey Adjusted) VT group.  479 
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 480 

Figure 6: Token-based but not vocoded VT speech stimuli are represented in the left hippocampus 481 

following training. Linear mixed-effects analysis revealed a significant three-way interaction between Training 482 

Phase, Algorithm, and Hemisphere (β = -0.151, t(36) = -3.027, p = 0.005). To investigate this interaction, we 483 

created interaction effects plots. (A) The mean Fisher-transformed Pearson correlation between neural and 484 

model RDMs estimated from the mixed-effects model for the vocoded group are represented by the opaque 485 

lines. For the VT vocoded group, post-hoc tests show a trending difference between pre- and post-training in 486 

the right (t(30.7) = 2.387, p = 0.101 Tukey-adjusted) but not the left STG (t(30.7) = 0.785, p = 0.861 Tukey-487 

adjusted). (B) The same as (A) but for the token-based group. Post-hoc tests show no significant difference in 488 

the right (t(30.7) = 0.506, p = 0.957 Tukey-adjusted), but do show a significant difference in the left STG 489 

(t(30.7) = 3.232, p = 0.015 Tukey-adjusted). Values above each violin reflect the uncorrected p-value from a 490 

one-sample t-test against 0. Semi-transparent lines reflect raw individual subject correlations from either the 491 

left (teal) or right (orange) STG. Horizontal lines in the violin plots reflect the median. Green asterisk and 492 

orange tilde mark significant (p≤.05) and trending (p≤.1) differences, respectively, after multiple comparisons 493 

correction.  494 
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 496 

Supplementary Figure 1: Whole-brain Searchlight RSA of Trained CVCC VT Stimuli with the Auditory 497 

Perceptual mRDM. (A-C) Whole-brain RSA results for the VT vocoded stimuli. (A) Pre-training scan: Fischer 498 

transformed correlation against 0. (B) Post-training scan: Fischer transformed correlation against 0. (C) Post 499 

minus Pre-Training change in the Fischer transformed correlations. (D-F) same as (A-C) but for the token-500 

based stimuli. All results are at an uncorrected two-tailed voxel-wise threshold α = 0.05 with a extent threshold 501 

of 50mm2. Colors reflect across-subject t-statistics.  502 
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Supplementary Table 2: Linear Mixed-Effects Model Summary for the mid-STG ROIs 503 

  504 

Summary of Linear Mixed Effects Model: mid-STG ROIs 

Fixed Effects  

Predictors β Estimate Confidence Interval T-Statistic DOF p-value 

Intercept 0.063 -0.02 – 0.14 1.566 35.34 0.126 

Training Phase -0.026 -0.15 – 0.10 -0.408 31.09 0.686 

Algorithm -0.086 -0.20 – 0.03 -1.507 35.34 0.141 

Hemisphere -0.026 -0.12 – 0.06 -0.578 36 0.567 

Training Phase:Algorithm 0.240 0.06 – 0.41 2.679 31.09 0.012 

Algorithm:Hemisphere 0.018 -0.11 – 0.14 0.277 36 0.783 

Training Phase:Hemisphere 0.042 -0.09 – 0.17 0.643 36 0.524 

Training Phase: 

Algorithm:Hemisphere 

-0.143 -0.32 – 0.04 -1.559 36 0.128 

Random Effects  

Groups Effect Name σ (std. deviation) Variance Correlation Structure 

Subj Intercept 0.075 0.006 N/A -0.60 

 Training 

Phase 

0.138 0.019 -0.60 N/A 

Residual  0.102 0.010  
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Supplementary Table 3: Linear Mixed-Effects Model Summary for the Hippocampus ROIs 505 

  506 

Summary of Linear Mixed Effects Model: Hippocampus ROIs 

Fixed Effects  

Predictors β Estimate Confidence Interval T-Statistic DOF p-value 

Intercept -0.015 -0.06 – 0.03 -0.668 34.94 0.508 

Training Phase 0.018 -0.05 – 0.09 0.506 30.67 0.616 

Algorithm 0.002 -0.06 – 0.07 0.066 34.94 0.948 

Hemisphere -0.029 -0.08 – 0.02 -1.185 36 0.244 

Training Phase:Algorithm 0.066 -0.04 – 0.17 1.330 30.67 0.193 

Algorithm:Hemisphere 0.043 -0.03 – 0.11 1.211 36 0.234 

Training Phase:Hemisphere 0.095 0.02 – 0.17 2.696 36 0.011 

Training Phase: 

Algorithm:Hemisphere 

-0.151 -0.25 – -0.05 -3.027 36 0.005 

Random Effects  

Groups Effect Name σ (std. deviation) Variance Correlation Structure 

Subj Intercept 0.042 0.002 N/A 0.03 

 Training 

Phase 

0.077 0.006 0.03 N/A 

Residual  0.056 0.003  
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Training with Vocoded VT Speech Stimuli Increases Functional Connectivity Between Somatosensory 507 
and Auditory Regions 508 

Previous studies showed that learning is accompanied by increased functional connectivity between cortical 509 

areas (Lewis et al., 2009; Siuda-Krzywicka et al., 2016; Urner et al., 2013). Therefore, we tested the 510 

hypothesis that training on the vocoded VT word stimuli was associated with increased functional connectivity 511 

of somatosensory regions and the auditory word-selective right mid-STG ROI (Fig. 4). To do so, we computed 512 

the training-related changes in the right mid-STG seed-to-voxel functional connectivity in the vocoded group 513 

(Fig. 7A, Table S4). This revealed two clusters, one in the left STG (x = -50, y = -19, z = 7; α = 0.005; p = 514 

0.044) and another in the left secondary somatosensory (SII) (x = -55, y = -28, z = 21; α = 0.005; p = 0.026). 515 

Furthermore, reasoning that VT stimulation on the right arm would engage the left SII region, we performed an 516 

additional seed-to-voxel analysis using the left SII seed defined by the Glasser atlas (Glasser et al., 2016). This 517 

complementary analysis revealed two clusters, one in the right insula and Heschl’s Gyrus (x = 40, y = -17, z = 518 

11; α = 0.005; p = 0.001) and another in the right STG (x = 63, y = -22, z = 7; α = 0.005; p = 0.001). The left SII 519 

also showed an increase in connectivity to the left central sulcus (x = -40, y = -19, z = 42; α = 0.005; p = 520 

0.001). Using the left mid-STG region as a seed revealed significantly increased connectivity with the right 521 

STG while using the right SII revealed significant training-related changes confined to bilateral SII. (Fig. S2, 522 

Table S4). Similar seed-to-voxel analyses also using the left hippocampus or the bilateral mid-STG ROIs as 523 

seeds revealed no significant training-related differences in the token-based group. This pattern of training-524 

related functional connectivity between somatosensory and auditory areas for VT vocoded but not token based 525 

stimuli was also found when calculating ROI-to-ROI functional connectivity (Fig. S3). These results support a 526 

model in which vocoded VT speech training leads to increased functional connectivity between somatosensory 527 

areas and auditory speech areas. 528 

529 
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  530 
Figure 7: Training related differences in seed-to-voxel functional connectivity for vocoded VT stimuli. 531 

(A) Using the right mid-STG ROI (Fig. 4) as a seed revealed two significant clusters of increased functional 532 

connectivity after training in the left STG (MNI: -50, -19, 7) and in the left supramarginal gyrus (MNI: -55, -28, 533 

21). (B)  Using the left SII seed derived from the Glasser atlas revealed a significant cluster in the left central 534 

sulcus (MNI: -40, -19, 42). It also identified two significant clusters in the right hemisphere. The first 535 

encompassed right insula and Heschl’s gyrus (MNI: 40, -17, 11). The other is on the right STG (MNI: 63, -22, 536 

7). All results shown are corrected at two-tailed voxel-wise α = 0.005 and cluster-p ≤ 0.05. Colors reflect 537 

across-subject t-statistics. 538 

  539 
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Supplementary Table 4: Training-related changes in functional connectivity in the vocoded group. 540 

 

Seed ROI 

 

Hemi 

Cluster Location 

(Glasser ROIs) 

 

Tmax 

Cluster 

p-Value 

Center of Mass Coordinates (MNI) 

x y z 

lS2  

RH 

Insular Granular Complex 8.04 0.001 40 -17 11 

Auditory 5 Complex 8.44 0.001 63 -22 7 

LH Primary Motor Cortex 7.73 0.012 -40 -19 42 

lSTG RH Lateral Belt Complex 6.54 0.001 53 -18 6 

rS2 RH Posterior Insular Area 2 7.41 0.017 37 -8 6 

LH Area OP2-3/VS 5.73 0.026 -42 -16 20 

rSTG  

LH 

Area PFcm 8.20 0.026 -55 -28 21 

Lateral Belt Complex 6.75 0.044 -50 -19 7 

  541 
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 542 
Supplementary Figure 2: Training-related differences in seed-to-voxel functional connectivity for 543 

vocoded VT stimuli using the left STG and right SII seeds. (A) Using the left mid-STG ROI (Fig. 4) as a 544 

seed revealed one significant cluster of increased functional connectivity after training in the right mid-STG 545 

(MNI: 55, -16, 3). (B)  Using the right SII seed derived from the Glasser atlas revealed a significant cluster in 546 

the left opercular region (MNI: -42, -15, 20) and right posterior Insula (MNI: 37, -3, 7). All results shown are 547 

corrected at two-tailed voxel-wise α = 0.005 and cluster-p ≤ 0.05. Colors reflect across-subject t-statistics. 548 
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 549 
Supplementary Figure 3: ROI-to-ROI based functional connectivity reveals significantly increased 550 

coupling between the auditory and somatosensory system after training on VT vocoded stimuli. (A-B) 551 

Shows the ROI-to-ROI functional connectivity for the VT vocoded-based group during post (A) and pre (B) 552 

training scans. (D-E) Same as (A-B) but for the VT token-based group. Color bar reflects the Fischer-553 

transformed Pearson correlation between ROIs. A paired t-test was performed to compare changes in 554 

functional connectivity relative to baseline. Green asterisks mark p ≤ 0.05 FDR corrected. (C, F) Shows the 555 

post-pre training correlations for the VT vocoded and token-based groups respectively. Color bar reflects the 556 

Post-Pre training difference between ROIs. A paired t-test was performed to compare changes in functional 557 

connectivity post-pre training. Green asterisks mark p ≤ 0.05 FDR corrected.  558 
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Discussion 559 

Metamodal theories of brain organization (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001) propose 560 

that cortical areas are best described by their task-specific sensory modality-invariant function. However, 561 

mixed evidence for metamodal brain organization in neurotypical individuals (Amedi et al., 2007; Bola et al., 562 

2017; Ptito et al., 2005; Sadato et al., 1996; Siuda-Krzywicka et al., 2016) has raised the question of if and 563 

under what conditions metamodal engagement occurs. We argue, based on theoretical considerations, that 564 

testing the metamodal hypothesis requires not just a consideration of high-level tasks (Marr’s (Marr, 1982) top 565 

level of “computational theory”) but also and critically their algorithmic implementation (Marr’s second level). In 566 

the current study, we investigated this hypothesis by training subjects on the same task (recognition of 567 

vibrotactile stimuli derived from auditory words) using one of two different auditory-to-VT sensory substitution 568 

algorithms.  One algorithm (vocoded) preserved the temporal modulations of auditory speech while the other 569 

algorithm (token) attempted to establish an abstract congruence between VT patterns and the phonetic 570 

features found in speech. First, using whole-brain searchlight RSA we identified auditory perceptual speech 571 

representations whose locations along the superior temporal gyrus are compatible with models of the auditory 572 

ventral speech recognition stream (DeWitt and Rauschecker, 2012; Hickok and Poeppel, 2007; Rauschecker 573 

and Scott, 2009). Notably, this speech selectivity was found bilaterally, in agreement with other models of 574 

speech processing in the brain (Hickok and Poeppel, 2007). We then showed that, before training, neither the 575 

vocoded nor the token-based VT stimuli selectively engaged these auditory speech areas, as expected. Next, 576 

over the course of six behavioral sessions, we trained two groups of subjects to recognize the VT-encoded 577 

word stimuli, with each group trained on a different encoding scheme. Both groups of subjects achieved 578 

comparable levels of proficiency, eliminating performance differences as a reason for the different training 579 

effects at the neural level. Crucially, RSA revealed that after training, only the vocoded but not the token-based 580 

VT stimuli engaged an auditory-speech selective region in the mid-STG (Hamilton et al., 2020). In addition, 581 

both encoding schemes (to different degrees) appeared to engage hippocampal areas previously implicated in 582 

paired-associate learning. Finally, we found evidence that metamodal engagement of the mid-STG by vocoded 583 

VT stimuli was associated with a training-related increase in functional coupling between the mid-STG and 584 

secondary somatosensory areas. Evidence of training-related increases in functional coupling was not found 585 

for token-based stimuli. 586 

In this study, we show that adequately capturing (and eventually harnessing) the metamodal potential of cortex 587 

requires not only the right task and sensory modalities but also an understanding of the information 588 

representation in these regions. Prior work has primarily investigated metamodal engagement in congenitally 589 

sensory-deprived individuals (Arno et al., 2001; Bola et al., 2017; Lomber et al., 2010; Ptito et al., 2005; Reich 590 

et al., 2011; Sadato et al., 1996). In such cortical areas, given the right task-relevant connectivity, bottom-up 591 

input from another sensory modality can conceivably drive the de novo learning of task-relevant 592 

representations even for encoding schemes very different from those in neurotypical individuals (Striem-Amit et 593 

al., 2012). However, in neurotypical adults, existing representations in traditionally unisensory areas reflect the 594 

task-relevant features of the typical sensory input (Lewicki, 2002; Simoncelli and Olshausen, 2001). Therefore, 595 
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for metamodal engagement to occur, information partially processed in one sensory hierarchy needs to 596 

interface with pre-existing representations derived from the typical modality. The lack of evidence for 597 

metamodal engagement of the mid-STG by token-based VT stimuli in our study and the mixed evidence in 598 

prior studies of neurotypical individuals may reflect a failure to perform this interface mapping. 599 

The ability to map between representational formats in different sensory hierarchies likely depends on both 600 

anatomical and functional convergence. Anatomical tracer (Mothe et al., 2006a; Schroeder et al., 2003; Smiley 601 

et al., 2007) and studies in non-human primates (Kayser et al., 2009; Schroeder et al., 2001) as well as 602 

neuroimaging studies in humans (Foxe et al., 2002; Ro et al., 2013) have established convergence points 603 

between somatosensory and auditory cortices including belt and parabelt areas. Given this connectivity, prior 604 

computational studies have shown that the mapping between different representational formats can be learnt 605 

through simple biologically plausible learning rules (Davison and Frégnac, 2006; Pouget and Sejnowski, 1997; 606 

Pouget and Snyder, 2000). Still, while it is simple to learn the mapping between static features, it is non-trivial 607 

to match the temporal dynamics between functional hierarchies. For example, Davison and Frégnac (2006) 608 

computationally demonstrated the importance of temporally coherent activity between representational formats 609 

when learning the mapping between cross-modal temporal sequences using spike-timing-dependent plasticity 610 

mechanisms. In the auditory cortex specifically, studies (Moore and Woolley, 2019; Overath et al., 2015) have 611 

shown that auditory stimuli that do not preserve the same temporal modulations found in conspecific 612 

communication signals (e.g., speech, birdsong, etc.) sub-optimally drive higher-order auditory cortex and 613 

preclude learning. Recent human intracranial EEG studies (Hamilton et al., 2018; Hullett et al., 2016) have 614 

demonstrated that middle superior temporal cortex is characterized by very short temporal receptive fields 615 

necessitating relatively rapid changes in the somatosensory signal. Accordingly, we find, in the current study, 616 

that only vocoded stimuli that preserve these fast temporal dynamics are able to drive auditory perceptual 617 

speech representations in the mid-STG. Conversely, the different dynamics (see Materials and Methods) of 618 

token-based VT stimuli relative to auditory speech may explain why these stimuli were unable to interface with 619 

mid-STG speech representations. 620 

Intriguingly, we find stronger evidence of metamodal engagement by VT vocoded stimuli in the right rather than 621 

left mid-STG. A significant body of work (Albouy et al., 2020; Boemio et al., 2005; Flinker et al., 2019; Giraud 622 

and Poeppel, 2012; Obleser et al., 2008; Zatorre and Belin, 2001) suggests that the left and right STG are 623 

differentially sensitive to spectrotemporal content of auditory stimuli. Specifically, it has been proposed (Flinker 624 

et al., 2019) that the left STG tends to sample auditory information on fast and slow timescales while the right 625 

preferentially does the latter. In the current study, our VT vocoded stimuli preserve the coarse temporal 626 

dynamics of auditory speech, but due to hardware limitations have a lower temporal resolution than the 627 

auditory source signal. In addition, the temporal resolution of vibrotactile perception is lower than that of 628 

auditory processing, with receptors in the skin acting as an additional low pass filter (Bensmaïa and Hollins, 629 

2005). Thus, the observed metamodal coupling with the right rather than the left STG provides intriguing 630 

support for the asymmetric spectrotemporal modulation theory of hemispheric processing (Flinker et al., 2019).  631 
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Given that subjects were able to learn token-based and vocoded VT stimuli as words with roughly equal 632 

proficiency, how do token-based stimuli engage spoken word representations? Due to the slower temporal 633 

dynamics of token-based stimuli, we initially hypothesized that these stimuli may map onto higher order speech 634 

representations in areas such as the superior temporal sulcus (STS) or anterior STG that integrate temporal 635 

information on longer timescales (Hullett et al., 2016; Overath et al., 2015). However, we did not find evidence 636 

for this in the current study. An anatomical tracer study by De La Mothe (Mothe et al., 2006b) showed strong 637 

evidence of connectivity between somatosensory cortex and mid and posterior but not anterior superior 638 

temporal areas. Thus, a homologous lack of connectivity between somatosensory and anterior superior 639 

temporal areas in humans may explain why we observed no engagement of those areas after training. 640 

However, we did find evidence that token-based stimuli engage neural representations in the left hippocampus. 641 

This result fits with previous proposals that learned associations can be retrieved using paired-associate recall 642 

circuits in the medial temporal lobe (Miyashita, 2019). A more thorough understanding of this process through 643 

future studies will shed additional insight into which pathways and mechanisms are leveraged to learn different 644 

types of associations. 645 

Previous studies have suggested that metamodal engagement is a result of top-down processes such as 646 

mental imagery rather than bottom-up processes (Lacey et al., 2009). However, given that in our study, 647 

subjects in both algorithm groups were equally proficient at recognizing VT stimuli as words, mental-imagery 648 

accounts (Borst and Gelder, 2016; Li et al., 2020; Oh et al., 2013; Tian et al., 2018) in this case would predict 649 

that both groups should engage auditory perceptual representations in the mid-STG. Yet, we found no 650 

evidence that the token-based VT stimuli engaged this area after training in the same way as auditory speech 651 

(see also (Siuda-Krzywicka et al., 2016; Striem-Amit et al., 2012)). Thus, it is unlikely that metamodal 652 

engagement of the mid-STG by vocoded stimuli is driven by top-down mechanisms. 653 

Most prior studies (Amedi et al., 2002, 2007; Reich et al., 2011; Siuda-Krzywicka et al., 2016; Striem-Amit et 654 

al., 2012, 2015; Vetter et al., 2020) have demonstrated metamodal engagement in visual cortex. Our study 655 

extends these findings to show that metamodal engagement is possible in auditory cortex as well. To our 656 

knowledge, metamodal engagement of auditory cortex has been limited to posterior auditory association cortex 657 

(pSTS) and has only been found in congenitally deaf but not hearing individuals (Benetti et al., 2017, 2020; 658 

Bola et al., 2017; Twomey et al., 2017). Furthermore, these studies did not find evidence of metamodal 659 

engagement in neurotypical individuals. In contrast, our study provides novel evidence for metamodal 660 

engagement of intermediate auditory areas. This is particularly noteworthy given the sparse evidence for 661 

metamodal engagement of intermediate sensory areas (Heimler and Amedi, 2020). The dearth of evidence is 662 

likely due to a lack of knowledge of the structure of stimulus representations in these regions, which our work 663 

suggests is critical for successful metamodal engagement. 664 

In summary, our results provide further evidence for the metamodal theory and advance it by demonstrating 665 

the importance of matching representational formats between functional hierarchies for achieving metamodal 666 

engagement. In particular, our results suggest that matching the temporal dynamics of representations is an 667 

important consideration when considering the feasibility of learning the appropriate mapping. This extends 668 
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theories (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001) that emphasize a cross-modal congruences 669 

at the Computational/Task level by additionally highlighting the need for an algorithmic congruence. Taking this 670 

need for algorithmic congruence into account may provide insight into how the brain learns to map between 671 

various levels of different functional hierarchies like sub-lexical and lexical orthography and phonology (Share, 672 

1999). Furthermore, it suggests that therapeutic sensory substitution devices might benefit from different 673 

designs for patients with acquired rather than congenital sensory deprivation. For the former group, careful 674 

consideration should be given to the type of sensory substitution device that best interfaces with spared 675 

sensory representations. The ability to “piggyback” onto an existing processing hierarchy (e.g., auditory speech 676 

recognition) may facilitate the rapid learning of novel stimuli presented through a spared sensory modality 677 

(e.g., VT). Here we demonstrate that an algorithm (vocoding) that improves this interfacing is able to more 678 

efficiently convey the same information than an algorithm (token) that does not. Future work should explore 679 

whether this observed integration into existing processing streams leads to improved generalization and 680 

transfer of learning.  681 
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