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Summary 29 

It has been postulated the brain is organized by “metamodal”, sensory-independent cortical modules 30 

implementing particular computations. Yet, evidence for this theory has been variable. We hypothesized that 31 

effective metamodal engagement requires not only an abstract, “cognitive” congruence between cross-modal 32 

stimuli but also a congruence between neural representations. To test this hypothesis, we trained participants 33 

to recognize vibrotactile versions of auditory words using two encoding schemes. The vocoded approach 34 

preserved the dynamics and representational similarities of auditory speech while the token-based approach 35 

used an abstract phoneme-based code. Although both groups learned the vibrotactile word recognition task, 36 

only in the vocoded group did trained vibrotactile stimuli recruit the auditory speech network and lead to 37 

increased coupling between somatosensory and auditory speech areas. In contrast, the token-based encoding 38 

appeared to rely on paired-associate learning. Thus, matching neural input representations is a critical factor 39 

for assessing and leveraging the metamodal potential of cortical modules.  40 
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Introduction 41 

The dominant view of brain organization revolves around cortical areas dedicated for processing information 42 

from specific sensory modalities. However, emerging evidence over the past two decades has led to the idea 43 

that many sensory cortical areas are “metamodal”, i.e., characterized by computations that are task-specific, 44 

yet invariant to sensory modality (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001). Early evidence for 45 

sensory modality-invariant processing in cortical areas comes from cross-modal plasticity studies in sensory-46 

deprived populations (Rauschecker, 1995; Rauschecker et al., 1992; Sadato et al., 1996; Théoret et al., 2004). 47 

These studies showed that cortical areas traditionally considered to be dedicated to unisensory processing 48 

could be recruited by stimuli from another, non-preferred sensory modality. Interestingly, although broad 49 

swaths of cortex no longer received the normal sensory input in these populations, non-preferred modality 50 

stimuli activated the specific cortical areas relevant normally relevant for a particular task in the preferred 51 

sensory modality, such as localization and recognition (Amedi et al., 2007; Bi et al., 2016; Bola et al., 2017, 52 

2020; Lomber et al., 2010; Meredith et al., 2011; Ptito et al., 2005; Reich et al., 2011; Renier et al., 2014; 53 

Striem-Amit et al., 2012). This task-specific cross-modal engagement is thought to reflect a functional 54 

unmasking of existing anatomical connections. Importantly, there is evidence for cross-modal engagement of 55 

traditionally unisensory areas even in neurotypical individuals (Amedi et al., 2007; Renier et al., 2005, 2010; 56 

Siuda-Krzywicka et al., 2016) – thereby opening the door to recruiting previously established sensory 57 

processing pathways for novel sensory modalities. A prime example of this process is reading, which is initially 58 

thought to recruit auditory speech processing pathways through grapheme-to-phoneme conversion (Pugh et 59 

al., 2001), and the same idea has given rise to promising therapeutic applications such as sensory substitution 60 

devices (SSDs, which, for instance enable processing of visual information in blind individuals by translating 61 

camera input to acoustic stimuli (Bach-y-Rita and Kercel, 2003; Meijer, 1992). Yet, other studies (Benetti et al., 62 

2017, 2020; Bola et al., 2017; Fairhall et al., 2017; Mattioni et al., 2020; Pietrini et al., 2004; Twomey et al., 63 

2017; Vetter et al., 2020) have failed to find or have found far less robust evidence of cross-modal engagement 64 

in neurotypical subjects, raising the critical question of the conditions under which a particular sensory area 65 

can be successfully recruited for “metamodal” processing.   66 

Metamodal engagement of sensory areas may depend on the ability of cross-modal stimuli to interface with 67 

existing patterns of neuronal activity in a target area. Prior studies (Amedi et al., 2002, 2007; Striem-Amit et al., 68 

2012) have emphasized that metamodal engagement of a cortical area, in addition to the presence of task-69 

relevant connectivity, depends on the congruence between preferred and non-preferred modality 70 

representations (Hannagan et al., 2015; Mahon and Caramazza, 2011; Saygin et al., 2012, 2016). This 71 

congruence is often framed as a cognitive congruence between cross-modal stimuli. For example, it has been 72 

argued (Reich et al., 2011; Striem-Amit et al., 2012) that metamodal engagement of the posterior fusiform 73 

cortex through Braille and written word stimuli occurs because stimuli in both modalities convey “shape” 74 

information. However, many studies (Benetti et al., 2017, 2020; Bola et al., 2017; Fairhall et al., 2017; Kanjlia 75 

et al., 2018; Kupers et al., 2006; Mattioni et al., 2020; Pietrini et al., 2004; Ptito et al., 2005; Twomey et al., 76 

2017; Vetter et al., 2020) that ensure a cognitive congruence and shared task demands do not find evidence of 77 
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cross-modal stimuli engaging the same task-relevant neural representations in neurotypical individuals. One 78 

possible explanation may be that neurotypical individuals, but not congenitally sensory-deprived individuals, 79 

have already learned representations in the targeted brain area that are optimized for the conventional sensory 80 

input to that region. As a result, successful metamodal coupling in neurotypical individuals may be contingent 81 

on neural representations associated with novel-modality stimuli directly mapping onto pre-existing neural 82 

representations in the standard modality. A failure to achieve this neural (i.e., as opposed to a more abstract 83 

“cognitive”) congruence would then be predicted to impede or even preclude metamodal engagement. As a 84 

result, metamodal engagement of a sensory area does not merely depend on a cognitive congruence between 85 

cross-modal stimuli, but more specifically on their ability to achieve a neural congruence in that region. 86 

In the present study, we test the hypothesis that cross-sensory recruitment of existing learned sensory 87 

processing pathways critically depends on this representational match. Specifically, we focused on auditory-to-88 

tactile sensory substitution. This field has a long history dating back to the invention of the Tadoma method 89 

(Alcorn, 1945) – a method whereby deaf individuals learn to perceive auditory speech received via vibrotactile 90 

(VT) input from their fingers which are placed over the articulators of a speaker. Over a century of work on 91 

auditory-to-tactile sensory substitution has led to the development of VT speech aids (Gault, 1924, 1926). 92 

These devices have been used successfully to teach both deaf and hearing individuals to recognize auditory 93 

speech through touch (Bernstein et al., 1991; Brooks and Frost, 1983; Cieśla et al., 2019). Here we used such 94 

a device to train two neurotypical groups of adult subjects on the same word recognition task, with each group 95 

being trained with one of two auditory-to-VT sensory substitution algorithms. One algorithm was designed to 96 

preserve as much of the temporal dynamics of auditory speech as possible (“vocoded speech”), aiming to 97 

achieve a neural congruence between vibrotactile speech stimuli and auditory speech representations in brain 98 

areas that are part of the auditory speech system. The other algorithm (“token”) used a code in which specific 99 

VT patterns corresponded to specific phonetic features (Chomsky and Halle, 1968; Reed et al., 2018). 100 

Interestingly, at the behavioral level, subjects in both algorithm groups learned to associate VT patterns with 101 

spoken words at an equivalent level after training. However, fMRI analyses revealed critical differences in the 102 

cross-modal recruitment of brain areas between the two groups, with only the vocoded encoding group 103 

showing metamodal engagement of auditory speech processing areas, specifically the areas whose neural 104 

representations of auditory speech representation well matched the representational similarity of the 105 

vibrotactile word stimuli. Consistent with these findings, functional connectivity analyses showed that increased 106 

coupling between the auditory and somatosensory cortex after training also depended on the nature of the 107 

input representations produced by the different VT algorithms. These findings suggest that metamodal 108 

engagement of a cortical area is dependent not only on its task-relevant anatomical connectivity and the 109 

existence of an abstract, cognitive congruence between stimuli in the novel and conventional sensory 110 

modalities, but more specifically on a match at the level of neural representations. Adopting the nomenclature 111 

of David Marr’s levels (Marr, 1982), our data show that a mere congruence at the highest, computational level 112 

(e.g., VT stimuli corresponding to auditory words) is insufficient for metamodal engagement. Rather, 113 

metamodal coupling requires a congruence at the algorithmic level (e.g., a match in neural representations). 114 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.04.442660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442660


 5

Thus, our study not only critically advances our understanding of metamodal engagement and thus general 115 

principles of brain organization, but also opens the door to designing more efficient sensory substitution 116 

algorithms that better interface with existing cortical processing pathways (as in the present study, where the 117 

algorithmically matched vocoded speech representation conveyed ~1.2 times as much information per unit 118 

time than the non-matched one).  119 
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Materials and Methods 120 

Participants 121 

We recruited a total of 22, right-handed, healthy, native English speakers in this study (ages 18-27, 12 122 

females). Georgetown University’s Institutional Review Board approved all experimental procedures, and 123 

written informed consent was obtained from all subjects before the experiment. We excluded 4 subjects from 124 

the auditory scan due to excessive motion (>20% of volumes) and 2 subjects from the vibrotactile (VT) scans 125 

because they failed to complete the training. As a result, we analyzed a total of 18 subjects for the auditory 126 

scans and 20 for the VT scans. 127 

Stimulus Selection  128 

A set of word stimuli was developed according to the following criteria: 1) short monosyllabic stimuli (~4 129 

phonemes); 2) only contain phonemes from a limited subset of English consonants (8 consonants and 6 130 

vowels); 3) set containing items predicted to be perceptually unique and therefore learnable; and 4) words that 131 

span the VT vocoder perceptual space (see below). To develop the set meeting these criteria we utilized a 132 

computational modeling approach based on the methods described in (Auer and Bernstein, 1997). Existing 133 

tactile consonant and vowel perceptual identification data (Bernstein, unpublished) were used in combination 134 

with the PhLex lexical database (Seitz, Bernstein, Auer, & MacEachern, 1998) to model the lexical perceptual 135 

space. In outline, the modeling steps are: (1) Transform phoneme identification data into groupings of 136 

phonemes as a function of a set level of dissimilarity; (2) Re-transcribe a phonemically transcribed lexical 137 

database so that all of the words are represented in terms of only the phonemic distinctions across groupings; 138 

and (3) Collect words that are identical under the re-transcription and count how many are in each collection. In 139 

this study, the lexical equivalence class (LEC) size –the number of words in a collection—was set to three. 140 

Only words that were accompanied by three or fewer other words following re-transcription were considered 141 

candidates for the study. Words in smaller LECs are predicted to be perceptually easier (more unique) than 142 

words in larger LECs, which offer more opportunities for confusions.  143 

The set of words meeting the first three criteria was further examined as a function of consonants and vowel 144 

patterns to identify the largest pool of potential stimulus words. Three consonant (C) and vowel (V) segment 145 

patterns (CVC, CCVC, and CVCC) were selected for the final stimulus set. The words with these segment 146 

patterns were then examined in relation to the predicted VT vocoder perceptual space. The tactile identification 147 

confusion matrices were transformed into phoneme distance matrices using a phi-square transform (Iverson et 148 

al., 1998). Within a segment pattern, all word-to-word distances were computed as the sum of the pairwise 149 

phoneme distances. The word distance matrix was then submitted to multidimensional scaling to facilitate two-150 

dimensional visualization of the lexical space. Close pairs were selected with goal of achieving distributed 151 

coverage in each of the three lexical spaces (CVC, CVCC, and CCVC). For each close pair, a third more 152 

distant word was chosen that provided a bridge to other pairs in the space. Final selection was based on the 153 

word-to-word computed distances using phi-square distances rather than the multidimensional space as clear 154 

warping was present due to the reduction of dimensionality.  155 
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This resulted in 60 total words or 20 sets of triples. We trained subjects to associate 30 words (10 triplets) with 156 

their corresponding VT tokens. In the RSA scans we used 15 (5 triplets) of these trained words of which 9 157 

belonged to the CVCC, 3 to the CCVC and 3 to the CVC lexical classes (Fig. 1B).  158 

Behavioral Training 159 

The training paradigm used an N-alternative forced choice (N-AFC) task and a leveling system organized in 160 

sets of 3 to facilitate training progression. In each set of 3 levels, the number of choices (N) in the N-AFC task 161 

was kept constant, but the choices themselves were increasingly confusable. The number of choices N was 162 

increased by 1 when progressing between each set of 3 levels. The first level utilized a 2-AFC task, and the 163 

final level (level 15) utilized an 8-AFC task. An accuracy of 80% was required to advance to the next level. 164 

Subjects performed each training session in a quiet room while listening to an auditory white noise stimulus 165 

through over-the-ear headphones. Auditory white noise was presented in order to mask the mechanical sound 166 

of the VT stimulation. At the beginning of each trial, the orthographic labels for the word choices were 167 

displayed on the screen, and a VT stimulus was played after a short delay. Participants then indicated which 168 

label corresponded to the VT stimulus. Feedback was given after each trial, as well as an opportunity to replay 169 

any of the word choices. Subjects completed a total of 6 training sessions, followed by a post-training fMRI 170 

scan. After their post-training fMRI scan, subjects performed a final 10-AFC task. 171 

Description of VT Device 172 

A (20cm x 11.0 cm) 16-channel MRI-compatible vibrotactile stimulator array was organized as 2 rows of 8 173 

stimulators (Fig. 1A), with center-to-center stimulator spacing of 2.54 cm. To ensure that the stimulators would 174 

maintain contact with the volar forearm, the array comprised four rigid modules connected with stiff plastic 175 

springs. Velcro straps were used to mount the device to the arm firmly while bending the array to conform to 176 

the arm’s shape. With no applied voltage to the piezoelectric bimorphs, the contactors were flush with the 177 

circuit board surface facing the skin. During operation, a constant +57-V voltage applied to all stimulators 178 

retracted the contactors into the surround, and each applied -85-V pulse drove the contactor into the skin. All 179 

pulses were identical. The drive signal was a square wave, with a pulse time of 2 ms, and with unpowered 180 

intervals of 1ms between power reversals to protect the switching circuitry. The display’s control system 181 

comprised the power supplies (-85V, +57V), high voltage switching circuits to apply these voltages to the 182 

piezoelectric bimorphs, and a digital control system that accepted from a controlling computer’s serial COM 183 

port the digital records specifying a stimulus (comprising the times and channels to output pulses on), and a 184 

command to initiate stimulus output.  185 

VT Vocoded Speech Encoding 186 

This real-time vocoder was used to convert acoustic speech signals into VT stimuli. The initial stage of the 187 

vocoder comprised a bank of filters whose output power was used to control the output of VT pulses. The VT 188 

display (Fig. 1A) used a frequency-to-place mapping algorithm: The energy passed by each filter of the 189 

vocoder was used to modulate the vibration of a specific MRI-compatible transducer on the 16-channel VT 190 

device (Fig. 1A and 1C) placed on the volar forearm (Malone et al., 2019). Low frequencies mapped to 191 
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transducers near the wrist, and higher frequencies mapped to transducers near the elbow. If the energy within 192 

a given filter exceeded a fixed threshold at a given time point, a VT pulse was emitted from the corresponding 193 

transducer. The basic hardware design and software algorithms for the vocoder are referred to in (Bernstein et 194 

al., 1991) as the “GULin” vocoder algorithm. Briefly, 16 bandpass filters with frequencies centered at 260, 392, 195 

525, 660, 791, 925, 1060, 1225, 1390, 1590, 1820, 2080, 2380, 2720, and 3115 Hz, with respective 196 

bandwidths of 115, 130, 130, 130, 130, 130, 145, 165,190, 220, 250, 290, 330, 375, and 435 Hz. An additional 197 

high-pass filter with cutoff 3565 Hz is also used. The energy detected in each band is used to amplitude-198 

modulate a fixed-frequency sinewave at the center frequency of that band (and at 3565�Hz in the case of the 199 

high-pass filter). The combination of the 16 sinewaves comprises the vocoded acoustic signal, and the 200 

resulting activation pattern over the 16 transducers constituted its vibrotactile instantiation. 201 

Token-based VT Speech Encoding 202 

The same 16-channel VT device was used to present subjects with the token-based stimuli. Token-based 203 

stimuli were constructed based on prior work (Reed et al., 2018) and reflect the idea that spoken words can be 204 

described as a string of phonemes. Phonemes in turn can be uniquely described by a set of phonetic features. 205 

Therefore, each phonetic feature was assigned a unique VT pattern. In this study, we used place, manner, and 206 

voicing features to describe phonemes (Fig. 1C). Place was coded as patterns that occurred either proximal or 207 

distal to the wrist. Stop and fricative manner features were codded as patterns that occurred either medial or 208 

lateral to the body respectively. The nasal manner feature was distinguished by driving two channels instead of 209 

one for stops and fricatives. Voicing was coded as either driving high frequency vibrations (250Hz) or low 210 

frequency vibrations (100Hz). Vowels were coded in a similar feature-based manner, but were dynamic stimuli 211 

(e.g. swirls and sweeps) whereas consonants were static. Importantly, all consonant patterns lasted 120ms 212 

and all vowel stimuli lasted 220ms and there was a 100ms gap between each pattern. As a result, token-based 213 

stimuli were either 660ms or 880ms long. CVCC trained token-based stimuli used in fMRI analyses were 214 

880ms long while their VT vocoded counterparts had a mean duration of 727ms and standard deviation of 215 

91.6ms. A paired t-test revealed that token-based stimuli were significantly longer (t(8) = 4.99; p = 0.001) than 216 

their vocoded counterparts. Thus, not only did VT vocoded but not token based stimuli preserve the temporal 217 

dynamics found in auditory speech, but they also conveyed more information per unit time.   218 

Auditory Scan 219 

fMRI Experimental Procedures 220 

EPI images from nine event-related runs were collected using a clustered acquisition paradigm. Within each 221 

run, 30 words were presented three times in random order for a total of 90 trials. Each trial was 3s long and 222 

started with 1.5s of volume acquisition followed by the auditory word (during the silent period, see below, “Data 223 

Acquisition”; Fig. 1D). To maintain attention, subjects performed a 1-back task in the scanner: Subjects were 224 

asked to press a button in their left hand whenever the same word was presented on two consecutive trials. 225 

These catch trials comprised ten percent of the trials in each run. Furthermore, an additional ten percent of 226 

trials were null trials. During these trials, which lasted for 3s, no words were presented. In total, there were 118 227 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.04.442660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442660


 9

trials per run, with each trial lasting 3s for a total of 354s, plus an additional 15s fixation at the start of the run. 228 

Thus, in total each run lasted 369s and the session lasted 43min. 229 

Data Acquisition 230 

MRI data were acquired at the Center for Functional and Molecular Imaging at Georgetown University on a 3.0 231 

Tesla Siemens Trio Scanner. We used whole-head echo-planar imaging sequences (flip angle = 90°, TE = 30 232 

ms, FOV = 205, 64x64 matrix) with a 12-channel head coil. A clustered acquisition paradigm (TR = 3000 ms, 233 

TA = 1500 ms) was used such that each image was followed by an equal duration of silence before the next 234 

image was acquired. 28 descending axial slices were acquired in descending order (thickness = 3.5 mm, 0.5 235 

mm gap; in-plane resolution = 3.0x3.0 mm2). This sequence was used in previous auditory studies from our lab 236 

(Chevillet et al., 2013). A T1-weighted MPRAGE image (resolution 1x1x1mm3) was also acquired for each 237 

subject. 238 

VT Scan 239 

fMRI Experimental Procedures 240 

EPI images from six event-related runs were collected. Within each run 30 stimuli (15 from the training set and 241 

15 additional words) were presented three times in random order for a total of 90 trials. A 4 second intertrial 242 

interval was used (Fig. 1D). As in the auditory scan, to maintain attention, subjects performed a 1-back task in 243 

the scanner: Subjects were asked to press a button in their left hand whenever the same stimulus was 244 

presented on two consecutive trials. These catch trials comprised ten percent of the trials in each run. 245 

Furthermore, an additional ten percent of trials were null trials during which subjects were presented with a 246 

blank screen for 3s. In total, there were 111 trials per run with each trial lasting 4s for a total of 444s plus an 247 

additional 10s fixation at the start and end of the run. Thus, in total each run lasted 464s and the session lasted 248 

46min. 249 

Data Acquisition 250 

MRI data were acquired at the Center for Functional and Molecular Imaging at Georgetown University on a 3.0 251 

Tesla Siemens Trio Scanner. We used whole-head echo-planar imaging sequences (TR = 2000ms, flip angle = 252 

90°, TE = 30 ms, FOV = 205, 64x64 matrix) with a 12-channel head coil. 33 interleaved descending axial slices 253 

were acquired (thickness = 3.5 mm, 0.5 mm gap; in-plane resolution = 3.0x3.0 mm2). A T1-weighted MPRAGE 254 

image (resolution 1x1x1mm3) was also acquired for each subject.  255 

fMRI Data Preprocessing 256 

Image preprocessing was performed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and AFNI. 257 

The first four acquisitions of each run were discarded to allow for T1 stabilization, and the remaining EPI 258 

images were slice-time corrected to the middle slice for the VT scans. No slice-time correction was performed 259 

for the auditory scans due to using a clustered acquisition paradigm due to temporal discontinuities between 260 

successive volumes (Perrachione and Ghosh, 2013). These images were then spatially realigned and 261 

submitted to the AFNI align_epi_anat.py function to co-register the anatomical EPI images for each subject. 262 
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This was used because, upon inspection, it provided better registration between the anatomical and functional 263 

scans than the corresponding SPM12 routine.  264 

Anatomical Preprocessing 265 

Freesurfer (Fischl et al., 1999) was used to reconstruct cortical surface models including an outer pial and 266 

inner white-matter surface. These surfaces were then brought into the SUMA environment and fit to a 267 

standardized meshe based on an icosahedron with 64 linear divisions using AFNI’s MapIcosehedron 268 

command (Oosterhof et al., 2011; Saad and Reynolds, 2011). This procedure yielded 81,924 nodes for each 269 

participant’s whole-brain cortical surface mesh. Each node on the standard mesh corresponds to the same 270 

location across subjects – thereby allowing node-wise group-level analysis. This improved the spatial 271 

resolution of our analyses since interpolation of the functional data is unnecessary (Oosterhof et al., 2011).  272 

Representational Similarity Analysis (RSA)  273 

Constructing Model Representational Dissimilarity Matrices (mRDMs) 274 

Two candidate mRDMs were generated: an auditory perceptual mRDM, and a VT vocoded perceptual mRDM. 275 

These mrDMs were generated by modifying an edit mRDM which was generated using an edit distance metric 276 

between word pairs in the stimulus set. Here, 1 edit was considered a substitution, insertion, or deletion of a 277 

single phoneme. Edit distances are frequently used with highly intelligible speech, for which there are no 278 

phoneme-to-phoneme dissimilarity data, and when more refined segment-to-segment distances are not 279 

available as was the case for the VT token-based algorithm. Furthermore, recent work (Kell et al., 2018) has 280 

shown that the representational format captured by the edit distance matches those found in both higher order 281 

STG speech regions and speech recognition-specific representations learned in later layers of a deep neural 282 

network. The auditory and VT vocoded perceptual mRDMs were similarly created using an edit distance but 283 

now weighting phoneme edit by either its auditory or VT vocoded perceptual confusability. Auditory and VT 284 

vocoded perceptual phoneme confusability was derived from a behaviorally measured perceptual auditory and 285 

VT vocoded phoneme identification task. This confusability was transformed into a distance measure using a 286 

phi-square transform (Iverson et al., 1998). Word-to-word distances were computed as the sum of the pairwise 287 

phoneme distances for all the position-specific phoneme pairs in each of the possible pairs of stimulus words. 288 

Given the difficulty of estimating a distance swap between consonants and vowels as well as between 289 

segments of different lengths, we restricted our analyses to CVCC words which were our most common 290 

segmental class (Fig. 1B). This resulted in a 9-by-9 auditory and VT perceptual mRDM for the CVCC trained 291 

words (Fig. 1E). These representational spaces are highly correlated (r = 0.94) and reflect the close 292 

representational congruence between auditory and VT vocoded stimuli. 293 

Whole-Brain Searchlight RSA Analysis 294 

RSA (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008) analyses were performed using the 295 

CoSMoMVPA toolbox (Oosterhof, Connolly, & Haxby, 2016), Surfing Toolbox (Oosterhof et al., 2011) and 296 

custom MATLAB code. Searchlights were constructed around each surface node by selecting the 30 closest 297 

voxels measured by geodesic distance. Within a given searchlight, the activity (t-statistic) in the voxels for each 298 
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condition constituted its pattern. A cocktail-blank removal was performed on this condition-by-voxel data matrix 299 

whereby the mean pattern of activity across conditions was removed for each voxel (Walther et al., 2016). A 300 

neural dissimilarity matrix (nRDM) was then computed in each searchlight by computing the pairwise Pearson 301 

correlation distance (1-Pearson Correlation) between the patterns of all pairs of conditions. To assess whether 302 

a given region represented stimuli in a hypothesized format, the nRDM was compared to the mRDM. This was 303 

done by taking the Spearman Correlation between the vectorized lower triangles of the nRDM and mRDM. 304 

This correlation was then Fischer z-transformed to render the correlations more normally distributed 305 

(Kriegeskorte et al., 2008). 306 

ROI-Based RSA Analysis 307 

ROI-based RSA analyses were performed in the VT scans to test if, following training, VT stimuli engaged 308 

auditory speech representations in functionally defined ROIs identified in the auditory scans. To do so, we 309 

averaged the Fischer z-transformed correlations of searchlights in a given ROI for the four groups (pre/post x 310 

vocoded/token). We then fit these average ROI correlations with a linear mixed effects model in R using the 311 

Lme4 Package. Mixed effect model structure was specified in a sequential manner. First, the random effects 312 

structure containing both a random intercept and slope was specified. 313 

����������	 ~ 1  �1   ����	�	������ | ����� 

The random effects terms allowed us to model the subject-specific variability in the pre-training and the 314 

training-related change in correlation. Next, we fit a maximal model that included three main effects, all 315 

interaction terms, and the previously specified random effects structure. The three main fixed effects included: 316 

training phase (pre/post), algorithm (token/vocoded), and hemisphere (left/right). Then we iteratively compared 317 

the full model with the next-most complex nested model using a likelihood ratio test. The final model was 318 

selected as the model whose next-most complex nested model performed significantly worse at explaining the 319 

data. Separate models were fit for the STG ROIs based on the auditory RSA data and for the Glasser (Glasser 320 

et al., 2016) hippocampus ROIs. The final models are shown below: 321 

��� �����: ����������	 ~ 1   ����	�	������  ���������  ����	�����: ���������   �1   ����	�	������ | ����� 
 �!!�"��!�� �����: ����������	 ~ 1   ����	�	������  ���������   ���  ����	�����: ���������  ���������:  ���

 ����	�����:  ���  ����	�����: ���������:  ���   �1   ����	�	������ | ����� 

The reference group corresponding to the intercept was specified as pre-training, token-based, right-322 

hemisphere. All βs reported reflect deviations from this reference group given the other effects. Final models 323 

were estimating using REML and degrees of freedom were adjusted using the Satterthwaite approximations. 324 

Post-hoc contrasts were computed using the emmeans package and all reported p-values were corrected for 325 

multiple comparisons using Tukey’s method. 326 

Task-Related Functional Connectivity 327 

Functional connectivity analyses were performed using the CONN-fMRI toolbox (Whitfield-Gabrieli & Nieto-328 

Castanon, 2012). To do so, native-space functional data were smoothed using an 8mm FWHM smoothing 329 

kernel. Next, anatomical scans were segmented to identify regions of white matter and CSF. We then 330 

regressed out the signals from these regions using CompCor (Behzadi, Restom, Liau, & Liu, 2007) as well as 331 
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the main effect of task. Whole-brain seed-to-voxel correlation maps were then computed within each subject. 332 

Finally, we mapped each subject’s correlation maps to a standard cortical mesh using 3dVol2Surf in order to 333 

perform group analyses. 334 

Whole-Brain Statistical Correction 335 

We tested the group-level significance of whole-brain RSA analyses as well as functional connectivity 336 

differences by first computing a t-statistic at each node on the standard surface. To correct these t-statistic 337 

maps for multiple comparisons, we first estimated the smoothness of the data for each analysis in each 338 

hemisphere using the AFNI/SUMA SURFFWHM command. We then used this smoothness estimate to 339 

generate noise surface maps using the AFNI/SUMA slow_surf_clustsim.py command. This then allowed us to 340 

generate an expected cluster size distribution at various thresholds that we compared clusters in our actual 341 

data to. For the auditory scan, we performed a one-sample t-test against 0 and applied a two-tailed cluster-342 

defining threshold of α = .001. For the functional connectivity analyses in the VT scan, we performed a two-343 

sample paired t-test to seed-to-voxel functional connectivity in subjects pre- and post-training. We applied a 344 

two-tailed cluster-defining threshold of α = .005. All resulting clusters were corrected at the p ≤ .05 level. 345 

Tables report the coordinates of the center of mass of clusters in MNI space and their location as defined by 346 

the Glasser Atlas (Glasser et al., 2016).  347 

  348 
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 349 

Figure 1: VT hardware, speech-to-tactile transformation algorithms, stimuli, fMRI experimental design, 350 

and model dissimilarity matrix. (A) Fourteen-channel MRI-compatible VT stimulator. (B) Shows the 351 

breakdown of the 30 words used in the study. The auditory scan used all the words, and subjects were trained 352 

on half of the words (“trained” set). Words were further broken down by their syllable structure (9 CVCC, 3 353 

CCVC, and 3 CVC words). (C) Shows the two transformations used to convert spoken words into tactile 354 

stimulation patterns. The token-based approach (top) assigns each phoneme a distinct VT pattern (see 355 

Methods section for more details). The vocoding approach (bottom) focuses on preserving the temporal 356 

dynamics between the auditory and VT stimuli. (D) Shows the auditory (top) and VT (bottom) fMRI one-back 357 

paradigms used in the study. In both paradigms, subjects focused on a central fixation cross, and pressed a 358 

button in their left hand if they heard or felt the same stimulus twice in a row. (E) The auditory and VT vocoded 359 

perceptual model representational dissimilarity matrix (mRDM) for the 9 CVCC trained words. The high 360 

correlation (r = 0.94) between mRDMs provide evidence for the targeted close representational congruence 361 

between auditory and VT vocoded stimuli.  362 
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Results 363 

Behavior 364 

Subjects (n=20) were trained to recognize stimuli derived from either a token-based of vocoded auditory-to-VT 365 

sensory substitution algorithm (Fig. 1C), Subjects completed 6 behavioral training sessions in which they 366 

performed a N-AFC task on each level (see Material and Methods). Only a single session was performed per 367 

day. To progress to the next level, subjects had to achieve at least 80% accuracy on the current level. Both 368 

vocoded and token-based achieved progressively higher levels in the behavioral training paradigm across 369 

training sessions (Fig. 2A). The median final levels achieved were 8 and 7 for the token-based and vocoded 370 

VT groups respectively. After the final post-training fMRI scan, subjects completed a 10-AFC test on the 371 

trained words (Fig. 2B). All subjects performed better than chance (10%) and the median accuracies were 372 

35.3% and 48.5% for the token-based and vocoded VT groups respectively. A two-sample t-test revealed no 373 

significant difference in accuracy between algorithm groups (t(18) = 0.386, p = 0.704). 374 

  375 
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 376 

 377 

Figure 2: Progression of learning VT stimuli as speech. (A) Shows the leveling up of individuals on the 378 

behavioral training paradigm across sessions. Shaded lines connect the same individual across sessions. Data 379 

for the final session of two subjects was lost due to technical error. (B) Shows the performance of subjects by 380 

algorithm group on 10-AFC task completed after the final post-training fMRI scan. A two-sample t-test reveals 381 

no significant difference in performance between the groups (t(18) = 0.386, p = 0.704). Dashed red line 382 

indicates chance performance. Horizontal lines in the violin plots reflect the median.  383 
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Univariate fMRI Analysis  384 

Univariate analyses were conducted to examine the activation in response to the auditory and VT stimuli. In 385 

the auditory scan, the contrast of “All Words>Baseline” revealed bilateral Superior Temporal Gyrus (STG) 386 

activation (Table S1 and Fig. 3A). In the VT scans, unpaired two-sample t-tests revealed no significant 387 

differences between the vocoded and token-based groups in either the pre-training or post-training phase. 388 

Therefore, subjects were combined within training-phase to test for the cortical common response to VT 389 

stimulation. The contrast “All Vibrotactile Words>Baseline” revealed several regions, including bilateral 390 

supplementary motor area (SMA), precentral gyri (Table S1 and Fig. 3B-C). No significant clusters were 391 

identified for the post- vs pre- training contrast. To gain a better picture of the neuronal selectivity underlying 392 

these responses, we performed a series of RSA analyses. 393 

  394 
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 395 

Figure 3: Univariate activity for “Stimuli-Baseline” in the auditory and VT scans. (A) Shows the group-396 

level speech perception network revealed by the contrast of all auditory words > baseline. (B) Shows the pre-397 

training group-level VT perception network revealed by the contrast of all vibrotactile words > baseline. (C) 398 

Same as (B), but for post-training scans. Results are rendered on a SUMA-derived standard surface. All 399 

results are presented at a cluster-defining two-tailed α = 0.005 and p ≤ 0.05.  400 
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Supplementary Table 1: Univariate activity for all stimuli > baseline in the different scans 401 

 

Scan 

 

Hemi 

Cluster Name 

(Glasser ROIs) 

 

Tmax 

Cluster 

p-Value 

Center of Mass Coordinates (MNI) 

x y z 

Auditory RH Parabelt Complex 6.68 0.001 57 -13 3 

LH Parabelt Complex 6.79 0.001 -56 -19 5 

Auditory 5 Complex 7.46 0.001 -62 -36 7 

 

 

 

 

 

Pre-

Training  

RH Area PF Complex 7.57 0.001 55 -25 24 

Anterior Intraparietal Area 7.84 0.001 39 -39 42 

Supplementary and 

Cingulate Eye Field 

8.97 0.001 8 13 52 

Premotor Eye Fields 5.75 0.001 51 2 41 

Anterior Ventral Insular Area 6.45 0.001 30 25 3 

 

 

 

LH 

Area OP1/SII 10.78 0.001 -52 -27 23 

Rostral Area 6 8.04 0.001 -50 2 28 

Supplementary and 

Cingulate Eye Field 

8.40 0.001 -8 9 54 

Anterior Intraparietal Area 6.59 0.001 -45 -38 42 

Anterior Ventral Insular Area 7.64 0.001 -30 25 7 

Frontal Eye Fields 6.62 0.002 -30 -3 48 

 

 

 

Post-

Training  

 

 

RH 

Retroinsular Cotex 4.58 0.001 53 -32 25 

Supplementary and 

Cingulate Eye Field 

6.64 0.001 7 15 49 

Area PF Opercular 5.81 0.003 57 -16 22 

Area Posterior 24 Prime 7.17 0.019 7 2 65 

 

 

 

LH 

Rostral Area 6 6.60 0.001 -48 2 29 

Area PF Opercular 8.99 0.001 -59 -22 25 

Area PF Complex 7.12 0.001 -50 -40 26 

Supplementary and 

Cingulate Eye Field 

 

6.83 

0.001 -9 14 49 

Area 6 Anterior 6.07 0.001 -29 -5 48 

Anterior Intraparietal Area 5.85 0.002 -47 -35 42 

Anterior Intraparietal Area 5.71 0.002 -35 -44 40 

  402 
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Whole-brain searchlight analysis reveals bilateral STG regions are engaged in the perception of 403 
spoken vocoded words 404 

We conducted a whole-brain searchlight RSA analysis to identify regions showing selectivity for auditory 405 

vocoded words. In each searchlight we constructed a neural RDM that was correlated to the auditory 406 

perceptual mRDM (see Methods). The group-level t-statistic map was thresholded at a two-tailed α = .001 and 407 

the resulting clusters were corrected at two-tailed p ≤ 0.05 (Fig. 4). This revealed left (x = -58, y = -18, z = 5; α 408 

= 0.001; p = 0.001) and right mid-STG (x = 58, y = -14, z = 3; α = 0.001; p = 0.016) clusters. Of the 75 nodes in 409 

the left mid-STG cluster, 8 are in left A1, 21 are in the lateral belt, 28 are in the parabelt, and 31 are in A4 as 410 

defined by the Glasser Atlas. Of the 44 nodes in the right mid-STG cluster, 0 are in right A1, 12 are in the 411 

lateral belt, 25 are in the parabelt, and 16 are in A4. Thus, the regions identified in this analysis are non-412 

primary auditory cortical regions that are likely selective for complex auditory spectrotemporal patterns involved 413 

in speech perception (Hamilton et al., 2020).  414 

  415 
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 416 

 417 

Figure 4: Representational similarity analysis (RSA) of vocoded auditory words. RSA revealed that 418 

neural RDMs in bilateral STG regions significantly correlated with the predicted auditory perceptual mRDM 419 

(Fig. 1E) (n=18; α = 0.001; p ≤ .05). The center of mass of the left STG cluster was centered on MNI: -58, -18, 420 

5. The center of mass of the right STG cluster was centered on MNI: 58, -14, 3. Colors reflect across-subject t-421 

statistics.  422 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.04.442660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442660


 21

ROI-based analysis reveals that the right auditory word-selective region shows selectivity for VT 423 
vocoded, but not token-based words following VT speech training 424 

Next, we conducted ROI-based RSA analyses to test the prediction that trained VT stimuli would engage the 425 

same representations as auditory words in the mid-STG. To do so, we first computed the average Fisher 426 

transformed correlation between the vibrotactile nRDMs and the auditory perceptual mRDM for the 9 trained 427 

CVCC words in the VT scans. A linear mixed-effects model was then constructed (see Methods) to test the 428 

effects of training phase, algorithm, hemisphere, and the interaction between training phase and algorithm on 429 

the correlations. This analysis revealed a significant interaction effect between training phase and algorithm (β 430 

= 0.168, t(18) = 2.188, p = 0.042; Table S2). Post-hoc tests revealed a significant (t(18) = 3.003, p = 0.035 431 

Tukey-adjusted) increase between the pre- and post-training correlations with the auditory perceptual mRDM 432 

in the vocoded group but no significant difference (t(18) = -0.092, p = 0.999 Tukey-adjusted) for the token-433 

based  VT group.  These results indicate that trained VT stimuli based on vocoded speech engaged auditory 434 

speech representations in the mid-STG and did so more strongly than token-based VT stimuli, and there was 435 

no evidence that token-based VT stimuli engaged these auditory speech representations. Furthermore, this 436 

effect is stronger in the right hemisphere than the left.  437 

The noteworthy difference in the engagement of mid-STG auditory speech representations for the vocoded but 438 

not token-based VT stimuli raised the question what other brain areas might underlie subjects’ ability to learn 439 

the token-based VT stimuli as words (see Fig. 2). A possible explanation of the results is that because the 440 

token-based representation is not well matched to auditory speech representations (e.g., in its temporal 441 

dynamics), to learn the association between the two, the brain must rely on alternate strategies such as those 442 

used to learn arbitrary associations between pairs of stimuli. A key region involved in learning such 443 

associations is the hippocampus (McClelland et al., 1995; O’Reilly and Rudy, 2001). Therefore, we tested 444 

whether the hippocampus encoded token-based stimuli after training.  445 
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 446 

Figure 5: Vocoded but not token-based VT stimuli are represented in mid-STG auditory speech regions 447 

following VT speech training. Linear mixed-effects analysis revealed a significant interaction between 448 

Training Phase and Algorithm (β = 0.168, t(18) = 2.188, p = 0.042). To investigate this interaction, we created 449 

interaction effects plots. (A) The mean Fisher-transformed Pearson correlation between neural and model 450 

RDMs estimated from the mixed-effects model for the vocoded group are represented by the opaque lines. 451 

Post-hoc test shows a significant difference (t(18) = 3.003, p = 0.035 Tukey adjusted)  for the vocoded VT 452 

group. (B) The same as (A) but for the token-based group. Post-hoc test shows no significant difference (t(18) 453 

= -0.092, p = 0.999 Tukey adjusted) for the token-based VT group. Semi-transparent lines reflect raw individual 454 

subject correlations from either the left (teal) or right (orange) mid-STG. Horizontal lines in the violin plots 455 

reflect the median Fisher transformed correlation. Green asterisk marks significant (p≤.05) difference after 456 

multiple comparisons correction.  457 
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ROI-based analysis reveals that the Left Hippocampus is engaged during perception of VT token-458 
based, but not vocoded stimuli  459 

We therefore next tested the hypothesis that VT speech perception training led to an encoding of the VT stimuli 460 

in the hippocampus. If trained VT speech stimuli were stored in a representation that reflected the associated 461 

auditory speech stimuli, then we would expect neural activation pattern similarity for the VT stimuli to correlate 462 

with the perceptual similarity of the auditory speech stimuli post- but not pre-training. To test this hypothesis, 463 

we correlated neural activation patterns in response to VT speech stimuli in the two different encoding 464 

schemes with the auditory perceptual mRDM before and after training. These correlations were then fit with a 465 

linear mixed effects model. This analysis revealed a significant two-way interaction between training phase and 466 

hemisphere (β = 0.095, t(36) = 2.696, p = 0.011; Fig. 6; Table S3) as well as a significant three-way interaction 467 

effect between training phase, algorithm, and hemisphere (β = -0.151, t(36) = -3.027, p = 0.005; Table S3). 468 

The three-way interaction suggests that the relationship between training phase and hemisphere varied 469 

depending on the algorithm. Post-hoc tests revealed a significant (t(30.7) = 3.232, p = 0.0148 Tukey-adjusted) 470 

training-related increase in correlations for the token-based but not vocoded (t(30.7) = 0.785, p = 0.861 Tukey 471 

Adjusted) VT group in the left hemisphere. In the right hemisphere, there was a trending increase in correlation 472 

for the vocoded group (t(30.7) = 2.387, p = 0.101 Tukey Adjusted) but not the token-based (t(30.7) = .506, p = 473 

0.957 Tukey Adjusted) VT group. 474 

  475 
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 476 

Figure 6: Token-based but not vocoded VT speech stimuli are represented in the left hippocampus 477 

following training. Linear mixed-effects analysis revealed a significant three-way interaction between Training 478 

Phase, Algorithm, and Hemisphere (β = -0.151, t(36) = -3.027, p = 0.005). To investigate this interaction, we 479 

created interaction effects plots. (A) The mean Fisher-transformed Pearson correlation between neural and 480 

model RDMs estimated from the mixed-effects model for the vocoded group are represented by the opaque 481 

lines. Post-hoc tests show a trending (t(30.7) = 2.387, p = 0.101 Tukey-adjusted) difference in the right 482 

hippocampus pre- and post-training for the vocoded but not (t(30.7) = .506, p = 0.957 Tukey-adjusted) token-483 

based VT group. (B) The same as (A) but for the token-based group. Post-hoc tests show a significant (t(30.7) 484 

= 3.232, p = 0.0148 Tukey-adjusted) difference in the left hippocampus pre- and post-training for the token-485 

based but not vocoded (t(30.7) = 0.785, p = 0.861 Tukey-adjusted) VT group. Semi-transparent lines reflect 486 

raw individual subject correlations from either the left (teal) or right (orange) hippocampus. Horizontal lines in 487 

the violin plots reflect the median. Green asterisk and orange tilde mark significant (p≤.05) and trending (p≤.1) 488 

differences respectively after multiple comparisons correction.  489 
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Supplementary Table 2: Linear Mixed-Effects Model Summary for the mid-STG ROIs 490 

Summary of Linear Mixed Effects Model: mid-STG ROIs 

Fixed Effects  

Predictors β Estimate Confidence Interval T-Statistic DOF p-value 

Intercept 0.066 -0.01 – 0.14 1.882 22.57 0.073 

Training Phase -0.005 -0.12 – 0.11 -0.092 18 0.928 

Algorithm -0.077 -0.17 – 0.02 -1.641 18 0.118 

Hemisphere -0.032 -0.08 – 0.01 -1.393 39 0.172 

Training Phase:Algorithm 0.168 0.01 – 0.33 2.189 18 0.042 

Random Effects  

Groups Effect Name σ (std. deviation) Variance Correlation Structure 

Subj Intercept 0.074 0.006 N/A -0.6 

 Training 

Phase 

0.137 0.019 -0.6 N/A 

Residual  0.104 0.01  

 491 

Supplementary Table 3: Linear Mixed-Effects Model Summary for the Hippocampus ROIs  492 

Summary of Linear Mixed Effects Model: Hippocampus ROIs 

Fixed Effects  

Predictors β Estimate Confidence Interval T-Statistic DOF p-value 

Intercept -0.015 -0.06 – 0.03 -0.668 34.94 0.508 

Training Phase 0.018 -0.05 – 0.09 0.506 30.67 0.616 

Algorithm 0.002 -0.06 – 0.07 0.066 34.94 0.948 

Hemisphere -0.029 -0.08 – 0.02 -1.185 36 0.244 

Training Phase:Algorithm 0.066 -0.04 – 0.17 1.330 30.67 0.193 

Algorithm:Hemisphere 0.043 -0.03 – 0.11 1.211 36 0.234 

Training Phase:Hemisphere 0.095 0.02 – 0.17 2.696 36 0.011 

Training Phase: 

Algorithm:Hemisphere 

-0.151 -0.25 – -0.05 -3.027 36 0.005 

Random Effects  

Groups Effect Name σ (std. deviation) Variance Correlation Structure 

Subj Intercept 0.042 0.002 N/A 0.03 

 Training 

Phase 

0.077 0.006 0.03 N/A 

Residual  0.056 0.003  
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Training with Vocoded VT Speech Stimuli Increases Functional Connectivity Between Somatosensory 493 
and Auditory Regions 494 

Previous studies showed that learning is accompanied by increased functional connectivity between cortical 495 

areas (Lewis et al., 2009; Siuda-Krzywicka et al., 2016; Urner et al., 2013). Therefore, we tested the 496 

hypothesis that training on the vocoded VT word stimuli was associated with increased functional connectivity 497 

of somatosensory regions and the auditory word-selective right mid-STG ROI (Fig. 4). To do so, we computed 498 

the training-related changes in the right mid-STG seed-to-voxel functional connectivity in the vocoded group 499 

(Fig. 7A, Table S4). This revealed two clusters, one in the left STG (x = -50, y = -19, z = 7; α = 0.005; p = 500 

0.044) and another in the left secondary somatosensory (SII) (x = -55, y = -28, z = 21; α = 0.005; p = 0.026). 501 

Furthermore, reasoning that VT stimulation on the right arm would engage the left SII region, we performed an 502 

additional seed-to-voxel analysis using the left SII seed defined by the Glasser atlas (Glasser et al., 2016). This 503 

complementary analysis revealed two clusters, one in the right insula and Heschl’s Gyrus (x = 40, y = -17, z = 504 

11; α = 0.005; p = 0.001) and another in the right STG (x = 63, y = -22, z = 7; α = 0.005; p = 0.001). The left SII 505 

also showed an increase in connectivity to the left central sulcus (x = -40, y = -19, z = 42; α = 0.005; p = 506 

0.001). Using the left mid-STG region as a seed revealed significantly increased connectivity with the right 507 

STG while using the right SII revealed significant training-related changes confined to bilateral SII. (Fig. S1, 508 

Table S4). Similar seed-to-voxel analyses also using the left hippocampus or the bilateral mid-STG ROIs as 509 

seeds revealed no significant training-related differences in the token-based group. This pattern of training-510 

related functional connectivity between somatosensory and auditory areas for VT vocoded but not token based 511 

stimuli was also found when calculating ROI-to-ROI functional connectivity (Fig. S2). These results support a 512 

model in which vocoded VT speech training leads to increased functional connectivity between somatosensory 513 

areas and auditory speech areas. 514 

515 
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  516 
Figure 7: Training related differences in seed-to-voxel functional connectivity for vocoded VT stimuli. 517 

(A) Using the right mid-STG ROI (Fig. 4) as a seed revealed two significant clusters of increased functional 518 

connectivity after training in the left STG (MNI: -50, -19, 7) and in the left supramarginal gyrus (MNI: -55, -28, 519 

21). (B)  Using the left SII seed derived from the Glasser atlas revealed a significant cluster in the left central 520 

sulcus (MNI: -40, -19, 42). It also identified two significant clusters in the right hemisphere. The first 521 

encompassed right insula and Heschl’s gyrus (MNI: 40, -17, 11). The other is on the right STG (MNI: 63, -22, 522 

7). All results shown are corrected at two-tailed voxel-wise α = 0.005 and cluster-p ≤ 0.05. Colors reflect 523 

across-subject t-statistics. 524 
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Supplementary Table 4: Training-related changes in functional connectivity in the vocoded group. 526 

 

Seed ROI 

 

Hemi 

Cluster Location 

(Glasser ROIs) 

 

Tmax 

Cluster 

p-Value 

Center of Mass Coordinates (MNI) 

x y z 

lS2  

RH 

Insular Granular Complex 8.04 0.001 40 -17 11 

Auditory 5 Complex 8.44 0.001 63 -22 7 

LH Primary Motor Cortex 7.73 0.012 -40 -19 42 

lSTG RH Lateral Belt Complex 6.54 0.001 53 -18 6 

rS2 RH Posterior Insular Area 2 7.41 0.017 37 -8 6 

LH Area OP2-3/VS 5.73 0.026 -42 -16 20 

rSTG  

LH 

Area PFcm 8.20 0.026 -55 -28 21 

Lateral Belt Complex 6.75 0.044 -50 -19 7 
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 528 
Supplementary Figure 1: Training related differences in seed-to-voxel functional connectivity for 529 

vocoded VT stimuli using the left STG and right SII seeds. (A) Using the left mid-STG ROI (Fig. 4) as a 530 

seed revealed one significant cluster of increased functional connectivity after training in the right mid-STG 531 

(MNI: 55, -16, 3). (B)  Using the right SII seed derived from the Glasser atlas revealed a significant cluster in 532 

the left opercular region (MNI: -42, -15, 20) and right posterior Insula (MNI: 37, -3, 7). All results shown are 533 

corrected at two-tailed voxel-wise α = 0.005 and cluster-p ≤ 0.05. Colors reflect across-subject t-statistics. 534 
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 535 
Supplementary Figure 2: ROI-to-ROI based functional connectivity reveals significantly increased 536 

coupling between the auditory and somatosensory system after training on VT vocoded stimuli. (A-B) 537 

Shows the ROI-to-ROI functional connectivity for the VT vocoded-based group during post (A) and pre (B) 538 

training scans. (D-E) Same as (A-B) but for the VT token-based group. Color bar reflects the Fischer-539 

transformed Pearson correlation between ROIs. A paired t-test was performed to compare changes in 540 

functional connectivity relative to baseline. Green asterisks mark p ≤ 0.05 FDR corrected. (C, F) Shows the 541 

post-pre training correlations for the VT vocoded and token-based groups respectively. Color bar reflects the 542 

Post-Pre training difference between ROIs. A paired t-test was performed to compare changes in functional 543 

connectivity post-pre training. Green asterisks mark p ≤ 0.05 FDR corrected.  544 
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Discussion 545 

Metamodal theories of brain organization (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001) propose 546 

that cortical areas are best described by their task-specific sensory modality-invariant function. However, 547 

mixed evidence for metamodal brain organization in neurotypical individuals (Amedi et al., 2007; Bola et al., 548 

2017; Ptito et al., 2005; Sadato et al., 1996; Siuda-Krzywicka et al., 2016) has raised the question of if and 549 

under what conditions metamodal engagement occurs. We argue, based on theoretical considerations, that 550 

testing the metamodal hypothesis requires not just a consideration of high-level tasks (Marr’s (Marr, 1982) top 551 

level of “computational theory”) but also and critically their algorithmic implementation (Marr’s second level). In 552 

the current study, we investigated this hypothesis by training subjects on the same task (recognition of 553 

vibrotactile stimuli derived from auditory words) using one of two different auditory-to-VT sensory substitution 554 

algorithms.  One algorithm (vocoded) preserved the temporal modulations of auditory speech while the other 555 

algorithm (token) attempted to establish an abstract congruence between VT patterns and the phonetic 556 

features found in speech. First, using whole-brain searchlight RSA we identified auditory perceptual speech 557 

representations whose locations along the superior temporal gyrus are compatible with models of the auditory 558 

ventral speech recognition stream (DeWitt and Rauschecker, 2012; Hickok and Poeppel, 2007; Rauschecker 559 

and Scott, 2009). Notably, this speech selectivity was found bilaterally, in agreement with other models of 560 

speech processing in the brain (Hickok and Poeppel, 2007). We then showed that, before training, neither the 561 

vocoded nor the token-based VT stimuli selectively engaged these auditory speech areas, as expected. Next, 562 

over the course of six behavioral sessions, we trained two groups of subjects to recognize the VT-encoded 563 

word stimuli, with each group trained on a different encoding scheme. Both groups of subjects achieved 564 

comparable levels of proficiency, eliminating performance differences as a reason for the different training 565 

effects at the neural level. Crucially, RSA revealed that after training, only the vocoded but not the token-based 566 

VT stimuli engaged an auditory-speech selective region in the mid-STG (Hamilton et al., 2020). In addition, 567 

both encoding schemes (to different degrees) appeared to engage hippocampal areas previously implicated in 568 

paired-associate learning. Finally, we found evidence that metamodal engagement of the mid-STG by vocoded 569 

VT stimuli was associated with a training-related increase in functional coupling between the mid-STG and 570 

secondary somatosensory areas. Evidence of training-related increases in functional coupling was not found 571 

for token-based stimuli. 572 

In this study, we show that adequately capturing (and eventually harnessing) the metamodal potential of cortex 573 

requires not only the right task and sensory modalities but also an understanding of the information 574 

representation in these regions. Prior work has primarily investigated metamodal engagement in congenitally 575 

sensory-deprived individuals (Arno et al., 2001; Bola et al., 2017; Lomber et al., 2010; Ptito et al., 2005; Reich 576 

et al., 2011; Sadato et al., 1996). In such cortical areas, given the right task-relevant connectivity, bottom-up 577 

input from another sensory modality can conceivably drive the de novo learning of task-relevant 578 

representations even for encoding schemes very different from those in neurotypical individuals (Striem-Amit et 579 

al., 2012). However, in neurotypical adults, existing representations in traditionally unisensory areas reflect the 580 

task-relevant features of the typical sensory input (Lewicki, 2002; Simoncelli and Olshausen, 2001). Therefore, 581 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.04.442660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442660


 32

for metamodal engagement to occur, information partially processed in one sensory hierarchy needs to 582 

interface with pre-existing representations derived from the typical modality. The lack of evidence for 583 

metamodal engagement of the mid-STG by token-based VT stimuli in our study and the mixed evidence in 584 

prior studies of neurotypical individuals may reflect a failure to perform this interface mapping. 585 

The ability to map between representational formats in different sensory hierarchies likely depends on both 586 

anatomical and functional convergence. Anatomical tracer (Mothe et al., 2006a; Schroeder et al., 2003; Smiley 587 

et al., 2007) and studies in non-human primates (Kayser et al., 2009; Schroeder et al., 2001) as well as 588 

neuroimaging studies in humans (Foxe et al., 2002; Ro et al., 2013) have established convergence points 589 

between somatosensory and auditory cortices including belt and parabelt areas. Given this connectivity, prior 590 

computational studies have shown that the mapping between different representational formats can be learnt 591 

through simple biologically plausible learning rules (Davison and Frégnac, 2006; Pouget and Sejnowski, 1997; 592 

Pouget and Snyder, 2000). Still, while it is simple to learn the mapping between static features, it is non-trivial 593 

to match the temporal dynamics between functional hierarchies. For example, Davison and Frégnac (2006) 594 

computationally demonstrated the importance of temporally coherent activity between representational formats 595 

when learning the mapping between cross-modal temporal sequences using spike-timing-dependent plasticity 596 

mechanisms. In the auditory cortex specifically, studies (Moore and Woolley, 2019; Overath et al., 2015) have 597 

shown that auditory stimuli that do not preserve the same temporal modulations found in conspecific 598 

communication signals (e.g., speech, birdsong, etc.) sub-optimally drive higher-order auditory cortex and 599 

preclude learning. Recent human intracranial EEG studies (Hamilton et al., 2018; Hullett et al., 2016) have 600 

demonstrated that middle superior temporal cortex is characterized by very short temporal receptive fields 601 

necessitating relatively rapid changes in the somatosensory signal. Accordingly, we find, in the current study, 602 

that only vocoded stimuli that preserve these fast temporal dynamics are able to drive auditory perceptual 603 

speech representations in the mid-STG. Conversely, the different dynamics (see Materials and Methods) of 604 

token-based VT stimuli relative to auditory speech may explain why these stimuli were unable to interface with 605 

mid-STG speech representations. 606 

Intriguingly, we find stronger evidence of metamodal engagement by VT vocoded stimuli in the right rather than 607 

left mid-STG. A significant body of work (Albouy et al., 2020; Boemio et al., 2005; Flinker et al., 2019; Giraud 608 

and Poeppel, 2012; Obleser et al., 2008; Zatorre and Belin, 2001) suggests that the left and right STG are 609 

differentially sensitive to spectrotemporal content of auditory stimuli. Specifically, it has been proposed (Flinker 610 

et al., 2019) that the left STG tends to sample auditory information on fast and slow timescales while the right 611 

preferentially does the latter. In the current study, our VT vocoded stimuli preserve the coarse temporal 612 

dynamics of auditory speech, but due to hardware limitations have a lower temporal resolution than the 613 

auditory source signal. In addition, the temporal resolution of vibrotactile perception is lower than that of 614 

auditory processing, with receptors in the skin acting as an additional low pass filter (Bensmaïa and Hollins, 615 

2005). Thus, the observed metamodal coupling with the right rather than the left STG provides intriguing 616 

support for the asymmetric spectrotemporal modulation theory of hemispheric processing (Flinker et al., 2019).  617 
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Given that subjects were able to learn token-based and vocoded VT stimuli as words with roughly equal 618 

proficiency, how do token-based stimuli engage spoken word representations? Due to the slower temporal 619 

dynamics of token-based stimuli, we initially hypothesized that these stimuli may map onto higher order speech 620 

representations in areas such as the superior temporal sulcus (STS) or anterior STG that integrate temporal 621 

information on longer timescales (Hullett et al., 2016; Overath et al., 2015). However, we did not find evidence 622 

for this in the current study. An anatomical tracer study by De La Mothe (Mothe et al., 2006b) showed strong 623 

evidence of connectivity between somatosensory cortex and mid and posterior but not anterior superior 624 

temporal areas. Thus, a homologous lack of connectivity between somatosensory and anterior superior 625 

temporal areas in humans may explain why we observed no engagement of those areas after training. 626 

However, we did find evidence that token-based stimuli engage neural representations in the left hippocampus. 627 

This result fits with previous proposals that learned associations can be retrieved using paired-associate recall 628 

circuits in the medial temporal lobe (Miyashita, 2019). A more thorough understanding of this process through 629 

future studies will shed additional insight into which pathways and mechanisms are leveraged to learn different 630 

types of associations. 631 

Previous studies have suggested that metamodal engagement is a result of top-down processes such as 632 

mental imagery rather than bottom-up processes (Lacey et al., 2009). However, given that in our study, 633 

subjects in both algorithm groups were equally proficient at recognizing VT stimuli as words, mental-imagery 634 

accounts (Borst and Gelder, 2016; Li et al., 2020; Oh et al., 2013; Tian et al., 2018) in this case would predict 635 

that both groups should engage auditory perceptual representations in the mid-STG. Yet, we found no 636 

evidence that the token-based VT stimuli engaged this area after training in the same way as auditory speech 637 

(see also (Siuda-Krzywicka et al., 2016; Striem-Amit et al., 2012)). Thus, it is unlikely that metamodal 638 

engagement of the mid-STG by vocoded stimuli is driven by top-down mechanisms. 639 

Most prior studies (Amedi et al., 2002, 2007; Reich et al., 2011; Siuda-Krzywicka et al., 2016; Striem-Amit et 640 

al., 2012, 2015; Vetter et al., 2020) have demonstrated metamodal engagement in visual cortex. Our study 641 

extends these findings to show that metamodal engagement is possible in auditory cortex as well. To our 642 

knowledge, metamodal engagement of auditory cortex has been limited to posterior auditory association cortex 643 

(pSTS) and has only been found in congenitally deaf but not hearing individuals (Benetti et al., 2017, 2020; 644 

Bola et al., 2017; Twomey et al., 2017). Furthermore, these studies did not find evidence of metamodal 645 

engagement in neurotypical individuals. In contrast, our study provides novel evidence for metamodal 646 

engagement of intermediate auditory areas. This is particularly noteworthy given the sparse evidence for 647 

metamodal engagement of intermediate sensory areas (Heimler and Amedi, 2020). Studying metamodal 648 

engagement in intermediate sensory areas has been difficult because it is difficult to determine what cross-649 

modal congruences might exist in a cognitive space – thereby highlighting the importance of focusing on 650 

congruences between neural codes when attempting cross-modal coupling of sensory processing hierarchies. 651 

In summary, our results provide further evidence for the metamodal theory and advance it by demonstrating 652 

the importance of matching representational formats between functional hierarchies for achieving metamodal 653 

engagement. In particular, our results suggest that matching the temporal dynamics of representations is an 654 
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important consideration when considering the feasibility of learning the appropriate mapping. This extends 655 

theories (Heimler et al., 2015; Pascual-Leone and Hamilton, 2001) that emphasize a cognitive cross-modal 656 

congruence by additionally highlighting the need for an algorithmic congruence. Taking this need for 657 

algorithmic congruence into account may provide insight into how the brain learns to map between various 658 

levels of different functional hierarchies like sub-lexical and lexical orthography and phonology (Share, 1999). 659 

Furthermore, it suggests that therapeutic sensory substitution devices might benefit from different designs for 660 

patients with acquired rather than congenital sensory deprivation. For the former group, careful consideration 661 

should be given to the type of sensory substitution device that best interfaces with spared sensory 662 

representations. The ability to “piggyback” onto an existing processing hierarchy (e.g., auditory speech 663 

recognition) may facilitate the rapid learning of novel stimuli presented through a spared sensory modality 664 

(e.g., VT). Here we demonstrate that an algorithm (vocoding) that improves this interfacing is able to more 665 

efficiently convey the same information than an algorithm (token) that does not. Future work should explore 666 

whether this observed integration into existing processing streams leads to improved generalization and 667 

transfer of learning.  668 
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