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Highlights 

• Copy-number alteration pathways define solid tumor biology 

• SWAN is released as an integrative point-and-click pathway analysis tool 

• Moderate impact drivers highlighted by SWAN validated in vitro 

• Copy-number altered pathways associate with mutations and survival 
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Summary 

Haploinsufficiency drives Darwinian evolution. Siblings, while alike in many aspects, differ due to 

monoallelic differences inherited from each parent. In cancer, solid tumors exhibit aneuploid genetics 

resulting in hundreds to thousands of monoallelic gene-level copy-number alterations (CNAs) in each 

tumor. Aneuploidy patterns are heterogeneous, posing a challenge to identify drivers in this high-noise 

genetic environment. Here, we developed Shifted Weighted Annotation Network (SWAN) analysis to 

assess biology impacted by cumulative monoallelic changes. SWAN enables an integrated pathway-

network analysis of CNAs, RNA expression, and mutations via a simple web platform. SWAN is 

optimized to best prioritize known and novel tumor suppressors and oncogenes, thereby identifying 

drivers and potential druggable vulnerabilities within cancer CNAs. Protein homeostasis, phospholipid 

dephosphorylation, and ion transport pathways are commonly suppressed. An atlas of CNA pathways 

altered in each cancer type is released. These CNA network shifts highlight new, attractive targets to 

exploit in solid tumors. 
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Introduction  

Efforts to establish personalized medicine in cancer therapies have led to curative success in specific 

cancer types (Gambacorti-Passerini, 2008). However, progress in most lethal cancer types has been 

limited by the paucity of eligible patients available for testing in clinical trials. The National Cancer 

Institute - Molecular Analysis for Therapy Choice (NCI-MATCH) group estimated ~9% of all cancer 

patients may be administered therapy based on mutation or amplification targeted data, although this 

already low inclusion rate does not estimate patient benefit (Flaherty et al., 2020). We previously 

demonstrated autophagy-loss copy-number alterations (CNAs) are druggable in high-grade serous 

ovarian cancer (OV). While 85-99% of OV primary tumors have a mutation in p53, there are few other 

canonical tumor suppressor or oncogene mutations, and none reached >10% of patients (Cancer 

Genome Atlas Research, 2011). It remains possible that extremely rare mutations may drive tumors 

like OV (Kumar et al., 2020b). The treatment feasibility issue with such exceedingly rare driver 

mutations is well-known: with so few patients worldwide, how can drugs be reasonably developed and 

approved for patient care?  

 

CNAs are another driving factor. One seminal study in the early –omics era for cancer research showed 

that tumor suppressor mutations were enriched on deletion CNAs while oncogene mutations were 

enriched on gain or amplification CNAs (Davoli et al., 2013). We similarly found that networks built from 

molecular pathways and scored by CNA data were suppressed, with known tumor suppressors as 

network hubs, or elevated, with established oncogenes as network hubs (Delaney et al., 2017). Within 

the most suppressed OV pathway network, the autophagy pathway, we identified BECN1 and LC3B as 

the most influential gene hubs. Suppression of either autophagy gene sensitized cells to autophagy 

inhibitors chloroquine phosphate or nelfinavir mesylate. In a platinum resistant patient-derived xenograft 

(PDX) model, we found autophagy targeted drugs could completely abolish observable tumor burden, 

even when dual platinum-taxane combination therapy had no effect on the PDX model. These results 
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demonstrate tumor CNAs, even monoallelic CNAs, are pharmacologically targetable. Pharmacologic 

treatment of CNAs may be amenable to removal of early pre-cancerous cells for some tumor types. For 

example, clear cell renal cell cancers often lose chromosome 3p years prior to development of disease 

(Mitchell et al., 2018). CNA losses persist during disease progression, suggesting that they remain as 

biological drivers or at least persistent vulnerabilities (Mamlouk et al., 2017; Patch et al., 2015; Wedge 

et al., 2018).  

 

CNAs rarely encompass a single gene. Entire chromosomes are often altered within solid tumors, 

creating CNAs across hundreds of genes with a single genetic alteration. Few studies have adequately 

addressed this background noise problem of thousands of gene-level CNAs in each tumor, many of 

which are passengers, for both logistical and conceptual reasons. It is arduous or infeasible to model 

aneuploid events in cellular and mouse models, precluding causal genetic studies. However, a handful 

of well-controlled studies have been completed. TP53-adjacent genes, EIF5A and ALOX15B, contribute 

to tumor formation and progression. In a lymphoma Eμ-Myc pre-B cell mouse model, suppression of 

these genes by shRNA independently increased lethality (Liu et al., 2016). Chromosome 8p is often lost 

in cancers while chromosome 8q is often gained. Here we adopt the definition of aneuploidy as 

changes encompassing entire chromosome arms (Ben-David and Amon, 2019); 8p loss or 8q gain are 

both independent aneuploid events. To model 8p loss in breast cancer, 8p loss was engineered in non-

malignant MCF10A cells (Cai et al., 2016). While 8p deletion did not induce transformation, cells 

exhibited increased invasiveness and elevated mevalonate metabolism. In most cases, a single 

aneuploid chromosome causes a cell cycle delay. Accordingly, the 8p deletion exhibited this 

phenotype. Furthermore, a 3p deletion commonly found in lung cancers decreased proliferation in an 

immortalized lung epithelium AALE cell line, although cells eventually adapted (Taylor et al., 2018). 

Aneuploidy itself leads to increased usage of the proteasome and autophagosome machinery 

(Santaguida et al., 2015), indicating metabolic inefficiency. Transcriptomic compensation for aneuploidy 

is rare (Torres et al., 2016) and protein levels correlate well with CNAs (Zhang et al., 2016). Aneuploidy 
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can lead to slowed tumor growth in Ras mutant xenografts (Sheltzer et al., 2017). However, under 

specific nutrient or signaling conditions, select aneuploid events increase cellular fitness. In serum 

starved cells, trisomy 13 cells exhibit greater fitness than control cells (Rutledge et al., 2016). These 

examples directly demonstrate CNAs drive cancer in specific selective conditions. 

 

Here we developed a new pathway network algorithm, Shifted Weighted Annotation Network (SWAN), 

designed to handle high-noise biological data, such as monoallelic CNAs spread across the genome. 

We report SWAN analysis of 10,395 tumors studied by The Cancer Genome Atlas (TCGA) from 31 

cancer types and 4,925 pathways. We demonstrate SWAN prioritizes known tumor suppressors and 

oncogenes within CNAs. SWAN further characterized 24 high-confidence novel multi-cancer 

oncogenes. Molecular pathway suppression caused by loss of tumor suppressor genes were prevalent 

across tumor types, representing potentially targetable vulnerabilities. We show biological validation of 

a tumor-specific elevated pathway, peroxisome biogenesis, and a multi-cancer suppressed pathway, 

cadmium response. We release an online CNAlysis Atlas and easily accessible web-based SWAN 

pathway analysis tools.  

 

Results 

Oncogenic CNAs complement other mutations 

Copy-number alterations function as second-hit drivers for oncogenesis, arising after canonical drivers 

like KRAS or p53 mutation. Previous studies of normal tissue found normal epithelium contains 

oncogenic driver single-nucleotide variants (SNVs) and insertion-deletion (indel) mutations (Lee-Six et 

al., 2019; Martincorena et al., 2018; Martincorena et al., 2015; Moore et al., 2020; Yoshida et al., 2020). 

Stromal mechanisms may initially prevent further expansion of these clones (Figure 1A). Secondary 

drivers are necessary to escape local arrest and expand the tumor microenvironment. Initial oncogenic 

mutations allow for the slow development of clonal CNAs over generations of random chromosome 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


gains and losses (Figure 1B). In support of the second-hit CNA driver hypothesis, our analysis of 

TCGA tumors reveals 5-50% of solid tumors contain only oncogenic mutations found in normal tissue 

clones, out of 251 previously identified driver SNVs (Figure 1C). Solid tumors have 15-70% of each 

tumor genome altered by CNAs, with a median alteration of 39% of the genome (Figure 1D). The scale 

of established oncogenes (OGs) and tumor suppressor genes (TSGs) on gain or loss CNAs, 

respectively, range from 20 to 30 of each in solid tumors (Figure 1E). CNAs of known driver genes are 

a hallmark of solid tumor genetics. 

 

Design of Shifted Weighted Annotation Network (SWAN) analysis 

Biological pathways contain multiple genes that are typically located on multiple chromosome arms. 

Thus, tumors with different chromosome content may nonetheless upregulate the same pathway if 

genes within the same pathway are altered in the same direction (either losses or gains). These 

individual genes may differ between patients, yet the pathway is nonetheless similarly altered in flux. To 

quantify and prioritize such complex changes in biological data, we developed SWAN analysis.  

 

SWAN analysis is broadly applicable to any gene-level data set and is similar conceptually to Gene Set 

Enrichment Analysis (GSEA), but includes the addition of interaction and phenotypic data to improve 

the testing of suppression or activation pathway hypotheses by forming weighted pathway networks. In 

SWAN, pathway-specific elevation and suppression hypotheses are independently tested and 

compared to a randomized null hypothesis. Permutations of gene-level data are done for each tumor 

(1,000 random pairs in this study) to generate null distributions specifically relevant to each sample and 

pathway (Figure 2A). Control sample data may additionally be utilized. SWAN performs statistics on 

experimental sample network shifts relative to permuted or sample controls, using a single network shift 

score per sample for large datasets (N ≥ 15), or using individual gene shifts per tumor for smaller 

sample sizes. Significance thus scales with sample size, not with the number of permutations. SWAN 
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performs additional steps to reduce noise in the results (Figure S1 and Methods). The precise details 

of SWAN calculations can be found in Methods, the supplied code, tutorial videos, and the 

documentation provided with the program. For this study, the “annotation” is genes, but investigators 

may use SWAN in the context of lncRNAs, miRNAs, replication origins, or any other annotation of the 

genome, provided that the investigator can supply pathway lists and optional interaction data.  

 

Quality control of SWAN for cancer data 

CNA analyses have previously focused on segments of DNA that are significantly altered in tumors. 

Extreme amplifications of genes like MYC or EGFR and homozygous deletions of CDKN2A are 

highlighted in previous studies due to the high-noise nature of aneuploidy patterns (Beroukhim et al., 

2010; Smith and Sheltzer, 2018; Zack et al., 2013). These analyses often ignored the biological 

changes caused by the 90% of tumor CNAs: removal or duplication of a single allele. Using GSEA, one 

of the most popular pathway analysis tools with >10,000 citations (Subramanian et al., 2005), OV had 

only a single significantly elevated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, 

“complement and coagulation cascades”. Applied to 26 cancer types, very few, if any, pathway 

alterations were found by GSEA across all KEGG pathways (Table S1, Figure S2A). This is unlikely to 

be the real biological situation for tumors containing clear patterns across chromosome arms. SWAN 

was designed to circumvent this false-negative issue using phenotype-layered networks. 

 

To assess phenotype importance in appropriately defining tumor CNA genetics, we performed multiple 

pan-cancer SWAN calculations across 26 quality control (QC) compatible cancer types studied by 

TCGA with 4,925 pathways (KEGG, Gene Ontology [GO], Hallmark, and Reactome). As a positive 

control, we used TSGs and OGs from COSMIC’s Tier 1 Cancer Gene Census (Sondka et al., 2018). 

SWAN identifies the most influential suppressed genes within suppressed pathways and the most 

influential enhanced genes within elevated pathways. If working appropriately in a cancer context, 
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suppressed pathways should have TSGs prioritized and elevated pathways should have OGs 

prioritized. There was a significant (P ≤ 0.05) enrichment of TSG prioritization within suppressed 

pathways in 23 of 26 tumor types and a significant enrichment of OG prioritization amongst elevated 

pathways in 22 of 26 tumor types (Figure 2B). Cancer types without significant enrichment had 

unusually low CNAs, consistent with the hypothesis that CNAs are not strong drivers amongst all 

tumors in these cancer types. Applying identical quality control to GSEA and SWAN KEGG pathway 

analysis, SWAN outperformed GSEA in prioritizing driver genes in 22 of 26 tumor types (Figure S2B). 

Amongst all 31 cancers studied, no pathway was altered in one direction in every tumor type and there 

was a wide distribution of pan-cancer pathway shifts to single-cancer shifts (Figure 2C). 

 

To test if creation of phenotype networks aided in the prioritization of TSGs and OGs, three additional 

pan-cancer SWAN analyses were performed. First, removal of haploinsufficiency and triploproficiency 

scoring yielded a moderate and consistent decrease in SWAN’s ability to prioritize TSGs and OGs 

across tumors (Figures S2C, S3). Second, the protein-protein interactions (PPIs) used to build 

pathway networks were removed. Removal of PPIs substantially reduced the ability of SWAN to 

correctly prioritize TSGs and OGs. Third, removal of both phenotypes from SWAN completely 

abrogated prioritization of TSGs and reduced prioritization of OGs by 87%. These data support the use 

of phenotype information, particularly haploinsufficiency and PPIs, to aid in the analysis of CNAs in 

cancer. Noting that COSMIC-annotated OGs were better prioritized in SWAN than TSGs, we postulate 

that true TSGs on CNA regions may be “moderate or low impact” TSGs in that multiple TSG deletions 

are necessary for a stronger pro-proliferative effect (Davoli et al., 2013; Liu et al., 2016). To test this, 

QC was also performed using STOP and GO genes as annotated from at least two sources (see 

materials). Unexpectedly, STOP genes were not more enriched than known TSGs, potentially due to a 

lack of tissue-specific information ((Sack et al., 2018), reference Figure S2C). Taken together, these 

QC tests show SWAN appropriately prioritizes genes most likely to act as true TSGs or OGs within 

CNA data across cancers. 
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Development of point-and-click integrated network analysis web platform 

SWAN was designed to be useful to statisticians, bioinformaticians, and molecular biologists alike. 

Specifically, SWAN is available in two forms: as an R package with standalone code (for statisticians 

and bioinformaticians, at https://github.com/jrdelaney/SWAN) and as a hosted website (for everyone, 

https://www.delaneyapps.com/#SWAN). R standalone code is streamlined for minimal memory use with 

fast computation time. The point-and-click applications are optimized for minimal user input with logical 

defaults and downloadable example input files. To enable use from non-programmers, all input data are 

designed to be simple tab or comma delimited spreadsheets readily manipulated in Excel or Google 

Sheets. Segment to gene mapping, mm9 to mm10 or hg19 to hg38 conversion, and basic -2 to 2 

scaling and normalization capabilities were built into the SWAN Data Groomer. The CNAlysis Atlas is 

pre-loaded with TCGA data to enable users to query their pathway(s) of interest without any time 

investment in setting up software. This includes SWAN analysis of 10,395 tumors from 31 cancer types.  

Shiny App versions of the statistical SWAN software were developed to enable molecular biologists 

with no programming experience to readily perform these advanced SWAN network analyses, including 

integrated RNA and mutation analyses. As such, a priority on graphical and intuitive outputs was made. 

Entry-level readme files and instructional videos are linked within the Shiny App.  

 

SWAN was developed as a generalizable tool, not just for cancer. Any log2 normalized data or copy-

number data can be used. Mouse and human pathways are included by default. Any organism may be 

queried using user-uploaded files. Other uses of SWAN include weighting by mutations, RNA 

expression, or protein modification rates, among many other possible weighting criteria for the 

networks. Custom interactions other than protein-protein interactions from BioGRID, such as genetic 

interaction data, can be uploaded and used to generate networks. Interaction-independent analyses 

can be performed if desired.  
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To demonstrate broad utility, we provide an example of SWAN use in a generic molecular biology 

context. We first used SWAN to analyze RNA-seq data from control or JQ1-treated human primary 

myofibroblasts (Suzuki et al., 2020). JQ1 inhibits the DNA localization of the BET family of proteins, 

traditionally identified as major epigenetic regulators. BET inhibition has become a strategy for tumor 

treatment; however, the fundamental biology of BET proteins (BRD2/3/4) is still being unraveled. By 

querying Reactome pathways in SWAN, we identified similar conclusions as the original authors: both 

collagen formation and extracellular matrix organization pathways were significantly down regulated in 

JQ1-treated cells (Figure S4A). We noted several other related suppressed pathways, including DNA 

replication, activation of the pre-replicative complex, and unwinding of the DNA. To further investigate 

these results, we next analyzed RNA-seq data from three other publications using multiple forms of 

BET inhibition across several cell lines (Garcia-Carpizo et al., 2018; Nagarajan et al., 2017; Ren et al., 

2018). In all these independent datasets, BET inhibition suppressed expression networks of genes 

involved in the activation of the pre-replicative complex (Figure S4B). These results were recapitulated 

in a genetic knockdown of BRD4 (Figure S4C). BET inhibition has been suggested to affect genes 

involved in DNA replication (Du et al., 2018), however, there is little literature detailing these findings. 

Interestingly, several proteins involved in the pre-replication complex, including CDC6, MCM5 and 

MCM7, have been implicated as BRD4-interating partners (Zhang et al., 2018). Indeed, BET inhibition 

has resulted in DNA replication stress (Bowry et al., 2018) and replication re-initiation (Zhang et al., 

2018). BET proteins are also implicated in the regulation of proliferating cell nuclear antigen unloading 

(Kang et al., 2019). The SWAN analysis presented here underscores the importance of BET proteins in 

the biology of DNA replication and serves as an example of SWAN usage outside of cancer genetics. 

 

Integrative analysis 
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While the current study is primarily intended to provide new light into tumor genetics using solely CNA 

data, there is community interest in allowing for integrative analyses. SWAN enables the routine 

integration of RNA and mutation data, amongst other types of layered data (Figure S2D). By 

comparing SWAN shifts using CNA data alone to those shifts produced by RNA layered onto CNA 

data, outlier pathways with exceptional RNA modulation can be identified. In bladder cancer, we found 

an upregulation of xenobiotics and drug metabolism RNAs and fatty acid degradation relative to DNA 

copy number (Figure S2E, red), whereas the spliceosome pathway had a reduction in RNA relative to 

DNA copy number (Figure S2E, blue). Mutation shifts were less striking due to the infrequently 

consistent mutation events for driver genes in most cancer types. TP53 is a rare exception in that it is 

commonly mutated in entire cohorts, shifting the p53 signaling pathway away from the null in an 

otherwise well-correlated pan-pathway analysis (Figure S2F). Overall transcription shift correlations 

across 4,912 pathways were high when RNA was scored only if in the same direction as CNAs, while 

specific cancer types had widely different RNA shifts when scored additively with CNA data (Figure 

S5). 

 

Identification of known and novel oncogenic pathways 

In the SWAN pan-cancer CNA analysis, the hyperosmotic response was the most commonly elevated 

pathway (25 of 31 cancers elevated) (Figure 3A, Table S2). The most common SWAN impactful genes 

within the hyperosmotic response included ARHGEF2, AQP1, and RAC1. RAC1 is a tier 1 COSMIC 

oncogene and ARHGEF2 is required for RAS-mediated oncogenesis. AQP1 is best known for its role in 

enabling water transporting along an osmotic gradient in kidney proximal tubules, but is also implicated 

in endothelial cell migration (Verkman, 2011). The second most commonly elevated pathway was 

epidermal growth factor receptor signaling (24 of 31 tumor types), led by canonical oncogenes EGFR 

and SRC. Negative regulation of anoikis (23 cancers elevated), led by amplifications in caveolin 

(CAV1), SRC, PIK3CA, and FAK/PTK2 (Figure 3B) were the third highest. Among the most commonly 
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altered was keratinization, which drives cell cycle progression in breast epithelial cells (Sack et al., 

2018). Other frequently elevated pathways include amoebiasis, cAMP signaling, DNA methylation, and 

female meiotic division. 

 

Modern cancer therapies are often developed to target genes that are overexpressed or constitutively 

active in cancer. To evaluate novel CNA targets, we compared SWAN interactome prioritization data 

with sgRNA screens of 324 cancer cell lines (Behan et al., 2019). Figure 3C depicts putative (defined 

here as not Tier 1 COSMIC) OGs which were identified as a dependency gene in at least 25% of 

cancer cell lines (Table S3). Sixty-five additional prioritized OG nodes were found which were not 

analyzed in the 324-cell line screen (Figure S6A, Table S3). Included within these putative novel OG 

CNAs are emergent targets for cancer therapy. Of note, ADORA2A encodes adenosine receptor A2a, 

which negatively regulates inflammatory immune response (Ohta et al., 2006), and its blockade 

enhances pre-clinical syngeneic models of PD-1, TIM-3, or CTLA-4 therapies (Leone and Emens, 

2018). Another, PTK2, encodes focal adhesion kinase (FAK), which enables cells to survive a loss of 

adhesion (Sulzmaier et al., 2014). Two Phase II oncology trials target FAK with a small molecule 

inhibitor defactinib (NCT02465060 and NCT03727880). Future studies may consider the SWAN 

prioritized CNA-altered OGs as therapeutic targets. 

 

Some pathway disruptions were unique to a single or a handful of cancers. Such pathways may 

represent unusually selective pathways for targeted treatment or early diagnosis. One largely 

unexplored but selectively elevated pathway involved peroxisome biogenesis. Second to testicular 

cancer, OV was most affected by pathway CNA elevation (Figure S6B), but not by mutation (Figure 

S6C). SWAN networks highlighted PEX5 and PEX19 as the most relevant amplified genes in serous 

ovarian cancer (Figure 3D, Figure S6D). PEX5 is within an elevated CNA in 53.6% of OV tumors and 

PEX19 in 57.8% of OV tumors (Figure S6E-G). PEX5 and PEX19 function to properly import 

peroxisome membrane proteins to the organelle (Kim and Hettema, 2015). Overexpression (-OE) of 
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either PEX5 or PEX19 modestly reduced cisplatin lethality within SKOV3 and OVCAR3 ovarian cancer 

cells (Figure 3E), neither of which contain amplifications of either gene (Figure S6H). To investigate if 

this phenotype was due to a reduction of intracellular reactive oxygen species (ROS), which 

peroxisome metabolism contributes to (Schrader and Fahimi, 2006), we stained cells for cisplatin-

stimulated ROS. PEX5-OE or PEX19-OE reduced the amount of cisplatin-stimulated ROS (Figure 3F). 

Scavenging ROS with N-acetyl cysteine (NAC) similarly abrogated cisplatin toxicity in the control cell 

lines (Figure 3G). These results were not initially expected since peroxisomes can be a source of ROS, 

primarily through catabolic Acyl-CoA oxidase function for lipid β-oxidation (Poirier et al., 2006). To test 

directly if lipid metabolism was disrupted, we performed unbiased ultra-performance liquid 

chromatography mass-spectrometry metabolomics. An outlier metabolite in PEX19-OE SKOV3 cells 

was a 92% reduction in Acetyl-CoA, a product of β-oxidation (Figure 3H, P < 0.051). Overall lipid 

content of the cells was unchanged (Figure S6I and Table S4), suggesting that PEX19-OE cells may 

need to replace Acetyl-CoA via exogenous sources of lipids, a known phenotype of ovarian cancer 

(Motohara et al., 2019). PEX5 expression correlated with poor prognosis, whereas PEX19 did not 

(Figure S6J and S6K). In summary, SWAN identified two potential OGs within the peroxisome KEGG 

pathway, and overexpression of each was sufficient to reduce ROS generation in chemotherapy-

stressed ovarian cancer cells. 

 

Identification of known and novel tumor suppressor pathways 

Focal deletion regions of PPP2R2A, CDKN2A, ATM, NOTCH1, TP53, PTEN, and the BRCA1/2 genes 

have been previously highlighted (Zack et al., 2013). In our pan-cancer analysis, these tumor 

suppressors were often highly influential in determining suppression of pathways; PTEN, TP53, and 

BRCA1/2 are highlighted in the top 1% of suppressed pathways (Table S2). Phospholipid 

dephosphorylation was the most commonly suppressed pathway, found as significantly suppressed in 

22 of the 31 tumor types studied (Figure 4A). Along with PTEN, losses in phosphatidylinositol 4,5-
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bisphosphate 5-phosphatases (INPP5E/J/K), lipid phosphate phosphohydrolase (PPAP2A/C), lipid 

phosphate phosphatase-related protein (LPPR1/3/4), and synaptic Inositol 1,4,5-Trisphosphate 5-

Phosphatase (SYNJ2) were commonly dysregulated by deletions. Replicative senescence (Figure 4B) 

and apoptotic regulators (Figure 4C) are suppressed as expected. Phospho-STAT signaling was 

suppressed in 17 tumor types, led by deletions in Type I interferon genes. Attachment of spindle 

microtubules to the kinetochore was suppressed in 20 tumor types, led by deletions connected to 

Aurora kinases (AURKB/C), kinetochore microtubule motor CENPE, and anaphase promoting complex 

regulator BUB3. OV, a highly aneuploid tumor type, was amongst the most suppressed for protein 

localization to the kinetochore, due to distributed losses on Chr1p, Chr15q, and Chr17. Chromatin 

organization was suppressed in 21 cancer types, with deletions in p53, ATM, β-catenin, sterol 

regulatory element-binding transcription factor 1 (SREBF1), lysine (K)-specific demethylase 1A 

(KDM1A), and histone acetyltransferase p300 (Table S2). The most commonly identified TSGs were 

amongst the best-established tumor suppressors. SWAN interactome analysis predicts p53 as the most 

significant and common TSG (Figure 4D). Altogether, 170 novel TSGs were identified (Table S3). 

 

Protein quality control and cellular homeostasis was commonly disrupted across cancers. Protein 

deglycosylation was suppressed (19 of 31 tumor types) most commonly through deletions related to 

EDEM1 and DERL2, proteins involved in extracting misfolded glycoproteins as part of endoplasmic 

reticulum associated degradation. Protein processing in the endoplasmic reticulum was a commonly 

suppressed KEGG pathway (14 of 31 tumor types). We previously found autophagy, by MAP1LC3B 

and BECN1 gene loss, to be suppressed and therapeutically targetable in OV (Delaney et al., 2017). 

BECN1 is a bona-fide tumor suppressor in ovarian cancer and contributes to genome instability 

(Delaney et al., 2020; Kumar et al., 2020a). In this pan-cancer analysis, autophagy was suppressed in 

many other tumor types as well (14 of 31 tumor types), as was protein ubiquitination and degradation 

(9-14 tumor types). Ion homeostasis was commonly disrupted; negative regulation of potassium 

transport (9 tumor types), manganese ion transport (8 tumor types), copper ion homeostasis (7 tumor 
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types), and zinc or cadmium ion response (10 or 15 tumor types, respectively) were pervasively 

suppressed by CNAs.  

 

To confirm if SWAN identified novel tumor suppressor pathways which are biologically relevant, we 

selected the zinc and cadmium response pathways. These are dominated by concomitant loss of 

metallothionein genes in a cluster on Chr16q. Ovarian tumors lose this gene cluster in 60% of high-

grade serous tumors. Metallothioneins are cysteine-rich proteins which chelate divalent cations within 

the cell: particularly Zn2+ and toxic heavy metals such as Cd2+ (Klaassen et al., 1999). Cadmium is an 

environmental toxin thought to increase lung, pancreatic, and endometrial cancer risk (McElroy et al., 

2017). Using ovarian cancer cell lines, metallothionein-2A (MT2A) mRNA was most highly expressed 

amongst all isoforms (Figure 4E). Therefore, MT2A was knocked down in ovarian cancer cells (Figure 

4F). Loss of the metallothionein gene cluster may contribute to cadmium-mediated oncogenesis by 

allowing for genomic instability. To test this hypothesis, knockdown cells were evaluated for γH2AX foci 

following cadmium exposure. MT2A knockdown cells contained more γH2AX foci than control cells 

(Figure 4G and 4H), consistent with the hypothesis that these metallothionein genes protect cells 

against cadmium-mediated genotoxic damage. 

 

Cancer-specific pathway alterations 

Dysregulated pathways in distinct cancer types may be particularly informative. Glioblastoma 

multiforme (GBM) is the only tumor type elevated in “positive regulation of neuron death,” while 19 

tumor types are haploinsufficient (Figure 5A). This was due to SRPK2 elevation, which has recently 

been implicated in RNA dysregulation in GBM (Song et al., 2019) via phosphorylation of SRSF3 (Long 

et al., 2019), and elevation of PTPRZ1, which macrophages stimulate for GBM stem cell growth (Shi et 

al., 2017), CDK5, which is involved in neuronal migration, and canonical oncogenes MAP2K7 and 

ABL1 (Figure 5B). GBM cells may alter this pathway in a single chromosome gain event, as SRPK2, 
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CDK5, and PTPRZ1 are all encoded on Chr7q (Figure 5C). By CAIRN analysis of CNAs (Delaney et 

al., 2020), these genes are co-incidentally gained in 45% of GBM tumors.  

 

In Low-Grade Glioma (LGG), Hallmark Myc Targets V1 was marked as “suppressed” whereas 19 

cancer types were marked as “elevated”. Interestingly, the subset of tumors with CNA losses within 

MYC targets both had greater overall survival (Figure 5D) and progression free survival (Figure 5E) in 

LGG. These genes are enriched on Chr1p and Chr19q, which was identified in the TCGA publication as 

prognostic of IDH1 mutant tumors (Cancer Genome Atlas Research et al., 2015). LGG is often driven 

by MYC or IDH1/2 mutations, suggesting that the tumors which have spontaneously lost an array of 

MYC targets may have attenuated their oncogenic potential. 

 

Uveal melanoma (UVM) exhibits an unusual mode of initial extravasation which first involves 

intercalation with endothelial cells (Onken et al., 2014). While 11 cancers are elevated in the KEGG 

pathway melanogenesis, which usually involves gains in Wnt-β-catenin regulating factors FZD1, 

GNAI1, and WNT3A, UVM was the sole cancer suppressed in this pathway due to Chr1 and Chr3 

losses overlapping MITF, GSK3B, and DVL1 (Figure 5F). Patients with these losses are in the poor 

prognosis group, particularly for progression free survival (Figure 5G). Poor prognosis is associated 

with increased immunosuppressive profiles (Figueiredo et al., 2020).  

 

To address tissue specificity in an unbiased fashion, the top 1% variable pathways were K-means 

clustered. There were clearly different cancer subsets with regard to phospho-STAT signaling, 

keratinization, epigenetic regulation of rDNA, protein carboxylation, and serine peptidase (Figure S7A). 

Cancer types did not strongly cluster together. The remaining cancer-specific altered pathways can be 

found in Table S2. 
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Tissue-specific annotation weighting reveals a suppression of cytosolic 

DNA response 

Whole-genome CRISPR-Cas9 screens of non-transformed normal tissue have identified tissue-specific 

drivers of proliferation (Sack et al., 2018). In lieu of haploinsufficiency data, we applied weights on 

pancreatic cancer (PAAD) CNAs in SWAN using genes enriched for proliferation changes from a 

CRISPR-Cas9 screen in primary immortalized pancreatic HPNE cells. In a KEGG pathway analysis, the 

cytosolic DNA-sensing pathway was the most suppressed pathway in PAAD (-9.4 SWAN shift, FDR ≤ 

8.1x10-8, Figure 5H). This was led by the IFNA genes, which produce type I interferons and act as 

positive feedback inducers of a central dsDNA sensor cGAS (Ma et al., 2015) (Figure 5I). Another 

suppressed gene was DDX58, a primarily dsRNA sensor which can also detect some types of dsDNA 

(Zevini et al., 2017). Chromosome instability often results in micronuclei, which normally activate cGAS-

STING signaling. However, in some cancer cells this pathway was found to be attenuated by an 

unknown mechanism (Bakhoum et al., 2018) allowing for cell survival and increased metastasis. CNAs 

may be one mechanism cancer cells use to reduce cGAS-STING pathway signaling, particularly in 

pancreatic cancer. Weighting by tissue-specific sgRNA screens thus yielded further insights into CNA 

patterns and tumor biology. 

 

SWAN case study on race-specific CNA patterns 

African American data represents only 6% of the tumors present in TCGA OV data. Expansion of data 

and analysis in this group is warranted. We obtained 12 tumors from African American high-grade 

serous ovarian cancer patients and 8 non-Hispanic white patient controls and performed whole-exome 

sequencing (Table S5). Since normal tissue was not available for these unique samples, confident 

somatic SNV analysis was complicated by rare but normal variants. CNAs, conversely, are uncommon 

in normal tissue and ascertainment of CNAs was possible using Control-FREEC software (Boeva et al., 

2012). This method was remarkably similar in overall cohort CNA calls to TCGA analyzed tumors 
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(Figure 5J). To investigate the possible race-specific CNAs in African American patients, SWAN was 

used to compare African American patients to white patients from this study as well as combined with 

the TCGA study. The cytokine production pathway was found to be significantly elevated in African 

American patient tumors relative to white patient tumors (Figure 5J gene labels). Self-reported race 

matched race-defining variants found by EthSEQ analysis on these tumors, with expected higher 

admixture present in African American patients (Figure 5K). Black OV patients respond poorly to 

therapy relative to white patients, even when taking into account socioeconomic factors and 

comorbidities (Hildebrand et al., 2019). This trend, albeit not significant, was seen in TCGA survival 

data (Figure 5L). SWAN shifts mapping to elevation of cytokine production were associated with poor 

prognosis in OV overall (Figure 5M). Existing socioeconomic factors which lead to persistent 

inflammation in black patients may allow for de-repressed cytokine production in black patient tumor 

cells, which would otherwise allow T-cell responses to clear tumors. Low-dose rapamycin treatment 

may re-enable T-cell clearance within these patients (Mannick et al., 2014; Mannick et al., 2018). 

 

Pathways associated with SNV mutant drivers 

Each SNV/indel driver mutation may be predicted to require its own set of CNAs to assist in cancer 

development. To test this hypothesis, we analyzed which tumor types had CNA-altered pathways within 

the subset of specific mutant tumors, relative to non-mutant tumors of the same histotype. We tested 

commonly mutated TSGs/OGs: TP53, CDKN2A, KRAS or NRAS or HRAS, BRAF, BRCA1 or BRCA2, 

EGFR, PTEN, HIF1A or VHL, RB1, ATM, APC, and MSHs (MSH2,3,4,5 or 6). Of all of these possible 

driver mutations, TP53 had the most pathways commonly affected in multiple cancers (Table S6). This 

is consistent with the observation that TP53 mutation is the most significantly associated with 

aneuploidy by multiple orders of magnitude (Taylor et al., 2018). A suppression of KEGG: autophagy in 

p53 mutant subsets of tumors was observed in 8 cancer types (Figure 6A). Uterine/endometrial cancer 

is known to have worse prognosis with p53 mutation, and these tumors were severely reduced in 
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autophagy gene content (Figure 6B). OV, the cancer type we have thoroughly investigated for its loss 

of autophagy (Delaney et al., 2020; Delaney et al., 2017; Kumar et al., 2020a), was not found in this set 

due to the ubiquity of p53 mutations, precluding a non-mutant control comparison. Mutation in p53 is 

commonly associated with elevation of GO: Regulation of Cell Adhesion Mediated by Integrin (14 tumor 

types elevated, led by FAK/PTK2 and LYN).  

 

The next most consistently altered pathway sets occurred in RAS mutant cancers. In these cases, the 

commonly dysregulated pathways may further enhance the activation of the RAS pathway. RAS 

mutation was associated with an increase in inositol phosphate mediated signaling (Figure 6C), likely 

increasing activation of PI3K (Castellano and Downward, 2011). The remainder of known, common 

driver mutations were distinct to individual cancer types. For example, the BRCA1/2 driven cancers 

were associated with a decrease in meiotic chromosome condensation specifically in breast cancer 

(Figure 6D). This pathway was suppressed via allelic loss in FANCM, TOP2A/B, and HFM1 (Figure 

6E). Since CNAs are far more common than individual driver SNV mutations, more samples are 

needed to provide the statistical threshold for CNA pathway differences associated with other 

individually rare SNV drivers. Overall, these data support the model that SNV/indel mutations alter 

biology in a manner which is further exacerbated by CNAs.  

 

Prognostic alterations  

If SWAN-identified CNA pathways drive the biology of tumors, then it would be expected that some 

pathways influence patient prognosis. Both cBioPortal and ProteinAtlas offer survival curves comparing 

“low” and “high” expression of individual genes for this purpose. Here, we explored whether pathway 

scores can separate prognostic groups. In a log-rank test analysis using whole-cohort data, 12,781 

pathways from 18 cancers were found to be significantly prognostic by comparing upper and lower 

tertiles of SWAN shifts. Survival estimates can be misleading (Crespo et al., 2016), and we accordingly 
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found an ability to erroneously call a single pathway as significantly positively prognostic or negatively 

prognostic, depending on which patients were randomly selected (Figure 7A, Figure S7B). Desiring to 

prioritize the 12,781 pathway hits into those most likely to be medically informative, we developed a 

machine learning approach. A random subset of two-thirds of tumors was used to build Cox-

proportional hazard (Cox-PH) models from SWAN network shift data. The remaining one-third of 

tumors per random selection was used to generate hazard ratios using the Cox-PH model. 101 random 

patient selections were used to determine which pathways scored as similarly prognostic in the test set. 

While Cox-PH is traditionally used for multiple covariates, its predictive capacity for single variables was 

herein used. The machine-learning approach here required an identical hazard ratio direction and 

subsequent test group log-rank significance in >80% of patient selections to call a pathway as 

prognostic (Figure 7B). This strategy was amenable to 18 cancer types with sufficient survival data and 

reduced the prognostic pathways from 12,781 pathways within the pan-cancer cohort to 1,696 

pathways (Figure S7C-S7E). 1,079 are from the highly predictable LGG data, leaving 617 machine-

learned prognostic pathways from 17 cancer types. While an ideal machine-learning approach would 

include an independent dataset, data of sufficient size and comparable form across cancer types were 

unavailable. Our approach nonetheless sharply narrowed the scope of likely prognostic CNA pathways. 

Kaplan-Meier curves of the entire cohort confirm that machine learned pathways were negatively 

prognostic (Figure 7B) and positively prognostic (Figure 7C), suggesting that SWAN data may be used 

to categorize patients by prognosis. Machine-learned prognostic pathways for each cancer type are 

supplied as Table S7.  

 

Online atlas 

We uploaded a SWAN analysis of 31 cancer types studied by TCGA into an online portal. The 

accessible data include SWAN CNA network-level scores and per-patient scores for all cancer types for 

four pathway sets: GO, KEGG, Hallmark, and Reactome. This database is provided online at 
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https://delaney.shinyapps.io/cnalysis_tcga_atlas/. Summary data for all analyses discussed here are 

also provided as Tables S1-S7. 

 

Discussion  

Copy-number alterations represent a wealth of unexplored oncogene and tumor suppressor gene data 

within the cancer genome landscape. Expanse and heterogeneity in these data have previously 

prevented identification of biologically relevant CNAs. SWAN demonstrably improves the identification 

of TSGs and OGs on CNAs within a pan-cancer dataset. In addition to this computational validation, 

wet-lab validation was performed. SWAN identified PEX5 and PEX19 as elevated genes within the 

peroxisome biogenesis pathway. These genes each conferred platinum resistance by oxidative control. 

SWAN marked cadmium response as suppressed in 15 tumor types, and knockdown of metallothionein 

2A conferred increased γH2AX foci formation in response to cadmium. Newly sequenced tumors 

analyzed by SWAN determined that elevation of cytokine production genes occurs within tumors from 

an underrepresented racial group. SWAN was developed with an emphasis on ease-of-use and 

widespread applicability so that SWAN may be utilized in future experiments with complex genetics. 

While optimized for oncology, SWAN may be considered for use as generally applicable pathway 

analysis software.  

 

A limitation with modern genetically-targeted cancer treatments is the small percentage of patients who 

may benefit from a specific genetic alteration. Some estimates are that only 8.3% of patients are 

eligible for genetically-targeted therapy (2018), compared to 5.1% over a decade prior (2006) (Prasad, 

2020). In OV, which lacks canonically targetable mutant drivers, alternative tests have been developed 

to test for functional deficiency in homology directed repair (HDR), thereby enabling PARP inhibitor 

targeted therapy even in the absence of BRCA1/2 mutations (Longo, 2019). This HDR deficiency is 

influenced by the ubiquitous CNAs described here. Our analysis of CNAs represents a wealth of 
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potentially targetable pathways that are altered in double-digit percentages of patients. Moreover, 

therapeutic windows as a result of tumor CNAs are of high likelihood since functional normal cells do 

not contain clonal somatic CNAs. Targeting pathways, rather than individual genes, may reduce the 

likelihood of resistance mutation development and resurgent cancer, especially if multiple drugs are 

used (Bozic et al., 2013). 

 

While previous CNA studies have thoroughly studied focal homozygous deletions and arm-level 

aneuploidy in cancer, these studies do not provide a comprehensive statistical assessment of what 

patterns of changes can alter biological pathways. This is critical because a pathway may be 

suppressed via multiple chromosome arms or monoallelic changes which may differ tumor-to-tumor. An 

example of this is the keratinization pathway. While it was previously shown that single gene 

overexpression of keratinization factors can promote cell cycle progression, these effects were cell type 

specific (Sack et al., 2018). However, those cell-type specificity results must be a consequence of other 

factors within the cell which ameliorate or exacerbate the effects of single gene overexpression. 

Networks, conversely, take into account these disparate interacting factors that differ between 

individual tumor samples. An analysis of focal-amplification regions consistently altered across tumors 

identified regulators of Nf-κB, Wnt/β-catenin, MYC, AKT, ERBB2, Cyclin-D1 and -E1, and TERC (Zack 

et al., 2013). Pathway alterations within these commonly amplified segments centered on chromatin 

modifiers such as BRD4, KDM2A, and KDM5A (Zack et al., 2013). These genes are well-known 

oncogenes and were often identified as impactful by SWAN. However, SWAN was able to identify 

cancer addictions depleted in sgRNA screens and further prioritized 65 novel oncogenes. Pan-cancer 

and cancer-specific CNA pathways were identified and their relevance to primary chemotherapy can be 

referenced to the machine-learned prognostic pathways released here. 
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Figure Legends 

Figure 1. Copy-number alteration drivers are present in tumors with insufficient SNV drivers. (A) 

Model for limited growth of epithelial cells with normal-tissue clonal SNVs. (B) Model for oncogene 

accumulation by CNAs to drive cancer initiation and progression. (C) TCGA tumors were analyzed for 

the number of tumors with insufficient SNV drivers. Tumors were queried for 251 Tier 1 COSMIC 

oncogenes and tumor suppressor gene mutations. Tumors with only p53, or with p53 and mutations 

commonly found in normal human epithelium (includes NOTCH1-3, FGFR3, and FAT1) and no other 

COSMIC OG or TSG mutation are plotted as a percent of all tumors queried. (D) Frequency of CNAs in 

the same cancer types. (E) COSMIC Tier1 cancer genes overlapping deletion CNAs (for TSGs) or 

amplification CNAs (for OGs).  

 

Figure 2. Design of Shifted Weighted Annotation Network (SWAN) pathway analysis tool and 

pan-cancer results. (A) A conceptual diagram of SWAN calculations. Raw data in this pan-cancer 

analysis is CNAs. Pathway networks are then built utilizing protein-protein interaction data and 

haploinsufficiency data. Sample network scores are compared to paired-shuffled control data. Details 

are found in SWAN documentation and Methods. (B) Plot of the statistical enrichment of known OGs 

and TSGs on elevated or suppressed pathways in each of the 26 QC-compatible tumor types studied. 

(C) Plot of the number of pathways which are identified among 31 cancer types as elevated or 

suppressed relative to the sum of SWAN shifts.  

 

Figure 3. Pan-cancer elevated CNA pathways. (A) Unusually pervasive elevated CNA pathways. 

Violin histograms of SWAN scores with red fill indicating significant (FDR < 0.0001) pathway elevation 

and blue fill indicating significant pathway suppression. (B) SWAN Circos plot. Red and blue outer rings 

are frequency plots of gains or deletions and the inner ribbons represent genes within the selected 
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pathway. Labeled gene symbols are enriched for CNA gains. (C) Impact summary of novel pan-cancer 

SWAN elevation-prioritized genes. Green color indicates COSMIC OGs. Size is proportional to the 

mean z-score SWAN contribution across cancers with OG-containing pathway elevation. Higher 

transparency indicates interacting protein genes influenced each gene’s identification by SWAN, rather 

than CNAs of the gene itself. (D) SWAN network generated, with edges represent protein-protein 

interactions. Blue nodes are enriched for loss CNAs and red nodes (such as PEX5 and PEX19) are 

enriched for gain CNAs. (E) Mean ± standard error of crystal violet viability assays comparing 48h 

cisplatin to control 0.1% DMSO treatment. N = 4 experiments with data combined from all experiments. 

(F) Flow cytometry of ROS indicator H2DCFDA following 48h cisplatin or control 0.1% DMSO treatment 

in PEX19 overexpressing or PEX5 overexpressing cells. Significance determined from N = 3 

independent experiments. Dotted line marks peak control stain. (G) Mean ± standard error of crystal 

violet viability assays comparing 48h cisplatin to control 0.1% DMSO treatment with or without 2mM 

NAC. N = 2 experiments. (H) Summary of metabolite concentrations within a metabolomic study 

comparing N = 5 PEX19 overexpressing SKOV3 cells relative to control vector cells. Acetyl-CoA is 

highlighted as an outlier. *P < 0.05, **P < 0.01, ns P > 0.05. 

 

Figure 4. Pan-cancer suppressed CNA pathways. (A) Unusually pervasive suppressed CNA 

pathways. Violin histograms of SWAN scores with blue fill indicating significant (FDR < 0.0001) 

pathway suppression and red fill indicating significant pathway elevation. (B) SWAN Circos plot. Red 

and blue outer rings are frequency plots of gains or deletions and the inner ribbons represent genes 

within the selected pathway. Labeled gene symbols are enriched for CNA losses. (C) SWAN network 

generated, with edges represent protein-protein interactions. Blue nodes are enriched for loss CNAs 

and red nodes are enriched for gain CNAs. (D) Known and novel TSGs discovered by interactome 

analysis of all 31 cancer types analyzed, with those present in at least 5 tumor types displayed against 

z-score values. Green color indicates previously known COSMIC TSGs. Size is proportional to the 

mean z-score SWAN contribution across cancers with TSG-containing pathway suppression. Higher 
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transparency indicates interacting protein genes influenced each gene’s identification by SWAN, rather 

than CNAs of the gene itself. (E) RT-qPCR data of metallothioneins within 16q gene cluster. (F) 

Validation of shRNA-mediated knockdown of MT2A by RT-qPCR. (G) Genotoxic damage as measured 

by γH2AX immunofluorescence in the presence of 100 µM cadmium is shown for OVCAR3 cells and 

(H) in the presence of 50 µM cadmium for CAOV3 cells. (I-L) N = 3 experiments, with mean ± s.e.m. 

shown. 

 

Figure 5. Cancer-specific CNA patterns. (A) Rare pathways had opposite SWAN shifts relative to the 

majority of cancer types. Shown is the example of “GO: Positive regulation of neuron death” which was 

uniquely upregulated in the brain cancer GBM, as illustrated in a (B) SWAN feather plot and (C) Circos 

plot. (D) Overall survival (OS), P is from Kaplan-Meier analysis. (E) Progression-free survival (PFS) 

plot. (F) SWAN Circos plot. (G) Progression-free survival (PFS) plot. (H) SWAN analysis scored by 

HPNE CRISPR-proliferation screen hits in place of haploinsufficiency. The most suppressed pathway 

by magnitude is highlighted. (I) The most frequently deleted genes from (h) pathway. (J) Integrative 

Genomics Viewer cohort summary plots for the new African-American enriched OV cohort (SCTR) 

compared to The Cancer Genome Atlas (TCGA) OV cohort. Noted genes indicate SWAN prioritized 

genes within indicated pathway. (K) EthSEQ analysis and principal component clustering of variants in 

the SCTR cohort. Self-identified race is labeled for black and white patients. (L) Kaplan-Meier analysis 

of TCGA tumors separated by self-identified race and plotted for overall survival. (M) Kaplan-Meier plot 

of TCGA data separated by SWAN shifts. 

 

Figure 6. Mutation associated SWAN shifts. (A) All cancers with a significantly different SWAN shift 

spectrum for p53 mutant tumors compared to p53 wild-type tumors are shown for the KEGG: 

Autophagy pathway. (B) SWAN feather plot of suppressed autophagy genes. UCEC samples with p53 

mutation are plotted as circles, samples with no p53 mutation as crosses. Filled diamonds represent 

mean SWAN shifts per gene. Inset panel shows overall survival of p53 mutant UCEC compared to non-
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mutant UCEC. (C) All cancers with a significantly different SWAN shift spectrum for RAS (NRAS, 

HRAS, or KRAS) mutant tumors compared to RAS wild-type tumors are shown for the GO: Inositol 

phosphate mediated signaling pathway. (D) Breast was the only cancer with a significantly different 

SWAN shift spectrum for BRCA1 or BRCA2 mutant tumors compared to BRCA wild-type tumors for the 

GO: meiotic chromosome separation pathway, with (E) pathway genes highlighted for regions of gene 

deletion by Circos plot (left) or Oncoprint (right).  

 

Figure 7. Machine-learning approach for improved prognostic estimates of CNA influenced 

pathways. (A) An example of a nominally-significant prognostic pathway, corrected by a machine 

learning approach. Patient data are first separated by SWAN pathway shifts, with the “low” and “high” 

groups separated by 1 SD centered at the median shift. With the entire patient cohort considered, a 

Kaplan-Meier analysis yields P < 0.047. 101 training sets of SWAN shift data build risk scores, then the 

upper quartile risk is compared to the lower quartile risk group by Kaplan-Meier analysis to yield a P-

value for the test group. Colored circles indicate HR at least 1 SD from the null 1 value. Potential false 

positive prognostic pathways were removed by (1) determining significance in the applied CoxPH 

model risk for each test set, and (2) determining CoxPH HR direction in each training set. The most 

prognostic pathways are labeled as those with >80% of randomizations as both significant and in same 

HR direction, such as in example (B). A Kaplan-Meier overall survival curve with 95% confidence 

interval is shown for the whole patient cohort (right panel). (C) A negatively prognostic Kaplan-Meier 

overall survival curve with 95% confidence interval is shown. In this case, 98% of patient picks were 

significant. 
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STAR Methods 

Key Resources Table  

See supplement 

 

Experimental Model and Subject Details 

Cell Lines 

Established cell lines were purchased from the American Type Culture Collection (ATCC) and validated 

by short tandem repeat (STR) profiling (Duke University and ATCC). 

 

Human High-Grade Serous Ovarian Cancer Samples 

Flash frozen samples were requested from biorepositories. All samples were stage 2C or higher high-

grade serous fallopian or ovarian cancer, with the exception of a single control Caucasian sample with 

paired uterus normal control used for bioinformatic quality control. Cancer stage, self-reported race and 

ethnicity (either non-Hispanic black or non-Hispanic white), and age at diagnosis is reported in Table 

S5. 

 

Method Details 

Core algorithm of SWAN 

SWAN Inputs 

SWAN takes as a data input any matrix of samples in columns and annotations in rows. For the 

examples here, tumors from individual patients were columns, and genes were set in rows. However, in 

principle any numeric set of data may be used. Aside from this primary experimental data, a secondary 

identical-format control set of data may be input. Sample sizes may differ between experimental and 
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control data. To create and score networks, additional optional inputs include: haploinsufficiency data 

(yeast and mouse homolog data (Delaney et al., 2017), by default), interaction data (protein-protein 

interaction data from BioGRID (Stark et al., 2006) by default), mutation data, and RNA data. Pathway 

sets need to be defined, and users may create and upload pathways for user-specific annotations. 

Default pathways sets are from MSigDb (Liberzon et al., 2011) and are gene-centric. Tuning inputs 

include: number of permutations to perform (default: 200), a vote-factor (default: 25, which assists in P-

value stability), a maximum and minimum number of genes within a pathway to be tested (default: 10-

200 genes, to avoid large hairballs), and toggles for choosing to score or not score any of the above.  

 

For the analyses presented here, the matrix input was gene-level copy number alterations. The 

algorithm is optimized for copy-number alteration data with integer values (-2 for 0N, -1 for 1N, 0 for 2N, 

1 for 3N, 2 for 4N or more). TCGA data were downloaded from cBioPortal using “Provisional” datasets 

(Gao et al., 2013). Mutation data included TCGA mutation data with a “1” marking a non-synonymous 

mutation and a “0” for no non-synonymous somatic mutation. RNA data were log2 per-gene normalized 

TCGA microarray data from the pan-cancer TCGA set, “EBPlusPlusAdjustPANCAN_IlluminaHiSeq_ 

RNASeqV2.geneExp.tsv” (Group et al., 2020). Pathway sets used were the Hallmark, KEGG, 

Reactome, and GO. 

 

 

Data structure considerations for input SWAN data 

Raw input data should be normalized in a reasonable fashion to ensure the range of values is roughly 

symmetric around the median. That is, if extremely positive or negative values are rare but present, 

they should be capped at a consistent value (eg, for copy-number analysis, 200N is capped at 4N). If 

data are not normalized or thresholded, then the deviations between permutations become enormous 

and statistical significance suffers. If choosing to include RNA with DNA analysis, RNA data should be 

normalized to have the same range (-2 to +2). Convenience normalization functions are provided in the 
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R package, and can be used in the online tool by marking a check-box. If choosing to include mutation 

data, non-mutated genes should be “0”, mutant genes should be “1”. If a user chooses to prioritize 

some genes’ mutations over others, a custom scoring multiplier per gene may be uploaded to replace 

“haploinsufficiency” scoring information, or the “1” value may be modified to any other positive integer 

(skewing from the median for mutations is acceptable).  

 

Some users may prefer directional networks. To perform this type of analysis, users need to create a 

separate pathway set containing a pair of pathways for each direction: (a) genes that positively alter the 

pathway and (b) genes which negatively alter the pathway. An example is the MSigDB GO Biological 

Process pathway set, limited to “GO_POSITIVE_REGULATION_” and 

“GO_NEGATIVE_REGULATION_” pathways. Since this is conceptually easier to interpret the output 

data, we have included the above directional GO pathways in the web-based SWAN platform.  

 

SWAN Calculations 

To simplify the discussion of the calculations, input annotations are referred to as genes and input data 

as copy-number alteration calls (-2 to 2 scale) for all genes for all tumors. In the first step, input data is 

subset for genes within the pathway of interest. As an example of what was applied to cancer data, this 

would be copy-number alteration calls for each tumor’s set of genes within the pathway. A network data 

frame is next generated using protein-protein interaction data from BioGRID (Stark et al., 2006) by 

default or by the user’s custom interaction data. An integer 1 is then assigned to each gene in the 

pathway. Non-interacting genes are included as additional rows. If interactions are not scored, this data 

frame is created without edges and would then contain the same number of rows as genes in the 

pathway. Custom prioritization scores are then multiplied onto this network data frame (eg if a user 

decided to artificially prioritize 3-fold ACTB due to phenotype data, all nodes within the network table 

containing ACTB would be multiplied by 3). If haploinsufficiency is scored, this custom scoring includes 

a 2x multiplier for all genes with yeast haploinsufficient or triploproficient homologs and a 3x multiplier 
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for all genes with a mouse haploinsufficient homolog. A pair of network scoring matrices is then 

generated for interaction pairs (a bait matrix and a prey matrix) by multiplying the input data by each 

integer value column of the interaction data frame. This step incorporates input data into the network 

scoring matrices.  

 

For each pathway, two separate hypotheses are tested: the pathway is suppressed or the pathway is 

elevated. Mathematically, this only comes into the calculations for network interaction pairs with an 

unclear effect. This is when one node contains a negative value (eg, from gene deletion) and the 

interacting node contains a positive value (eg, from gene gain). The hypothesis is that if the pathway 

overall is driven toward elevation, then the positive value is the relevant value (eg, it exerts a dominant 

effect within the pathway and the loss of an interactor does not abrogate its function). Similarly, if the 

pathway overall is driven toward suppression, then the negative value is the relevant value (eg, it exerts 

a dominant effect within the pathway as a potential rate limiting factor for interacting proteins). Thus, a 

suppression matrix and an elevation matrix are both created to test each hypothesis. The exact form of 

accomplishing this is complex in form to aid in 100-fold speed improvements in the R programming 

environment and can be viewed in the supplied code. Briefly, the suppression matrix is created by 

taking the matrix position minimums between the network scoring matrices and zero, whereas the 

elevation matrix is created by taking the matrix position maximums between the network scoring 

matrices and zero. The network scores for each tumor are then summed across rows to form a pair of 

hypothesis vectors of network shift scores per tumor. 

 

The process is then repeated in two control, randomly selected background subsets with an equal 

number of genes as the input subset. This yields two randomly permuted background vectors per 

hypothesis, which are used in future calculations to estimate network topology and provide a noise 

estimate. For example, the experimental / observed network shifts must be greater in magnitude and 

frequency than the shifts found from simply shuffling genes and comparing one set of shuffled genes to 
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another set of shuffled genes. If an experimental control dataset is uploaded, these data take the place 

of one of the shuffled controls. 

 

Now that network scores per tumor have been calculated for the actual observed data and two random 

controls, the differences between these are calculated. SWAN has two method options for this 

comparison. One is to create a single residual per tumor between the pathway genes’ data and the 

randomized genes’ data and subtract the residual of the second randomized genes’ data to the first 

randomized genes’ data. This residual is the difference of the sums of network edge scores. In the 

second method, residuals are created for each pathway gene within each tumor, compared to the 

randomized backgrounds of an equivalent number of genes, for each tumor. The reason there are two 

methods is to aid in analyzing appropriately sized datasets. In large datasets (N ≥ 15, as an 

approximation for CNA data), SWAN only requires single-residual-per-tumor data to reach a verdict for 

pathway suppression or elevation. In small datasets common to pilot murine or other complex and 

expensive biological experiments, the residuals acquired from each gene are required for SWAN to 

reach a significant verdict in pathway sets. 

 

Since SWAN was designed to handle noisy data, further random permutations are then iteratively 

performed. In the presented data for this study, 1,000 total permutations are performed, and each of 

these has two randomly shuffled gene choice to build the random comparison networks (thus, 2,000 

random networks per pathway). This is recommended to be reduced to N = 100 permutations to 

achieve more timely analysis without substantial loss of accurate pathway shift calls (Figure S2D). 

Permutations used in this study yielded 1,000 residual pairs to be used to determine which hypothesis 

was most likely for the queried pathway: was this pathway suppressed by CNAs or elevated by CNAs? 

We adopted a parsed majority vote method (Bouziane et al., 2011) to stabilize these hypothesis calls 

for pathways of marginally significant shifts. Briefly, the direction of the pathway shift is determined for 

each experimental tumor compared to each of the randomizations in sets of randomizations. We 
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determined 25 randomizations per majority vote improved the stability of calls. For example, in 

borderline cases wherein 12 iterations were called as suppressed and 13 were called as elevated, the 

majority vote for this set was then issued as elevated. Majority votes per set of 25 (40 sub-majority 

votes total in our 1,000 permutation analyses) were then summed to determine the best-fit hypothesis 

for the given pathway: either suppression or elevation.  

 

Once the pathway is determined as most likely suppressed or most likely elevated by this majority vote 

method, the statistical test is performed. A Wilcoxon rank-sum test is applied with appropriate 

directionality to the vector of residuals representing the tumor network shifts (the N here is the same as 

the number of samples / tumors) to the vector of residuals representing the random network shifts 

(same N as control). If a paired control dataset was used as input data, the Wilcoxon rank-sum test 

used includes the pairing setting. If gene-level-p is selected, the residuals of each gene per sample are 

instead used. This increases N to N = (# samples) * (# genes within the pathway). While the gene-level-

p somewhat biases significance toward large pathways, this may be chosen as the logical route to 

analysis for small N experiments and is absolutely required to achieve significant false-discovery-rate 

(FDR) values as a nominal rank-sum test bottoms out at ~0.1 for N = 4 samples using typical CNA 

data. Finally, in a pan-pathway analysis, the Wilcoxon P-values are multiple hypothesis testing FDR 

corrected using the Benjamini-Hochberg method or a q-value generated using a Bonferroni correction, 

allowing for all levels of stringency depending on varied user requirements.  

 

Conceptual depictions of these calculations can be found in the documentation and videos 

accompanying SWAN software. For further details to these complex calculations, please refer to the 

available annotated code hosted at GitHub (https://github.com/jrdelaney/SWAN). 

 

Outputs 
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Tabular outputs from SWAN include summary data and individual data per sample. (1) A pathway 

summary file is created with one row per pathway tested. Columns for this tab-separated spreadsheet 

include (a) name of input file, (b) name of pathway, (c) result (suppressed = “Haploinsufficient”, 

elevated = “Triploproficient”, neither = “No Selection”), (d) the average shift of network score in the 

experimental group relative to the control group, (e) a nominal p-value by Wilcoxon ranksum, (f) a 

Bonferroni-corrected q value of these p-values, (g) an FDR correction of the p-values (Benjamini-

Hochberg correction), (h) the standard deviation of network shift scores, and (i) prioritized genes along 

with their corresponding gene-specific network shift scores. (2) A per-sample file depicting network shift 

scores relative to control per pathway, for use in clustering and other algorithms. (3) A gene-centric 

output file depicting each gene’s influence across all pathways tested, which is another way to prioritize 

biologically impactful genes.  

 

Quality Control of SWAN 

The cancer types used in the TSG and OG quality control (QC) analysis were ACC, BLCA, BRCA, 

CESC, COAD, ESGA, GBM, HNSC, KICH, KIRC, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, 

PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, UCEC, and UVM. 

 

To test whether SWAN was able to enrich for known oncogenes and tumor suppressor genes in its list 

of prioritized genes, tabular results from SWAN were queried. COSMIC Cancer Gene Census Tier 1 

was used as the list of tested OGs and TSGs. As a possible alternative, STOP and GO genes were 

also tested. Each STOP and GO gene used was from two of three sources from the Elledge lab (Davoli 

et al., 2013; Sack et al., 2018; Solimini et al., 2012). For “gene prioritization enrichment,” genes from 

pathways called as “haploinsufficient” or “triploproficient” (FDR ≤ 0.0001) marked by SWAN as in the 

top five negatively or positively scoring genes, respectively, were tabulated. The enrichment ratio is 

calculated as the ratio of the sum of TSGs in the top five prioritized genes within a haploinsufficient 
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pathway divided by the sum of those which are not known TSGs, over a similar ratio within neutral-

called (“no selection”) pathways from SWAN. An equivalent calculation was performed for OGs. A 

fisher’s exact test was performed on these counts for each cancer type separately for TSGs and OGs 

(Figure 2B and Figure S3). To determine the loss of enrichment, pan-cancer SWAN analysis was 

performed with 1,000 iterations across these 26 QC cancer types while adjusting single parameters. 

QC analysis was then performed again, and the percent difference in enrichment from the null 1 ratio 

value was calculated. 

 

To determine an appropriate default cutoff FDR value for SWAN, a tuning range of 

“0.2,0.1,0.05,0.04,0.03,0.02,0.01” and then 10 fold less down to “10-50” was used. All 26 QC cancer 

types were again tested for a TSG and OG enrichment ratio. In this case, the fisher’s exact test 

summed TSGs and OGs together and non-TSGs with non-OGs together, comparing pathways called 

as significant to pathways called as non-significant. This allowed for a single metric which balanced 

sensitivity and specificity; the statistical test would yield a larger P-value for lower N of significant 

pathways as well as when the neutral-called pathways began to have similar rates of OGs and TSGs 

as significantly-called pathways. Scrolling across this metric, an optimal FDR ≤ 0.0001 was determined 

for a default value (Figure S1E). 

 

Gene Set Enrichment Analysis 

26 cancer types were analyzed using Gene Set Enrichment Analysis (GSEA) version 4.0.3. Integer 

normalized TCGA data was used identically as in SWAN and diploid data was set as control. KEGG 

Pathway gene set was used with 1000 permutations to the phenotype us the “on-the-fly” setting. For 

each pathway, the top five enriched genes and the bottom five downregulated genes were considered 

prioritized to enable comparison with SWAN. The number and enrichment of tumor suppressor genes 

and oncogenes were calculated identically as defined in SWAN Quality Control. 
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BET Inhibitor Study Analysis 

Data sets used in each analysis were attained from Gene Expression Omnibus (GEO). Raw data files 

were formatted using SWAN Data Groomer and transformed to log base 2. Each resulting experimental 

and control data files were input into either pan-pathway or single pathway SWAN. Pan-pathway 

analysis calculated 200 control permutations and had a significance threshold of 0.05. Pathways 

including less than 10 or more than 200 genes were omitted. Single pathway analysis calculated 100 

control permutations and had a significance threshold of 0.001 

 

Identification of novel oncogenes and tumor suppressors 

SWAN Interactome summary data from GO pathway analysis was used as a starting point to classify 

genes as general CNA-influenced OGs or TSGs. Z-scores of each gene within the interactome dataset 

were averaged for OGs in cancers in which the Z-score was positive and a similar calculation was 

performed on negative values for TSGs. The number of times a gene was displayed on a cancer 

Interactome priority plot was summed for each candidate OG and TSG. Alpha transparency values 

represent how much CNA influence originates from the gene itself (ie, the gene is deleted or amplified) 

or from the interacting genes (ie, its interactors are deleted or amplified) and were tabulated for each 

gene in each tumor type. Only OGs and TSGs which were detected through this method in ≥5 tumor 

types are reported in the figures and supplemental tables. COSMIC Tier 1 genes were marked as 

“known” OGs and TSGs as long as they were not characterized as fusion-only TSGs or OGs. All genes 

outside these criteria were considered “novel”, although we caution this does not capture the entirety of 

the cancer literature. Essential gene data were downloaded from a 324 cell line CRISPR-Cas9 screen 

study (Behan et al., 2019). OGs which were not hits within this screen were included in the Figure S6A. 

TSGs as identified by SWAN interactome analysis not considered “known” OGs were plotted in Figure 

4D and summarized within Table S3. 
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Mutation association analysis 

Genes mutated in >3% of all TCGA tumors were analyzed for differential SWAN shift distributions. 

Subsets were taken from each tumor type by splitting mutant versus non-mutant tumors by each 

putative driver gene. A Wilcoxon ranksum test was performed on SWAN shifts in mutant tumors and 

compared to non-mutant tumors. If the mean SWAN shift of the mutant group was lower than the mean 

SWAN shift of the non-mutant group, the association was considered negative and conversely for 

positive. The final Supplemental Table 6 lists pathways reaching an FDR (by Benjamini-Hochberg 

correction of P-values) less than 0.05. It may be noted that most genes only yielded significant 

associations in limited cancer types due to the inadequate number of mutations in other tumor types.  

 

Machine-learning prognostic analysis 

Patients with both overall survival data and SWAN shift data were analyzed for prognostic SWAN 

pathways. Patient data were first separated by SWAN pathway shifts, with the “low” and “high” groups 

separated by 1 standard-deviation (SD) centered at the median shift. To consider the possibility of a 

false positive, 101 training and test sets were created for Cox-proportional hazard (CoxPH) models 

which utilize SWAN shift data. Each training set consists of a random selection of 67% of the tumors, 

and the test set is the remaining 33% of tumors. The training set is used to build a CoxPH model based 

on overall survival and SWAN shift scores and produce a hazard ratio (HR). This model is then applied 

to the test set to predict risk scores using SWAN shifts. The upper quartile risk is compared to the lower 

quartile risk group by log-rank test (survdiff of Surv function in the R package “survival”) to yield a P-

value for the test group. Potential false positive prognostic pathways were removed by (1) determining 

significance in the applied CoxPH model risk for each test set, and (2) determining CoxPH HR direction 

in each training set. The most prognostic pathways are labeled as those with >80% of randomizations 

as significant and in same HR direction and provided as Table S7. Kaplan-Meier curves and survival 
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analysis on the entire cohort without machine-learned filtering is available using the Shiny SWAN 

Single-Pathway app online. 

 

Cell culture and biologic quality control 

Cells were cultured at 37°C with 5% CO2. Established cell lines (OVCAR3, SKOV3, CAOV3, and 293T) 

were purchased from the American Type Culture Collection (ATCC) and validated by short tandem 

repeat (STR) profiling. Routine microscopic morphology tests were performed prior to each experiment. 

All cells were grown in RPMI-1640 media supplemented with antibiotics (penicillin, streptomycin), 

sodium pyruvate, and 10% FBS (Gibco). Lentiviral constructs for PEX5 and PEX19 were purchased 

from Genecopoeia. PEX19 cDNA (NM_002857.3) was cloned into EX-G0621-Lv242 with a C-Avi-FLAG 

tag and puromycin resistance. PEX5 (NM_001131023.1) was synthesized and cloned into the EX-

Z6463-Lv157 vector with C-3xHA Neomycin resistance. Lentivirus was produced in 293T cells and 

filtered through a 33µm filter prior to transduction. Confirmation of cDNA insert was performed by 

Sanger sequencing using forward primer 5’ AGGCACTGGGCAGGTAAG 3’ and reverse primer 5’ 

CTGGAATAGCTCAGAGGC 3’ for Lv242 and forward primer 5’ GCGGTAGGCGTGTACGGT 3’ and 

reverse primer 5’ ATTGTGGATGAATACTGCC 3’ for Lv157. SKOV3 and OVCAR3 cells were selected 

for Lv242 lentiviral integration by addition of 4µg/mL puromycin (Thermo Fisher) to the media or for 

Lv157 integration by addition of 200µg/mL Geneticin (Fisher Scientific).  

 

For determination of mRNA expression of metallothionein isoforms, 1x106 CAOV3 or 2x106 OVCAR3 

cells per well were plated in a 6-well dish. After 20h, cells were rinsed once with PBS (phosphate-

buffered saline), and RNA was isolated using the miRNeasy Mini Kit (Qiagen) according to the protocol 

of the manufacturer. One µg of total RNA was used to transcribe cDNA using the iScript cDNA 

Synthesis Kit (Biorad). For quantitative real-time reverse-transcriptase polymerase chain reaction 

(qPCR) 20ng of cDNA per reaction and the iTaq Universal SYBR Green Supermix (Biorad) was 
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employed. Triplicate samples were normalized to TBP and relative gene expression was determined by 

the ΔΔCt method. To knock down metallothionein 2A (MT2A) mRNA expression, shRNA lentiviral 

vectors targeting MT2A and scrambled control were used to generate lentivirus in 293T cells and 

filtered through a 33µm filter prior to transduction. CAOV3 and OVCAR3 cells were selected for 

lentiviral integration by addition of 4µg/mL puromycin (Thermo Fisher). For γH2AX staining 2.5x103 

CAOV3 or OVCAR3 cells were seeded onto black, optical bottom, 96-well plates (VWR). After allowing 

the cells to adhere for 16h, cells were treated with 50 µM (CAOV3) or 100 µM (OVCAR3) CdCl2 

(Sigma-Aldrich) for 24h. Then cells were fixed in 4% paraformaldehyde for 10min, permeabilized with 

0.1% Triton X-100 for 2min, and nonspecific binding was blocked with PBS containing 5% bovine 

serum albumin and 5% goat serum for 45min. Then cells were incubated with purified anti-γH2AX 

antibody (phospho-Ser139; BioLegend) overnight, primary antibody was removed with three PBS 

washes of 10 min, incubated in Hoechst 33342 (Fisher Scientific) and secondary goat anti-mouse Alexa 

Fluor 594nm antibody (LifeTechnologies) for 1.5h, and secondary was removed followed by three PBS 

washes of 10 min each. Finally, a Lionheart FX automated microscope (BioTek) was used to image the 

cells and ImageJ was employed to quantify γH2AX puncta number and intensity.  

 

Metabolomics 

Metabolomics were performed as previously described (Delaney et al., 2020). Specific changes for the 

data presented here include: five replicates were used per genetic condition, cell line used was SKOV3. 

Otherwise, the methods are repeated and copied below. 

 

All samples were grown to 80% confluency on a 10cm tissue culture dish. Cells were harvested by 

trypsinization and neutralized with iced RPMI complete media. Cells were washed twice in iced PBS 

and split into two tubes. Cell pellets were saved at -80°C until analysis. All sample sets had three 

independent cell growth experiments performed on different days. 
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For amino acid and lipid analysis, tubes containing ovarian cancer cell pellets were thawed at room 

temperature and then stored on ice during manipulation. For normalization, a duplicate pellet was 

analyzed by BCA assay for total content determination. 100 µL of 80/20 v/v MeOH/water was added to 

each sample tube. Samples were then probe sonicated 3 times at power level 3 for 5 seconds each 

burst, cooling on ice between bursts. Samples were then allowed to incubate for 10 minutes while on 

ice and then put in -80°C freezer until ready for analysis. 

 

Samples were prepared using the AbsoluteIDQ p180 kit (Biocrates Innsbruck, Austria) in strict 

accordance with their detailed protocol. Samples were taken from the -80°C freezer and centrifuged at 

4°C for 10 minutes at 15,000g. After the addition of 10 µL of the supplied internal standard solution to 

each well of the 96-well extraction plate, 15 µL of each ovarian study sample was added to the 

appropriate wells. The plate was then dried under a gentle stream of nitrogen for 10 minutes. An 

additional 15 µL of each study sample was added to the respective wells and plate was dried under 

nitrogen for an additional 20 minutes. The samples were derivatized with phenyl isothiocyanate then 

eluted with 5mM ammonium acetate in methanol. Samples were diluted with either 1:1 methanol:water 

for the UPLC analysis (4:1) or running solvent (a proprietary mixture provided by Biocrates) for flow 

injection analysis (20:1). 

 

A study pool sample was created (5041 SPQC) by taking an equal volume from each study sample. 

The pooled sample was prepared and analyzed in the same way as the study samples in triplicate. On 

the kit plate, the SPQC was prepared in triplicate; one of these preparations was analyzed in triplicate 

while the other two were analyzed in a staggered manner before, during, and after the study samples in 

order to measure the performance of the assay across the sample cohort. The five analyses of this pool 

can be used to assess potential quantitative drift across the analysis of the plate, or in larger studies, to 

assess batch effects.  
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UPLC separation of amino acids and biogenic amines was performed using a Waters (Milford, MA) 

Acquity UPLC with a Waters Acquity 2.1 mm x 50 mm 1.7 µm BEH C18 column fitted with a Waters 

Acquity BEH C18 1.7 µm Vanguard guard column. Analytes were separated using a gradient from 

0.2% formic acid in water, to 0.2% formic acid in acetonitrile. Total UPLC analysis time was 

approximately 7 minutes per sample. Acylcarnitines, sphingolipids, and glycerophospholipids were 

analyzed by flow injection analysis (FIA) with total analysis time of approximately 3 minutes per sample. 

Using electrospray ionization in positive mode, samples for both UPLC and flow injection analysis were 

introduced directly into a Xevo TQ-S triple quadrupole mass spectrometer (Waters) operating in the 

Multiple Reaction Monitoring (MRM) mode. MRM transitions (compound-specific precursor to product 

ion transitions) for each analyte and internal standard were collected over the appropriate retention 

time. The UPLC-MS/MS data were imported into Waters application TargetLynx for peak integration, 

calibration, and concentration calculations. The UPLC-MS/MS data from TargetLynx and FIA-MS/MS 

data were analyzed using Biocrates MetIDQ software. For statistical comparisons of 

glycerophospholipids and sphingolipids, a Wilcoxon rank-sum test was performed. All other tests were 

a student’s t-test. 

 

For the energy metabolites including Acetyl-CoA, NAD+, Glutathione, cAMP, AMP, ADP, and ATP, an 

alternate assay was performed on the same cell pellet following the sonication step. The samples were 

then placed in a cold aluminum sample block on dry ice and incubated for 10 minutes. Next the 

samples were centrifuged for 10 minutes at 4°C and 15,000 g and stored at -80°C until ready for 

analysis. The samples were warmed to 4°C on ice and centrifuged again for 10 minutes at 4°C and 

15,000 g to pellet any solids. Forty microliters of supernatant from each sample was pipetted into a 

glass total recovery vial (Waters) labeled with its corresponding DPMSR ID number. The remaining 

pellet from each sample was stored at -80°C. A study pool quality control (SPQC) sample was prepared 

by combining 5 µL of supernatant from each sample into a 1.5 mL tube (Eppendorf). Stable Isotope 
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Labeled (SIL) standard material, the 13C Credentialed E. coli kit (MS-CRED-KIT) was purchased from 

Cambridge Isotope Laboratories. This is an E. coli extract from uniformly 13C-labeled E. coli. The 

material was tested to have minimal to no contributing signal in the light channel, using injections of 

only the 13C-labeled standard in previous experiments. Nine hundred microliters (900 µL) of sample 

resuspension solvent was created by taking one vial of 13C-labeled MS-CRED-KIT containing 100 µL 

of lysate and adding 400 µL of 80:20 v/v methanol/water. This resuspension solution was prepared 

immediately before addition to the samples. This solution was also used as the internal standard blank 

during the analysis. Ten microliters of the 13C-labeled E. coli resuspension solution was added via 

repeater pipette to each sample in the glass total recovery vials. Four microliters from each sample was 

injected for analysis by LC-MS/MS. 

 

Liquid chromatographic separation was performed using a Waters Acquity UPLC with a 2.1 mm x 30 

mm, 1.7 μm pore size ethylene bridged hybrid (BEH) amide column (Waters PN: 186004839). Mobile 

phase A was composed of water with 10 mM ammonium hydrogen carbonate (AmBic) (Millipore Sigma, 

St. Louis, MO) containing 0.2% ammonium hydroxide (NH4OH) generated as follows: 3.34 mL of 30% 

ACS grade NH4OH was added to 1 L water, followed by the addition of 0.3982 g AmBic. Mobile phase 

B was neat acetonitrile (Optima LCMS grade Thermo). The weak needle wash was mobile phase B and 

the strong needle wash was mobile phase A. The total length of the LC Gradient Program is 5.00 

minutes. The outlet of the analytical column was connected directly via electrospray ionization into a 

Xevo TQ-S mass spectrometer (Waters) with positive/negative mode switching. Retention time 

scheduling with 30 second windows was used to minimize concurrent MRM transitions, and automatic 

dwell calculation was used to maximize dwell time while maintaining at least 8 points across the 

chromatographic peak. Eighty milliseconds (80 msec) was set as the polarity-switching delay. Positive 

and negative ion electrospray were alternated during the entirety of an LC gradient program for one 

injection. In ESI+ mode, capillary voltage was 3.0kV, source offset was 50V, desolvation temperature 

was 400°C, desolvation gas flow was 650 L/hr N2, cone gas was 150 L/hr N2, and nebulizer pressure 
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of 7.0 bar was used. Source parameters for ESI- ionization were the same as ESI+, with the exception 

of the capillary voltage was set to -2.0 kV. Each sample was analyzed in Multiple Reaction Monitoring 

(MRM) mode in the mass spectrometer during the LC gradient program as ions eluted from the LC 

column. 

 

Metabolomic data associated with the figures is provided in Table S4. 

 

Flow cytometry 

SKOV3 and OVCAR3 cells transduced with LV157 or LV242 with or without PEX5 and PEX19 

respectively were seeded at 25,000 cells per well in a 24 well TC plate in 1mL media containing 

antibiotics. A day after seeding, cisplatin (10µM in DMSO) or N-acetyl-cysteine (2mM in ddH2O) were 

added to the media and the cells grown for 48h prior to staining for flow cytometry. Staining was 

performed with 10µM H2DCFDA (2′,7′-Dichlorodihydrofluorescein diacetate, VWR #89138-260) for 1 

hour. Cells were then rinsed with PBS and 500µL Trypsin 0.05% EDTA (Thermo Fisher Scientific 

#25300120) was added for 5 minutes. Trypsinized cells were added to 500µL iced RPMI in 1.5mL 

microcentrifuge tubes. Cells were centrifuged at 3,000g for 1 minute and media aspirated. 1mL iced 

PBS was then added to cells and cells were briefly resuspended. Cells were centrifuged at 3,000g for 1 

minute. PBS was aspirated, 300µL fresh iced PBS was added to cells and cells were transferred to an 

iced 5mL polypropylene flow cytometry tube (VWR #352063). Cells were analyzed for fluorescence in 

the 488nm channel on a BD FACSCanto II cytometer and analyzed using BD FACSDiva software. 

 

Cell death and proliferation assays 

SKOV3 and OVCAR3 cells transduced with LV157 or LV242 with or without PEX5 and PEX19 

respectively were seeded at 10,000 cells per well in a 96 well TC plate in 50µL media containing 

antibiotics. Cells were allowed to adhere for 3 hours prior to addition of 50µL media containing 2X 
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treatment solution (20µM cisplatin, 4mM NAC, and/or 0.2% DMSO control). Cells were then grown for 

48h prior to fixation. For fixation, cells were first rinsed in 125µL PBS and then stained with crystal 

violet staining and fixation solution (0.11% crystal violet, 0.17M NaCl, and 22% methanol in ddH2O) for 

15 minutes. Crystal violet stain was aspirated, 125µL PBS wash performed twice, and then cells were 

dried for 30 minutes at 37°C in a dry incubator. 85µL methanol was added to each well and absorbance 

was read in an absorbance spectrophotometer at 600nm. Background consisting of cells killed to 100% 

penetrance using 1mM H2O2 was subtracted from all reads. Growth inhibition was calculated as the 

fractional difference in absorbance of a treated well compared to the average control-treated well for an 

isogenic cell line on the same 96-well plate.  

 

Whole-exome sequencing and data processing 

Samples were processed using a Promega Maxwell RSC Instrument (AS4500) and Maxwell RSC 

Tissue DNA kit (AS1610) to obtain purified DNA. DNA was sent to GENEWIZ for whole-exome 

processing using an Agilent SureSelect Human All Exon V6 kit and next-generation sequencing on an 

Illumina HiSeq-4000. 

 

SNVs and indels in TP53 were called using one of two methods. The first method was a default 

DRAGEN protocol used by GENEWIZ. The second, used to call mutations in the remaining half of 

samples, utilized a triple-tool calling method. FASTQ reads were aligned to hg38 to create BAM files. 

BAM files were removed of PCR duplicated using RmDup. The three variant callers used on the BAM 

files were: LoFreq, FreeBayes, and samtools followed by VarScan (Koboldt et al., 2009; Wilm et al., 

2012). Variant callers were run using the Galaxy platform (Afgan et al., 2016). TP53 mutations called by 

all three tools were then filtered by those present in gnomAD v3 (Karczewski et al., 2020) at an allele 

frequency > 0.0001 in any ethnicity group. Annovar was used to annotate variants (Wang et al., 2010). 

To query ethnicity at genome-scale, EthSEQ (Romanel et al., 2017) was used on genome-wide called 
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variants fitting the three-tool intersect threshold without a gnomAD cutoff (N = 7,695 variants assessed 

in new cohort). 

 

ControlFREEC (Boeva et al., 2012) was used to call CNAs without using paired normal controls. To aid 

in estimation of stromal cell contamination, the TP53 mutation allele frequency was used as the 

estimated tumor cell fraction. Settings included: breakPointThreshold (1.2), readCountThreshold (50), 

window (500,000bp), telocentromeric (100,000bp), contaminationAdjustment (TRUE), sex (XX), 

contamination (using normal TP53 allele fraction), and a single control uterus was used as a control 

target capture region. To best match TCGA CNA data, all BAMs used were aligned to hg19. To create 

a -2 to 2 normalized file, negative CNAs were given a value of -1, positive CNAs a value of +1, and any 

positive CNAs exceeding 2 standard deviations above the median a value of +2. Gene-level CNAs 

were determined using the SWAN Data Groomer functions built for *.seg files. Genome conversion of 

CNAs or mutation variants between hg19 and hg38 used liftOver with UCSC chain files (Kuhn et al., 

2013). 

 

 

Quantification and Statistical Analysis 

In all cell biology figures, P-values are calculated using a two-tailed Student’s t-test, unless otherwise 

indicated. The description of SWAN describes SWAN statistical considerations in detail. Survival 

outcomes were assessed using Kaplan-Meier curves with log-rank tests. 

 

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Joe Delaney, PhD (delaneyj@musc.edu) 
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Materials Availability 

Cell lines and plasmids generate in this study are maintained at the Medical University of South 

Carolina and will be made available upon request. 

Data and Code Availability 

Protected human datasets generated during this study are available in dbGaP, accession phs002313. 

The code generated during this study are available at Github (https://github.com/jrdelaney/SWAN) and 

web software at https://www.delaneyapps.com/#SWAN.  

 

Declarations 

This project was supported by the South Carolina Clinical & Translational Research Institute with an 

academic home at the Medical University of South Carolina CTSA NIH NCATS grant numbers 

UL1TR001450 (JRD) and TL1TR001451 (JKB). This work was supported by NIH grants CA207729 

(JRD), GM119512 (DTL), and GM132055 (CMJ). The MUSC Proteogenomics Facility was used and is 

supported by GM103499 and MUSC’s Office of the Vice President for Research. Supported in part by 

the Biostatistics Shared Resource, Hollings Cancer Center, Medical University of South Carolina (P30 

CA138313). The funders had no role in study design, data collection and analysis, decision to publish, 

or preparation of the manuscript. The contents are solely the responsibility of the authors and do not 

necessarily represent the official views of the NIH, NCI, or NCATS. 

 

Author Contributions 

J.R.D., E.A.P., D.T.L., and R.R.B. designed the research. K.E.A. advised statistical considerations. 

J.R.D., R.R.B., and C.M.J. wrote the paper. J.R.D. scripted SWAN. All authors performed the research 

and analyzed the data. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


Declaration of Interests 

The authors declare no conflicts of interest. 

 

References 

Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Cech, M., Chilton, J., Clements, D., Coraor, N., 
Eberhard, C., et al. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 
update. Nucleic Acids Res 44, W3-W10. 
Bakhoum, S.F., Ngo, B., Laughney, A.M., Cavallo, J.A., Murphy, C.J., Ly, P., Shah, P., Sriram, R.K., Watkins, T.B.K., 
Taunk, N.K., et al. (2018). Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467-
472. 
Behan, F.M., Iorio, F., Picco, G., Goncalves, E., Beaver, C.M., Migliardi, G., Santos, R., Rao, Y., Sassi, F., Pinnelli, M., et 
al. (2019). Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511-516. 
Ben-David, U., and Amon, A. (2019). Context is everything: aneuploidy in cancer. Nat Rev Genet. 
Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J.S., Dobson, J., 
Urashima, M., et al. (2010). The landscape of somatic copy-number alteration across human cancers. Nature 463, 899-905. 
Boeva, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G., Janoueix-Lerosey, I., Delattre, O., and 
Barillot, E. (2012). Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing 
data. Bioinformatics 28, 423-425. 
Bouziane, H., Messabih, B., and Chouarfia, A. (2011). Profiles and majority voting-based ensemble method for protein 
secondary structure prediction. Evol Bioinform Online 7, 171-189. 
Bowry, A., Piberger, A.L., Rojas, P., Saponaro, M., and Petermann, E. (2018). BET Inhibition Induces HEXIM1- and 
RAD51-Dependent Conflicts between Transcription and Replication. Cell Rep 25, 2061-2069 e2064. 
Bozic, I., Reiter, J.G., Allen, B., Antal, T., Chatterjee, K., Shah, P., Moon, Y.S., Yaqubie, A., Kelly, N., Le, D.T., et al. 
(2013). Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2, e00747. 
Cai, Y., Crowther, J., Pastor, T., Abbasi Asbagh, L., Baietti, M.F., De Troyer, M., Vazquez, I., Talebi, A., Renzi, F., Dehairs, 
J., et al. (2016). Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism. 
Cancer Cell 29, 751-766. 
Cancer Genome Atlas Research, N. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. 
Cancer Genome Atlas Research, N., Brat, D.J., Verhaak, R.G., Aldape, K.D., Yung, W.K., Salama, S.R., Cooper, L.A., 
Rheinbay, E., Miller, C.R., Vitucci, M., et al. (2015). Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade 
Gliomas. N Engl J Med 372, 2481-2498. 
Castellano, E., and Downward, J. (2011). RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes 
Cancer 2, 261-274. 
Crespo, I., Gotz, L., Liechti, R., Coukos, G., Doucey, M.A., and Xenarios, I. (2016). Identifying biological mechanisms for 
favorable cancer prognosis using non-hypothesis-driven iterative survival analysis. NPJ Syst Biol Appl 2, 16037. 
Davoli, T., Xu, A.W., Mengwasser, K.E., Sack, L.M., Yoon, J.C., Park, P.J., and Elledge, S.J. (2013). Cumulative 
haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948-962. 
Delaney, J.R., Patel, C.B., Bapat, J., Jones, C.M., Ramos-Zapatero, M., Ortell, K.K., Tanios, R., Haghighiabyaneh, M., 
Axelrod, J., DeStefano, J.W., et al. (2020). Autophagy gene haploinsufficiency drives chromosome instability, increases 
migration, and promotes early ovarian tumors. PLoS Genet 16, e1008558. 
Delaney, J.R., Patel, C.B., Willis, K.M., Haghighiabyaneh, M., Axelrod, J., Tancioni, I., Lu, D., Bapat, J., Young, S., 
Cadassou, O., et al. (2017). Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation 
ovarian cancer. Nat Commun 8, 14423. 
Du, Z., Song, X., Yan, F., Wang, J., Zhao, Y., and Liu, S. (2018). Genome-wide transcriptional analysis of BRD4-regulated 
genes and pathways in human glioma U251 cells. Int J Oncol 52, 1415-1426. 
Figueiredo, C.R., Kalirai, H., Sacco, J.J., Azevedo, R.A., Duckworth, A., Slupsky, J.R., Coulson, J.M., and Coupland, S.E. 
(2020). Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with 
implications for immunotherapy development. J Pathol 250, 420-439. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


Flaherty, K.T., Gray, R., Chen, A., Li, S., Patton, D., Hamilton, S.R., Williams, P.M., Mitchell, E.P., Iafrate, A.J., Sklar, J., et 
al. (2020). The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. J Natl 
Cancer Inst 112, 1021-1029. 
Gambacorti-Passerini, C. (2008). Part I: Milestones in personalised medicine--imatinib. Lancet Oncol 9, 600. 
Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. 
(2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6, pl1. 
Garcia-Carpizo, V., Ruiz-Llorente, S., Sarmentero, J., Grana-Castro, O., Pisano, D.G., and Barrero, M.J. (2018). 
CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation. Epigenetics 
Chromatin 11, 30. 
Group, P.T.C., Calabrese, C., Davidson, N.R., Demircioglu, D., Fonseca, N.A., He, Y., Kahles, A., Lehmann, K.V., Liu, F., 
Shiraishi, Y., et al. (2020). Genomic basis for RNA alterations in cancer. Nature 578, 129-136. 
Hildebrand, J.S., Wallace, K., Graybill, W.S., and Kelemen, L.E. (2019). Racial disparities in treatment and survival from 
ovarian cancer. Cancer Epidemiol 58, 77-82. 
Kang, M.S., Kim, J., Ryu, E., Ha, N.Y., Hwang, S., Kim, B.G., Ra, J.S., Kim, Y.J., Hwang, J.M., Myung, K., et al. (2019). 
PCNA Unloading Is Negatively Regulated by BET Proteins. Cell Rep 29, 4632-4645 e4635. 
Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, 
A., Birnbaum, D.P., et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 
581, 434-443. 
Kim, P.K., and Hettema, E.H. (2015). Multiple pathways for protein transport to peroxisomes. J Mol Biol 427, 1176-1190. 
Klaassen, C.D., Liu, J., and Choudhuri, S. (1999). Metallothionein: an intracellular protein to protect against cadmium 
toxicity. Annu Rev Pharmacol Toxicol 39, 267-294. 
Koboldt, D.C., Chen, K., Wylie, T., Larson, D.E., McLellan, M.D., Mardis, E.R., Weinstock, G.M., Wilson, R.K., and Ding, 
L. (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 
2283-2285. 
Kuhn, R.M., Haussler, D., and Kent, W.J. (2013). The UCSC genome browser and associated tools. Brief Bioinform 14, 144-
161. 
Kumar, M., Bowers, R.R., and Delaney, J.R. (2020a). Single-cell analysis of copy-number alterations in serous ovarian 
cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle, 1-13. 
Kumar, S., Warrell, J., Li, S., McGillivray, P.D., Meyerson, W., Salichos, L., Harmanci, A., Martinez-Fundichely, A., Chan, 
C.W.Y., Nielsen, M.M., et al. (2020b). Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular 
Functional Impact and Consequences. Cell 180, 915-927 e916. 
Lee-Six, H., Olafsson, S., Ellis, P., Osborne, R.J., Sanders, M.A., Moore, L., Georgakopoulos, N., Torrente, F., Noorani, A., 
Goddard, M., et al. (2019). The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532-537. 
Leone, R.D., and Emens, L.A. (2018). Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6, 57. 
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., and Mesirov, J.P. (2011). Molecular 
signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740. 
Liu, Y., Chen, C., Xu, Z., Scuoppo, C., Rillahan, C.D., Gao, J., Spitzer, B., Bosbach, B., Kastenhuber, E.R., Baslan, T., et al. 
(2016). Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531, 471-475. 
Long, Y., Sou, W.H., Yung, K.W.Y., Liu, H., Wan, S.W.C., Li, Q., Zeng, C., Law, C.O.K., Chan, G.H.C., Lau, T.C.K., et al. 
(2019). Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. J Biol Chem 294, 1312-
1327. 
Longo, D.L. (2019). Personalized Medicine for Primary Treatment of Serous Ovarian Cancer. N Engl J Med 381, 2471-2474. 
Ma, F., Li, B., Liu, S.Y., Iyer, S.S., Yu, Y., Wu, A., and Cheng, G. (2015). Positive feedback regulation of type I IFN 
production by the IFN-inducible DNA sensor cGAS. J Immunol 194, 1545-1554. 
Mamlouk, S., Childs, L.H., Aust, D., Heim, D., Melching, F., Oliveira, C., Wolf, T., Durek, P., Schumacher, D., Blaker, H., 
et al. (2017). DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nat Commun 8, 14093. 
Mannick, J.B., Del Giudice, G., Lattanzi, M., Valiante, N.M., Praestgaard, J., Huang, B., Lonetto, M.A., Maecker, H.T., 
Kovarik, J., Carson, S., et al. (2014). mTOR inhibition improves immune function in the elderly. Sci Transl Med 6, 
268ra179. 
Mannick, J.B., Morris, M., Hockey, H.P., Roma, G., Beibel, M., Kulmatycki, K., Watkins, M., Shavlakadze, T., Zhou, W., 
Quinn, D., et al. (2018). TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 
10. 
Martincorena, I., Fowler, J.C., Wabik, A., Lawson, A.R.J., Abascal, F., Hall, M.W.J., Cagan, A., Murai, K., Mahbubani, K., 
Stratton, M.R., et al. (2018). Somatic mutant clones colonize the human esophagus with age. Science 362, 911-917. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


Martincorena, I., Roshan, A., Gerstung, M., Ellis, P., Van Loo, P., McLaren, S., Wedge, D.C., Fullam, A., Alexandrov, L.B., 
Tubio, J.M., et al. (2015). Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal 
human skin. Science 348, 880-886. 
McElroy, J.A., Kruse, R.L., Guthrie, J., Gangnon, R.E., and Robertson, J.D. (2017). Cadmium exposure and endometrial 
cancer risk: A large midwestern U.S. population-based case-control study. PLoS One 12, e0179360. 
Mitchell, T.J., Turajlic, S., Rowan, A., Nicol, D., Farmery, J.H.R., O'Brien, T., Martincorena, I., Tarpey, P., Angelopoulos, 
N., Yates, L.R., et al. (2018). Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx 
Renal. Cell 173, 611-623 e617. 
Moore, L., Leongamornlert, D., Coorens, T.H.H., Sanders, M.A., Ellis, P., Dentro, S.C., Dawson, K.J., Butler, T., Rahbari, 
R., Mitchell, T.J., et al. (2020). The mutational landscape of normal human endometrial epithelium. Nature 580, 640-646. 
Motohara, T., Masuda, K., Morotti, M., Zheng, Y., El-Sahhar, S., Chong, K.Y., Wietek, N., Alsaadi, A., Karaminejadranjbar, 
M., Hu, Z., et al. (2019). An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular 
orchestration of the adipose-rich metastatic microenvironment. Oncogene 38, 2885-2898. 
Nagarajan, S., Bedi, U., Budida, A., Hamdan, F.H., Mishra, V.K., Najafova, Z., Xie, W., Alawi, M., Indenbirken, D., Knapp, 
S., et al. (2017). BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic 
Acids Res 45, 3130-3145. 
Ohta, A., Gorelik, E., Prasad, S.J., Ronchese, F., Lukashev, D., Wong, M.K., Huang, X., Caldwell, S., Liu, K., Smith, P., et 
al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103, 13132-13137. 
Onken, M.D., Li, J., and Cooper, J.A. (2014). Uveal melanoma cells utilize a novel route for transendothelial migration. 
PLoS One 9, e115472. 
Patch, A.M., Christie, E.L., Etemadmoghadam, D., Garsed, D.W., George, J., Fereday, S., Nones, K., Cowin, P., Alsop, K., 
Bailey, P.J., et al. (2015). Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489-494. 
Poirier, Y., Antonenkov, V.D., Glumoff, T., and Hiltunen, J.K. (2006). Peroxisomal beta-oxidation--a metabolic pathway 
with multiple functions. Biochim Biophys Acta 1763, 1413-1426. 
Prasad, V. (2020). Our best weapons against cancer are not magic bullets. Nature 577, 451. 
Ren, C., Zhang, G., Han, F., Fu, S., Cao, Y., Zhang, F., Zhang, Q., Meslamani, J., Xu, Y., Ji, D., et al. (2018). Spatially 
constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell 
growth. Proc Natl Acad Sci U S A 115, 7949-7954. 
Romanel, A., Zhang, T., Elemento, O., and Demichelis, F. (2017). EthSEQ: ethnicity annotation from whole exome 
sequencing data. Bioinformatics 33, 2402-2404. 
Rutledge, S.D., Douglas, T.A., Nicholson, J.M., Vila-Casadesus, M., Kantzler, C.L., Wangsa, D., Barroso-Vilares, M., Kale, 
S.D., Logarinho, E., and Cimini, D. (2016). Selective advantage of trisomic human cells cultured in non-standard conditions. 
Sci Rep 6, 22828. 
Sack, L.M., Davoli, T., Li, M.Z., Li, Y., Xu, Q., Naxerova, K., Wooten, E.C., Bernardi, R.J., Martin, T.D., Chen, T., et al. 
(2018). Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns. Cell 173, 
499-514 e423. 
Santaguida, S., Vasile, E., White, E., and Amon, A. (2015). Aneuploidy-induced cellular stresses limit autophagic 
degradation. Genes Dev 29, 2010-2021. 
Schrader, M., and Fahimi, H.D. (2006). Peroxisomes and oxidative stress. Biochim Biophys Acta 1763, 1755-1766. 
Sheltzer, J.M., Ko, J.H., Replogle, J.M., Habibe Burgos, N.C., Chung, E.S., Meehl, C.M., Sayles, N.M., Passerini, V., 
Storchova, Z., and Amon, A. (2017). Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell 31, 
240-255. 
Shi, Y., Ping, Y.F., Zhou, W., He, Z.C., Chen, C., Bian, B.S., Zhang, L., Chen, L., Lan, X., Zhang, X.C., et al. (2017). 
Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour 
growth. Nat Commun 8, 15080. 
Smith, J.C., and Sheltzer, J.M. (2018). Systematic identification of mutations and copy number alterations associated with 
cancer patient prognosis. Elife 7. 
Solimini, N.L., Xu, Q., Mermel, C.H., Liang, A.C., Schlabach, M.R., Luo, J., Burrows, A.E., Anselmo, A.N., Bredemeyer, 
A.L., Li, M.Z., et al. (2012). Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337, 
104-109. 
Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., and Forbes, S.A. (2018). The COSMIC Cancer Gene Census: 
describing genetic dysfunction across all human cancers. Nat Rev Cancer 18, 696-705. 
Song, X., Wan, X., Huang, T., Zeng, C., Sastry, N., Wu, B., James, C.D., Horbinski, C., Nakano, I., Zhang, W., et al. (2019). 
SRSF3-Regulated RNA Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple Cellular 
Processes. Cancer Res 79, 5288-5301. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for 
interaction datasets. Nucleic Acids Res 34, D535-539. 
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., 
Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550. 
Sulzmaier, F.J., Jean, C., and Schlaepfer, D.D. (2014). FAK in cancer: mechanistic findings and clinical applications. Nat 
Rev Cancer 14, 598-610. 
Suzuki, K., Kim, J.D., Ugai, K., Matsuda, S., Mikami, H., Yoshioka, K., Ikari, J., Hatano, M., Fukamizu, A., Tatsumi, K., et 
al. (2020). Transcriptomic changes involved in the dedifferentiation of myofibroblasts derived from the lung of a patient with 
idiopathic pulmonary fibrosis. Mol Med Rep 22, 1518-1526. 
Taylor, A.M., Shih, J., Ha, G., Gao, G.F., Zhang, X., Berger, A.C., Schumacher, S.E., Wang, C., Hu, H., Liu, J., et al. (2018). 
Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell 33, 676-689 e673. 
Torres, E.M., Springer, M., and Amon, A. (2016). No current evidence for widespread dosage compensation in S. cerevisiae. 
Elife 5, e10996. 
Verkman, A.S. (2011). Aquaporins at a glance. J Cell Sci 124, 2107-2112. 
Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput 
sequencing data. Nucleic Acids Res 38, e164. 
Wedge, D.C., Gundem, G., Mitchell, T., Woodcock, D.J., Martincorena, I., Ghori, M., Zamora, J., Butler, A., Whitaker, H., 
Kote-Jarai, Z., et al. (2018). Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug 
targets. Nat Genet 50, 682-692. 
Wilm, A., Aw, P.P., Bertrand, D., Yeo, G.H., Ong, S.H., Wong, C.H., Khor, C.C., Petric, R., Hibberd, M.L., and Nagarajan, 
N. (2012). LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from 
high-throughput sequencing datasets. Nucleic Acids Res 40, 11189-11201. 
Yoshida, K., Gowers, K.H.C., Lee-Six, H., Chandrasekharan, D.P., Coorens, T., Maughan, E.F., Beal, K., Menzies, A., 
Millar, F.R., Anderson, E., et al. (2020). Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 
578, 266-272. 
Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak, B., Lawrence, M.S., Zhang, C.Z., Wala, J., 
Mermel, C.H., et al. (2013). Pan-cancer patterns of somatic copy number alteration. Nat Genet 45, 1134-1140. 
Zevini, A., Olagnier, D., and Hiscott, J. (2017). Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends 
Immunol 38, 194-205. 
Zhang, H., Liu, T., Zhang, Z., Payne, S.H., Zhang, B., McDermott, J.E., Zhou, J.Y., Petyuk, V.A., Chen, L., Ray, D., et al. 
(2016). Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell 166, 755-765. 
Zhang, J., Dulak, A.M., Hattersley, M.M., Willis, B.S., Nikkila, J., Wang, A., Lau, A., Reimer, C., Zinda, M., Fawell, S.E., et 
al. (2018). BRD4 facilitates replication stress-induced DNA damage response. Oncogene 37, 3763-3777. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


C

D

L
im

it
e

d
 S

N
V

 D
ri

v
e

rs
 

(%
 o

f 
tu

m
o

rs
)

G
e

n
e

s
 A

lt
e

re
d

 b
y
 

C
N

A
 (

%
 o

f 
g

e
n

e
s
)

E

p53 only

p53 + normal somatic SNVs only

0

20

40

60

80
A

C
C

B
L

C
A

B
R

C
A

C
E

S
C

C
H

O
L

C
O

A
D

D
L
B

C
E

S
G

A
G

B
M

H
N

S
C

K
IC

H
K

IR
C

L
A

M
L

L
G

G
L
IH

C
L
U

A
D

L
U

S
C

M
E

S
O

O
V

P
A

A
D

P
R

A
D

R
E

A
D

S
A

R
C

S
K

C
M

S
T

A
D

T
G

C
T

T
H

C
A

T
H

Y
M

U
C

E
C

U
C

S
U

V
M

Deletions Losses Gains Amplifications

D
ri

v
e

r 
G

e
n

e
s
 o

n
 C

N
A

s
 

(#
 p

e
r 

tu
m

o
r)

A

B

Years-long constrained 

proliferation with stochastic CNAs

0

20

40

60

80

100

120

A
C

C
B

L
C

A
B

R
C

A
C

E
S

C
C

H
O

L
C

O
A

D
D

L
B

C
E

S
G

A
G

B
M

H
N

S
C

K
IC

H
K

IR
C

L
A

M
L

L
G

G
L
IH

C
L
U

A
D

L
U

S
C

M
E

S
O

O
V

P
A

A
D

P
R

A
D

R
E

A
D

S
A

R
C

S
K

C
M

S
T

A
D

T
G

C
T

T
H

C
A

T
H

Y
M

U
C

E
C

U
C

S
U

V
M

OGs on gain/amp TSGs on loss/del

CNA-

permissive 

SNVs

KRAS

p53

Death from loss of 

essential genes, 

pervasive damage 

signaling, negative 

selection

Accumulation of 

multiple driver 

CNAs

Cancer

Somatic SNV expansion

Microenvironment limited

p16

RB

0

10

20

30

40

50

60

A
C

C
B

L
C

A
B

R
C

A
C

E
S

C
C

H
O

L
C

O
A

D
D

L
B

C
E

S
G

A
G

B
M

H
N

S
C

K
IC

H
K

IR
C

L
A

M
L

L
G

G
L
IH

C
L
U

A
D

L
U

S
C

M
E

S
O

O
V

P
A

A
D

P
R

A
D

R
E

A
D

S
A

R
C

S
K

C
M

S
T

A
D

T
G

C
T

T
H

C
A

T
H

Y
M

U
C

E
C

U
C

S
U

V
M

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A
d
re

n
o
c
o
rt

ic
a
l

B
la

d
d
e
r

B
re

a
s
t

C
e
rv

ic
a
l

C
h
o
la

n
g
io

C
o
lo

n
B

-C
e
ll 

L
y
m

p
h
o
m

a
E

s
o
p
h
a
g
e
a
l

G
lio

b
la

s
to

m
a

H
e
a
d
 &

 N
e
c
k

K
id

n
e
y
 C

h
ro

m
o
p
h
o
b
e

K
id

n
e
y
 C

le
a
r 

C
e
ll

A
c
u
te

 M
y
e
lo

id
 L

e
u
k
e
m

ia
L
o
w

 G
ra

d
e
 G

lio
m

a
L
iv

e
r

L
u
n
g
 A

d
e
n
o
C

a
L
u
n
g
 S

q
u
a
m

o
u
s

M
e
s
o
th

e
lio

m
a

O
v
a
ri
a
n

P
a
n
c
re

a
tic

P
ro

s
ta

te
R

e
c
ta

l
S

a
rc

o
m

a
M

e
la

n
o
m

a
S

to
m

a
c
h

T
e
s
tic

u
la

r
T

h
y
ro

id
T

h
y
m

o
m

a
U

te
ri
n
e
 E

n
d
o
m

e
tr

ia
l

U
te

ri
n
e
 C

a
rc

in
o
s
a
rc

o
m

a
U

v
e
a
l M

e
la

n
o
m

a

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


-30

-20

-10

0

10

20

30

-400-300-200-100 0 100 200 300 400

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5

OGs

TSGs

Samples

Control

Frequency

Pathway Score

Copy-number alterations
G

e
n

o
m

e
s
 (

tu
m

o
rs

)
Build CNA Networks

per Sample

Calculate Weighted 

Network Shift from 

Control per Tumor

Calculate Shifts 

for All Samples

Compare to Null 

Distribution

Build Control Networks

per Sample (2x1,000)

Calculate Weighted 

Network Shift from 

Control to another Control

(topology normalization)

A

C

+Haploinsufficiency data

0

x1000

per tumor

x1000

per tumor

Cancer Types 

Elevated-

Suppressed

SWAN Pan-

Cancer Shift

B

Gene Prioritization 

Enrichment

-l
o

g
1
0

(e
n

ri
c
h

m
e

n
t 
P

)

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


0.001

0.01

0.1

1

10

100

0
.0

0
1

0
.0

1

0
.1 1

1
0

1
0
0

A
C

C

B
L
C

A

B
R

C
A

C
E

S
C

C
H

O
L

C
O

A
D

D
L
B

C

E
S

G
A

G
B

M

H
N

S
C

K
IC

H

K
IR

C

L
A

M
L

L
G

G

L
IH

C

L
U

A
D

L
U

S
C

M
E

S
O

O
V

P
A

A
D

P
R

A
D

R
E

A
D

S
A

R
C

S
K

C
M

S
T

A
D

T
G

C
T

T
H

C
A

T
H

Y
M

U
C

E
C

U
C

S

U
V

M
D

B C

A

Elevated
Suppressed

Negative Regulation 

of Anoikis

OV: Negative Regulation of Anoikis, 

Elevated gene hubs across human 

genome

EGFR Signaling

Amoebiasis

Hyperosmotic 

Response

DNA Methylation

Female Meiotic 

Division

Keratinization

G
e

n
e

 E
s
s
e

n
ti
a

lit
y

(%
 o

f 
c
e

ll 
lin

e
s
)

Cancers with SWAN OG Prioritization (#)

E G

KEGG: Peroxisome (OV)

PEX5

PEX19

-25

0

25

50

DMSO
Cisplatin
Cisplatin + NAC
NAC

-10

0

10

20

30

C
e
ll 

L
o

s
s
 (

%
)

SKOV3

OVCAR3

Vector 1 Vector 2

-10

10

30

50

-10

0

10

20

-10

10

30

50

-10

0

10

20

Vector 2

PEX5-OE

Vector 1

PEX19-OE

C
e

ll 
L

o
s
s
 (

%
)

C
e
ll 

L
o

s
s
 (

%
)

C
e

ll 
L

o
s
s
 (

%
)

SKOV3

OVCAR3

SKOV3

OVCAR3

*

n
s

**

**

F Vector 1

PEX19-OE

C
is

p
la

ti
n

 

(1
0
μ

M
)

D
M

S
O

DMSO Cisplatin 

(10μM)

**

Vector 2

PEX5-OE

H

H2DCFDAH2DCFDA

H2DCFDAH2DCFDA

C
is

p
la

ti
n

 

(1
0
μ

M
)

D
M

S
O

C
is

p
la

ti
n

 

(1
0
μ

M
)

D
M

S
O

SKOV3 OVCAR3

SKOV3 OVCAR3

C
is

p
la

ti
n

 

(1
0
μ

M
)

D
M

S
O

*

*

P <

0.07
Acetyl-

CoA

cAMP Signaling

Control [Metabolite]

P
E

X
1

9
-O

E
 [

M
e

ta
b

o
lit

e
]

Known Oncogenes

Novel Oncogenes

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


5

4

3

2

1

0

0 10 20

A
C

C

B
L
C

A

B
R

C
A

C
E

S
C

C
H

O
L

C
O

A
D

D
L
B

C

E
S

G
A

G
B

M

H
N

S
C

K
IC

H

K
IR

C

L
A

M
L

L
G

G

L
IH

C

L
U

A
D

L
U

S
C

M
E

S
O

O
V

P
A

A
D

P
R

A
D

R
E

A
D

S
A

R
C

S
K

C
M

S
T

A
D

T
G

C
T

T
H

C
A

T
H

Y
M

U
C

E
C

U
C

S

U
V

M

p-Ser STAT

Attachment of Micro-

tubules to Kinetochore

Phospholipid 

Dephosphorylation

Chemical

Carcinogenesis

Autophagy

Cadmium 

Response

A

Elevated
Suppressed

DB

p53 & Apoptosis

Sarcoma (SARC): Replicative 

Senescence- Suppressed 

gene hubs across genome

C

E F

m
R

N
A

 

(l
o

g
1

0
M

T
1

X
)

G

Cancers with SWAN OG Prioritization (#)

M
e

a
n

 i
n

te
ra

c
to

m
e

 

lo
g

2
(z

-s
c
o

re
)

H

C
A

O
V

3

MT

m
R

N
A

 

O
V

C
A

R
3

C
A

O
V

3

γ
H

2
A

X
 (

fl
u

x
)

CAOV3

4    3   2A 1E  1M 1A  1B  1F 1G 1H 1X 

O
V

C
A

R
3

100

50

50

100
800

400

800

400

1200

OVCAR3

γ
H

2
A

X
 (

fl
u

x
)

100

0.1

0.01

MT 4    3   2A 1E  1M 1A  1B  1F 1G 1H 1X 

100

10

1

0.1

10

1

***

***
***

******

***

***

***
**

**

Colon (COAD): p53-

mediated Apoptosis-

Suppressed 

SWAN Network 

TP53

EP300
ATM

PTEN

CHEK2

FBXW7

PML

SMAD4

RB1

SMAD3

BRCA1

XPA

NF1

TGFBR2

FAS

BUB1BNCOR1
CDKN2A

NRG1

Known Tumor Suppressor Genes

Novel Tumor Suppressor Genes

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


Cytosolic 

DNA-sensing

SWAN shift

S
W

A
N

 F
D

R

Pancreatic (PAAD): Normal Pancreatic Cell CRISPR-

Cas9 Screen-Weighted SWAN Analysis

0

10

20

30

40

50

60

IF
N

A
2

IF
N

A
4

IF
N

A
5

IF
N

A
6

IF
N

A
7

IF
N

A
8

IL
3
3

D
D

X
5

8
T

B
K

1
IR

F
7

IH

A

B

Glioblastoma (GBM): Positive Regulation of Neuron Death - Elevated

G
e

n
e

 C
o

n
tr

ib
u
ti
o

n
 

to
 S

W
A

N
 S

h
if
t

Chr7:

SRPK2, CDK5,

PTPRZ1

F

C D E

O
S

P
F

S

100

50

0

Time (months) Time (months)
50 100 150

75

25

100

50

75

25

300
0

0 60 90 120

SWAN shift
Low tertile

High tertile

SWAN shift
Low tertile

High tertile

0 +-
G

e
n

e
 l
o

s
s
 (

%
)

Monoallelic Biallelic

J

K L

Gene Losses Gene Gains

SCTR

TCGA

Black vs. White: Cytokine Production - Elevated

0 30 60 90 120

0

25

50

75

100

O
v
e

ra
ll 

S
u

rv
iv

a
l 
(%

)

Months

P < 0.009
0

0.02

0.04

0.06

0.08

-0.1 -0.05 0 0.05

E
th

S
E

Q
 P

C
2

Race

Black

White

EthSEQ PC1

M

P < 0.087

Chr3:

MITF

GSK3B

Chr1: DVL1

Uveal Melanoma: Melanogenesis 

- Suppressed (11 other cancers: Elevated)

G

P < 

0.0001
P < 

0.00024

P
F

S

P < 0.1

SWAN shift
Low tertile

High tertile

50

0

Time (months)
20 40 60

75

25

0 80

0 30 60 90 120

0

25

50

75

100

O
v
e

ra
ll 

S
u

rv
iv

a
l 
(%

)

Months

White

Black or African-

American

Positive Regulation of Neuron Death

Low-grade glioma (LGG): Hallmark Myc 

Targets V1 – Suppressed 

(19 other cancers: Elevated)

Race-Specific Analysis of High-Grade Serous Ovarian Cancer (OV)

Chrom:

TCGA SWAN shift
Low tertile

High tertile

Cytokine Production

TCGA  Race
SCTR

-

+

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


GABARAPL2

MAP1LC3B

GABARAP

BECN1

ULK2

ATG13

ATG4A

ATG12

ATG10

ATG4D

PIK3R4

ULK3

ULK1

Gene-Contribution to SWAN shift
- +

Uterine / Endometrial (UCEC): 

Autophagy - Suppressed in p53-mutant

No p53-mut

p53-mut

+

O
S

No p53 mut

p53 mut

+
+

A

B
ITPR3

ITPR1

EDN1

PLCE1

PPP3CB

ITPR3

ITPR1

PLCE1

PPP3CB

ITPR2

ITPR3

ITPR1

PPP3R1

PLCE1

PPP3CA

PPP3CB

ITPR3

ITPR1

C

E

BRCA1
BRCA2
TOP2A
TOP2B

HFM1
FANCM

D

Breast Cancer (BRCA): Meiotic chromosome separation

-25

25

0

S
W

A
N

 s
h
if
t

Autophagy
p53 mutant p53 normal

Inositol phosphate mediated signaling

N/H/KRAS mutant

N/H/KRAS normal

-25

25

0

S
W

A
N

 s
h
if
t

-50

-25

25

0

S
W

A
N

 s
h
if
t

-50

BRCA1 or 

BRCA2 mutant

BRCA1&2

normal

Months

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/


A

B

0

0.5

1

1.5

2

0 25 50 75 100

Test Sample Set

H
a
z
a

rd
 R

a
ti
o

P
a

th
w

a
y
 D

a
ta

Split Sample Sets 

(101 splits)

Training 

(67%)
Test 

(33%)

Sample (Patient)

P
a

th
w

a
y
 D

a
ta

Sample (Patient)

Split Sets #1 Split Sets #101• • •

0

1

2

3

4

5

6

0 25 50 75 100

Test sample set

H
a

z
a

rd
 r

a
ti
o

>80% patient subsets with 

same significant result

ACC Reactome_G1_Phase Model #1

ACC Reactome_G1_Phase Model #101

P < 0.047

Machine-Learning Approach to

False Positive Survival Analysis:

C

SWAN shift
Low

High

SWAN shift
Low

High

SWAN shift
Low

High

O
v
e

ra
ll 

s
u

rv
iv

a
l 
(%

)

Time (months)

100

50

75

25

50

0

0 100 150

O
v
e

ra
ll 

s
u

rv
iv

a
l 
(%

)

Time (months)

100

50

75

25

50

0

0 100 150

O
v
e

ra
ll 

s
u

rv
iv

a
l 
(%

)
Time (months)

100

50

75

25

50

0

0 100 150

P < 0.00014 P < 0.0001

(no deaths 

in 1 group)

Example: Iron coordination transport
Example: Pre-NOTCH

Transcription & Translation

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442642
http://creativecommons.org/licenses/by-nc/4.0/

