
1

Graph neural networks and sequence embeddings enable the prediction

and design of the cofactor specificity of Rossmann fold proteins

Kamil Kaminski1, Jan Ludwiczak1, 2, Maciej Jasinski1, Adriana Bukala1, Rafal Madaj3,

Krzysztof Szczepaniak1, and Stanislaw Dunin-Horkawicz1,*

1 Laboratory of Structural Bioinformatics, Centre of New Technologies, University of

Warsaw, 02-097 Warsaw, Poland
2 Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteura 3, 02-093

Warsaw, Poland.
3 Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences,

Sienkiewicza 112, 90-363, Lodz, Poland

* Corresponding author. E-mail address: s.dunin-horkawicz@cent.uw.edu.pl

Abstract

The Rossmann fold enzymes are involved in essential biochemical pathways such as

nucleotide and amino acid metabolism. Their functioning relies on interaction with cofactors,

small nucleoside-based compounds specifically recognized by a conserved βαβ motif shared

by all Rossmann fold proteins. While Rossmann methyltransferases and enzymes involved in

the polyamine synthesis recognize only a single cofactor type, the S-Adenosylmethionine

(SAM), the oxidoreductases, depending on the family, bind nicotinamide (NAD, NADP) or

flavin-based (FAD) cofactors. In this study, we show that despite its short length, the βαβ

motif unambiguously defines the specificity towards the cofactor. Following this observation,

we trained two complementary deep learning models for the prediction of the cofactor

specificity based on the features of the βαβ motif. The first utilizes contextualized sequence

embeddings, whereas the second relies on structures represented as graphs. A benchmark on

two test sets, one containing βαβ motifs bearing no resemblance to those of the training set,

and the other comprising 38 cases of the experimentally confirmed redesign of the cofactor

specificity from NAD to NADP and vice versa, revealed nearly-perfect performance (~95%

accuracy) of the two methods. Finally, by combining the two approaches, we built a pipeline

for the design of cofactor-switching mutations. Both prediction methods can be accessed via
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the webserver at https://lbs.cent.uw.edu.pl/rossmann-toolbox and are available as a Python

package at https://github.com/labstructbioinf/rossmann-toolbox.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.440912doi: bioRxiv preprint 

https://lbs.cent.uw.edu.pl/rossmann-toolbox
https://github.com/labstructbioinf/rossmann-toolbox
https://doi.org/10.1101/2021.05.05.440912
http://creativecommons.org/licenses/by-nc/4.0/


3

Introduction

The Rossman fold is one of the most prominent folds in Protein Data Bank and by far the

most functionally diverse one, with >300 different functions, typically involving the addition

of a methyl group on a substrate (methyltransferases) or transfer of electrons from one

molecule to another (oxidoreductases) (1–3). It is also assumed to be one of the oldest folds,

which was already well represented in the last universal common ancestor (LUCA). From the

structural perspective, the Rossmann fold belongs to the general class of β/α proteins and

comprises four connecting α-helices and six consecutive β-strands (arranged in the

3-2-1-4-5-6 order) forming a parallel pleated sheet (Figure 1). Rossmann-fold enzyme

families are characterized by their use of cofactors, and in particular of nucleoside-containing

cofactors such as S-Adenosylmethionine (SAM), nicotinamide adenine dinucleotide (NAD),

nicotinamide adenine dinucleotide phosphate (NADP), flavin adenine dinucleotide (FAD),

and others. These cofactors share not only the biochemical compound (adenosine) but also

bind to the same specific region of the Rossmann fold, even in distantly related proteins. The

cofactor-binding site shared by all members of the Rossmann fold corresponds to a small

structural fragment comprising β1–α1–β2 and the connecting loops (4). Interestingly, this

fragment has been identified as one of the ancestral peptides (5) that may have existed as a

nucleotide-binding unit even in the pre-LUCA times. However, beyond the shared

homologous cofactor-binding core motif, many of the Rossmann enzymes do not show

detectable homology all along the sequence, and the greater part of their sequences has

diverged beyond recognition.

The NAD, NADP, and FAD cofactors are essential for the functioning of oxidoreductases,

whose role is to transfer electrons from one molecule (electron donor) to another (electron

acceptor). For example, alcohol dehydrogenases facilitate the oxidation of alcohol (electron

donor) to aldehyde with the concurrent reduction of NAD+ (electron acceptor) to NADH.

Generally, NAD occurs mostly in catabolic reactions, i.e., reactions that lead to the decay of

complex molecules, and as a result, produce energy, whereas NADP (differing from NAD

only by an additional phosphate group) is involved mostly in anabolic reactions, which create

complex molecules from simple substrates and thus store energy. The addition of the

phosphate in NADP does not alter its electron transport capability; however, the phosphate

group modifies the structure of the cofactor, which allows different enzymes to have different

specificities for NAD and NADP, thereby decoupling the catabolic and anabolic reactions (6).
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In contrast to NAD(P) and FAD, SAM takes part in methylation reactions, i.e., transferring a

methyl group from SAM to substrates like DNA/RNA, proteins, or small-molecule secondary

metabolites (7), and in other pathways such as these of the polyamine biosynthesis (8).

The rational cofactor specificity re-engineering is used for manipulating metabolic pathways

(9, 10), and it has applications in drug engineering and industry (6). One of the first attempts

to redesign the cofactor specificity of a Rossmann-like enzyme was a work by Scrutton and

colleagues (11). By investigating the Escherichia coli glutathione reductase, the authors

identified amino acids that confer specificity for NADP and then systematically replaced

them to achieve cofactor preference gradually switched towards NAD, while preserving the

specificity towards the substrate. To this date, there were many other successful attempts to

rationally change the cofactor specificity of Rossmann enzymes (12); however, most of them

were based on experimental or theoretical structures of the target protein and/or a detailed

sequence alignment among the family members (13–15). These successful cases of NAD to

NADP and vice versa conversions were the basis for the formulation of rules defining how

properties of amino acids located at the cofactor-recognizing site dictate its binding

specificity (16). The extensive research on the cofactor specificity determinants has led to the

development of universal computational models. For example, Cui et al. proposed an

approach in which molecular dynamics simulations were used to evaluate mutants based on

their propensity to form hydrogen interactions with a cofactor (17). A structure-based

strategy was also employed in CSR-SALAD, a method that aids the selection of amino-acid

positions for the site-saturation mutagenesis (18). Cofactory is the only available

computational tool capable of high-throughput, sequence-based evaluation of Rossmann

enzymes for their ability to bind NAD, NADP, and FAD cofactors (19). However, the method

does not consider SAM, and its accuracy is far from satisfactory, especially in the case of

NADP-preferring proteins.

Obtaining accurate predictions for a wild-type sequence and its potential variants is a

prerequisite for cofactor re-engineering tasks. However, performing such analyses with the

currently available approaches requires time-consuming, case-by-case investigation of

relevant sequences, structures, and literature. To address this problem, we collected all known

experimental structures of the Rossmann fold proteins complexed with cofactors and used

this data to train deep-learning-based models for the prediction of the cofactor specificity in

Rossmann enzymes based on the sequence or structure of the βαβ core region. We rigorously
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tested the methods using a test dataset comprising examples sharing no more than 30%

sequence identity to the dataset used for the training and a panel of 38 experimentally

confirmed transitions between NAD and NADP enzymes. Both benchmarks revealed

outstanding accuracy of the models and their applicability to re-design tasks.

Methods

Training Data Preparation

From 44 manually-selected Rossmann structures (Supplementary Table 1), we extracted Cɑ

atoms corresponding to 3-2-1-4-5 β-sheets and the α-helix connecting β1 and β2. Such partial

backbone structures were used to search the Protein Data Bank (PDB) using the MASTER

tool (20). The resulting matches were processed using Python scripts to obtain fragments

corresponding to the βαβ core regions responsible for the cofactor binding. For handling the

structures, we used Atomium (21) and localpdb (Ludwiczak et al.,

https://github.com/labstructbioinf/localpdb, manuscript in preparation). The core fragments

were analyzed with the PLIP tool (22) to identify protein-cofactor interactions, and all the

cores lacking such interactions were discarded. The resulting set of 11,487 βαβ cores bound

to cofactors was the basis for constructing training, validation, and test sets for use in

machine learning. First, all the core sequences were clustered with mmseqs2 (23) (min.

sequence identity 0.3, coverage 0.5, coverage mode 1, clustering mode 2), yielding 483

clusters comprising 1,647 unique cores (Figure 1B). Initially, all the clusters were assigned to

the training set, and then they were randomly moved one by one to the test set to achieve a

balance within the training set (the equal number of examples for each cofactor class) and

between the training and test sets (70% of cores in each class belonging to the training set).

Subsequently, the test set was further subdivided into test and validation sets. To this end, an

analogous procedure was used in which clusters were randomly moved from the test set to

the validation set while assuring the same distribution of examples within classes

(Supplementary Figure 3).

Sequence-based approach

All sequences from the aforementioned non-redundant set of 1,647 cores were embedded

with the SeqVec method (24), resulting in the vectors of size [N, 1024] (where N is the length
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of the core sequence). Neural network architecture was adopted, with minor modifications,

from the original SeqVec paper (24), which described several applications of the embeddings

for sequence classification tasks. Briefly, the SeqVec embeddings were processed by two

consecutive convolutional layers and connected through two densely connected layers to the

sigmoid-activated 4-class output layer denoting the binding probability for each of the

cofactor classes. Batch normalization and random dropout (probability 0.5) operations were

applied after each convolutional layer to avoid overfitting. Individual model training was

performed for 50 epochs with the cross-entropy loss function, one-hot encoded labels derived

from the structural data (see the preceding section for the details), and the Adam optimizer

(25) as implemented in the tensorflow Python package. Input vectors were centered and

zero-padded to the constant length of 65. Models weights were saved from the epochs

corresponding to the highest macro-F1 score on the validation set. To increase the model

diversity and further improve the calibration, we trained a total of 250 models using the

above procedure and randomly varying the following parameters – a) maximum sequence

identity in the training set (from 0.3 to 0.9 in 0.1 intervals), b) sequence coverage used to

calculate sequence identity (from 0.5 to 0.8 in 0.1 intervals), c) amount of the noise applied to

the labels (from 0 to 0.2 in 0.05 intervals, where the numbers denote the standard deviation of

the zero-centered normal distribution from which the random noise samples were drawn

from; individual labels were clipped to the original [0, 1] range after this operation), and d)

batch size used during the training (from 8 to 40 in 8 samples intervals). The top 10 models,

exhibiting the highest macro-F1 scores on the validation set, were used to create the final

ensemble, which averages the outputs of these best-performing models. The per-residue

contributions to the predicted cofactor binding classes were calculated using the captum

Python package with the integrated gradients method (26) implemented therein. Exact

network implementation, requirements, and scripts allowing to perform inference are

available through the code repository accompanying the manuscript

(https://github.com/labstructbioinf/rossmann-toolbox).

Structure-based approach

Graph neural networks (GNNs) are extensions of regular neural networks to operate on

graph-structured objects. They allow for a more natural representation of complex non-grid

data, such as protein structures. An undirected graph G is defined as a set of nodes N, also

termed vertices, n ∈ N, and a set of edges E; if two vertices are connected by an edge then
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. A graph can also be represented as an adjacency matrix A = { } sized𝑒
𝑖𝑗 

=  𝑒
𝑗𝑖

 ∈ 𝐸 𝑎
𝑖𝑗

, where denotes the number of graph nodes. The core structures from the|𝑁| 𝑥 |𝑁| |𝑁| 

training, validation and test sets were converted to graphs (Figure 2A) in which nodes

represent the individual residues and edges define interactions between them (two residues

were considered to be interacting when the distance between their Cɑ atoms was below 7Å).

Subsequently, nodes and edges of the resulting graphs were annotated with precise structural

data. To this end, the full-length structures containing the core regions were minimized in the

FoldX force field (27) using the RepairPDB command, and then the structural features were

extracted with SequenceDetail and PrintNetworks commands and assigned to nodes and

edges, respectively (Supplementary Table 3). Such a graph representation with nodes and

edges filled with features constitutes the input to the network, whereas its output is a

four-element vector reflecting the probability toward binding of the individual cofactors.

The GNN model was implemented in Deep Graph Library (28) using PyTorch backend and

Lightning training routines. It is composed of a series of EdgeGAT layers blocks, where each

block contains an EdgeGAT layer followed by a batch normalization layer (edges and nodes

are treated separately) with LeakyReLU activation function. To transform graphs of various

sizes to a fixed-size representation, the last EdgeGAT layer produces the output with node

features of size 4 (i.e., number of cofactors), which are subsequently summed over the graph

and passed through the fully connected layer followed by the Sigmoid activation function.

The two main hyperparameters of the network are the number of internal EdgeGAT blocks

and the size of the node features vector (the edge features size was fixed at 20). For the

training, the focal loss cost function (29) and Adam optimizer (25) with L2 regularization

were used. Training stopping criteria were given by not increasing the F1-macro score over

the validation set. All training parameters are supplied in the attached repository

(https://github.com/labstructbioinf/rossmann-toolbox). In total, we trained 1,400 models with

various hyperparameter values (two or three EdgeGAT blocks and the size of node features

ranging from 128 to 512), and the four models that performed the best on the validation set

were selected to build the final structure-based model.

The limitation of the current GNN architectures in the context of processing molecular data is

their inability to jointly process information stored in nodes and edges (30). This feature is

essential for obtaining a complete graph representation of a protein structure in which
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residues (nodes) and interactions (edges) aren’t artificially separated. To address this

problem, we decided to expand the Graph Attention Network (GAT) algorithm (31) with the

possibility of handling complex edge features. The original GAT idea is to compute

individual attention scores, known as edge weights, for each connection in the graph. The

first step is to update node features with regular fully connected layer , whereℎ'
𝑖

= 𝑊ℎ
𝑖
 +  𝑏

and are learnable parameters, and to calculate attention scores using𝑊 𝑏

(1)α
𝑖𝑗

=  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ϵ
𝑖𝑗

) =
𝑒𝑥𝑝(ϵ

𝑖𝑗
)

𝑘∈𝑁(𝑖)
∑ 𝑒𝑥𝑝(ϵ

𝑖𝑘
)

(2)ϵ
𝑖𝑗  

=  𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐴[ℎ'
𝑖  

|| ℎ'
𝑗

]) 

where denotes attention score, that is normalized weight over connection , is the𝑎
𝑖𝑗

𝑛
𝑖

− 𝑛
𝑗

ϵ
𝑖𝑗

 

unnormalized weight where is a learnable matrix, is an activation function,𝐴 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

and denotes vector concatenation operation. After obtaining the attention of each(. ||.)

connection, updated feature vector of node is calculated with the equationℎ''
𝑖

𝑛
𝑖

(3)ℎ''
𝑖

=  
𝑘∈𝑁(𝑖) 

∑ α
𝑖𝑘 

ℎ'
𝑘

In this way, the individual GAT layers will learn which connections are important with

respect to the information stored in and its neighbors. However, in such an𝑛
𝑖

implementation, the edge feature is only temporary and it is not propagated further through

the network. Our extension (Figure 3) replaces equation (2) with

(4)ϵ
𝑖𝑗

 =  𝐹 𝑓'
𝑖𝑗

where is learnable matrix and are updated edge features produced by𝐹  𝑓'
𝑖𝑗

(5)𝑓'
𝑖𝑗

=  𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐴[ℎ'
𝑖 
||𝑓

𝑖𝑗
||ℎ'

𝑗 
])
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in this case, the concatenation is performed over three quantities , , and . We(. ||. ||.) ℎ'
𝑖

ℎ'
𝑗

𝑓
𝑖𝑗

decided to not use the resulting output edge features in the last EdgeGAT layer (in this case

Eq. 4 is replaced with ). The flow of the calculations is presented in Figure 3 and canϵ
𝑖𝑗

= 𝑓'
𝑖𝑗

be summarized in four steps:

I.  calculate auxiliary node feature vector (Figure 3A)ℎ'
𝑖

II. use node ( and ) and edge features ( ) for each existing connection in aℎ'
𝑖

ℎ'
𝑗

𝑓
𝑖𝑗

 

graph to calculate output edge features (Figure 3B)𝑓'
𝑖𝑗

III. use output edge features to calculate each edge attention / - connection𝑓'
𝑖𝑗

α
𝑖𝑗

ϵ
𝑖𝑗

importance factor. Note that importance coefficients are also calculated for self-loop edges

connecting nodes with themselves (not shown in Figure 3C).

IV. sum node features multiplied by their importance factor to obtain output nodeℎ'
𝑖

features . Owing to the usage of self-loops (see above), in cases when all the surroundingℎ''
𝑖

connections are irrelevant (attention score equals zero) then the new state will be the sameℎ''
𝑖

as the old one (Figure 3D).ℎ'
𝑖

Experimental benchmark set

Literature mining revealed 38 experimentally confirmed cases of switching the cofactor

specificity of Rossmann fold enzymes from NAD to NADP and vice versa (Supplementary

Table 2). To verify whether the benchmark set is representative and not biased towards

certain types of proteins, we performed clustering of all its sequences together with the

sequences from the train-test-validation set. To this end, we calculated a SeqVec (24)

embedding for each core sequence, compared them in all vs all fashion using cosine

similarity metric, and used the resulting matrix as an input to the UMAP dimensionality

reduction procedure. The results were visualized as 2D plots (Figure 1B), revealing the

representativeness of the benchmark sequences.

Prediction benchmark
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All the predictions were performed with Cofactory (19) and the two methods developed in

this study. Sequences were used as inputs for Cofactory and the embedding-based predictor,

whereas the PDB structures or FoldX (27) models were used as inputs for the structure-based

predictor. We also built a simple consensus classifier in which predictions from the two

methods were combined using an F1-like formula: 2 * structural_score * sequence_score /

(structural_score + sequence_score). The performance of the individual methods was

estimated using the test set (Figure 4) and a separate test set (Supplementary Table 2)

comprising experimentally confirmed cases (Figure 5). In the latter benchmark, we calculated

the ΔNAD and ΔNADP for each WT-mutated cores pair. These scores, reflecting the change

in the predicted binding probabilities upon mutation, were used to calculate the Δacc

coefficient defining the number of the benchmark cases in which the direction of the change

was predicted correctly (Figure 5). In addition, a prediction accuracy (acc) for all WT cores

was calculated (the mutated variants were not considered because some of them may bind

both cofactors).

Brute-force mutational scan

For each of the 38 WT cores from the experimental benchmark set (Supplementary Table 2),

all possible point mutations were defined and their structures were modeled with Modeller

(32) and FoldX (27). Subsequently, the affinity of the resulting variants towards NAD and

NADP cofactors was predicted with Cofactory (19) and the consensus classifier (see above).

The most plausible variants, i.e., those which may change the cofactor specificity in the

assumed direction, were selected using the following procedure. First, possibly unstable

models characterized by FoldX ddG score or Modeller DOPE score greater than 4.5 and 240,

respectively, were discarded. Then, the raw consensus scores for NAD and NADP were

adjusted by multiplying them by the corresponding attention scores (the per-residue

contributions) associated with the position where a given mutation was introduced. Finally,

for each benchmark case, all the mutants were sorted according to the adjusted consensus

scores, and the positions of experimentally confirmed mutants were indicated (Figure 6A).

Iterative mutational scan
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For the identification of the complex mutations, that are composed of more than one point

mutation, an iterative mutational scan was performed employing the sequence-based method

and Monte Carlo heuristics. In the implemented approach, the state of the system is fully

described by the N point mutations (substitutions) applied to the WT sequence. In a single

simulation step from 1 to N mutations are randomized (by changing their position and

substituting amino acids), and a new resulting sequence is evaluated with the sequence-based

prediction model. A new state of the system is accepted according to the Metropolis criterium

with the probability calculated with the following formula:

/kT)) (6)𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑚𝑖𝑛(1,  𝑒𝑥𝑝((𝑆
𝑁

 −  𝑆
𝐵

)

where is the score of a sequence obtained in the given simulation step and is the score𝑆
𝑁

𝑆
𝐵

of the sequence obtained with the set of the currently best-performing mutations.

The convergence of such computations can be further enhanced with the use of modified

probability distributions during the randomization procedure. The positions in the sequence

can be chosen according to the per-residue contributions to the prediction of the desired

cofactor, whereas the choice of amino acid in a given position can be modified by the use of

PSSM scores derived from multiple sequence alignment (MSA) of cores binding the desired

cofactor (for the MSA calculation we used parMATT (33)).

The simulation can be described with 3 parameters: 1) the number (N) of point mutations

introduced to the WT sequence, in the range from 1 to 5, 2) whether or not the enhanced

probability distributions were used, and 3) kT value: 0.05 or 0.1. For each of the 38 WT cores

from the benchmark set, we have performed a parameter scan employing 50 replicated

simulations in each specification. This resulted in a total of 1000 simulations, each lasting

500 steps, being performed for every WT core.

The results were evaluated to find the best performing mutations for each core of the

benchmark set (Supplementary Table 2) and compare them with the experimental results. To

this end, for each benchmark case, sequences from all simulation steps were binned based on

the actual number of mutations relative to the WT. In each group, the 95th percentile of the

score was defined and variants with scores below this value were discarded. The remaining
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sequences from all bins were collected and the 20 most frequent point mutations were

determined (in the case of sequences containing more than one mutation, each was treated

separately). Such a list was then filtered by removing variants with FoldX ddG score above

4.5 or Modeller DOPE score above 240 (3D models were previously calculated in the

brute-force procedure), and sorted by the frequency of the individual mutations. An

analogous procedure was used to determine the most frequently occurring pairs of mutations.

In this case, all the variants that remained after FoldX and Modeller filtering were analyzed to

determine co-occurring mutations (in the case of variants containing more than two

mutations, all possible combinations were considered regardless of the relative position in the

sequence). Then, the pairs not involving the mutations from the previously defined top 20 list

were removed and the remaining ones were sorted according to their frequency, resulting in a

ranking of mutations’ co-occurrence.

Results and Discussion

Defining the minimal cofactor specificity-defining region

The most conserved and essential interactions between the Rossmann fold proteins and their

cofactors occur in the core region corresponding to the βαβ motif (Figure 1A) (4).

Consequently, mutating the residues in this region is typically sufficient to alter the cofactor

specificity (Supplementary Table 2). To gain insight into whether the core region sequences

contain enough information to discriminate between cofactors they bind, we performed

clustering analyses (Figure 1B). A clear separation between SAM, FAD, and

NAD(P)-utilizing enzymes was visible; however, the latter group was mixed, and the NAD

and NADP-utilizing enzymes were not separable. This result suggests monophyletic origins

of SAM and FAD-binding cores and confirms the well-known observation that the transitions

between NAD and NADP specificity have occurred multiple times (what is to be expected,

considering that even single point mutations are capable of inducing such a change). Given

the above observations, we assumed that the sequence and structure of the βαβ region are

sufficient for the prediction of cofactor binding specificity.

Deep learning-based prediction of the cofactor specificity
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We considered two complementary approaches to tackle the problem of cofactor specificity

prediction in Rossmann fold proteins. Both rely on deep learning procedures but differ in

terms of the neural network architectures and data type used. The first of the methods uses

only sequences of cofactor-binding cores, whereas the second also employs the structural data

represented in the form of graphs. We constructed a data set comprising 1,647 unique

Rossmann cores divided into training, validation, and test sets and used it to develop the two

methods. While the first two sets were used for training and selecting the best models, the

third, comprising βαβ cores showing no more than 30% sequence identity to the cores from

other sets, was used for estimating the effectiveness of the methods. Both methods achieved

excellent accuracy (93% and 94%) and outperformed the only currently available method,

Cofactory, especially in predicting the NADP-specific cores (Figure 4). We attribute the rare

cases of mispredictions, e.g., confusing NAD and NADP-binders, to the fact that our methods

were trained using protein-cofactor complexes obtained from PDB, which may not be

accurate in all cases. Moreover, some Rossmann enzymes recognize both NAD and NADP

(14, 17, 34), but they may be present in PDB only in a single form. We attempted to identify

such ambiguous cases in our data sets by performing molecular dynamics and docking

simulations of the core-cofactor complexes, though without success (data not shown).

Finally, we found that although the accuracies of the sequence- and structure-based models

are comparable, their predictions differ, especially in the most uncertain cases

(Supplementary Figure 1). Such a partial lack of correlation indicates that, to some extent, the

methods must have captured different aspects of the cofactor specificity determinants.

Considering this, we built a consensus classifier (see Methods) in which the predictions from

two methods were combined (Figure 4).

Benchmark using experimental data

Despite the excellent performance on the test set, we deemed it necessary to validate our

methods on more difficult, real-life examples. To this end, we built a benchmark set

comprising 38 published experiments that aimed at switching the cofactor specificity from

NAD to NADP and vice versa by introducing one or more mutations in the βαβ core region

(Supplementary Table 2). Among these benchmark cases, we found mutations designed using

various approaches ranging from loop exchange (35, 36), evolutionary-based (37) to

computational predictions (17, 18). While the wild-type sequences of this set may have
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counterparts in the train set used for the development of the prediction models, their mutated

variants were never “seen” during the training procedure, making the correct predictions

more challenging. Like the benchmark with the test set, this benchmark also indicated the

superiority of deep learning models developed in this study over Cofactory (Figure 5). The

consensus approach achieved 100% accuracy (Δacc) in predicting the direction of cofactor

specificity change upon mutation and 95% accuracy (acc) in predicting the preferred cofactor

of the WT cores (we did not consider mutated sequences in the calculation of the acc

coefficient because the increase in the affinity towards one cofactor does not necessarily

imply the decrease in the affinity towards the other, and the resulting mutated enzymes may

have dual specificity, e.g., (14, 17, 34); Supplementary Table 2).

There were only three cases in which one or more of our approaches failed to predict the

cofactor specificity of the WT core correctly. The first one, dihydrolipoamide dehydrogenase

(position 16 in the benchmark set; Supplementary Table 2), an E3 component of the pyruvate

dehydrogenase complex (38), contains two Rossmann fold domains, both belonging to the

FAD/NAD(P)-binding group defined in the ECOD database (39). The first domain is

involved in FAD binding, whereas the second recognizes NAD. The proposed mutations (40)

aimed at switching the cofactor specificity of the latter domain to NADP. The sequence,

structure, and consensus approach correctly predicted the effect of these mutations

(probability of NADP binding changed from 0.0 to 0.35-0.7, depending on the method);

however, all of them predicted the WT core to bind FAD with a high probability of 0.7-0.8.

The second mispredicted case, water-forming Streptococcus mutans NADH oxidase (position

36 in the benchmark set), has the same domain composition as the dihydrolipoamide

dehydrogenase and contains two Rossmann domains from the FAD/NAD(P)-binding group.

In this case, also the second Rossmann domain was mutated (41), and the direction of the

resulting cofactor specificity change was predicted correctly (probability of NADP binding

changed from 0.0 to 0.5-0.8), but the WT variant obtained the highest score for FAD instead

of NAD (in this case, however, only the structure-based method yielded such an unexpected

result). The fact that in both cases the FAD score exceeds the NAD score can be attributed to

the evolutionary position of the respective βαβ core domains. Both, despite being

experimentally confirmed NAD binders, cluster together with FAD-bound βαβ cores (Figure

1B) and thus may constitute an example of the specificity switch within the

FAD/NAD(P)-binding group. Since such cases are rare in our dataset (especially compared to

the NAD–NADP transitions), they may have been missed during the training process. The
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last mispredicted case, the flavoprotein monooxygenase can use non-phosphorylated cofactor

NAD, as well as NADP, for the reduction (42), thus it is not surprising that the prediction for

its WT core was ambiguous. However, also in this case the direction of specificity change

upon mutation was predicted correctly.

Brute-force and iterative mutational scans

In the benchmark described above, we estimated the ability of the methods to predict the

cofactor specificity and its changes upon mutation correctly. In such cases, however, both the

wild-type and mutant sequences are known. To mimic real-life scenarios in which the

cofactor-switching mutations of a given wild-type core region are predicted from scratch, we

reached for two approaches: one relying on the evaluation of all possible point mutations

(brute-force approach) and the other employing Monte Carlo heuristic to identify complex

variants in which more than one position is altered (iterative approach).

To test the brute-force approach, each WT sequence of the benchmark set (Supplementary

Table 2) was used as a starting point to generate all possible point mutations (19*n, where n

is the length of the core region). For each benchmark case, the calculated point mutations

were evaluated with the individual methods, sorted according to the predicted affinity

towards the desired cofactor, and the position of the “correct” mutation, i.e., the one

described in the respective publication, was indicated (Figure 6A). In this way, we obtained

an estimate of how efficient are the individual methods in de novo prediction of

cofactor-switching mutations – the lower is the position of the “correct” mutation, the fewer

lab experiments would have been necessary to reveal them (later in the text, we define such a

“correct” variant as properly predicted whenever it occurs among the 20 top-scored mutants;

see dashed vertical line on Figure 6A).

The benchmark set can be divided into two groups; the first one encompasses cases where the

switch of the specificity was obtained with a single substitution (nine cases indicated with “p”

in Figure 6 and Supplementary Table 2), whereas the second contains those involving two or

more substitutions to the WT core (29 cases indicated with “c”). In the first group, the

consensus approach and Cofactory properly identified the “correct” mutation in eight and

four cases, respectively, whereas in the second group in 26 and 13 cases, respectively. Among

the cases of the second group, six relied on a multi-step approach in which mutations were
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gradually added and tested experimentally to obtain increasing specificity towards the desired

cofactor (1c, 9c, 12c, 13c, 31c, and 37c; indicated with arrows in Figure 6A). For example, the

study aiming at switching the cofactor specificity of L-Arabinitol 4-dehydrogenase (1c) from

NAD to NADP (43) involved multiple rounds of rational design. The D211S variant obtained

at the first round showed a decrease in activity towards NAD, with a minimal yet detectable

activity increase towards NADP, whereas the second-round double mutant D211S/I212R

displayed actual reversal in cofactor specificity. The brute-scan approach identified the

first-round D211S variant with the highest confidence (first position in the ranking; Figure

6A). Intrigued by this observation, we investigated the remaining cases and found that in all

but one of them (9c) the predicted mutation corresponded to the first one predicted by a given

experimental protocol. The above results indicate that the brute-force scan is suitable for de

novo prediction of point mutations that result in a complete or partial switch of the specificity

towards the given cofactor.

Using a brute-force approach for the identification of complex mutations involving more than

one position would be computationally infeasible. To address this problem, we have

developed an iterative approach capable of simultaneous prediction of more than one

mutation by altering positions indicated by the neural network rather than exhaustively

evaluating all the possible variants. In contrast to a brute-force scan, the iterative approach

returns not only a ranking of specificity-switching mutations but also of their co-occurrences.

For example, in the case of the aforementioned L-Arabinitol 4-dehydrogenase (1c) the D211S

mutation indicated by the brute-force scan was predicted to co-occur with two mutations

I212K and I212R (Figure 6B), and the one showing the strongest coupling (I212R) was also

confirmed experimentally (43). Another example was the reengineering of the cofactor

specificity of Bacillus subtilis inositol dehydrogenase (37c) from NAD to NADP (Figure 6C).

In this case, our predictor identified the coupling between two out of three mutations (D35S

and V36R) that were previously suggested in the experimental study (15). The third mutation,

A12K, was not predicted; however, it must be noted that the double mutant D35S/V36R

already preferred NADP over NAD by a factor of 5. In fact, the A12K mutation was not

essential, and its purpose was to improve the specificity change further. Inspection of all 29

benchmark cases featuring two or more mutations revealed that in 15 of them the iterative

approach predicted more than one “correct” mutation, and in 8 out of these 15 cases also the

“correct” coupling between them (Supplementary Table 4). It is important to note that the

“correct” mutations obtained from the experimental studies aren’t necessarily the only ones
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that are capable of inducing the specificity switch, and it is possible (considering the very

good performance of the methods; Figures 4 and 5) that the top-scored predictions may

constitute alternative solutions.

Conclusions

While the presented methodology shows excellent performance, there is still room for

improvement. We have identified the three most important areas where further studies could

help make it even better. First, our methods were trained only with natural βαβ cores obtained

from PDB. This, in turn, can make them prone to assign good scores to cases that are

meaningless from the structural perspective. This problem was partially overcome by

utilizing Modeller and FoldX energy estimates to detect and discard potentially unstable

variants. However, a more elegant solution would be introducing such variants to the training

set and marking them as non-binders. Second, sequence embeddings and graph neural

networks are relatively new tools, and their applicability to biological tasks are still being

explored. In this study, we not only demonstrated their usefulness in the prediction of

protein-ligand interactions but also developed new solutions such as the EdgeGAT layer

(Figure 3), substantially expanding the applicability of GNNs in structural biology (30).

Thus, we plan to develop this methodology further to extend its applicability to other related

tasks. Finally, in our benchmarks, the two approaches turned out to provide somewhat similar

results; however, we believe that their potential is yet to be explored by the researchers. For

example, we envision that for complex reengineering tasks, such as a switch between

NAD(P) and SAM, it may be necessary to use structural descriptors that are capable of

capturing subtle structural differences (44) and pinpointing essential regions (Figure 2B).

Bearing in mind the possibility of designing such a transformation, we noted that some of the

NAD(P)-binding βαβ cores are localized at the boundary of the SAM group (Figure 1B;

Supplementary Figure 2). Such borderline cases may constitute a good starting point for such

new experiments.
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Figures

Figure 1. Cofactor recognition in Rossmann fold proteins. (A) Example of Rossmann fold

protein, the malate dehydrogenase from Escherichia coli bound to NAD cofactor (shown as a

ball-and-stick model). Beta strands are numbered according to the topological order and the

two of them that form the cofactor-binding core are indicated with a brighter color. The

aspartic acid residue essential for the cofactor binding is shown in yellow. (B)

Sequence-based clustering of Rossmann core regions used to train and test the two prediction

models. Points correspond to 1,647 core regions and their positions reflect the relative

sequence similarity. The left panel depicts core regions colored according to the bound

cofactor type, whereas the right panel highlights core regions (shown in red) used for

benchmarks based on experimental data.

Figure 2. General scheme of the prediction pipeline. (A) The pipeline consists of two

prediction models, which enable the cofactor specificity prediction based on the sequence and

structure of the βαβ core. (B) The prediction models return not only the binding probabilities

but also per-residue importance scores reflecting the individual residues’ contribution to the

final prediction. Colors ranging from green via white to blue indicate positive, neutral, and

negative impact on a given prediction, respectively.

Figure 3. Schema of a single Edge-GAT layer. For the sake of clarity, only some nodes and

edges are annotated. (A) An exemplary input network comprising four nodes and three edges.
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h′1 and h′2 denote updated features (with regular fully connected) of nodes 1 and 2,

respectively, whereas f12 denotes features of the edge that connects them. (B) Concatenation

of node and edge features and calculation of updated edge features (f′12). (C) The updated

edge features are used to calculate the importance (a value between 0 to 1) of node-edge-node

connections (a′12). A new node feature (h′′2) is calculated as an average of surrounding node

features weighted by the importance factors (a′). Note that the h′′2 is also used; its weighting

importance factor is calculated from a self-loop edge feature (f′22). The self-loops were

omitted for clarity. (D) Final output network with updated node and edge features.

Figure 4. Performance of the prediction models on the test set comprising βαβ cores showing

no more than 30% sequence identity to the training set. The SAM cofactor was omitted in the

case of Cofactory since this method does not support predictions for this cofactor.

Figure 5. Performance of on the test set comprising 38 experimentally confirmed cases of

altering the cofactor specificity between NAD and NADP. ΔNAD and ΔNADP denote the

difference between predicted binding probabilities of WT and mutated sequences.

Figure 6. Performance of the consensus approach and Cofactory in the task of cofactor

specificity design. (A) Results of the brute-force mutational scan of the 38 cores from the

benchmark set (Supplementary Table 2). Rows correspond to the 38 experiments in which the

specificity change of Rossmann enzymes was achieved by either point or complex (double,

triple, etc.) mutations (“p” and “c” suffixes, respectively). Orange and blue circles indicate

positions of the experimentally confirmed mutations in the rankings of all possible point

mutations ordered according to the score of a given method (the consensus approach and

Cofactory, respectively) – the lower the position, the better performance. In experiments

relying on complex mutations, only the best-scored mutation is shown. (B) Result of the

iterative mutational scan of L-Arabinitol 4-dehydrogenase. Circles denote mutations (their

sizes are proportional to the frequency of occurrence), whereas edges between them define

predicted coupling (the more green is an edge, the more probable is the given coupling).

Experimentally confirmed pairs of mutations are indicated with red ovals. (C) Result of the

iterative mutational scan of inositol dehydrogenase.
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