






Figure S5 | Example M1 neuron responses. (a) Trial-averaged forces from one session of
dynamic experiments (intermediate static force condition is omitted for space). Vertical scale bar
indicates 8 N. Horizontal scale bar indicates 1 s. (b-j) Trial-averaged firing rates of M1 neurons
with standard error (top) and single-trial spike rasters (bottom). Vertical scale bars indicate 20
spikes/s. Horizontal scale bars indicate 1 s.
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Figure S6 | Optimal MU recruitment. Isometric force production was modeled using an
idealized motor neuron pool (MNP) containing 5 MUs. MU twitch amplitude varied inversely with
contraction time, meaning that small MUs were also slow (see: Supp. Materials for details). The
optimal set of MU firing rates for generating a target force profile were numerically derived as
the solution that minimized the mean-squared error between the MNP and target forces. (a)
Target forces provided to the model (cyan) and MNP force (black) generated using the optimally
derived firing rates. (b) Optimal MU firing rates used to generate the MNP force in a. Each color
corresponds to a different MU, numbered in ascending order by size (i.e., MU1 was the smallest
and slowest). Optimization predicted size-based recruitment for steady force profiles (first two
columns), but more flexible recruitment strategies for rapidly changing forces. (c) Firing rates of
MU3 (green) plotted against that of MU2 (orange), for each condition shown in b.
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Methods

Data Acquisition

Subject and task

All protocols were in accord with the National Institutes of Health guidelines and
approved by the Columbia University Institutional Animal Care and Use Committee.
Subject C was an adult, male macaque monkey (Macaca mulatta) weighing 13 kg.

During experiments, the monkey sat in a primate chair with his head restrained via
surgical implant and his right arm loosely restrained. To perform the task, he grasped a
handle with his left hand while resting his forearm on a small platform that supported the
handle. Once he had achieved a comfortable position, we applied tape around his hand
and velcro around his forearm. This ensured consistent placement within and between
sessions. The handle controlled a manipulandum, custom made from aluminum (80/20
Inc.) and connected to a ball bearing carriage on a guide rail (McMaster-Carr, PN
9184T52). The carriage was fastened to a load cell (FUTEK, PN FSH01673), which was
locked in place. The load cell converted one-dimensional (tensile and compressive)
forces to a voltage signal. That voltage was amplified (FUTEK, PN FSH03863) and
routed to a Performance real-time target machine (Speedgoat) that executed a Simulink
model (MathWorks) to run the task. As the load cell was locked in place, forces were
applied to the manipulandum via isometric contractions.

The monkey controlled a ‘Pac-Man’ icon, displayed on an LCD monitor (Asus PN
PG258Q, 240 Hz refresh, 1920 x 1080 pixels) using Psychophysics Toolbox 3.0.
Pac-Man’s horizontal position was fixed on the left hand side of the screen. Vertical
position was directly proportional to the force registered by the load cell. For 0 Newtons
applied force, Pac-Man was positioned at the bottom of the screen; for the calibrated
maximum requested force for the session, Pac-Man was positioned at the top of the
screen. Maximum requested forces (see: Experimental Procedures, below) were titrated
to be comfortable for the monkey to perform across multiple trials and to activate
multiple MUs, but not so many that rendered EMG signals unsortable. On each trial, a
series of dots scrolled leftwards on screen at a constant speed (1344 pixels/s). The
monkey modulated Pac-Man’s position to intercept the dots, for which he received juice
reward. Thus, the shape of the scrolling dot path was the temporal force profile the
monkey needed to apply to the handle to obtain reward. We trained the monkey to
generate static, step, ramp, and sinusoidal forces over a range of amplitudes and
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frequencies. We define a ‘condition’ as a particular target force profile (e.g., a 2 Hz
sinusoid) that was presented on many ‘trials’, each a repetition of the same profile. Each
condition included a ‘lead-in’ and ‘lead-out’ period: a one-second static profile appended
to the beginning and end of the target profile, which facilitated trial alignment and
averaging (see below). Trials lasted 2.25-6 seconds, depending on the particular force
profile. Juice was given throughout the trial so long as Pac-Man successfully intercepted
the dots, with a large ‘bonus’ reward given at the end of the trial.

The reward schedule was designed to be encouraging; greater accuracy resulted in
more frequent rewards (every few dots) and a larger bonus at the end of the trial. To
prevent discouraging failures, we also tolerated small errors in the phase of the
response at high frequencies. For example, if the target profile was a 3 Hz sinusoid, it
was considered acceptable if the monkey generated a sinusoid of the correct amplitude
and frequency but that led the target by 100 ms. To enact this tolerance, the target dots
sped up or slowed down to match his phase. The magnitude of this phase correction
scaled with the target frequency and was capped at +/- 3 pixels/frame. To discourage
inappropriate strategies (e.g., moving randomly, or holding in the middle with the goal if
intercepting some dots) a trial was aborted if too many dots were missed (the criterion
number was tailored for each condition).

Surgical procedures

After task performance stabilized at a high level, we performed a sterile surgery to
implant a cylindrical chamber (Crist Instrument Co., 19 mm inner diameter) that
provided access to M1. Guided by structural magnetic resonance imaging scans taken
prior to surgery, we positioned the chamber surface-normal to the skull, centered over
the central sulcus. We covered the skull within the cylinder with a thin layer of dental
acrylic. Small (3.5 mm), hand-drilled burr holes through the acrylic provided the entry
point for electrodes.

Intracortical recordings and microstimulation

Neural activity was recorded with Neuropixels probes. Each probe contained 128
channels (two columns of 64 sites). Probes were lowered into position with a motorized
microdrive (Narishige). Recordings were made at depths ranging from 5.6 - 12.1 mm
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relative to the surface of the dura. Raw neural signals were digitized at 30 kHz and
saved with a 128-channel neural signal processor (Blackrock Microsystems, Cerebus).

Intracortical electrical stimulation (20 biphasic pulses, 333 Hz, 400 μs phase durations,
200 μs interphase) was delivered through linear arrays (Plexon Inc., S-Probes) using a
neurostimulator (Blackrock Microsystems, Cerestim R96). Each probe contained 32
electrode sites with 100 μm separation between them. Probes were positioned with a
motorized microdrive (Narishige). We estimated the target depth by recording neural
activity prior to stimulation sessions. Each stimulation experiment began with an initial
mapping, used to select 4-6 electrode sites to be used in the experiments. That
mapping allowed us to estimate the muscles activated from each site, and the
associated thresholds. Thresholds were determined based on visual observation and
were typically low (10-50 μA), but occasionally quite high (100-150+ μA) depending on
depth. Across all 32 electrodes, microstimulation induced twitches of proximal and distal
muscles of the upper arm, ranging from the deltoid to the forearm. Rarely did an
electrode site fail to elicit any response, but many responses involved multiple muscles
or gross movements of the shoulder that were difficult to attribute to a specific muscle.
Yet some sites produced more localized responses, prominent only within a single
muscle head. Sometimes a narrow (few mm2) region within the head of one muscle
would reliably and visibly pulse following stimulation. Because penetration locations
were guided by recordings and stimulation on previous days, such effects often involved
the muscles central to performance of the task: the deltoid and triceps. In such cases,
we selected 4-6 sites that produced responses in one of these muscles, and targeted
that muscle with EMG recordings. EMG recordings were always targeted to a localized
region of one muscle head (see below). In cases where stimulation appeared to activate
only part of one muscle head, EMG recordings targeted that localized region.

EMG recordings

Intramuscular EMG activity was recorded acutely using paired hook-wire electrodes
(Natus Neurology, PN 019-475400). Electrodes were inserted ~1 cm into the muscle
belly using 30 mm x 27 G needles. Needles were promptly removed and only the wires
remained in the muscle during recording. Wires were thin (50 um diameter) and flexible
and their presence in the muscle is typically not felt after insertion, allowing the task to
be performed normally. Wires were removed at the end of the session.
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We employed several modifications to facilitate isolation of MU spikes. As originally
manufactured, two wires protruded 2 mm and 5 mm from the end of each needle (thus
ending 3 mm apart) with each wire insulated up to a 2 mm exposed end. We found that
spike sorting benefited from including 4 wires per needle (i.e., combining two pairs in a
single needle), with each pair having a differently modified geometry. Modifying each
pair differently meant that they tended to be optimized for recording different MUs1; one
MU might be more prominent on one pair and the other on another pair. Electrodes
were thus modified as follows. The stripped ends of one pair were trimmed to 1 mm,
with 1 mm of one wire and 8 mm of the second wire protruding from the needle’s end.
The stripped ends of the second pair were trimmed to 0.5 mm, with 3.25 mm of one wire
and 5.25 mm of the second wire protruding. Electrodes were hand fabricated using a
microscope (Zeiss), digital calipers, precision tweezers and knives. During experiments,
EMG signals were recorded differentially from each pair of wires with the same length of
stripped insulation; each insertion thus provided two active recording channels. Four
insertions (closely spaced so that MUs were often recorded across many pairs) were
employed, yielding eight total pairs. The above approach was used for both the dynamic
and muscle-length experiments, where a challenge was that normal behavior was
driven by many MUs, resulting in spikes that could overlap in time. This was less of a
concern during the microstimulation experiments. Stimulation-induced responses were
typically fairly sparse near threshold (a central finding of our study is that cortical
stimulation can induce quite selective MU recruitment). Thus, microstimulation
experiments employed one electrode pair per insertion, with minimal modification
(exposed ends shorted to 1 mm).

Raw voltages were amplified and analog filtered (band-pass 10 Hz - 10 kHz) with
ISO-DAM 8A modules (World Precision Instruments), then digitized at 30 kHz with a
neural signal processor (Blackrock Microsystems, Cerebus). EMG signals were digitally
band-pass filtered online (50 Hz - 5 kHz) and saved.

Experimental procedures

Cortical recordings were performed exclusively during one set of experiments
(‘dynamic’, defined below), whereas EMG recordings were conducted across three sets
of experiments (dynamic, ‘muscle length’, and microstimulation). In a given session, the
eight EMG electrode pairs were inserted within a small (typically ~2 cm2) region of a
single muscle head. This focus aided sorting by ensuring that a given MU spike typically
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appeared, with different waveforms, on multiple channels. This focus also ensured that
any response heterogeneity was due to differential recruitment among neighboring
MUs.

In dynamic experiments, the monkey generated a diverse set of target force profiles.
The manipulandum was positioned so that the angle of shoulder flexion was 25° and the
angle of elbow flexion was 90°. Maximal requested force was 16 Newtons. We
employed twelve conditions (Supp Fig. 1) presented interleaved in pseudo-random
order: a random order was chosen, all conditions were performed, then a new random
order was chosen. Three conditions employed static target forces: 33%, 66% and 100%
of maximal force. Four conditions employed ramps: increasing or decreasing across the
full force range, either fast (lasting 250 ms) or slow (lasting 4 s). Four conditions
involved sinusoids at 0.25, 1, 2, and 3 Hz. The final condition was a 0-3 Hz chirp. The
amplitude of all sinusoidal and chirp forces was 75% of maximal force, except for the
0.25 Hz sinusoid, which was 100% of maximal force. Recordings in dynamic
experiments were made from the deltoid (typically the anterior head and some from the
lateral head) and the triceps (lateral head).

In muscle-length experiments, the monkey generated force profiles with his deltoid at a
long or short length (relative to the neural position used in the dynamic experiments).
The manipulandum was positioned so that the angle of shoulder flexion was 15° (long)
or 50° (short), while maintaining an angle of elbow flexion of 90°. Maximal requested
forces were 18 N (long) and 14 N (short). Different maximal forces were employed as it
appeared more effortful to generate forces in the shortened position. To ensure enough
trials per condition, we employed only a subset of the force profiles used in the
dynamics experiments. These were 2 static forces (50% and 100% of maximal force),
the slow increasing ramp, both increasing and decreasing fast ramps, all four sinusoids
and the chirp. These were presented interleaved in pseudorandom order for multiple
trials (~30 per condition) for the lengthened position (15°) before changing to the
shortened position (50°). In most experiments we were able to revert to the lengthened
position (15°) at the end of the session, and verify that MU recruitment returned to the
originally observed pattern. Recordings in muscle-length experiments were made from
the deltoid (anterior head).

Microstimulation experiments employed recordings from the lateral deltoid and lateral
triceps. Both these muscles exhibited strong task-modulated activity, as documented in
the dynamic and muscle-length experiments. We also included recordings from the
sternal pectoralis major, which showed only modest task-modulated activity, as we
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found cortical sites that reliably activated it. The manipulandum was positioned so that
the angle of shoulder flexion was 25° and the angle of elbow flexion was 90° (as in
dynamic experiments). Maximal force was typically set to 16 N, but was increased to 24
N and 28 N for two sessions each in an effort to evoke greater muscle activation.
Microstimulation experiments employed a limited set of force profiles: four static forces
(0, 25%, 50% and 100%), and the slow (4 s) increasing ramp. The ramp was included to
document the natural recruitment pattern during slowly changing forces.
Microstimulation was delivered once per trial during the static forces, at a randomized
time (1000-1500 ms relative to when the first dot reached Pac-Man). Because
stimulation evoked activity in muscles used to perform the task, it sometimes caused
small but detectable changes in force applied to the handle. However, these were so
small that they did not impact the monkey’s ability to perform the task and appeared to
go largely unnoticed. These experiments involved a total of 17-25 conditions: the ramp
condition (with no stimulation) plus the four static forces for the 4-6 chosen electrode
sites. These were presented interleaved in pseudorandom order.

Data Processing

Signal processing and spike sorting

Cortical voltage signals were spike sorted using KiloSort 2.02. A total of 881 neurons
were isolated across 15 sessions.

EMG signals were digitally filtered offline using a second-order 500 Hz high-pass
Butterworth. Any low SNR or dead EMG channels were omitted from analyses. Motor
unit (MU) spike times were extracted using a custom semi-automated algorithm. As with
standard spike-sorting algorithms used for neural data, individual MU spikes were
identified based on their match to a template: a canonical time-varying voltage across
all simultaneously recorded channels (example templates are shown in Fig. 1d, bottom
left). A distinctive feature of intramuscular records (compared to neural recordings) is
that they have very high signal-to-noise (peak-to-peak voltages on the order of mV,
rather than uV, and there is negligible thermal noise) but it is common for more than one
MU to spike simultaneously, yielding a superposition of waveforms. This is relatively
rare at low forces but can become common as forces increase. Our algorithm was thus
tailored to detect not only voltages that corresponded to single MU spikes, but also
those that resulted from the superposition of multiple spikes. Detection of superposition

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442653doi: bioRxiv preprint 

https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=39436831315680243&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:2d0bfa14-414a-48fb-b063-bc5fd1ee3cbe
https://doi.org/10.1101/2021.05.05.442653
http://creativecommons.org/licenses/by-nc-nd/4.0/


was greatly aided by the multi-channel recordings; different units were prominent on
different channels. Further details are provided in the Supplementary Methods.

Trial alignment and averaging

Single-trial spike rasters, for a given neuron or MU, were converted into a firing rate via
convolution with a 25 ms Gaussian kernel. One analysis (Fig. 4d) focused on single-trial
responses, but most employed trial-averaging to identify a reliable average firing rate.
To do so, trials for a given condition were aligned temporally and the average firing rate,
at each time, was computed across trials. Stimulation trials were simply aligned to
stimulation onset. For all other conditions, each trial was aligned on the moment the
target force profile ‘began’ (when the target force profile, specified by the dots, reached
Pac-Man). This alignment brought the actual (generated) force profile closely into
register across trials. However, because the actual force profile could sometimes slightly
lead or lag the target force profile, some modest across-trial variability remained. Thus,
for all trials with changing forces, we realigned each trial (by shifting it slightly in time) to
minimize the mean squared error between the actual force and the target force profile.
This ensured that trials were well-aligned in terms of the actual generated forces (the
most relevant quantity for analyses of MU activity). Trials were excluded from analysis if
they could not be well aligned despite searching over shifts from -200 to 200 ms.

Data Analysis

Quantifying motor unit flexibility

We developed two analyses that quantified MU-recruitment flexibility without directly
fitting a model (model-based quantification is described below). These two analyses
were used to produce the results in Figures S2 and S3, respectively. Both methods
leverage the definition of rigid control to detect patterns of activity that are inconsistent
with rigid control even under the most generous of assumptions.

Let denote the population state at time , where denotes
the firing rate of the MU. If traverses a 1-D monotonic manifold, then as the firing
rate of one MU increases, the firing rate of all others should either increase or remain
the same. More generally, the change in firing rates from to should either be

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442653doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%20r_t%20%3D%20%5Cbegin%7Bbmatrix%7Dr_%7B1%2Ct%7D%20%26%20r_%7B2%2Ct%7D%20%26%20%5Cldots%20%26%20r_%7Bn%2Ct%7D%20%5Cend%7Bbmatrix%7D%5E%5Ctop#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=r_%7Bi%2Ct%7D#0
https://www.codecogs.com/eqnedit.php?latex=i%5E%7B%5Ctextrm%20%7B%5Ctiny%20th%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%20r_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t'#0
https://doi.org/10.1101/2021.05.05.442653
http://creativecommons.org/licenses/by-nc-nd/4.0/


nonnegative or nonpositive for all MUs. If the changes in firing rate were all nonnegative
with some increases, then we could infer that a common input drive increased from to

. Equivalently, we could conclude that the common drive decreased from to .
Both these cases (all nonnegative or all nonpositive) are consistent with rigid control
because there exists some 1-D monotonic manifold that contains the data at both
and .

On the other hand, departures from a 1-D monotonic manifold can be inferred as
moments when the firing rates of one or more MUs increase as others’ decrease. Both
our analyses seek to quantify the magnitude of such departures while being very
conservative. Specifically, the size of a departure was always measured as the smallest
possible discrepancy from a 1-D manifold, based on all possible 1-D manifolds. To
illustrate the importance of this conservative approach, consider a situation where the
firing rate of MU1 increases considerably while MU2’s rate decreases slightly from to

. This scenario would be inconsistent with activity being modulated solely by a
common input, yet it would be impossible to know which MU reflected an additional or
separate input. Perhaps common drive decreased slightly (explaining the slight
decrease in MU2’s rate) but MU1 received an additional large, private
excitatory/inhibitory input. This would indicate a large departure from rigid control. Yet
another possibility is that common drive increased considerably (explaining the large
increase in MU1’s rate) and that MU2’s rate failed to rise because it was already near
maximal firing rate. This would not explain why MU2’s rate went down, but if that
decrease was small it could conceivably be due to a very modest departure from
idealized rigid control. Thus, to be conservative, one should quantify this situation as
only a slight deviation from the predictions of rigid control. Both methods described
below were designed to do so; when MU activities were anticorrelated, we identified the
largest increase and decrease in firing rates, then reported the change that was smaller
in magnitude.

For the first analysis, we computed the largest nonnegative change in firing rates from
to for a population of MUs as

If a 1-D monotonic manifold can be drawn through and , then either or

will be zero. Otherwise, will capture the largest increase (across

MUs) in rate from to while will capture the largest decrease.Thus, we
computed departures from a monotonic manifold at the level of an individual MU as
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As examples, consider a population of two MUs with and .
These states would be consistent with an increase in common drive from to , so

(Supp Fig. S2a, left). Conversely, and (center)
suggests a violation of rigid control, but that violation might be small; one can draw a
manifold that passes through and comes within 1 spike/s of . In this case,

. Finally, and (right) argue for a sizable violation;
is at least 10 spikes/s distant from any monotonic manifold passing through
, so .

It is worth emphasizing that (eq. 2) can readily be computed for a population with more
than two MUs, but the analysis ultimately reduces to a comparison of two MUs: one
whose firing rate increased the most and the other whose firing rate decreased the most
across a pair of time points.

To extend our analysis to multiple time points, we computed the ‘MU displacement’ as

where indexes over all other times and conditions, and and are time lags. The
inclusion of time lags ensures that departures from a monotonic manifold cannot simply
be attributed to modest differences in response latencies across MUs. In our analyses,
we optimized over ms. is exceedingly conservative; it makes no
assumptions regarding the manifold other than that it is monotonic, and identifies only
those violations that are apparent when comparing just two times.

An advantage of the metric is interpretational simplicity; it identifies pairs of times
where the joint activity of two MUs cannot lie on a single 1-D monotonic manifold. A
disadvantage is that it does not also capture the degree to which multiple other MUs
might also have activity inconsistent with a 1-D monotonic manifold. To do so, we
employed a second metric that quantifies MU-recruitment flexibility at the population
level. Under the assumptions of rigid control, the magnitude of common drive
determines the population state and therefore the summed activity of all MUs or,
equivalently, its L1-norm, . Increases and decreases in common drive correspond,
in a one-to-one manner, to increases and decreases in .Violations of rigid control
can thus be inferred if a particular norm value, , is associated with different population
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states. Geometrically, this corresponds to the population activity manifold intersecting
the hyperplane defined by at multiple locations.

We thus defined the motor neuron pool (MNP) dispersion as

where are time lag vectors, of the same dimensionality as , and is a small
constant. Conceptually, the dispersion identifies the pair of time points when the
population states are the most dissimilar, while having norms within of . As when
computing , we minimized over time lags so as to only consider
dispersions that could not be simply attributed to latency differences across MUs. For
our analyses, we set and optimized over ms.

Latent factor model

We developed a probabilistic latent variable model of MU activity. Let be the
unknown latent variables at time , which are shared between all MUs. We can fit this
model with one latent (Fig. 4; can be a single value) or multiple latents (Fig. 5). Let

be the activity of the MU at time , given by

where denotes the link function for the MU and denotes the lag between its
response and the shared latent variables. We constrained ms. To identify
flexible, monotonically increasing link functions with nonnegative outputs, we
parameterized as a rectified monotonic neural network. More precisely, we fit each

using a two-layer feedforward neural network in which the weights were constrained
to be positive. The positivity constraint was achieved by letting each weight

, where the values of were fit within the model. During model training,
the output of the neural network was passed through a ‘leaky rectified linear unit’ (i.e.,
so that the output was never exactly zero). After training was completed, we used
standard rectification on the output.
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When predicting held-out data, we encouraged temporal smoothness in the latent space

to improve generalization performance by letting , where smaller
values of encouraged greater smoothness. We set to 0.01 for our analyses.

To infer the most likely distribution of latent variables given the data (i.e., the model
posterior, ), and to learn the link functions and other parameters, we used
variational inference with a mean-field approximation for the posterior approximation. As
an inference method, we used black-box variational inference3, which performs gradient
descent to maximize the model’s evidence lower bound. We iterated between (1)
optimizing the posterior and all parameters while holding response lags fixed and (2)
optimizing the response lags. Post model-fitting, when predicting MU activity, we used
the mean of the posterior distribution as the latent input at each time.

Prior to fitting the model, the firing rate of each MU was normalized by its maximum
response across conditions. Normalization did not alter the ability of the model to fit the
data, but simply encouraged the model to fit all MUs, rather than just the high-rate units.
Additionally, the likelihood of each time point was weighted by the duration of the
experimental condition, so that each condition mattered equally within the model
regardless of duration. When fitting to single trials, we also weighted each condition by
its trial count, again so that each condition had equal importance. All model fits were
done within individual sessions.

Residual error plots

To compute the cross-validated model residuals, we first randomly split the single-trial
firing rates for each MU into halves, and computed the trial-average responses for each
half: and . We then fit the latent variable model to each half, which yielded a pair
of predicted responses, and . The cross-validated model residuals were
calculated as the dot product between the residual errors of each half:

. We computed the median cross-validated residuals across all
MUs and sessions for a given partitioning of the data. The above steps were then
repeated for 10 different random splits of trials and we reported the mean +/- standard
error of the median error across re-partitions and fits.

As a control (Fig. 4), we modified the data so that a single latent variable could fully
account for all responses. To do so, we reconstructed the firing rates using only the first
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principle component of the trial average firing rates. For example, if is the
loading vector for the first principal component, then , the matrix of responses

for one partitioning of the data, was reconstructed as , where the rectification
ensures that all firing rates are non-negative. Using these reconstructed firing rates, we
performed the same residual error analysis. Because of the rectification, the modified
data are not one-dimensional in the linear sense (there would be multiple principal
components with non-zero variance). Yet because the data will lie on a one-dimensional
monotonic manifold, cross-validated error should be near zero when fitting the model,
which is indeed what we observed.

Consistency plots

We fit the model to the activity of single trials. We aimed to determine whether, when fit
to two conditions, the model consistently overestimated the true firing rates in one
condition and underestimated the firing rates in the other condition. To do so, we
calculated the mean model error across time on every trial for each condition. Let

and denote the mean errors for a particular MU, pair of conditions
(indexed by 1 and 2), and trial . We calculated the consistency for the MU and
conditions as

where

is the total number of trials across both conditions, and is the indicator function (1
if is true; 0 otherwise). Eq. (6) determines the fraction of times one condition had
negative errors and the other had positive errors, while accounting for trials with no

error. Prior to performing this consistency calculation, we set all with absolute
value less than 0.01 to 0, so that the sign of negligible errors was not considered. We
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also removed or in which the MU had zero actual and predicted
activity, because it was impossible for the predicted activity to undershoot the true
activity in this setting.

We calculated the fraction of MUs that had and an average error of at least
0.01 across trials (to ensure that outlier trials did not lead to false positives of consistent
errors). We excluded MUs who had zero activity in > 80% of trials in the two conditions
being analyzed. Consequently, the number of MUs included in the analysis) varied for
each pair of conditions.

To calculate a chance-level baseline (Fig. S4), for each MU, we calculated the
probability that greater than 80% of the included trials would have a positive or negative
error, assuming that each trial has an independent 50/50 chance of being positive or
negative. More precisely, let be the cumulative density function of a binomial
distribution of having successes in Bernoulli events, each event with probability
of being a success. We calculate , where is the
number of total trials included for MU and gets the next integer. The total

expected fraction of MUs with by chance is thus .

Cross-validated reliability dimensionality estimate

To estimate the dimensionality of M1, we randomly split the single-trial firing rates for
each neuron into two groups and averaged over trials within each group. Let and
denote the matrices of trial-averaged responses for each partition (
condition-times and neurons). Let (an vector) denote the principal
component (PC) of . The reliability of PC was computed as the correlation between

and . We repeated this process for 25 re-partitions over trials to obtain
confidence intervals. Our method is inspired by Churchland et al.4 and conceptually
similar to but distinct from the cross-validated PCA analysis of Stringer et al., which
estimates the stimulus-related (‘signal’) neural variance based on spontaneous activity
across many neurons on single trials5.

To create simulated data sets with dimensionality , we computed , where
is the matrix of M1 firing rates averaged over all trials, and denotes the first

columns of a random orthonormal matrix. Simulated single-trial spikes were generated
for each neuron using an inhomogeneous Poisson process with rate given by the
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corresponding column of . Simulated spikes were smoothed using a 25 ms Gaussian
kernel, and the cross-validated reliability metric applied as described above.
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